blob: 82738c68c59212ec1b9b5768b3aec16445a6228d [file] [log] [blame]
use std::ops::ControlFlow;
use std::path::{Path, PathBuf};
use rustc_abi::ExternAbi;
use rustc_ast::CRATE_NODE_ID;
use rustc_attr_parsing::{ShouldEmit, eval_config_entry};
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::attrs::{AttributeKind, NativeLibKind, PeImportNameType};
use rustc_hir::find_attr;
use rustc_middle::query::LocalCrate;
use rustc_middle::ty::{self, List, Ty, TyCtxt};
use rustc_session::Session;
use rustc_session::config::CrateType;
use rustc_session::cstore::{DllCallingConvention, DllImport, ForeignModule, NativeLib};
use rustc_session::search_paths::PathKind;
use rustc_span::Symbol;
use rustc_span::def_id::{DefId, LOCAL_CRATE};
use rustc_target::spec::{BinaryFormat, LinkSelfContainedComponents};
use crate::errors;
/// The fallback directories are passed to linker, but not used when rustc does the search,
/// because in the latter case the set of fallback directories cannot always be determined
/// consistently at the moment.
pub struct NativeLibSearchFallback<'a> {
pub self_contained_components: LinkSelfContainedComponents,
pub apple_sdk_root: Option<&'a Path>,
}
pub fn walk_native_lib_search_dirs<R>(
sess: &Session,
fallback: Option<NativeLibSearchFallback<'_>>,
mut f: impl FnMut(&Path, bool /*is_framework*/) -> ControlFlow<R>,
) -> ControlFlow<R> {
// Library search paths explicitly supplied by user (`-L` on the command line).
for search_path in sess.target_filesearch().cli_search_paths(PathKind::Native) {
f(&search_path.dir, false)?;
}
for search_path in sess.target_filesearch().cli_search_paths(PathKind::Framework) {
// Frameworks are looked up strictly in framework-specific paths.
if search_path.kind != PathKind::All {
f(&search_path.dir, true)?;
}
}
let Some(NativeLibSearchFallback { self_contained_components, apple_sdk_root }) = fallback
else {
return ControlFlow::Continue(());
};
// The toolchain ships some native library components and self-contained linking was enabled.
// Add the self-contained library directory to search paths.
if self_contained_components.intersects(
LinkSelfContainedComponents::LIBC
| LinkSelfContainedComponents::UNWIND
| LinkSelfContainedComponents::MINGW,
) {
f(&sess.target_tlib_path.dir.join("self-contained"), false)?;
}
// Toolchains for some targets may ship `libunwind.a`, but place it into the main sysroot
// library directory instead of the self-contained directories.
// Sanitizer libraries have the same issue and are also linked by name on Apple targets.
// The targets here should be in sync with `copy_third_party_objects` in bootstrap.
// FIXME: implement `-Clink-self-contained=+/-unwind,+/-sanitizers`, move the shipped libunwind
// and sanitizers to self-contained directory, and stop adding this search path.
// FIXME: On AIX this also has the side-effect of making the list of library search paths
// non-empty, which is needed or the linker may decide to record the LIBPATH env, if
// defined, as the search path instead of appending the default search paths.
if sess.target.vendor == "fortanix"
|| sess.target.os == "linux"
|| sess.target.os == "fuchsia"
|| sess.target.is_like_aix
|| sess.target.is_like_darwin && !sess.opts.unstable_opts.sanitizer.is_empty()
{
f(&sess.target_tlib_path.dir, false)?;
}
// Mac Catalyst uses the macOS SDK, but to link to iOS-specific frameworks
// we must have the support library stubs in the library search path (#121430).
if let Some(sdk_root) = apple_sdk_root
&& sess.target.env == "macabi"
{
f(&sdk_root.join("System/iOSSupport/usr/lib"), false)?;
f(&sdk_root.join("System/iOSSupport/System/Library/Frameworks"), true)?;
}
ControlFlow::Continue(())
}
pub fn try_find_native_static_library(
sess: &Session,
name: &str,
verbatim: bool,
) -> Option<PathBuf> {
let default = sess.staticlib_components(verbatim);
let formats = if verbatim {
vec![default]
} else {
// On Windows, static libraries sometimes show up as libfoo.a and other
// times show up as foo.lib
let unix = ("lib", ".a");
if default == unix { vec![default] } else { vec![default, unix] }
};
walk_native_lib_search_dirs(sess, None, |dir, is_framework| {
if !is_framework {
for (prefix, suffix) in &formats {
let test = dir.join(format!("{prefix}{name}{suffix}"));
if test.exists() {
return ControlFlow::Break(test);
}
}
}
ControlFlow::Continue(())
})
.break_value()
}
pub fn try_find_native_dynamic_library(
sess: &Session,
name: &str,
verbatim: bool,
) -> Option<PathBuf> {
let default = sess.staticlib_components(verbatim);
let formats = if verbatim {
vec![default]
} else {
// While the official naming convention for MSVC import libraries
// is foo.lib, Meson follows the libfoo.dll.a convention to
// disambiguate .a for static libraries
let meson = ("lib", ".dll.a");
// and MinGW uses .a altogether
let mingw = ("lib", ".a");
vec![default, meson, mingw]
};
walk_native_lib_search_dirs(sess, None, |dir, is_framework| {
if !is_framework {
for (prefix, suffix) in &formats {
let test = dir.join(format!("{prefix}{name}{suffix}"));
if test.exists() {
return ControlFlow::Break(test);
}
}
}
ControlFlow::Continue(())
})
.break_value()
}
pub fn find_native_static_library(name: &str, verbatim: bool, sess: &Session) -> PathBuf {
try_find_native_static_library(sess, name, verbatim)
.unwrap_or_else(|| sess.dcx().emit_fatal(errors::MissingNativeLibrary::new(name, verbatim)))
}
fn find_bundled_library(
name: Symbol,
verbatim: Option<bool>,
kind: NativeLibKind,
has_cfg: bool,
tcx: TyCtxt<'_>,
) -> Option<Symbol> {
let sess = tcx.sess;
if let NativeLibKind::Static { bundle: Some(true) | None, whole_archive } = kind
&& tcx.crate_types().iter().any(|t| matches!(t, &CrateType::Rlib | CrateType::Staticlib))
&& (sess.opts.unstable_opts.packed_bundled_libs || has_cfg || whole_archive == Some(true))
{
let verbatim = verbatim.unwrap_or(false);
return find_native_static_library(name.as_str(), verbatim, sess)
.file_name()
.and_then(|s| s.to_str())
.map(Symbol::intern);
}
None
}
pub(crate) fn collect(tcx: TyCtxt<'_>, LocalCrate: LocalCrate) -> Vec<NativeLib> {
let mut collector = Collector { tcx, libs: Vec::new() };
if tcx.sess.opts.unstable_opts.link_directives {
for module in tcx.foreign_modules(LOCAL_CRATE).values() {
collector.process_module(module);
}
}
collector.process_command_line();
collector.libs
}
pub(crate) fn relevant_lib(sess: &Session, lib: &NativeLib) -> bool {
match lib.cfg {
Some(ref cfg) => {
eval_config_entry(sess, cfg, CRATE_NODE_ID, None, ShouldEmit::ErrorsAndLints).as_bool()
}
None => true,
}
}
struct Collector<'tcx> {
tcx: TyCtxt<'tcx>,
libs: Vec<NativeLib>,
}
impl<'tcx> Collector<'tcx> {
fn process_module(&mut self, module: &ForeignModule) {
let ForeignModule { def_id, abi, ref foreign_items } = *module;
let def_id = def_id.expect_local();
let sess = self.tcx.sess;
if matches!(abi, ExternAbi::Rust) {
return;
}
for attr in
find_attr!(self.tcx.get_all_attrs(def_id), AttributeKind::Link(links, _) => links)
.iter()
.map(|v| v.iter())
.flatten()
{
let dll_imports = match attr.kind {
NativeLibKind::RawDylib => foreign_items
.iter()
.map(|&child_item| {
self.build_dll_import(
abi,
attr.import_name_type.map(|(import_name_type, _)| import_name_type),
child_item,
)
})
.collect(),
_ => {
for &child_item in foreign_items {
if let Some(span) = find_attr!(self.tcx.get_all_attrs(child_item), AttributeKind::LinkOrdinal {span, ..} => *span)
{
sess.dcx().emit_err(errors::LinkOrdinalRawDylib { span });
}
}
Vec::new()
}
};
let filename = find_bundled_library(
attr.name,
attr.verbatim,
attr.kind,
attr.cfg.is_some(),
self.tcx,
);
self.libs.push(NativeLib {
name: attr.name,
filename,
kind: attr.kind,
cfg: attr.cfg.clone(),
foreign_module: Some(def_id.to_def_id()),
verbatim: attr.verbatim,
dll_imports,
});
}
}
// Process libs passed on the command line
fn process_command_line(&mut self) {
// First, check for errors
let mut renames = FxHashSet::default();
for lib in &self.tcx.sess.opts.libs {
if let NativeLibKind::Framework { .. } = lib.kind
&& !self.tcx.sess.target.is_like_darwin
{
// Cannot check this when parsing options because the target is not yet available.
self.tcx.dcx().emit_err(errors::LibFrameworkApple);
}
if let Some(ref new_name) = lib.new_name {
let any_duplicate = self.libs.iter().any(|n| n.name.as_str() == lib.name);
if new_name.is_empty() {
self.tcx.dcx().emit_err(errors::EmptyRenamingTarget { lib_name: &lib.name });
} else if !any_duplicate {
self.tcx.dcx().emit_err(errors::RenamingNoLink { lib_name: &lib.name });
} else if !renames.insert(&lib.name) {
self.tcx.dcx().emit_err(errors::MultipleRenamings { lib_name: &lib.name });
}
}
}
// Update kind and, optionally, the name of all native libraries
// (there may be more than one) with the specified name. If any
// library is mentioned more than once, keep the latest mention
// of it, so that any possible dependent libraries appear before
// it. (This ensures that the linker is able to see symbols from
// all possible dependent libraries before linking in the library
// in question.)
for passed_lib in &self.tcx.sess.opts.libs {
// If we've already added any native libraries with the same
// name, they will be pulled out into `existing`, so that we
// can move them to the end of the list below.
let mut existing = self
.libs
.extract_if(.., |lib| {
if lib.name.as_str() == passed_lib.name {
// FIXME: This whole logic is questionable, whether modifiers are
// involved or not, library reordering and kind overriding without
// explicit `:rename` in particular.
if lib.has_modifiers() || passed_lib.has_modifiers() {
match lib.foreign_module {
Some(def_id) => {
self.tcx.dcx().emit_err(errors::NoLinkModOverride {
span: Some(self.tcx.def_span(def_id)),
})
}
None => self
.tcx
.dcx()
.emit_err(errors::NoLinkModOverride { span: None }),
};
}
if passed_lib.kind != NativeLibKind::Unspecified {
lib.kind = passed_lib.kind;
}
if let Some(new_name) = &passed_lib.new_name {
lib.name = Symbol::intern(new_name);
}
lib.verbatim = passed_lib.verbatim;
return true;
}
false
})
.collect::<Vec<_>>();
if existing.is_empty() {
// Add if not found
let new_name: Option<&str> = passed_lib.new_name.as_deref();
let name = Symbol::intern(new_name.unwrap_or(&passed_lib.name));
let filename = find_bundled_library(
name,
passed_lib.verbatim,
passed_lib.kind,
false,
self.tcx,
);
self.libs.push(NativeLib {
name,
filename,
kind: passed_lib.kind,
cfg: None,
foreign_module: None,
verbatim: passed_lib.verbatim,
dll_imports: Vec::new(),
});
} else {
// Move all existing libraries with the same name to the
// end of the command line.
self.libs.append(&mut existing);
}
}
}
fn i686_arg_list_size(&self, item: DefId) -> usize {
let argument_types: &List<Ty<'_>> = self.tcx.instantiate_bound_regions_with_erased(
self.tcx
.type_of(item)
.instantiate_identity()
.fn_sig(self.tcx)
.inputs()
.map_bound(|slice| self.tcx.mk_type_list(slice)),
);
argument_types
.iter()
.map(|ty| {
let layout = self
.tcx
.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty))
.expect("layout")
.layout;
// In both stdcall and fastcall, we always round up the argument size to the
// nearest multiple of 4 bytes.
(layout.size().bytes_usize() + 3) & !3
})
.sum()
}
fn build_dll_import(
&self,
abi: ExternAbi,
import_name_type: Option<PeImportNameType>,
item: DefId,
) -> DllImport {
let span = self.tcx.def_span(item);
// This `extern` block should have been checked for general ABI support before, but let's
// double-check that.
assert!(self.tcx.sess.target.is_abi_supported(abi));
// This logic is similar to `AbiMap::canonize_abi` (in rustc_target/src/spec/abi_map.rs) but
// we need more detail than those adjustments, and we can't support all ABIs that are
// generally supported.
let calling_convention = if self.tcx.sess.target.arch == "x86" {
match abi {
ExternAbi::C { .. } | ExternAbi::Cdecl { .. } => DllCallingConvention::C,
ExternAbi::Stdcall { .. } => {
DllCallingConvention::Stdcall(self.i686_arg_list_size(item))
}
// On Windows, `extern "system"` behaves like msvc's `__stdcall`.
// `__stdcall` only applies on x86 and on non-variadic functions:
// https://learn.microsoft.com/en-us/cpp/cpp/stdcall?view=msvc-170
ExternAbi::System { .. } => {
let c_variadic =
self.tcx.type_of(item).instantiate_identity().fn_sig(self.tcx).c_variadic();
if c_variadic {
DllCallingConvention::C
} else {
DllCallingConvention::Stdcall(self.i686_arg_list_size(item))
}
}
ExternAbi::Fastcall { .. } => {
DllCallingConvention::Fastcall(self.i686_arg_list_size(item))
}
ExternAbi::Vectorcall { .. } => {
DllCallingConvention::Vectorcall(self.i686_arg_list_size(item))
}
_ => {
self.tcx.dcx().emit_fatal(errors::RawDylibUnsupportedAbi { span });
}
}
} else {
match abi {
ExternAbi::C { .. } | ExternAbi::Win64 { .. } | ExternAbi::System { .. } => {
DllCallingConvention::C
}
_ => {
self.tcx.dcx().emit_fatal(errors::RawDylibUnsupportedAbi { span });
}
}
};
let codegen_fn_attrs = self.tcx.codegen_fn_attrs(item);
let import_name_type = codegen_fn_attrs
.link_ordinal
.map_or(import_name_type, |ord| Some(PeImportNameType::Ordinal(ord)));
let name = codegen_fn_attrs.symbol_name.unwrap_or_else(|| self.tcx.item_name(item));
if self.tcx.sess.target.binary_format == BinaryFormat::Elf {
let name = name.as_str();
if name.contains('\0') {
self.tcx.dcx().emit_err(errors::RawDylibMalformed { span });
} else if let Some((left, right)) = name.split_once('@')
&& (left.is_empty() || right.is_empty() || right.contains('@'))
{
self.tcx.dcx().emit_err(errors::RawDylibMalformed { span });
}
}
DllImport {
name,
import_name_type,
calling_convention,
span,
is_fn: self.tcx.def_kind(item).is_fn_like(),
}
}
}