blob: d851c3329802c152c83f514f69ec516e1b8f1d17 [file] [log] [blame]
use std::fmt;
use itertools::Either;
use rustc_abi as abi;
use rustc_abi::{
Align, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, TagEncoding, VariantIdx, Variants,
};
use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
use rustc_middle::mir::{self, ConstValue};
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::{bug, span_bug};
use rustc_session::config::OptLevel;
use tracing::{debug, instrument};
use super::place::{PlaceRef, PlaceValue};
use super::rvalue::transmute_scalar;
use super::{FunctionCx, LocalRef};
use crate::MemFlags;
use crate::common::IntPredicate;
use crate::traits::*;
/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone, Debug)]
pub enum OperandValue<V> {
/// A reference to the actual operand. The data is guaranteed
/// to be valid for the operand's lifetime.
/// The second value, if any, is the extra data (vtable or length)
/// which indicates that it refers to an unsized rvalue.
///
/// An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
/// (That basically amounts to "isn't one of the other variants".)
///
/// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
/// to the location holding the value. The type behind that pointer is the
/// one returned by [`LayoutTypeCodegenMethods::backend_type`].
Ref(PlaceValue<V>),
/// A single LLVM immediate value.
///
/// An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
/// The backend value in this variant must be the *immediate* backend type,
/// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
Immediate(V),
/// A pair of immediate LLVM values. Used by wide pointers too.
///
/// # Invariants
/// - For `Pair(a, b)`, `a` is always at offset 0, but may have `FieldIdx(1..)`
/// - `b` is not at offset 0, because `V` is not a 1ZST type.
/// - `a` and `b` will have a different FieldIdx, but otherwise `b`'s may be lower
/// or they may not be adjacent, due to arbitrary numbers of 1ZST fields that
/// will not affect the shape of the data which determines if `Pair` will be used.
/// - An `OperandValue` *must* be this variant for any type for which
/// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
/// - The backend values in this variant must be the *immediate* backend types,
/// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
/// with `immediate: true`.
Pair(V, V),
/// A value taking no bytes, and which therefore needs no LLVM value at all.
///
/// If you ever need a `V` to pass to something, get a fresh poison value
/// from [`ConstCodegenMethods::const_poison`].
///
/// An `OperandValue` *must* be this variant for any type for which
/// `is_zst` on its `Layout` returns `true`. Note however that
/// these values can still require alignment.
ZeroSized,
}
impl<V: CodegenObject> OperandValue<V> {
/// Treat this value as a pointer and return the data pointer and
/// optional metadata as backend values.
///
/// If you're making a place, use [`Self::deref`] instead.
pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
match self {
OperandValue::Immediate(llptr) => (llptr, None),
OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
_ => bug!("OperandValue cannot be a pointer: {self:?}"),
}
}
/// Treat this value as a pointer and return the place to which it points.
///
/// The pointer immediate doesn't inherently know its alignment,
/// so you need to pass it in. If you want to get it from a type's ABI
/// alignment, then maybe you want [`OperandRef::deref`] instead.
///
/// This is the inverse of [`PlaceValue::address`].
pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
let (llval, llextra) = self.pointer_parts();
PlaceValue { llval, llextra, align }
}
pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
&self,
cx: &Cx,
ty: TyAndLayout<'tcx>,
) -> bool {
match self {
OperandValue::ZeroSized => ty.is_zst(),
OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
OperandValue::Ref(_) => cx.is_backend_ref(ty),
}
}
}
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder::store`
/// directly is sure to cause problems -- use `OperandRef::store`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx, V> {
/// The value.
pub val: OperandValue<V>,
/// The layout of value, based on its Rust type.
pub layout: TyAndLayout<'tcx>,
}
impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
}
}
impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
assert!(layout.is_zst());
OperandRef { val: OperandValue::ZeroSized, layout }
}
pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
val: mir::ConstValue,
ty: Ty<'tcx>,
) -> Self {
let layout = bx.layout_of(ty);
let val = match val {
ConstValue::Scalar(x) => {
let BackendRepr::Scalar(scalar) = layout.backend_repr else {
bug!("from_const: invalid ByVal layout: {:#?}", layout);
};
let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
OperandValue::Immediate(llval)
}
ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
ConstValue::Slice { alloc_id, meta } => {
let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
};
let a = Scalar::from_pointer(Pointer::new(alloc_id.into(), Size::ZERO), &bx.tcx());
let a_llval = bx.scalar_to_backend(
a,
a_scalar,
bx.scalar_pair_element_backend_type(layout, 0, true),
);
let b_llval = bx.const_usize(meta);
OperandValue::Pair(a_llval, b_llval)
}
ConstValue::Indirect { alloc_id, offset } => {
let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
return Self::from_const_alloc(bx, layout, alloc, offset);
}
};
OperandRef { val, layout }
}
fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
layout: TyAndLayout<'tcx>,
alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
offset: Size,
) -> Self {
let alloc_align = alloc.inner().align;
assert!(alloc_align >= layout.align.abi, "{alloc_align:?} < {:?}", layout.align.abi);
let read_scalar = |start, size, s: abi::Scalar, ty| {
match alloc.0.read_scalar(
bx,
alloc_range(start, size),
/*read_provenance*/ matches!(s.primitive(), abi::Primitive::Pointer(_)),
) {
Ok(val) => bx.scalar_to_backend(val, s, ty),
Err(_) => bx.const_poison(ty),
}
};
// It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
// However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
// and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
// case where some of the bytes are initialized and others are not. So, we need an extra
// check that walks over the type of `mplace` to make sure it is truly correct to treat this
// like a `Scalar` (or `ScalarPair`).
match layout.backend_repr {
BackendRepr::Scalar(s @ abi::Scalar::Initialized { .. }) => {
let size = s.size(bx);
assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
OperandRef { val: OperandValue::Immediate(val), layout }
}
BackendRepr::ScalarPair(
a @ abi::Scalar::Initialized { .. },
b @ abi::Scalar::Initialized { .. },
) => {
let (a_size, b_size) = (a.size(bx), b.size(bx));
let b_offset = (offset + a_size).align_to(b.align(bx).abi);
assert!(b_offset.bytes() > 0);
let a_val = read_scalar(
offset,
a_size,
a,
bx.scalar_pair_element_backend_type(layout, 0, true),
);
let b_val = read_scalar(
b_offset,
b_size,
b,
bx.scalar_pair_element_backend_type(layout, 1, true),
);
OperandRef { val: OperandValue::Pair(a_val, b_val), layout }
}
_ if layout.is_zst() => OperandRef::zero_sized(layout),
_ => {
// Neither a scalar nor scalar pair. Load from a place
// FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
// same `ConstAllocation`?
let init = bx.const_data_from_alloc(alloc);
let base_addr = bx.static_addr_of(init, alloc_align, None);
let llval = bx.const_ptr_byte_offset(base_addr, offset);
bx.load_operand(PlaceRef::new_sized(llval, layout))
}
}
}
/// Asserts that this operand refers to a scalar and returns
/// a reference to its value.
pub fn immediate(self) -> V {
match self.val {
OperandValue::Immediate(s) => s,
_ => bug!("not immediate: {:?}", self),
}
}
/// Asserts that this operand is a pointer (or reference) and returns
/// the place to which it points. (This requires no code to be emitted
/// as we represent places using the pointer to the place.)
///
/// This uses [`Ty::builtin_deref`] to include the type of the place and
/// assumes the place is aligned to the pointee's usual ABI alignment.
///
/// If you don't need the type, see [`OperandValue::pointer_parts`]
/// or [`OperandValue::deref`].
pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
if self.layout.ty.is_box() {
// Derefer should have removed all Box derefs
bug!("dereferencing {:?} in codegen", self.layout.ty);
}
let projected_ty = self
.layout
.ty
.builtin_deref(true)
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));
let layout = cx.layout_of(projected_ty);
self.val.deref(layout.align.abi).with_type(layout)
}
/// If this operand is a `Pair`, we return an aggregate with the two values.
/// For other cases, see `immediate`.
pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
) -> V {
if let OperandValue::Pair(a, b) = self.val {
let llty = bx.cx().immediate_backend_type(self.layout);
debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
// Reconstruct the immediate aggregate.
let mut llpair = bx.cx().const_poison(llty);
llpair = bx.insert_value(llpair, a, 0);
llpair = bx.insert_value(llpair, b, 1);
llpair
} else {
self.immediate()
}
}
/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
llval: V,
layout: TyAndLayout<'tcx>,
) -> Self {
let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
// Deconstruct the immediate aggregate.
let a_llval = bx.extract_value(llval, 0);
let b_llval = bx.extract_value(llval, 1);
OperandValue::Pair(a_llval, b_llval)
} else {
OperandValue::Immediate(llval)
};
OperandRef { val, layout }
}
pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
&self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
bx: &mut Bx,
i: usize,
) -> Self {
let field = self.layout.field(bx.cx(), i);
let offset = self.layout.fields.offset(i);
if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
// Part of https://github.com/rust-lang/compiler-team/issues/838
span_bug!(
fx.mir.span,
"Non-ref type {self:?} cannot project to ref field type {field:?}",
);
}
let val = if field.is_zst() {
OperandValue::ZeroSized
} else if field.size == self.layout.size {
assert_eq!(offset.bytes(), 0);
fx.codegen_transmute_operand(bx, *self, field)
} else {
let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
// Extract a scalar component from a pair.
(OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
if offset.bytes() == 0 {
assert_eq!(field.size, a.size(bx.cx()));
(Some(a), a_llval)
} else {
assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
assert_eq!(field.size, b.size(bx.cx()));
(Some(b), b_llval)
}
}
_ => {
span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)
}
};
OperandValue::Immediate(match field.backend_repr {
BackendRepr::SimdVector { .. } => imm,
BackendRepr::Scalar(out_scalar) => {
let Some(in_scalar) = in_scalar else {
span_bug!(
fx.mir.span,
"OperandRef::extract_field({:?}): missing input scalar for output scalar",
self
)
};
if in_scalar != out_scalar {
// If the backend and backend_immediate types might differ,
// flip back to the backend type then to the new immediate.
// This avoids nop truncations, but still handles things like
// Bools in union fields needs to be truncated.
let backend = bx.from_immediate(imm);
bx.to_immediate_scalar(backend, out_scalar)
} else {
imm
}
}
BackendRepr::ScalarPair(_, _) | BackendRepr::Memory { .. } => bug!(),
})
};
OperandRef { val, layout: field }
}
/// Obtain the actual discriminant of a value.
#[instrument(level = "trace", skip(fx, bx))]
pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
fx: &mut FunctionCx<'a, 'tcx, Bx>,
bx: &mut Bx,
cast_to: Ty<'tcx>,
) -> V {
let dl = &bx.tcx().data_layout;
let cast_to_layout = bx.cx().layout_of(cast_to);
let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
// We check uninhabitedness separately because a type like
// `enum Foo { Bar(i32, !) }` is still reported as `Variants::Single`,
// *not* as `Variants::Empty`.
if self.layout.is_uninhabited() {
return bx.cx().const_poison(cast_to);
}
let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
Variants::Empty => unreachable!("we already handled uninhabited types"),
Variants::Single { index } => {
let discr_val =
if let Some(discr) = self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
discr.val
} else {
// This arm is for types which are neither enums nor coroutines,
// and thus for which the only possible "variant" should be the first one.
assert_eq!(index, FIRST_VARIANT);
// There's thus no actual discriminant to return, so we return
// what it would have been if this was a single-variant enum.
0
};
return bx.cx().const_uint_big(cast_to, discr_val);
}
Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
(tag, tag_encoding, tag_field)
}
};
// Read the tag/niche-encoded discriminant from memory.
let tag_op = match self.val {
OperandValue::ZeroSized => bug!(),
OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
self.extract_field(fx, bx, tag_field.as_usize())
}
OperandValue::Ref(place) => {
let tag = place.with_type(self.layout).project_field(bx, tag_field.as_usize());
bx.load_operand(tag)
}
};
let tag_imm = tag_op.immediate();
// Decode the discriminant (specifically if it's niche-encoded).
match *tag_encoding {
TagEncoding::Direct => {
let signed = match tag_scalar.primitive() {
// We use `i1` for bytes that are always `0` or `1`,
// e.g., `#[repr(i8)] enum E { A, B }`, but we can't
// let LLVM interpret the `i1` as signed, because
// then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
Primitive::Int(_, signed) => !tag_scalar.is_bool() && signed,
_ => false,
};
bx.intcast(tag_imm, cast_to, signed)
}
TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
// Cast to an integer so we don't have to treat a pointer as a
// special case.
let (tag, tag_llty) = match tag_scalar.primitive() {
// FIXME(erikdesjardins): handle non-default addrspace ptr sizes
Primitive::Pointer(_) => {
let t = bx.type_from_integer(dl.ptr_sized_integer());
let tag = bx.ptrtoint(tag_imm, t);
(tag, t)
}
_ => (tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
};
// `layout_sanity_check` ensures that we only get here for cases where the discriminant
// value and the variant index match, since that's all `Niche` can encode.
let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
let niche_start_const = bx.cx().const_uint_big(tag_llty, niche_start);
// We have a subrange `niche_start..=niche_end` inside `range`.
// If the value of the tag is inside this subrange, it's a
// "niche value", an increment of the discriminant. Otherwise it
// indicates the untagged variant.
// A general algorithm to extract the discriminant from the tag
// is:
// relative_tag = tag - niche_start
// is_niche = relative_tag <= (ule) relative_max
// discr = if is_niche {
// cast(relative_tag) + niche_variants.start()
// } else {
// untagged_variant
// }
// However, we will likely be able to emit simpler code.
let (is_niche, tagged_discr, delta) = if relative_max == 0 {
// Best case scenario: only one tagged variant. This will
// likely become just a comparison and a jump.
// The algorithm is:
// is_niche = tag == niche_start
// discr = if is_niche {
// niche_start
// } else {
// untagged_variant
// }
let is_niche = bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
let tagged_discr =
bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
(is_niche, tagged_discr, 0)
} else {
// Thanks to parameter attributes and load metadata, LLVM already knows
// the general valid range of the tag. It's possible, though, for there
// to be an impossible value *in the middle*, which those ranges don't
// communicate, so it's worth an `assume` to let the optimizer know.
// Most importantly, this means when optimizing a variant test like
// `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
// to `!is_niche` because the `complex` part can't possibly match.
//
// This was previously asserted on `tagged_discr` below, where the
// impossible value is more obvious, but that caused an intermediate
// value to become multi-use and thus not optimize, so instead this
// assumes on the original input which is always multi-use. See
// <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
//
// FIXME: If we ever get range assume operand bundles in LLVM (so we
// don't need the `icmp`s in the instruction stream any more), it
// might be worth moving this back to being on the switch argument
// where it's more obviously applicable.
if niche_variants.contains(&untagged_variant)
&& bx.cx().sess().opts.optimize != OptLevel::No
{
let impossible = niche_start
.wrapping_add(u128::from(untagged_variant.as_u32()))
.wrapping_sub(u128::from(niche_variants.start().as_u32()));
let impossible = bx.cx().const_uint_big(tag_llty, impossible);
let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
bx.assume(ne);
}
// With multiple niched variants we'll have to actually compute
// the variant index from the stored tag.
//
// However, there's still one small optimization we can often do for
// determining *whether* a tag value is a natural value or a niched
// variant. The general algorithm involves a subtraction that often
// wraps in practice, making it tricky to analyse. However, in cases
// where there are few enough possible values of the tag that it doesn't
// need to wrap around, we can instead just look for the contiguous
// tag values on the end of the range with a single comparison.
//
// For example, take the type `enum Demo { A, B, Untagged(bool) }`.
// The `bool` is {0, 1}, and the two other variants are given the
// tags {2, 3} respectively. That means the `tag_range` is
// `[0, 3]`, which doesn't wrap as unsigned (nor as signed), so
// we can test for the niched variants with just `>= 2`.
//
// That means we're looking either for the niche values *above*
// the natural values of the untagged variant:
//
// niche_start niche_end
// | |
// v v
// MIN -------------+---------------------------+---------- MAX
// ^ | is niche |
// | +---------------------------+
// | |
// tag_range.start tag_range.end
//
// Or *below* the natural values:
//
// niche_start niche_end
// | |
// v v
// MIN ----+-----------------------+---------------------- MAX
// | is niche | ^
// +-----------------------+ |
// | |
// tag_range.start tag_range.end
//
// With those two options and having the flexibility to choose
// between a signed or unsigned comparison on the tag, that
// covers most realistic scenarios. The tests have a (contrived)
// example of a 1-byte enum with over 128 niched variants which
// wraps both as signed as unsigned, though, and for something
// like that we're stuck with the general algorithm.
let tag_range = tag_scalar.valid_range(&dl);
let tag_size = tag_scalar.size(&dl);
let niche_end = u128::from(relative_max).wrapping_add(niche_start);
let niche_end = tag_size.truncate(niche_end);
let relative_discr = bx.sub(tag, niche_start_const);
let cast_tag = bx.intcast(relative_discr, cast_to, false);
let is_niche = if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
if niche_start == tag_range.start {
let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
} else {
assert_eq!(niche_end, tag_range.end);
bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
}
} else if tag_range.no_signed_wraparound(tag_size) == Ok(true) {
if niche_start == tag_range.start {
let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
} else {
assert_eq!(niche_end, tag_range.end);
bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
}
} else {
bx.icmp(
IntPredicate::IntULE,
relative_discr,
bx.cx().const_uint(tag_llty, relative_max as u64),
)
};
(is_niche, cast_tag, niche_variants.start().as_u32() as u128)
};
let tagged_discr = if delta == 0 {
tagged_discr
} else {
bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
};
let untagged_variant_const =
bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
// In principle we could insert assumes on the possible range of `discr`, but
// currently in LLVM this isn't worth it because the original `tag` will
// have either a `range` parameter attribute or `!range` metadata,
// or come from a `transmute` that already `assume`d it.
discr
}
}
}
}
/// Each of these variants starts out as `Either::Right` when it's uninitialized,
/// then setting the field changes that to `Either::Left` with the backend value.
#[derive(Debug, Copy, Clone)]
enum OperandValueBuilder<V> {
ZeroSized,
Immediate(Either<V, abi::Scalar>),
Pair(Either<V, abi::Scalar>, Either<V, abi::Scalar>),
/// `repr(simd)` types need special handling because they each have a non-empty
/// array field (which uses [`OperandValue::Ref`]) despite the SIMD type itself
/// using [`OperandValue::Immediate`] which for any other kind of type would
/// mean that its one non-ZST field would also be [`OperandValue::Immediate`].
Vector(Either<V, ()>),
}
/// Allows building up an `OperandRef` by setting fields one at a time.
#[derive(Debug, Copy, Clone)]
pub(super) struct OperandRefBuilder<'tcx, V> {
val: OperandValueBuilder<V>,
layout: TyAndLayout<'tcx>,
}
impl<'a, 'tcx, V: CodegenObject> OperandRefBuilder<'tcx, V> {
/// Creates an uninitialized builder for an instance of the `layout`.
///
/// ICEs for [`BackendRepr::Memory`] types (other than ZSTs), which should
/// be built up inside a [`PlaceRef`] instead as they need an allocated place
/// into which to write the values of the fields.
pub(super) fn new(layout: TyAndLayout<'tcx>) -> Self {
let val = match layout.backend_repr {
BackendRepr::Memory { .. } if layout.is_zst() => OperandValueBuilder::ZeroSized,
BackendRepr::Scalar(s) => OperandValueBuilder::Immediate(Either::Right(s)),
BackendRepr::ScalarPair(a, b) => {
OperandValueBuilder::Pair(Either::Right(a), Either::Right(b))
}
BackendRepr::SimdVector { .. } => OperandValueBuilder::Vector(Either::Right(())),
BackendRepr::Memory { .. } => {
bug!("Cannot use non-ZST Memory-ABI type in operand builder: {layout:?}");
}
};
OperandRefBuilder { val, layout }
}
pub(super) fn insert_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
&mut self,
bx: &mut Bx,
variant: VariantIdx,
field: FieldIdx,
field_operand: OperandRef<'tcx, V>,
) {
if let OperandValue::ZeroSized = field_operand.val {
// A ZST never adds any state, so just ignore it.
// This special-casing is worth it because of things like
// `Result<!, !>` where `Ok(never)` is legal to write,
// but the type shows as FieldShape::Primitive so we can't
// actually look at the layout for the field being set.
return;
}
let is_zero_offset = if let abi::FieldsShape::Primitive = self.layout.fields {
// The other branch looking at field layouts ICEs for primitives,
// so we need to handle them separately.
// Because we handled ZSTs above (like the metadata in a thin pointer),
// the only possibility is that we're setting the one-and-only field.
assert!(!self.layout.is_zst());
assert_eq!(variant, FIRST_VARIANT);
assert_eq!(field, FieldIdx::ZERO);
true
} else {
let variant_layout = self.layout.for_variant(bx.cx(), variant);
let field_offset = variant_layout.fields.offset(field.as_usize());
field_offset == Size::ZERO
};
let mut update = |tgt: &mut Either<V, abi::Scalar>, src, from_scalar| {
let to_scalar = tgt.unwrap_right();
// We transmute here (rather than just `from_immediate`) because in
// `Result<usize, *const ()>` the field of the `Ok` is an integer,
// but the corresponding scalar in the enum is a pointer.
let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
*tgt = Either::Left(imm);
};
match (field_operand.val, field_operand.layout.backend_repr) {
(OperandValue::ZeroSized, _) => unreachable!("Handled above"),
(OperandValue::Immediate(v), BackendRepr::Scalar(from_scalar)) => match &mut self.val {
OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
update(val, v, from_scalar);
}
OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
update(fst, v, from_scalar);
}
OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
update(snd, v, from_scalar);
}
_ => {
bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
}
},
(OperandValue::Immediate(v), BackendRepr::SimdVector { .. }) => match &mut self.val {
OperandValueBuilder::Vector(val @ Either::Right(())) if is_zero_offset => {
*val = Either::Left(v);
}
_ => {
bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
}
},
(OperandValue::Pair(a, b), BackendRepr::ScalarPair(from_sa, from_sb)) => {
match &mut self.val {
OperandValueBuilder::Pair(fst @ Either::Right(_), snd @ Either::Right(_)) => {
update(fst, a, from_sa);
update(snd, b, from_sb);
}
_ => bug!(
"Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}"
),
}
}
(OperandValue::Ref(place), BackendRepr::Memory { .. }) => match &mut self.val {
OperandValueBuilder::Vector(val @ Either::Right(())) => {
let ibty = bx.cx().immediate_backend_type(self.layout);
let simd = bx.load_from_place(ibty, place);
*val = Either::Left(simd);
}
_ => {
bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
}
},
_ => bug!("Operand cannot be used with `insert_field`: {field_operand:?}"),
}
}
/// Insert the immediate value `imm` for field `f` in the *type itself*,
/// rather than into one of the variants.
///
/// Most things want [`Self::insert_field`] instead, but this one is
/// necessary for writing things like enum tags that aren't in any variant.
pub(super) fn insert_imm(&mut self, f: FieldIdx, imm: V) {
let field_offset = self.layout.fields.offset(f.as_usize());
let is_zero_offset = field_offset == Size::ZERO;
match &mut self.val {
OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
*val = Either::Left(imm);
}
OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
*fst = Either::Left(imm);
}
OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
*snd = Either::Left(imm);
}
_ => bug!("Tried to insert {imm:?} into field {f:?} of {self:?}"),
}
}
/// After having set all necessary fields, this converts the builder back
/// to the normal `OperandRef`.
///
/// ICEs if any required fields were not set.
pub(super) fn build(&self, cx: &impl CodegenMethods<'tcx, Value = V>) -> OperandRef<'tcx, V> {
let OperandRefBuilder { val, layout } = *self;
// For something like `Option::<u32>::None`, it's expected that the
// payload scalar will not actually have been set, so this converts
// unset scalars to corresponding `undef` values so long as the scalar
// from the layout allows uninit.
let unwrap = |r: Either<V, abi::Scalar>| match r {
Either::Left(v) => v,
Either::Right(s) if s.is_uninit_valid() => {
let bty = cx.type_from_scalar(s);
cx.const_undef(bty)
}
Either::Right(_) => bug!("OperandRef::build called while fields are missing {self:?}"),
};
let val = match val {
OperandValueBuilder::ZeroSized => OperandValue::ZeroSized,
OperandValueBuilder::Immediate(v) => OperandValue::Immediate(unwrap(v)),
OperandValueBuilder::Pair(a, b) => OperandValue::Pair(unwrap(a), unwrap(b)),
OperandValueBuilder::Vector(v) => match v {
Either::Left(v) => OperandValue::Immediate(v),
Either::Right(())
if let BackendRepr::SimdVector { element, .. } = layout.backend_repr
&& element.is_uninit_valid() =>
{
let bty = cx.immediate_backend_type(layout);
OperandValue::Immediate(cx.const_undef(bty))
}
Either::Right(()) => {
bug!("OperandRef::build called while fields are missing {self:?}")
}
},
};
OperandRef { val, layout }
}
}
impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
/// Returns an `OperandValue` that's generally UB to use in any way.
///
/// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
/// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
///
/// Supports sized types only.
pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
bx: &mut Bx,
layout: TyAndLayout<'tcx>,
) -> OperandValue<V> {
assert!(layout.is_sized());
if layout.is_zst() {
OperandValue::ZeroSized
} else if bx.cx().is_backend_immediate(layout) {
let ibty = bx.cx().immediate_backend_type(layout);
OperandValue::Immediate(bx.const_poison(ibty))
} else if bx.cx().is_backend_scalar_pair(layout) {
let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
} else {
let ptr = bx.cx().type_ptr();
OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
}
}
pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::empty());
}
pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::VOLATILE);
}
pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
}
pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
) {
self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
}
pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
self,
bx: &mut Bx,
dest: PlaceRef<'tcx, V>,
flags: MemFlags,
) {
debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
match self {
OperandValue::ZeroSized => {
// Avoid generating stores of zero-sized values, because the only way to have a
// zero-sized value is through `undef`/`poison`, and the store itself is useless.
}
OperandValue::Ref(val) => {
assert!(dest.layout.is_sized(), "cannot directly store unsized values");
if val.llextra.is_some() {
bug!("cannot directly store unsized values");
}
bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
}
OperandValue::Immediate(s) => {
let val = bx.from_immediate(s);
bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
}
OperandValue::Pair(a, b) => {
let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
};
let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
let val = bx.from_immediate(a);
let align = dest.val.align;
bx.store_with_flags(val, dest.val.llval, align, flags);
let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
let val = bx.from_immediate(b);
let align = dest.val.align.restrict_for_offset(b_offset);
bx.store_with_flags(val, llptr, align, flags);
}
}
}
}
impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
fn maybe_codegen_consume_direct(
&mut self,
bx: &mut Bx,
place_ref: mir::PlaceRef<'tcx>,
) -> Option<OperandRef<'tcx, Bx::Value>> {
debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
match self.locals[place_ref.local] {
LocalRef::Operand(mut o) => {
// We only need to handle the projections that
// `LocalAnalyzer::process_place` let make it here.
for elem in place_ref.projection {
match *elem {
mir::ProjectionElem::Field(f, _) => {
assert!(
!o.layout.ty.is_any_ptr(),
"Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
but tried to access field {f:?} of pointer {o:?}",
);
o = o.extract_field(self, bx, f.index());
}
mir::PlaceElem::Downcast(_, vidx) => {
debug_assert_eq!(
o.layout.variants,
abi::Variants::Single { index: vidx },
);
let layout = o.layout.for_variant(bx.cx(), vidx);
o = OperandRef { val: o.val, layout }
}
mir::PlaceElem::Subtype(subtype_ty) => {
let subtype_ty = self.monomorphize(subtype_ty);
let layout = self.cx.layout_of(subtype_ty);
o = OperandRef { val: o.val, layout }
}
_ => return None,
}
}
Some(o)
}
LocalRef::PendingOperand => {
bug!("use of {:?} before def", place_ref);
}
LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
// watch out for locals that do not have an
// alloca; they are handled somewhat differently
None
}
}
}
pub fn codegen_consume(
&mut self,
bx: &mut Bx,
place_ref: mir::PlaceRef<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
debug!("codegen_consume(place_ref={:?})", place_ref);
let ty = self.monomorphized_place_ty(place_ref);
let layout = bx.cx().layout_of(ty);
// ZSTs don't require any actual memory access.
if layout.is_zst() {
return OperandRef::zero_sized(layout);
}
if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
return o;
}
// for most places, to consume them we just load them
// out from their home
let place = self.codegen_place(bx, place_ref);
bx.load_operand(place)
}
pub fn codegen_operand(
&mut self,
bx: &mut Bx,
operand: &mir::Operand<'tcx>,
) -> OperandRef<'tcx, Bx::Value> {
debug!("codegen_operand(operand={:?})", operand);
match *operand {
mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
self.codegen_consume(bx, place.as_ref())
}
mir::Operand::Constant(ref constant) => {
let constant_ty = self.monomorphize(constant.ty());
// Most SIMD vector constants should be passed as immediates.
// (In particular, some intrinsics really rely on this.)
if constant_ty.is_simd() {
// However, some SIMD types do not actually use the vector ABI
// (in particular, packed SIMD types do not). Ensure we exclude those.
let layout = bx.layout_of(constant_ty);
if let BackendRepr::SimdVector { .. } = layout.backend_repr {
let (llval, ty) = self.immediate_const_vector(bx, constant);
return OperandRef {
val: OperandValue::Immediate(llval),
layout: bx.layout_of(ty),
};
}
}
self.eval_mir_constant_to_operand(bx, constant)
}
}
}
}