blob: 952da2cdf72536365388cf50a3ddef305c670801 [file] [log] [blame]
//! Global value numbering.
//!
//! MIR may contain repeated and/or redundant computations. The objective of this pass is to detect
//! such redundancies and re-use the already-computed result when possible.
//!
//! From those assignments, we construct a mapping `VnIndex -> Vec<(Local, Location)>` of available
//! values, the locals in which they are stored, and the assignment location.
//!
//! We traverse all assignments `x = rvalue` and operands.
//!
//! For each SSA one, we compute a symbolic representation of values that are assigned to SSA
//! locals. This symbolic representation is defined by the `Value` enum. Each produced instance of
//! `Value` is interned as a `VnIndex`, which allows us to cheaply compute identical values.
//!
//! For each non-SSA
//! one, we compute the `VnIndex` of the rvalue. If this `VnIndex` is associated to a constant, we
//! replace the rvalue/operand by that constant. Otherwise, if there is an SSA local `y`
//! associated to this `VnIndex`, and if its definition location strictly dominates the assignment
//! to `x`, we replace the assignment by `x = y`.
//!
//! By opportunity, this pass simplifies some `Rvalue`s based on the accumulated knowledge.
//!
//! # Operational semantic
//!
//! Operationally, this pass attempts to prove bitwise equality between locals. Given this MIR:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _b = some other value // also has VnIndex i
//! ```
//!
//! We consider it to be replaceable by:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _c = some other value // also has VnIndex i
//! assume(_a bitwise equal to _c) // follows from having the same VnIndex
//! _b = _a // follows from the `assume`
//! ```
//!
//! Which is simplifiable to:
//! ```ignore (MIR)
//! _a = some value // has VnIndex i
//! // some MIR
//! _b = _a
//! ```
//!
//! # Handling of references
//!
//! We handle references by assigning a different "provenance" index to each Ref/RawPtr rvalue.
//! This ensure that we do not spuriously merge borrows that should not be merged. Meanwhile, we
//! consider all the derefs of an immutable reference to a freeze type to give the same value:
//! ```ignore (MIR)
//! _a = *_b // _b is &Freeze
//! _c = *_b // replaced by _c = _a
//! ```
//!
//! # Determinism of constant propagation
//!
//! When registering a new `Value`, we attempt to opportunistically evaluate it as a constant.
//! The evaluated form is inserted in `evaluated` as an `OpTy` or `None` if evaluation failed.
//!
//! The difficulty is non-deterministic evaluation of MIR constants. Some `Const` can have
//! different runtime values each time they are evaluated. This is the case with
//! `Const::Slice` which have a new pointer each time they are evaluated, and constants that
//! contain a fn pointer (`AllocId` pointing to a `GlobalAlloc::Function`) pointing to a different
//! symbol in each codegen unit.
//!
//! Meanwhile, we want to be able to read indirect constants. For instance:
//! ```
//! static A: &'static &'static u8 = &&63;
//! fn foo() -> u8 {
//! **A // We want to replace by 63.
//! }
//! fn bar() -> u8 {
//! b"abc"[1] // We want to replace by 'b'.
//! }
//! ```
//!
//! The `Value::Constant` variant stores a possibly unevaluated constant. Evaluating that constant
//! may be non-deterministic. When that happens, we assign a disambiguator to ensure that we do not
//! merge the constants. See `duplicate_slice` test in `gvn.rs`.
//!
//! Second, when writing constants in MIR, we do not write `Const::Slice` or `Const`
//! that contain `AllocId`s.
use std::borrow::Cow;
use either::Either;
use rustc_abi::{self as abi, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, VariantIdx};
use rustc_const_eval::const_eval::DummyMachine;
use rustc_const_eval::interpret::{
ImmTy, Immediate, InterpCx, MemPlaceMeta, MemoryKind, OpTy, Projectable, Scalar,
intern_const_alloc_for_constprop,
};
use rustc_data_structures::fx::{FxIndexSet, MutableValues};
use rustc_data_structures::graph::dominators::Dominators;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::DenseBitSet;
use rustc_index::{IndexVec, newtype_index};
use rustc_middle::bug;
use rustc_middle::mir::interpret::GlobalAlloc;
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::layout::HasTypingEnv;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::DUMMY_SP;
use smallvec::SmallVec;
use tracing::{debug, instrument, trace};
use crate::ssa::SsaLocals;
pub(super) struct GVN;
impl<'tcx> crate::MirPass<'tcx> for GVN {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.mir_opt_level() >= 2
}
#[instrument(level = "trace", skip(self, tcx, body))]
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
debug!(def_id = ?body.source.def_id());
let typing_env = body.typing_env(tcx);
let ssa = SsaLocals::new(tcx, body, typing_env);
// Clone dominators because we need them while mutating the body.
let dominators = body.basic_blocks.dominators().clone();
let mut state = VnState::new(tcx, body, typing_env, &ssa, dominators, &body.local_decls);
for local in body.args_iter().filter(|&local| ssa.is_ssa(local)) {
let opaque = state.new_opaque(body.local_decls[local].ty);
state.assign(local, opaque);
}
let reverse_postorder = body.basic_blocks.reverse_postorder().to_vec();
for bb in reverse_postorder {
let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb];
state.visit_basic_block_data(bb, data);
}
// For each local that is reused (`y` above), we remove its storage statements do avoid any
// difficulty. Those locals are SSA, so should be easy to optimize by LLVM without storage
// statements.
StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body);
}
fn is_required(&self) -> bool {
false
}
}
newtype_index! {
struct VnIndex {}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
enum AddressKind {
Ref(BorrowKind),
Address(RawPtrKind),
}
#[derive(Debug, PartialEq, Eq, Hash)]
enum Value<'tcx> {
// Root values.
/// Used to represent values we know nothing about.
/// The `usize` is a counter incremented by `new_opaque`.
Opaque(usize),
/// Evaluated or unevaluated constant value.
Constant {
value: Const<'tcx>,
/// Some constants do not have a deterministic value. To avoid merging two instances of the
/// same `Const`, we assign them an additional integer index.
// `disambiguator` is 0 iff the constant is deterministic.
disambiguator: usize,
},
/// An aggregate value, either tuple/closure/struct/enum.
/// This does not contain unions, as we cannot reason with the value.
Aggregate(VariantIdx, Vec<VnIndex>),
/// A raw pointer aggregate built from a thin pointer and metadata.
RawPtr {
/// Thin pointer component. This is field 0 in MIR.
pointer: VnIndex,
/// Metadata component. This is field 1 in MIR.
metadata: VnIndex,
},
/// This corresponds to a `[value; count]` expression.
Repeat(VnIndex, ty::Const<'tcx>),
/// The address of a place.
Address {
place: Place<'tcx>,
kind: AddressKind,
/// Give each borrow and pointer a different provenance, so we don't merge them.
provenance: usize,
},
// Extractions.
/// This is the *value* obtained by projecting another value.
Projection(VnIndex, ProjectionElem<VnIndex, ()>),
/// Discriminant of the given value.
Discriminant(VnIndex),
/// Length of an array or slice.
Len(VnIndex),
// Operations.
NullaryOp(NullOp<'tcx>, Ty<'tcx>),
UnaryOp(UnOp, VnIndex),
BinaryOp(BinOp, VnIndex, VnIndex),
Cast {
kind: CastKind,
value: VnIndex,
},
}
struct VnState<'body, 'tcx> {
tcx: TyCtxt<'tcx>,
ecx: InterpCx<'tcx, DummyMachine>,
local_decls: &'body LocalDecls<'tcx>,
is_coroutine: bool,
/// Value stored in each local.
locals: IndexVec<Local, Option<VnIndex>>,
/// Locals that are assigned that value.
// This vector does not hold all the values of `VnIndex` that we create.
rev_locals: IndexVec<VnIndex, SmallVec<[Local; 1]>>,
values: FxIndexSet<(Value<'tcx>, Ty<'tcx>)>,
/// Values evaluated as constants if possible.
evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>,
/// Counter to generate different values.
next_opaque: usize,
/// Cache the deref values.
derefs: Vec<VnIndex>,
ssa: &'body SsaLocals,
dominators: Dominators<BasicBlock>,
reused_locals: DenseBitSet<Local>,
}
impl<'body, 'tcx> VnState<'body, 'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
body: &Body<'tcx>,
typing_env: ty::TypingEnv<'tcx>,
ssa: &'body SsaLocals,
dominators: Dominators<BasicBlock>,
local_decls: &'body LocalDecls<'tcx>,
) -> Self {
// Compute a rough estimate of the number of values in the body from the number of
// statements. This is meant to reduce the number of allocations, but it's all right if
// we miss the exact amount. We estimate based on 2 values per statement (one in LHS and
// one in RHS) and 4 values per terminator (for call operands).
let num_values =
2 * body.basic_blocks.iter().map(|bbdata| bbdata.statements.len()).sum::<usize>()
+ 4 * body.basic_blocks.len();
VnState {
tcx,
ecx: InterpCx::new(tcx, DUMMY_SP, typing_env, DummyMachine),
local_decls,
is_coroutine: body.coroutine.is_some(),
locals: IndexVec::from_elem(None, local_decls),
rev_locals: IndexVec::with_capacity(num_values),
values: FxIndexSet::with_capacity_and_hasher(num_values, Default::default()),
evaluated: IndexVec::with_capacity(num_values),
next_opaque: 1,
derefs: Vec::new(),
ssa,
dominators,
reused_locals: DenseBitSet::new_empty(local_decls.len()),
}
}
fn typing_env(&self) -> ty::TypingEnv<'tcx> {
self.ecx.typing_env()
}
#[instrument(level = "trace", skip(self), ret)]
fn insert(&mut self, ty: Ty<'tcx>, value: Value<'tcx>) -> VnIndex {
let (index, new) = self.values.insert_full((value, ty));
let index = VnIndex::from_usize(index);
if new {
// Grow `evaluated` and `rev_locals` here to amortize the allocations.
let evaluated = self.eval_to_const(index);
let _index = self.evaluated.push(evaluated);
debug_assert_eq!(index, _index);
let _index = self.rev_locals.push(SmallVec::new());
debug_assert_eq!(index, _index);
}
index
}
fn next_opaque(&mut self) -> usize {
let next_opaque = self.next_opaque;
self.next_opaque += 1;
next_opaque
}
/// Create a new `Value` for which we have no information at all, except that it is distinct
/// from all the others.
#[instrument(level = "trace", skip(self), ret)]
fn new_opaque(&mut self, ty: Ty<'tcx>) -> VnIndex {
let value = Value::Opaque(self.next_opaque());
self.insert(ty, value)
}
/// Create a new `Value::Address` distinct from all the others.
#[instrument(level = "trace", skip(self), ret)]
fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> VnIndex {
let pty = place.ty(self.local_decls, self.tcx).ty;
let ty = match kind {
AddressKind::Ref(bk) => {
Ty::new_ref(self.tcx, self.tcx.lifetimes.re_erased, pty, bk.to_mutbl_lossy())
}
AddressKind::Address(mutbl) => Ty::new_ptr(self.tcx, pty, mutbl.to_mutbl_lossy()),
};
let value = Value::Address { place, kind, provenance: self.next_opaque() };
self.insert(ty, value)
}
#[inline]
fn get(&self, index: VnIndex) -> &Value<'tcx> {
&self.values.get_index(index.as_usize()).unwrap().0
}
#[inline]
fn ty(&self, index: VnIndex) -> Ty<'tcx> {
self.values.get_index(index.as_usize()).unwrap().1
}
/// Record that `local` is assigned `value`. `local` must be SSA.
#[instrument(level = "trace", skip(self))]
fn assign(&mut self, local: Local, value: VnIndex) {
debug_assert!(self.ssa.is_ssa(local));
self.locals[local] = Some(value);
self.rev_locals[value].push(local);
}
fn insert_constant(&mut self, value: Const<'tcx>) -> VnIndex {
let disambiguator = if value.is_deterministic() {
// The constant is deterministic, no need to disambiguate.
0
} else {
// Multiple mentions of this constant will yield different values,
// so assign a different `disambiguator` to ensure they do not get the same `VnIndex`.
let disambiguator = self.next_opaque();
// `disambiguator: 0` means deterministic.
debug_assert_ne!(disambiguator, 0);
disambiguator
};
self.insert(value.ty(), Value::Constant { value, disambiguator })
}
fn insert_bool(&mut self, flag: bool) -> VnIndex {
// Booleans are deterministic.
let value = Const::from_bool(self.tcx, flag);
debug_assert!(value.is_deterministic());
self.insert(self.tcx.types.bool, Value::Constant { value, disambiguator: 0 })
}
fn insert_scalar(&mut self, ty: Ty<'tcx>, scalar: Scalar) -> VnIndex {
// Scalars are deterministic.
let value = Const::from_scalar(self.tcx, scalar, ty);
debug_assert!(value.is_deterministic());
self.insert(ty, Value::Constant { value, disambiguator: 0 })
}
fn insert_tuple(&mut self, ty: Ty<'tcx>, values: Vec<VnIndex>) -> VnIndex {
self.insert(ty, Value::Aggregate(VariantIdx::ZERO, values))
}
fn insert_deref(&mut self, ty: Ty<'tcx>, value: VnIndex) -> VnIndex {
let value = self.insert(ty, Value::Projection(value, ProjectionElem::Deref));
self.derefs.push(value);
value
}
fn invalidate_derefs(&mut self) {
for deref in std::mem::take(&mut self.derefs) {
let opaque = self.next_opaque();
self.values.get_index_mut2(deref.index()).unwrap().0 = Value::Opaque(opaque);
}
}
#[instrument(level = "trace", skip(self), ret)]
fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> {
use Value::*;
let ty = self.ty(value);
// Avoid computing layouts inside a coroutine, as that can cause cycles.
let ty = if !self.is_coroutine || ty.is_scalar() {
self.ecx.layout_of(ty).ok()?
} else {
return None;
};
let op = match *self.get(value) {
_ if ty.is_zst() => ImmTy::uninit(ty).into(),
Opaque(_) => return None,
// Do not bother evaluating repeat expressions. This would uselessly consume memory.
Repeat(..) => return None,
Constant { ref value, disambiguator: _ } => {
self.ecx.eval_mir_constant(value, DUMMY_SP, None).discard_err()?
}
Aggregate(variant, ref fields) => {
let fields = fields
.iter()
.map(|&f| self.evaluated[f].as_ref())
.collect::<Option<Vec<_>>>()?;
let variant = if ty.ty.is_enum() { Some(variant) } else { None };
if matches!(ty.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..))
{
let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
let variant_dest = if let Some(variant) = variant {
self.ecx.project_downcast(&dest, variant).discard_err()?
} else {
dest.clone()
};
for (field_index, op) in fields.into_iter().enumerate() {
let field_dest = self
.ecx
.project_field(&variant_dest, FieldIdx::from_usize(field_index))
.discard_err()?;
self.ecx.copy_op(op, &field_dest).discard_err()?;
}
self.ecx
.write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest)
.discard_err()?;
self.ecx
.alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
.discard_err()?;
dest.into()
} else {
return None;
}
}
RawPtr { pointer, metadata } => {
let pointer = self.evaluated[pointer].as_ref()?;
let metadata = self.evaluated[metadata].as_ref()?;
// Pointers don't have fields, so don't `project_field` them.
let data = self.ecx.read_pointer(pointer).discard_err()?;
let meta = if metadata.layout.is_zst() {
MemPlaceMeta::None
} else {
MemPlaceMeta::Meta(self.ecx.read_scalar(metadata).discard_err()?)
};
let ptr_imm = Immediate::new_pointer_with_meta(data, meta, &self.ecx);
ImmTy::from_immediate(ptr_imm, ty).into()
}
Projection(base, elem) => {
let base = self.evaluated[base].as_ref()?;
let elem = match elem {
ProjectionElem::Deref => ProjectionElem::Deref,
ProjectionElem::Downcast(name, read_variant) => {
ProjectionElem::Downcast(name, read_variant)
}
ProjectionElem::Field(f, ()) => ProjectionElem::Field(f, ty.ty),
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::OpaqueCast(()) => ProjectionElem::OpaqueCast(ty.ty),
ProjectionElem::Subtype(()) => ProjectionElem::Subtype(ty.ty),
ProjectionElem::UnwrapUnsafeBinder(()) => {
ProjectionElem::UnwrapUnsafeBinder(ty.ty)
}
// This should have been replaced by a `ConstantIndex` earlier.
ProjectionElem::Index(_) => return None,
};
self.ecx.project(base, elem).discard_err()?
}
Address { place, kind: _, provenance: _ } => {
if !place.is_indirect_first_projection() {
return None;
}
let local = self.locals[place.local]?;
let pointer = self.evaluated[local].as_ref()?;
let mut mplace = self.ecx.deref_pointer(pointer).discard_err()?;
for proj in place.projection.iter().skip(1) {
// We have no call stack to associate a local with a value, so we cannot
// interpret indexing.
if matches!(proj, ProjectionElem::Index(_)) {
return None;
}
mplace = self.ecx.project(&mplace, proj).discard_err()?;
}
let pointer = mplace.to_ref(&self.ecx);
ImmTy::from_immediate(pointer, ty).into()
}
Discriminant(base) => {
let base = self.evaluated[base].as_ref()?;
let variant = self.ecx.read_discriminant(base).discard_err()?;
let discr_value =
self.ecx.discriminant_for_variant(base.layout.ty, variant).discard_err()?;
discr_value.into()
}
Len(slice) => {
let slice = self.evaluated[slice].as_ref()?;
let len = slice.len(&self.ecx).discard_err()?;
ImmTy::from_uint(len, ty).into()
}
NullaryOp(null_op, arg_ty) => {
let arg_layout = self.ecx.layout_of(arg_ty).ok()?;
if let NullOp::SizeOf | NullOp::AlignOf = null_op
&& arg_layout.is_unsized()
{
return None;
}
let val = match null_op {
NullOp::SizeOf => arg_layout.size.bytes(),
NullOp::AlignOf => arg_layout.align.abi.bytes(),
NullOp::OffsetOf(fields) => self
.ecx
.tcx
.offset_of_subfield(self.typing_env(), arg_layout, fields.iter())
.bytes(),
NullOp::UbChecks => return None,
NullOp::ContractChecks => return None,
};
ImmTy::from_uint(val, ty).into()
}
UnaryOp(un_op, operand) => {
let operand = self.evaluated[operand].as_ref()?;
let operand = self.ecx.read_immediate(operand).discard_err()?;
let val = self.ecx.unary_op(un_op, &operand).discard_err()?;
val.into()
}
BinaryOp(bin_op, lhs, rhs) => {
let lhs = self.evaluated[lhs].as_ref()?;
let lhs = self.ecx.read_immediate(lhs).discard_err()?;
let rhs = self.evaluated[rhs].as_ref()?;
let rhs = self.ecx.read_immediate(rhs).discard_err()?;
let val = self.ecx.binary_op(bin_op, &lhs, &rhs).discard_err()?;
val.into()
}
Cast { kind, value } => match kind {
CastKind::IntToInt | CastKind::IntToFloat => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).discard_err()?;
let res = self.ecx.int_to_int_or_float(&value, ty).discard_err()?;
res.into()
}
CastKind::FloatToFloat | CastKind::FloatToInt => {
let value = self.evaluated[value].as_ref()?;
let value = self.ecx.read_immediate(value).discard_err()?;
let res = self.ecx.float_to_float_or_int(&value, ty).discard_err()?;
res.into()
}
CastKind::Transmute => {
let value = self.evaluated[value].as_ref()?;
// `offset` for immediates generally only supports projections that match the
// type of the immediate. However, as a HACK, we exploit that it can also do
// limited transmutes: it only works between types with the same layout, and
// cannot transmute pointers to integers.
if value.as_mplace_or_imm().is_right() {
let can_transmute = match (value.layout.backend_repr, ty.backend_repr) {
(BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => {
s1.size(&self.ecx) == s2.size(&self.ecx)
&& !matches!(s1.primitive(), Primitive::Pointer(..))
}
(BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => {
a1.size(&self.ecx) == a2.size(&self.ecx) &&
b1.size(&self.ecx) == b2.size(&self.ecx) &&
// The alignment of the second component determines its offset, so that also needs to match.
b1.align(&self.ecx) == b2.align(&self.ecx) &&
// None of the inputs may be a pointer.
!matches!(a1.primitive(), Primitive::Pointer(..))
&& !matches!(b1.primitive(), Primitive::Pointer(..))
}
_ => false,
};
if !can_transmute {
return None;
}
}
value.offset(Size::ZERO, ty, &self.ecx).discard_err()?
}
CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) => {
let src = self.evaluated[value].as_ref()?;
let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?;
self.ecx.unsize_into(src, ty, &dest).discard_err()?;
self.ecx
.alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id())
.discard_err()?;
dest.into()
}
CastKind::FnPtrToPtr | CastKind::PtrToPtr => {
let src = self.evaluated[value].as_ref()?;
let src = self.ecx.read_immediate(src).discard_err()?;
let ret = self.ecx.ptr_to_ptr(&src, ty).discard_err()?;
ret.into()
}
CastKind::PointerCoercion(ty::adjustment::PointerCoercion::UnsafeFnPointer, _) => {
let src = self.evaluated[value].as_ref()?;
let src = self.ecx.read_immediate(src).discard_err()?;
ImmTy::from_immediate(*src, ty).into()
}
_ => return None,
},
};
Some(op)
}
fn project(
&mut self,
place_ty: PlaceTy<'tcx>,
value: VnIndex,
proj: PlaceElem<'tcx>,
from_non_ssa_index: &mut bool,
) -> Option<(PlaceTy<'tcx>, VnIndex)> {
let projection_ty = place_ty.projection_ty(self.tcx, proj);
let proj = match proj {
ProjectionElem::Deref => {
if let Some(Mutability::Not) = place_ty.ty.ref_mutability()
&& projection_ty.ty.is_freeze(self.tcx, self.typing_env())
{
// An immutable borrow `_x` always points to the same value for the
// lifetime of the borrow, so we can merge all instances of `*_x`.
return Some((projection_ty, self.insert_deref(projection_ty.ty, value)));
} else {
return None;
}
}
ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index),
ProjectionElem::Field(f, _) => {
if let Value::Aggregate(_, fields) = self.get(value) {
return Some((projection_ty, fields[f.as_usize()]));
} else if let Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant)) = self.get(value)
&& let Value::Aggregate(written_variant, fields) = self.get(*outer_value)
// This pass is not aware of control-flow, so we do not know whether the
// replacement we are doing is actually reachable. We could be in any arm of
// ```
// match Some(x) {
// Some(y) => /* stuff */,
// None => /* other */,
// }
// ```
//
// In surface rust, the current statement would be unreachable.
//
// However, from the reference chapter on enums and RFC 2195,
// accessing the wrong variant is not UB if the enum has repr.
// So it's not impossible for a series of MIR opts to generate
// a downcast to an inactive variant.
&& written_variant == read_variant
{
return Some((projection_ty, fields[f.as_usize()]));
}
ProjectionElem::Field(f, ())
}
ProjectionElem::Index(idx) => {
if let Value::Repeat(inner, _) = self.get(value) {
*from_non_ssa_index |= self.locals[idx].is_none();
return Some((projection_ty, *inner));
}
let idx = self.locals[idx]?;
ProjectionElem::Index(idx)
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
match self.get(value) {
Value::Repeat(inner, _) => {
return Some((projection_ty, *inner));
}
Value::Aggregate(_, operands) => {
let offset = if from_end {
operands.len() - offset as usize
} else {
offset as usize
};
let value = operands.get(offset).copied()?;
return Some((projection_ty, value));
}
_ => {}
};
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::OpaqueCast(_) => ProjectionElem::OpaqueCast(()),
ProjectionElem::Subtype(_) => ProjectionElem::Subtype(()),
ProjectionElem::UnwrapUnsafeBinder(_) => ProjectionElem::UnwrapUnsafeBinder(()),
};
let value = self.insert(projection_ty.ty, Value::Projection(value, proj));
Some((projection_ty, value))
}
/// Simplify the projection chain if we know better.
#[instrument(level = "trace", skip(self))]
fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) {
// If the projection is indirect, we treat the local as a value, so can replace it with
// another local.
if place.is_indirect_first_projection()
&& let Some(base) = self.locals[place.local]
&& let Some(new_local) = self.try_as_local(base, location)
&& place.local != new_local
{
place.local = new_local;
self.reused_locals.insert(new_local);
}
let mut projection = Cow::Borrowed(&place.projection[..]);
for i in 0..projection.len() {
let elem = projection[i];
if let ProjectionElem::Index(idx_local) = elem
&& let Some(idx) = self.locals[idx_local]
{
if let Some(offset) = self.evaluated[idx].as_ref()
&& let Some(offset) = self.ecx.read_target_usize(offset).discard_err()
&& let Some(min_length) = offset.checked_add(1)
{
projection.to_mut()[i] =
ProjectionElem::ConstantIndex { offset, min_length, from_end: false };
} else if let Some(new_idx_local) = self.try_as_local(idx, location)
&& idx_local != new_idx_local
{
projection.to_mut()[i] = ProjectionElem::Index(new_idx_local);
self.reused_locals.insert(new_idx_local);
}
}
}
if projection.is_owned() {
place.projection = self.tcx.mk_place_elems(&projection);
}
trace!(?place);
}
/// Represent the *value* which would be read from `place`, and point `place` to a preexisting
/// place with the same value (if that already exists).
#[instrument(level = "trace", skip(self), ret)]
fn simplify_place_value(
&mut self,
place: &mut Place<'tcx>,
location: Location,
) -> Option<VnIndex> {
self.simplify_place_projection(place, location);
// Invariant: `place` and `place_ref` point to the same value, even if they point to
// different memory locations.
let mut place_ref = place.as_ref();
// Invariant: `value` holds the value up-to the `index`th projection excluded.
let mut value = self.locals[place.local]?;
// Invariant: `value` has type `place_ty`, with optional downcast variant if needed.
let mut place_ty = PlaceTy::from_ty(self.local_decls[place.local].ty);
let mut from_non_ssa_index = false;
for (index, proj) in place.projection.iter().enumerate() {
if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
&& let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
&& let AddressKind::Ref(BorrowKind::Shared) = kind
&& let Some(v) = self.simplify_place_value(&mut pointee, location)
{
value = v;
// `pointee` holds a `Place`, so `ProjectionElem::Index` holds a `Local`.
// That local is SSA, but we otherwise have no guarantee on that local's value at
// the current location compared to its value where `pointee` was borrowed.
if pointee.projection.iter().all(|elem| !matches!(elem, ProjectionElem::Index(_))) {
place_ref =
pointee.project_deeper(&place.projection[index..], self.tcx).as_ref();
}
}
if let Some(local) = self.try_as_local(value, location) {
// Both `local` and `Place { local: place.local, projection: projection[..index] }`
// hold the same value. Therefore, following place holds the value in the original
// `place`.
place_ref = PlaceRef { local, projection: &place.projection[index..] };
}
(place_ty, value) = self.project(place_ty, value, proj, &mut from_non_ssa_index)?;
}
if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value)
&& let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer)
&& let AddressKind::Ref(BorrowKind::Shared) = kind
&& let Some(v) = self.simplify_place_value(&mut pointee, location)
{
value = v;
// `pointee` holds a `Place`, so `ProjectionElem::Index` holds a `Local`.
// That local is SSA, but we otherwise have no guarantee on that local's value at
// the current location compared to its value where `pointee` was borrowed.
if pointee.projection.iter().all(|elem| !matches!(elem, ProjectionElem::Index(_))) {
place_ref = pointee.project_deeper(&[], self.tcx).as_ref();
}
}
if let Some(new_local) = self.try_as_local(value, location) {
place_ref = PlaceRef { local: new_local, projection: &[] };
} else if from_non_ssa_index {
// If access to non-SSA locals is unavoidable, bail out.
return None;
}
if place_ref.local != place.local || place_ref.projection.len() < place.projection.len() {
// By the invariant on `place_ref`.
*place = place_ref.project_deeper(&[], self.tcx);
self.reused_locals.insert(place_ref.local);
}
Some(value)
}
#[instrument(level = "trace", skip(self), ret)]
fn simplify_operand(
&mut self,
operand: &mut Operand<'tcx>,
location: Location,
) -> Option<VnIndex> {
match *operand {
Operand::Constant(ref constant) => Some(self.insert_constant(constant.const_)),
Operand::Copy(ref mut place) | Operand::Move(ref mut place) => {
let value = self.simplify_place_value(place, location)?;
if let Some(const_) = self.try_as_constant(value) {
*operand = Operand::Constant(Box::new(const_));
}
Some(value)
}
}
}
#[instrument(level = "trace", skip(self), ret)]
fn simplify_rvalue(
&mut self,
lhs: &Place<'tcx>,
rvalue: &mut Rvalue<'tcx>,
location: Location,
) -> Option<VnIndex> {
let value = match *rvalue {
// Forward values.
Rvalue::Use(ref mut operand) => return self.simplify_operand(operand, location),
Rvalue::CopyForDeref(place) => {
let mut operand = Operand::Copy(place);
let val = self.simplify_operand(&mut operand, location);
*rvalue = Rvalue::Use(operand);
return val;
}
// Roots.
Rvalue::Repeat(ref mut op, amount) => {
let op = self.simplify_operand(op, location)?;
Value::Repeat(op, amount)
}
Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty),
Rvalue::Aggregate(..) => return self.simplify_aggregate(lhs, rvalue, location),
Rvalue::Ref(_, borrow_kind, ref mut place) => {
self.simplify_place_projection(place, location);
return Some(self.new_pointer(*place, AddressKind::Ref(borrow_kind)));
}
Rvalue::RawPtr(mutbl, ref mut place) => {
self.simplify_place_projection(place, location);
return Some(self.new_pointer(*place, AddressKind::Address(mutbl)));
}
Rvalue::WrapUnsafeBinder(ref mut op, _) => {
let value = self.simplify_operand(op, location)?;
Value::Cast { kind: CastKind::Transmute, value }
}
// Operations.
Rvalue::Len(ref mut place) => return self.simplify_len(place, location),
Rvalue::Cast(ref mut kind, ref mut value, to) => {
return self.simplify_cast(kind, value, to, location);
}
Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => {
return self.simplify_binary(op, lhs, rhs, location);
}
Rvalue::UnaryOp(op, ref mut arg_op) => {
return self.simplify_unary(op, arg_op, location);
}
Rvalue::Discriminant(ref mut place) => {
let place = self.simplify_place_value(place, location)?;
if let Some(discr) = self.simplify_discriminant(place) {
return Some(discr);
}
Value::Discriminant(place)
}
// Unsupported values.
Rvalue::ThreadLocalRef(..) | Rvalue::ShallowInitBox(..) => return None,
};
let ty = rvalue.ty(self.local_decls, self.tcx);
Some(self.insert(ty, value))
}
fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> {
let enum_ty = self.ty(place);
if enum_ty.is_enum()
&& let Value::Aggregate(variant, _) = *self.get(place)
{
let discr = self.ecx.discriminant_for_variant(enum_ty, variant).discard_err()?;
return Some(self.insert_scalar(discr.layout.ty, discr.to_scalar()));
}
None
}
fn try_as_place_elem(
&mut self,
ty: Ty<'tcx>,
proj: ProjectionElem<VnIndex, ()>,
loc: Location,
) -> Option<PlaceElem<'tcx>> {
Some(match proj {
ProjectionElem::Deref => ProjectionElem::Deref,
ProjectionElem::Field(idx, ()) => ProjectionElem::Field(idx, ty),
ProjectionElem::Index(idx) => {
let Some(local) = self.try_as_local(idx, loc) else {
return None;
};
self.reused_locals.insert(local);
ProjectionElem::Index(local)
}
ProjectionElem::ConstantIndex { offset, min_length, from_end } => {
ProjectionElem::ConstantIndex { offset, min_length, from_end }
}
ProjectionElem::Subslice { from, to, from_end } => {
ProjectionElem::Subslice { from, to, from_end }
}
ProjectionElem::Downcast(symbol, idx) => ProjectionElem::Downcast(symbol, idx),
ProjectionElem::OpaqueCast(()) => ProjectionElem::OpaqueCast(ty),
ProjectionElem::Subtype(()) => ProjectionElem::Subtype(ty),
ProjectionElem::UnwrapUnsafeBinder(()) => ProjectionElem::UnwrapUnsafeBinder(ty),
})
}
fn simplify_aggregate_to_copy(
&mut self,
lhs: &Place<'tcx>,
rvalue: &mut Rvalue<'tcx>,
location: Location,
fields: &[VnIndex],
variant_index: VariantIdx,
) -> Option<VnIndex> {
let Some(&first_field) = fields.first() else {
return None;
};
let Value::Projection(copy_from_value, _) = *self.get(first_field) else {
return None;
};
// All fields must correspond one-to-one and come from the same aggregate value.
if fields.iter().enumerate().any(|(index, &v)| {
if let Value::Projection(pointer, ProjectionElem::Field(from_index, _)) = *self.get(v)
&& copy_from_value == pointer
&& from_index.index() == index
{
return false;
}
true
}) {
return None;
}
let mut copy_from_local_value = copy_from_value;
if let Value::Projection(pointer, proj) = *self.get(copy_from_value)
&& let ProjectionElem::Downcast(_, read_variant) = proj
{
if variant_index == read_variant {
// When copying a variant, there is no need to downcast.
copy_from_local_value = pointer;
} else {
// The copied variant must be identical.
return None;
}
}
// Allow introducing places with non-constant offsets, as those are still better than
// reconstructing an aggregate.
if self.ty(copy_from_local_value) == rvalue.ty(self.local_decls, self.tcx)
&& let Some(place) = self.try_as_place(copy_from_local_value, location, true)
{
// Avoid creating `*a = copy (*b)`, as they might be aliases resulting in overlapping assignments.
// FIXME: This also avoids any kind of projection, not just derefs. We can add allowed projections.
if lhs.as_local().is_some() {
self.reused_locals.insert(place.local);
*rvalue = Rvalue::Use(Operand::Copy(place));
}
return Some(copy_from_local_value);
}
None
}
fn simplify_aggregate(
&mut self,
lhs: &Place<'tcx>,
rvalue: &mut Rvalue<'tcx>,
location: Location,
) -> Option<VnIndex> {
let tcx = self.tcx;
let ty = rvalue.ty(self.local_decls, tcx);
let Rvalue::Aggregate(box ref kind, ref mut field_ops) = *rvalue else { bug!() };
if field_ops.is_empty() {
let is_zst = match *kind {
AggregateKind::Array(..)
| AggregateKind::Tuple
| AggregateKind::Closure(..)
| AggregateKind::CoroutineClosure(..) => true,
// Only enums can be non-ZST.
AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum,
// Coroutines are never ZST, as they at least contain the implicit states.
AggregateKind::Coroutine(..) => false,
AggregateKind::RawPtr(..) => bug!("MIR for RawPtr aggregate must have 2 fields"),
};
if is_zst {
return Some(self.insert_constant(Const::zero_sized(ty)));
}
}
let fields: Vec<_> = field_ops
.iter_mut()
.map(|op| {
self.simplify_operand(op, location)
.unwrap_or_else(|| self.new_opaque(op.ty(self.local_decls, self.tcx)))
})
.collect();
let variant_index = match *kind {
AggregateKind::Array(..) | AggregateKind::Tuple => {
assert!(!field_ops.is_empty());
FIRST_VARIANT
}
AggregateKind::Closure(..)
| AggregateKind::CoroutineClosure(..)
| AggregateKind::Coroutine(..) => FIRST_VARIANT,
AggregateKind::Adt(_, variant_index, _, _, None) => variant_index,
// Do not track unions.
AggregateKind::Adt(_, _, _, _, Some(_)) => return None,
AggregateKind::RawPtr(..) => {
assert_eq!(field_ops.len(), 2);
let [mut pointer, metadata] = fields.try_into().unwrap();
// Any thin pointer of matching mutability is fine as the data pointer.
let mut was_updated = false;
while let Value::Cast { kind: CastKind::PtrToPtr, value: cast_value } =
self.get(pointer)
&& let ty::RawPtr(from_pointee_ty, from_mtbl) = self.ty(*cast_value).kind()
&& let ty::RawPtr(_, output_mtbl) = ty.kind()
&& from_mtbl == output_mtbl
&& from_pointee_ty.is_sized(self.tcx, self.typing_env())
{
pointer = *cast_value;
was_updated = true;
}
if was_updated && let Some(op) = self.try_as_operand(pointer, location) {
field_ops[FieldIdx::ZERO] = op;
}
return Some(self.insert(ty, Value::RawPtr { pointer, metadata }));
}
};
if ty.is_array() && fields.len() > 4 {
let first = fields[0];
if fields.iter().all(|&v| v == first) {
let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap());
if let Some(op) = self.try_as_operand(first, location) {
*rvalue = Rvalue::Repeat(op, len);
}
return Some(self.insert(ty, Value::Repeat(first, len)));
}
}
if let Some(value) =
self.simplify_aggregate_to_copy(lhs, rvalue, location, &fields, variant_index)
{
return Some(value);
}
Some(self.insert(ty, Value::Aggregate(variant_index, fields)))
}
#[instrument(level = "trace", skip(self), ret)]
fn simplify_unary(
&mut self,
op: UnOp,
arg_op: &mut Operand<'tcx>,
location: Location,
) -> Option<VnIndex> {
let mut arg_index = self.simplify_operand(arg_op, location)?;
let arg_ty = self.ty(arg_index);
let ret_ty = op.ty(self.tcx, arg_ty);
// PtrMetadata doesn't care about *const vs *mut vs & vs &mut,
// so start by removing those distinctions so we can update the `Operand`
if op == UnOp::PtrMetadata {
let mut was_updated = false;
loop {
match self.get(arg_index) {
// Pointer casts that preserve metadata, such as
// `*const [i32]` <-> `*mut [i32]` <-> `*mut [f32]`.
// It's critical that this not eliminate cases like
// `*const [T]` -> `*const T` which remove metadata.
// We run on potentially-generic MIR, though, so unlike codegen
// we can't always know exactly what the metadata are.
// To allow things like `*mut (?A, ?T)` <-> `*mut (?B, ?T)`,
// it's fine to get a projection as the type.
Value::Cast { kind: CastKind::PtrToPtr, value: inner }
if self.pointers_have_same_metadata(self.ty(*inner), arg_ty) =>
{
arg_index = *inner;
was_updated = true;
continue;
}
// `&mut *p`, `&raw *p`, etc don't change metadata.
Value::Address { place, kind: _, provenance: _ }
if let PlaceRef { local, projection: [PlaceElem::Deref] } =
place.as_ref()
&& let Some(local_index) = self.locals[local] =>
{
arg_index = local_index;
was_updated = true;
continue;
}
_ => {
if was_updated && let Some(op) = self.try_as_operand(arg_index, location) {
*arg_op = op;
}
break;
}
}
}
}
let value = match (op, self.get(arg_index)) {
(UnOp::Not, Value::UnaryOp(UnOp::Not, inner)) => return Some(*inner),
(UnOp::Neg, Value::UnaryOp(UnOp::Neg, inner)) => return Some(*inner),
(UnOp::Not, Value::BinaryOp(BinOp::Eq, lhs, rhs)) => {
Value::BinaryOp(BinOp::Ne, *lhs, *rhs)
}
(UnOp::Not, Value::BinaryOp(BinOp::Ne, lhs, rhs)) => {
Value::BinaryOp(BinOp::Eq, *lhs, *rhs)
}
(UnOp::PtrMetadata, Value::RawPtr { metadata, .. }) => return Some(*metadata),
// We have an unsizing cast, which assigns the length to wide pointer metadata.
(
UnOp::PtrMetadata,
Value::Cast {
kind: CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _),
value: inner,
},
) if let ty::Slice(..) = arg_ty.builtin_deref(true).unwrap().kind()
&& let ty::Array(_, len) = self.ty(*inner).builtin_deref(true).unwrap().kind() =>
{
return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len)));
}
_ => Value::UnaryOp(op, arg_index),
};
Some(self.insert(ret_ty, value))
}
#[instrument(level = "trace", skip(self), ret)]
fn simplify_binary(
&mut self,
op: BinOp,
lhs_operand: &mut Operand<'tcx>,
rhs_operand: &mut Operand<'tcx>,
location: Location,
) -> Option<VnIndex> {
let lhs = self.simplify_operand(lhs_operand, location);
let rhs = self.simplify_operand(rhs_operand, location);
// Only short-circuit options after we called `simplify_operand`
// on both operands for side effect.
let mut lhs = lhs?;
let mut rhs = rhs?;
let lhs_ty = self.ty(lhs);
// If we're comparing pointers, remove `PtrToPtr` casts if the from
// types of both casts and the metadata all match.
if let BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge = op
&& lhs_ty.is_any_ptr()
&& let Value::Cast { kind: CastKind::PtrToPtr, value: lhs_value } = self.get(lhs)
&& let Value::Cast { kind: CastKind::PtrToPtr, value: rhs_value } = self.get(rhs)
&& let lhs_from = self.ty(*lhs_value)
&& lhs_from == self.ty(*rhs_value)
&& self.pointers_have_same_metadata(lhs_from, lhs_ty)
{
lhs = *lhs_value;
rhs = *rhs_value;
if let Some(lhs_op) = self.try_as_operand(lhs, location)
&& let Some(rhs_op) = self.try_as_operand(rhs, location)
{
*lhs_operand = lhs_op;
*rhs_operand = rhs_op;
}
}
if let Some(value) = self.simplify_binary_inner(op, lhs_ty, lhs, rhs) {
return Some(value);
}
let ty = op.ty(self.tcx, lhs_ty, self.ty(rhs));
let value = Value::BinaryOp(op, lhs, rhs);
Some(self.insert(ty, value))
}
fn simplify_binary_inner(
&mut self,
op: BinOp,
lhs_ty: Ty<'tcx>,
lhs: VnIndex,
rhs: VnIndex,
) -> Option<VnIndex> {
// Floats are weird enough that none of the logic below applies.
let reasonable_ty =
lhs_ty.is_integral() || lhs_ty.is_bool() || lhs_ty.is_char() || lhs_ty.is_any_ptr();
if !reasonable_ty {
return None;
}
let layout = self.ecx.layout_of(lhs_ty).ok()?;
let as_bits = |value: VnIndex| {
let constant = self.evaluated[value].as_ref()?;
if layout.backend_repr.is_scalar() {
let scalar = self.ecx.read_scalar(constant).discard_err()?;
scalar.to_bits(constant.layout.size).discard_err()
} else {
// `constant` is a wide pointer. Do not evaluate to bits.
None
}
};
// Represent the values as `Left(bits)` or `Right(VnIndex)`.
use Either::{Left, Right};
let a = as_bits(lhs).map_or(Right(lhs), Left);
let b = as_bits(rhs).map_or(Right(rhs), Left);
let result = match (op, a, b) {
// Neutral elements.
(
BinOp::Add
| BinOp::AddWithOverflow
| BinOp::AddUnchecked
| BinOp::BitOr
| BinOp::BitXor,
Left(0),
Right(p),
)
| (
BinOp::Add
| BinOp::AddWithOverflow
| BinOp::AddUnchecked
| BinOp::BitOr
| BinOp::BitXor
| BinOp::Sub
| BinOp::SubWithOverflow
| BinOp::SubUnchecked
| BinOp::Offset
| BinOp::Shl
| BinOp::Shr,
Right(p),
Left(0),
)
| (BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked, Left(1), Right(p))
| (
BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::Div,
Right(p),
Left(1),
) => p,
// Attempt to simplify `x & ALL_ONES` to `x`, with `ALL_ONES` depending on type size.
(BinOp::BitAnd, Right(p), Left(ones)) | (BinOp::BitAnd, Left(ones), Right(p))
if ones == layout.size.truncate(u128::MAX)
|| (layout.ty.is_bool() && ones == 1) =>
{
p
}
// Absorbing elements.
(
BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::BitAnd,
_,
Left(0),
)
| (BinOp::Rem, _, Left(1))
| (
BinOp::Mul
| BinOp::MulWithOverflow
| BinOp::MulUnchecked
| BinOp::Div
| BinOp::Rem
| BinOp::BitAnd
| BinOp::Shl
| BinOp::Shr,
Left(0),
_,
) => self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size)),
// Attempt to simplify `x | ALL_ONES` to `ALL_ONES`.
(BinOp::BitOr, _, Left(ones)) | (BinOp::BitOr, Left(ones), _)
if ones == layout.size.truncate(u128::MAX)
|| (layout.ty.is_bool() && ones == 1) =>
{
self.insert_scalar(lhs_ty, Scalar::from_uint(ones, layout.size))
}
// Sub/Xor with itself.
(BinOp::Sub | BinOp::SubWithOverflow | BinOp::SubUnchecked | BinOp::BitXor, a, b)
if a == b =>
{
self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size))
}
// Comparison:
// - if both operands can be computed as bits, just compare the bits;
// - if we proved that both operands have the same value, we can insert true/false;
// - otherwise, do nothing, as we do not try to prove inequality.
(BinOp::Eq, Left(a), Left(b)) => self.insert_bool(a == b),
(BinOp::Eq, a, b) if a == b => self.insert_bool(true),
(BinOp::Ne, Left(a), Left(b)) => self.insert_bool(a != b),
(BinOp::Ne, a, b) if a == b => self.insert_bool(false),
_ => return None,
};
if op.is_overflowing() {
let ty = Ty::new_tup(self.tcx, &[self.ty(result), self.tcx.types.bool]);
let false_val = self.insert_bool(false);
Some(self.insert_tuple(ty, vec![result, false_val]))
} else {
Some(result)
}
}
fn simplify_cast(
&mut self,
initial_kind: &mut CastKind,
initial_operand: &mut Operand<'tcx>,
to: Ty<'tcx>,
location: Location,
) -> Option<VnIndex> {
use CastKind::*;
use rustc_middle::ty::adjustment::PointerCoercion::*;
let mut kind = *initial_kind;
let mut value = self.simplify_operand(initial_operand, location)?;
let mut from = self.ty(value);
if from == to {
return Some(value);
}
if let CastKind::PointerCoercion(ReifyFnPointer | ClosureFnPointer(_), _) = kind {
// Each reification of a generic fn may get a different pointer.
// Do not try to merge them.
return Some(self.new_opaque(to));
}
let mut was_ever_updated = false;
loop {
let mut was_updated_this_iteration = false;
// Transmuting between raw pointers is just a pointer cast so long as
// they have the same metadata type (like `*const i32` <=> `*mut u64`
// or `*mut [i32]` <=> `*const [u64]`), including the common special
// case of `*const T` <=> `*mut T`.
if let Transmute = kind
&& from.is_raw_ptr()
&& to.is_raw_ptr()
&& self.pointers_have_same_metadata(from, to)
{
kind = PtrToPtr;
was_updated_this_iteration = true;
}
// If a cast just casts away the metadata again, then we can get it by
// casting the original thin pointer passed to `from_raw_parts`
if let PtrToPtr = kind
&& let Value::RawPtr { pointer, .. } = self.get(value)
&& let ty::RawPtr(to_pointee, _) = to.kind()
&& to_pointee.is_sized(self.tcx, self.typing_env())
{
from = self.ty(*pointer);
value = *pointer;
was_updated_this_iteration = true;
if from == to {
return Some(*pointer);
}
}
// Aggregate-then-Transmute can just transmute the original field value,
// so long as the bytes of a value from only from a single field.
if let Transmute = kind
&& let Value::Aggregate(variant_idx, field_values) = self.get(value)
&& let Some((field_idx, field_ty)) =
self.value_is_all_in_one_field(from, *variant_idx)
{
from = field_ty;
value = field_values[field_idx.as_usize()];
was_updated_this_iteration = true;
if field_ty == to {
return Some(value);
}
}
// Various cast-then-cast cases can be simplified.
if let Value::Cast { kind: inner_kind, value: inner_value } = *self.get(value) {
let inner_from = self.ty(inner_value);
let new_kind = match (inner_kind, kind) {
// Even if there's a narrowing cast in here that's fine, because
// things like `*mut [i32] -> *mut i32 -> *const i32` and
// `*mut [i32] -> *const [i32] -> *const i32` can skip the middle in MIR.
(PtrToPtr, PtrToPtr) => Some(PtrToPtr),
// PtrToPtr-then-Transmute is fine so long as the pointer cast is identity:
// `*const T -> *mut T -> NonNull<T>` is fine, but we need to check for narrowing
// to skip things like `*const [i32] -> *const i32 -> NonNull<T>`.
(PtrToPtr, Transmute) if self.pointers_have_same_metadata(inner_from, from) => {
Some(Transmute)
}
// Similarly, for Transmute-then-PtrToPtr. Note that we need to check different
// variables for their metadata, and thus this can't merge with the previous arm.
(Transmute, PtrToPtr) if self.pointers_have_same_metadata(from, to) => {
Some(Transmute)
}
// If would be legal to always do this, but we don't want to hide information
// from the backend that it'd otherwise be able to use for optimizations.
(Transmute, Transmute)
if !self.type_may_have_niche_of_interest_to_backend(from) =>
{
Some(Transmute)
}
_ => None,
};
if let Some(new_kind) = new_kind {
kind = new_kind;
from = inner_from;
value = inner_value;
was_updated_this_iteration = true;
if inner_from == to {
return Some(inner_value);
}
}
}
if was_updated_this_iteration {
was_ever_updated = true;
} else {
break;
}
}
if was_ever_updated && let Some(op) = self.try_as_operand(value, location) {
*initial_operand = op;
*initial_kind = kind;
}
Some(self.insert(to, Value::Cast { kind, value }))
}
fn simplify_len(&mut self, place: &mut Place<'tcx>, location: Location) -> Option<VnIndex> {
// Trivial case: we are fetching a statically known length.
let place_ty = place.ty(self.local_decls, self.tcx).ty;
if let ty::Array(_, len) = place_ty.kind() {
return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len)));
}
let mut inner = self.simplify_place_value(place, location)?;
// The length information is stored in the wide pointer.
// Reborrowing copies length information from one pointer to the other.
while let Value::Address { place: borrowed, .. } = self.get(inner)
&& let [PlaceElem::Deref] = borrowed.projection[..]
&& let Some(borrowed) = self.locals[borrowed.local]
{
inner = borrowed;
}
// We have an unsizing cast, which assigns the length to wide pointer metadata.
if let Value::Cast { kind, value: from } = self.get(inner)
&& let CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) = kind
&& let Some(from) = self.ty(*from).builtin_deref(true)
&& let ty::Array(_, len) = from.kind()
&& let Some(to) = self.ty(inner).builtin_deref(true)
&& let ty::Slice(..) = to.kind()
{
return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len)));
}
// Fallback: a symbolic `Len`.
Some(self.insert(self.tcx.types.usize, Value::Len(inner)))
}
fn pointers_have_same_metadata(&self, left_ptr_ty: Ty<'tcx>, right_ptr_ty: Ty<'tcx>) -> bool {
let left_meta_ty = left_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
let right_meta_ty = right_ptr_ty.pointee_metadata_ty_or_projection(self.tcx);
if left_meta_ty == right_meta_ty {
true
} else if let Ok(left) =
self.tcx.try_normalize_erasing_regions(self.typing_env(), left_meta_ty)
&& let Ok(right) =
self.tcx.try_normalize_erasing_regions(self.typing_env(), right_meta_ty)
{
left == right
} else {
false
}
}
/// Returns `false` if we know for sure that this type has no interesting niche,
/// and thus we can skip transmuting through it without worrying.
///
/// The backend will emit `assume`s when transmuting between types with niches,
/// so we want to preserve `i32 -> char -> u32` so that that data is around,
/// but it's fine to skip whole-range-is-value steps like `A -> u32 -> B`.
fn type_may_have_niche_of_interest_to_backend(&self, ty: Ty<'tcx>) -> bool {
let Ok(layout) = self.ecx.layout_of(ty) else {
// If it's too generic or something, then assume it might be interesting later.
return true;
};
if layout.uninhabited {
return true;
}
match layout.backend_repr {
BackendRepr::Scalar(a) => !a.is_always_valid(&self.ecx),
BackendRepr::ScalarPair(a, b) => {
!a.is_always_valid(&self.ecx) || !b.is_always_valid(&self.ecx)
}
BackendRepr::SimdVector { .. } | BackendRepr::Memory { .. } => false,
}
}
fn value_is_all_in_one_field(
&self,
ty: Ty<'tcx>,
variant: VariantIdx,
) -> Option<(FieldIdx, Ty<'tcx>)> {
if let Ok(layout) = self.ecx.layout_of(ty)
&& let abi::Variants::Single { index } = layout.variants
&& index == variant
&& let Some((field_idx, field_layout)) = layout.non_1zst_field(&self.ecx)
&& layout.size == field_layout.size
{
// We needed to check the variant to avoid trying to read the tag
// field from an enum where no fields have variants, since that tag
// field isn't in the `Aggregate` from which we're getting values.
Some((field_idx, field_layout.ty))
} else if let ty::Adt(adt, args) = ty.kind()
&& adt.is_struct()
&& adt.repr().transparent()
&& let [single_field] = adt.non_enum_variant().fields.raw.as_slice()
{
Some((FieldIdx::ZERO, single_field.ty(self.tcx, args)))
} else {
None
}
}
}
fn op_to_prop_const<'tcx>(
ecx: &mut InterpCx<'tcx, DummyMachine>,
op: &OpTy<'tcx>,
) -> Option<ConstValue> {
// Do not attempt to propagate unsized locals.
if op.layout.is_unsized() {
return None;
}
// This constant is a ZST, just return an empty value.
if op.layout.is_zst() {
return Some(ConstValue::ZeroSized);
}
// Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to
// avoid.
if !matches!(op.layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) {
return None;
}
// If this constant has scalar ABI, return it as a `ConstValue::Scalar`.
if let BackendRepr::Scalar(abi::Scalar::Initialized { .. }) = op.layout.backend_repr
&& let Some(scalar) = ecx.read_scalar(op).discard_err()
{
if !scalar.try_to_scalar_int().is_ok() {
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
// FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
return None;
}
return Some(ConstValue::Scalar(scalar));
}
// If this constant is already represented as an `Allocation`,
// try putting it into global memory to return it.
if let Either::Left(mplace) = op.as_mplace_or_imm() {
let (size, _align) = ecx.size_and_align_of_val(&mplace).discard_err()??;
// Do not try interning a value that contains provenance.
// Due to https://github.com/rust-lang/rust/issues/79738, doing so could lead to bugs.
// FIXME: remove this hack once that issue is fixed.
let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).discard_err()??;
if alloc_ref.has_provenance() {
return None;
}
let pointer = mplace.ptr().into_pointer_or_addr().ok()?;
let (prov, offset) = pointer.prov_and_relative_offset();
let alloc_id = prov.alloc_id();
intern_const_alloc_for_constprop(ecx, alloc_id).discard_err()?;
// `alloc_id` may point to a static. Codegen will choke on an `Indirect` with anything
// by `GlobalAlloc::Memory`, so do fall through to copying if needed.
// FIXME: find a way to treat this more uniformly (probably by fixing codegen)
if let GlobalAlloc::Memory(alloc) = ecx.tcx.global_alloc(alloc_id)
// Transmuting a constant is just an offset in the allocation. If the alignment of the
// allocation is not enough, fallback to copying into a properly aligned value.
&& alloc.inner().align >= op.layout.align.abi
{
return Some(ConstValue::Indirect { alloc_id, offset });
}
}
// Everything failed: create a new allocation to hold the data.
let alloc_id =
ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest)).discard_err()?;
let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO };
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
// FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() {
return Some(value);
}
None
}
impl<'tcx> VnState<'_, 'tcx> {
/// If either [`Self::try_as_constant`] as [`Self::try_as_place`] succeeds,
/// returns that result as an [`Operand`].
fn try_as_operand(&mut self, index: VnIndex, location: Location) -> Option<Operand<'tcx>> {
if let Some(const_) = self.try_as_constant(index) {
Some(Operand::Constant(Box::new(const_)))
} else if let Some(place) = self.try_as_place(index, location, false) {
self.reused_locals.insert(place.local);
Some(Operand::Copy(place))
} else {
None
}
}
/// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR.
fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> {
// This was already constant in MIR, do not change it. If the constant is not
// deterministic, adding an additional mention of it in MIR will not give the same value as
// the former mention.
if let Value::Constant { value, disambiguator: 0 } = *self.get(index) {
debug_assert!(value.is_deterministic());
return Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_: value });
}
let op = self.evaluated[index].as_ref()?;
if op.layout.is_unsized() {
// Do not attempt to propagate unsized locals.
return None;
}
let value = op_to_prop_const(&mut self.ecx, op)?;
// Check that we do not leak a pointer.
// Those pointers may lose part of their identity in codegen.
// FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed.
assert!(!value.may_have_provenance(self.tcx, op.layout.size));
let const_ = Const::Val(value, op.layout.ty);
Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_ })
}
/// Construct a place which holds the same value as `index` and for which all locals strictly
/// dominate `loc`. If you used this place, add its base local to `reused_locals` to remove
/// storage statements.
#[instrument(level = "trace", skip(self), ret)]
fn try_as_place(
&mut self,
mut index: VnIndex,
loc: Location,
allow_complex_projection: bool,
) -> Option<Place<'tcx>> {
let mut projection = SmallVec::<[PlaceElem<'tcx>; 1]>::new();
loop {
if let Some(local) = self.try_as_local(index, loc) {
projection.reverse();
let place =
Place { local, projection: self.tcx.mk_place_elems(projection.as_slice()) };
return Some(place);
} else if let Value::Projection(pointer, proj) = *self.get(index)
&& (allow_complex_projection || proj.is_stable_offset())
&& let Some(proj) = self.try_as_place_elem(self.ty(index), proj, loc)
{
projection.push(proj);
index = pointer;
} else {
return None;
}
}
}
/// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`,
/// return it. If you used this local, add it to `reused_locals` to remove storage statements.
fn try_as_local(&mut self, index: VnIndex, loc: Location) -> Option<Local> {
let other = self.rev_locals.get(index)?;
other
.iter()
.find(|&&other| self.ssa.assignment_dominates(&self.dominators, other, loc))
.copied()
}
}
impl<'tcx> MutVisitor<'tcx> for VnState<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
self.simplify_place_projection(place, location);
if context.is_mutating_use() && place.is_indirect() {
// Non-local mutation maybe invalidate deref.
self.invalidate_derefs();
}
self.super_place(place, context, location);
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
self.simplify_operand(operand, location);
self.super_operand(operand, location);
}
fn visit_assign(
&mut self,
lhs: &mut Place<'tcx>,
rvalue: &mut Rvalue<'tcx>,
location: Location,
) {
self.simplify_place_projection(lhs, location);
let value = self.simplify_rvalue(lhs, rvalue, location);
if let Some(value) = value {
if let Some(const_) = self.try_as_constant(value) {
*rvalue = Rvalue::Use(Operand::Constant(Box::new(const_)));
} else if let Some(place) = self.try_as_place(value, location, false)
&& *rvalue != Rvalue::Use(Operand::Move(place))
&& *rvalue != Rvalue::Use(Operand::Copy(place))
{
*rvalue = Rvalue::Use(Operand::Copy(place));
self.reused_locals.insert(place.local);
}
}
if lhs.is_indirect() {
// Non-local mutation maybe invalidate deref.
self.invalidate_derefs();
}
if let Some(local) = lhs.as_local()
&& self.ssa.is_ssa(local)
&& let rvalue_ty = rvalue.ty(self.local_decls, self.tcx)
// FIXME(#112651) `rvalue` may have a subtype to `local`. We can only mark
// `local` as reusable if we have an exact type match.
&& self.local_decls[local].ty == rvalue_ty
{
let value = value.unwrap_or_else(|| self.new_opaque(rvalue_ty));
self.assign(local, value);
}
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
if let Terminator { kind: TerminatorKind::Call { destination, .. }, .. } = terminator {
if let Some(local) = destination.as_local()
&& self.ssa.is_ssa(local)
{
let ty = self.local_decls[local].ty;
let opaque = self.new_opaque(ty);
self.assign(local, opaque);
}
}
// Function calls and ASM may invalidate (nested) derefs. We must handle them carefully.
// Currently, only preserving derefs for trivial terminators like SwitchInt and Goto.
let safe_to_preserve_derefs = matches!(
terminator.kind,
TerminatorKind::SwitchInt { .. } | TerminatorKind::Goto { .. }
);
if !safe_to_preserve_derefs {
self.invalidate_derefs();
}
self.super_terminator(terminator, location);
}
}
struct StorageRemover<'tcx> {
tcx: TyCtxt<'tcx>,
reused_locals: DenseBitSet<Local>,
}
impl<'tcx> MutVisitor<'tcx> for StorageRemover<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_operand(&mut self, operand: &mut Operand<'tcx>, _: Location) {
if let Operand::Move(place) = *operand
&& !place.is_indirect_first_projection()
&& self.reused_locals.contains(place.local)
{
*operand = Operand::Copy(place);
}
}
fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) {
match stmt.kind {
// When removing storage statements, we need to remove both (#107511).
StatementKind::StorageLive(l) | StatementKind::StorageDead(l)
if self.reused_locals.contains(l) =>
{
stmt.make_nop()
}
_ => self.super_statement(stmt, loc),
}
}
}