| //! Global value numbering. |
| //! |
| //! MIR may contain repeated and/or redundant computations. The objective of this pass is to detect |
| //! such redundancies and re-use the already-computed result when possible. |
| //! |
| //! From those assignments, we construct a mapping `VnIndex -> Vec<(Local, Location)>` of available |
| //! values, the locals in which they are stored, and the assignment location. |
| //! |
| //! We traverse all assignments `x = rvalue` and operands. |
| //! |
| //! For each SSA one, we compute a symbolic representation of values that are assigned to SSA |
| //! locals. This symbolic representation is defined by the `Value` enum. Each produced instance of |
| //! `Value` is interned as a `VnIndex`, which allows us to cheaply compute identical values. |
| //! |
| //! For each non-SSA |
| //! one, we compute the `VnIndex` of the rvalue. If this `VnIndex` is associated to a constant, we |
| //! replace the rvalue/operand by that constant. Otherwise, if there is an SSA local `y` |
| //! associated to this `VnIndex`, and if its definition location strictly dominates the assignment |
| //! to `x`, we replace the assignment by `x = y`. |
| //! |
| //! By opportunity, this pass simplifies some `Rvalue`s based on the accumulated knowledge. |
| //! |
| //! # Operational semantic |
| //! |
| //! Operationally, this pass attempts to prove bitwise equality between locals. Given this MIR: |
| //! ```ignore (MIR) |
| //! _a = some value // has VnIndex i |
| //! // some MIR |
| //! _b = some other value // also has VnIndex i |
| //! ``` |
| //! |
| //! We consider it to be replaceable by: |
| //! ```ignore (MIR) |
| //! _a = some value // has VnIndex i |
| //! // some MIR |
| //! _c = some other value // also has VnIndex i |
| //! assume(_a bitwise equal to _c) // follows from having the same VnIndex |
| //! _b = _a // follows from the `assume` |
| //! ``` |
| //! |
| //! Which is simplifiable to: |
| //! ```ignore (MIR) |
| //! _a = some value // has VnIndex i |
| //! // some MIR |
| //! _b = _a |
| //! ``` |
| //! |
| //! # Handling of references |
| //! |
| //! We handle references by assigning a different "provenance" index to each Ref/RawPtr rvalue. |
| //! This ensure that we do not spuriously merge borrows that should not be merged. Meanwhile, we |
| //! consider all the derefs of an immutable reference to a freeze type to give the same value: |
| //! ```ignore (MIR) |
| //! _a = *_b // _b is &Freeze |
| //! _c = *_b // replaced by _c = _a |
| //! ``` |
| //! |
| //! # Determinism of constant propagation |
| //! |
| //! When registering a new `Value`, we attempt to opportunistically evaluate it as a constant. |
| //! The evaluated form is inserted in `evaluated` as an `OpTy` or `None` if evaluation failed. |
| //! |
| //! The difficulty is non-deterministic evaluation of MIR constants. Some `Const` can have |
| //! different runtime values each time they are evaluated. This is the case with |
| //! `Const::Slice` which have a new pointer each time they are evaluated, and constants that |
| //! contain a fn pointer (`AllocId` pointing to a `GlobalAlloc::Function`) pointing to a different |
| //! symbol in each codegen unit. |
| //! |
| //! Meanwhile, we want to be able to read indirect constants. For instance: |
| //! ``` |
| //! static A: &'static &'static u8 = &&63; |
| //! fn foo() -> u8 { |
| //! **A // We want to replace by 63. |
| //! } |
| //! fn bar() -> u8 { |
| //! b"abc"[1] // We want to replace by 'b'. |
| //! } |
| //! ``` |
| //! |
| //! The `Value::Constant` variant stores a possibly unevaluated constant. Evaluating that constant |
| //! may be non-deterministic. When that happens, we assign a disambiguator to ensure that we do not |
| //! merge the constants. See `duplicate_slice` test in `gvn.rs`. |
| //! |
| //! Second, when writing constants in MIR, we do not write `Const::Slice` or `Const` |
| //! that contain `AllocId`s. |
| |
| use std::borrow::Cow; |
| |
| use either::Either; |
| use rustc_abi::{self as abi, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, VariantIdx}; |
| use rustc_const_eval::const_eval::DummyMachine; |
| use rustc_const_eval::interpret::{ |
| ImmTy, Immediate, InterpCx, MemPlaceMeta, MemoryKind, OpTy, Projectable, Scalar, |
| intern_const_alloc_for_constprop, |
| }; |
| use rustc_data_structures::fx::{FxIndexSet, MutableValues}; |
| use rustc_data_structures::graph::dominators::Dominators; |
| use rustc_hir::def::DefKind; |
| use rustc_index::bit_set::DenseBitSet; |
| use rustc_index::{IndexVec, newtype_index}; |
| use rustc_middle::bug; |
| use rustc_middle::mir::interpret::GlobalAlloc; |
| use rustc_middle::mir::visit::*; |
| use rustc_middle::mir::*; |
| use rustc_middle::ty::layout::HasTypingEnv; |
| use rustc_middle::ty::{self, Ty, TyCtxt}; |
| use rustc_span::DUMMY_SP; |
| use smallvec::SmallVec; |
| use tracing::{debug, instrument, trace}; |
| |
| use crate::ssa::SsaLocals; |
| |
| pub(super) struct GVN; |
| |
| impl<'tcx> crate::MirPass<'tcx> for GVN { |
| fn is_enabled(&self, sess: &rustc_session::Session) -> bool { |
| sess.mir_opt_level() >= 2 |
| } |
| |
| #[instrument(level = "trace", skip(self, tcx, body))] |
| fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { |
| debug!(def_id = ?body.source.def_id()); |
| |
| let typing_env = body.typing_env(tcx); |
| let ssa = SsaLocals::new(tcx, body, typing_env); |
| // Clone dominators because we need them while mutating the body. |
| let dominators = body.basic_blocks.dominators().clone(); |
| |
| let mut state = VnState::new(tcx, body, typing_env, &ssa, dominators, &body.local_decls); |
| |
| for local in body.args_iter().filter(|&local| ssa.is_ssa(local)) { |
| let opaque = state.new_opaque(body.local_decls[local].ty); |
| state.assign(local, opaque); |
| } |
| |
| let reverse_postorder = body.basic_blocks.reverse_postorder().to_vec(); |
| for bb in reverse_postorder { |
| let data = &mut body.basic_blocks.as_mut_preserves_cfg()[bb]; |
| state.visit_basic_block_data(bb, data); |
| } |
| |
| // For each local that is reused (`y` above), we remove its storage statements do avoid any |
| // difficulty. Those locals are SSA, so should be easy to optimize by LLVM without storage |
| // statements. |
| StorageRemover { tcx, reused_locals: state.reused_locals }.visit_body_preserves_cfg(body); |
| } |
| |
| fn is_required(&self) -> bool { |
| false |
| } |
| } |
| |
| newtype_index! { |
| struct VnIndex {} |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] |
| enum AddressKind { |
| Ref(BorrowKind), |
| Address(RawPtrKind), |
| } |
| |
| #[derive(Debug, PartialEq, Eq, Hash)] |
| enum Value<'tcx> { |
| // Root values. |
| /// Used to represent values we know nothing about. |
| /// The `usize` is a counter incremented by `new_opaque`. |
| Opaque(usize), |
| /// Evaluated or unevaluated constant value. |
| Constant { |
| value: Const<'tcx>, |
| /// Some constants do not have a deterministic value. To avoid merging two instances of the |
| /// same `Const`, we assign them an additional integer index. |
| // `disambiguator` is 0 iff the constant is deterministic. |
| disambiguator: usize, |
| }, |
| /// An aggregate value, either tuple/closure/struct/enum. |
| /// This does not contain unions, as we cannot reason with the value. |
| Aggregate(VariantIdx, Vec<VnIndex>), |
| /// A raw pointer aggregate built from a thin pointer and metadata. |
| RawPtr { |
| /// Thin pointer component. This is field 0 in MIR. |
| pointer: VnIndex, |
| /// Metadata component. This is field 1 in MIR. |
| metadata: VnIndex, |
| }, |
| /// This corresponds to a `[value; count]` expression. |
| Repeat(VnIndex, ty::Const<'tcx>), |
| /// The address of a place. |
| Address { |
| place: Place<'tcx>, |
| kind: AddressKind, |
| /// Give each borrow and pointer a different provenance, so we don't merge them. |
| provenance: usize, |
| }, |
| |
| // Extractions. |
| /// This is the *value* obtained by projecting another value. |
| Projection(VnIndex, ProjectionElem<VnIndex, ()>), |
| /// Discriminant of the given value. |
| Discriminant(VnIndex), |
| /// Length of an array or slice. |
| Len(VnIndex), |
| |
| // Operations. |
| NullaryOp(NullOp<'tcx>, Ty<'tcx>), |
| UnaryOp(UnOp, VnIndex), |
| BinaryOp(BinOp, VnIndex, VnIndex), |
| Cast { |
| kind: CastKind, |
| value: VnIndex, |
| }, |
| } |
| |
| struct VnState<'body, 'tcx> { |
| tcx: TyCtxt<'tcx>, |
| ecx: InterpCx<'tcx, DummyMachine>, |
| local_decls: &'body LocalDecls<'tcx>, |
| is_coroutine: bool, |
| /// Value stored in each local. |
| locals: IndexVec<Local, Option<VnIndex>>, |
| /// Locals that are assigned that value. |
| // This vector does not hold all the values of `VnIndex` that we create. |
| rev_locals: IndexVec<VnIndex, SmallVec<[Local; 1]>>, |
| values: FxIndexSet<(Value<'tcx>, Ty<'tcx>)>, |
| /// Values evaluated as constants if possible. |
| evaluated: IndexVec<VnIndex, Option<OpTy<'tcx>>>, |
| /// Counter to generate different values. |
| next_opaque: usize, |
| /// Cache the deref values. |
| derefs: Vec<VnIndex>, |
| ssa: &'body SsaLocals, |
| dominators: Dominators<BasicBlock>, |
| reused_locals: DenseBitSet<Local>, |
| } |
| |
| impl<'body, 'tcx> VnState<'body, 'tcx> { |
| fn new( |
| tcx: TyCtxt<'tcx>, |
| body: &Body<'tcx>, |
| typing_env: ty::TypingEnv<'tcx>, |
| ssa: &'body SsaLocals, |
| dominators: Dominators<BasicBlock>, |
| local_decls: &'body LocalDecls<'tcx>, |
| ) -> Self { |
| // Compute a rough estimate of the number of values in the body from the number of |
| // statements. This is meant to reduce the number of allocations, but it's all right if |
| // we miss the exact amount. We estimate based on 2 values per statement (one in LHS and |
| // one in RHS) and 4 values per terminator (for call operands). |
| let num_values = |
| 2 * body.basic_blocks.iter().map(|bbdata| bbdata.statements.len()).sum::<usize>() |
| + 4 * body.basic_blocks.len(); |
| VnState { |
| tcx, |
| ecx: InterpCx::new(tcx, DUMMY_SP, typing_env, DummyMachine), |
| local_decls, |
| is_coroutine: body.coroutine.is_some(), |
| locals: IndexVec::from_elem(None, local_decls), |
| rev_locals: IndexVec::with_capacity(num_values), |
| values: FxIndexSet::with_capacity_and_hasher(num_values, Default::default()), |
| evaluated: IndexVec::with_capacity(num_values), |
| next_opaque: 1, |
| derefs: Vec::new(), |
| ssa, |
| dominators, |
| reused_locals: DenseBitSet::new_empty(local_decls.len()), |
| } |
| } |
| |
| fn typing_env(&self) -> ty::TypingEnv<'tcx> { |
| self.ecx.typing_env() |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn insert(&mut self, ty: Ty<'tcx>, value: Value<'tcx>) -> VnIndex { |
| let (index, new) = self.values.insert_full((value, ty)); |
| let index = VnIndex::from_usize(index); |
| if new { |
| // Grow `evaluated` and `rev_locals` here to amortize the allocations. |
| let evaluated = self.eval_to_const(index); |
| let _index = self.evaluated.push(evaluated); |
| debug_assert_eq!(index, _index); |
| let _index = self.rev_locals.push(SmallVec::new()); |
| debug_assert_eq!(index, _index); |
| } |
| index |
| } |
| |
| fn next_opaque(&mut self) -> usize { |
| let next_opaque = self.next_opaque; |
| self.next_opaque += 1; |
| next_opaque |
| } |
| |
| /// Create a new `Value` for which we have no information at all, except that it is distinct |
| /// from all the others. |
| #[instrument(level = "trace", skip(self), ret)] |
| fn new_opaque(&mut self, ty: Ty<'tcx>) -> VnIndex { |
| let value = Value::Opaque(self.next_opaque()); |
| self.insert(ty, value) |
| } |
| |
| /// Create a new `Value::Address` distinct from all the others. |
| #[instrument(level = "trace", skip(self), ret)] |
| fn new_pointer(&mut self, place: Place<'tcx>, kind: AddressKind) -> VnIndex { |
| let pty = place.ty(self.local_decls, self.tcx).ty; |
| let ty = match kind { |
| AddressKind::Ref(bk) => { |
| Ty::new_ref(self.tcx, self.tcx.lifetimes.re_erased, pty, bk.to_mutbl_lossy()) |
| } |
| AddressKind::Address(mutbl) => Ty::new_ptr(self.tcx, pty, mutbl.to_mutbl_lossy()), |
| }; |
| let value = Value::Address { place, kind, provenance: self.next_opaque() }; |
| self.insert(ty, value) |
| } |
| |
| #[inline] |
| fn get(&self, index: VnIndex) -> &Value<'tcx> { |
| &self.values.get_index(index.as_usize()).unwrap().0 |
| } |
| |
| #[inline] |
| fn ty(&self, index: VnIndex) -> Ty<'tcx> { |
| self.values.get_index(index.as_usize()).unwrap().1 |
| } |
| |
| /// Record that `local` is assigned `value`. `local` must be SSA. |
| #[instrument(level = "trace", skip(self))] |
| fn assign(&mut self, local: Local, value: VnIndex) { |
| debug_assert!(self.ssa.is_ssa(local)); |
| self.locals[local] = Some(value); |
| self.rev_locals[value].push(local); |
| } |
| |
| fn insert_constant(&mut self, value: Const<'tcx>) -> VnIndex { |
| let disambiguator = if value.is_deterministic() { |
| // The constant is deterministic, no need to disambiguate. |
| 0 |
| } else { |
| // Multiple mentions of this constant will yield different values, |
| // so assign a different `disambiguator` to ensure they do not get the same `VnIndex`. |
| let disambiguator = self.next_opaque(); |
| // `disambiguator: 0` means deterministic. |
| debug_assert_ne!(disambiguator, 0); |
| disambiguator |
| }; |
| self.insert(value.ty(), Value::Constant { value, disambiguator }) |
| } |
| |
| fn insert_bool(&mut self, flag: bool) -> VnIndex { |
| // Booleans are deterministic. |
| let value = Const::from_bool(self.tcx, flag); |
| debug_assert!(value.is_deterministic()); |
| self.insert(self.tcx.types.bool, Value::Constant { value, disambiguator: 0 }) |
| } |
| |
| fn insert_scalar(&mut self, ty: Ty<'tcx>, scalar: Scalar) -> VnIndex { |
| // Scalars are deterministic. |
| let value = Const::from_scalar(self.tcx, scalar, ty); |
| debug_assert!(value.is_deterministic()); |
| self.insert(ty, Value::Constant { value, disambiguator: 0 }) |
| } |
| |
| fn insert_tuple(&mut self, ty: Ty<'tcx>, values: Vec<VnIndex>) -> VnIndex { |
| self.insert(ty, Value::Aggregate(VariantIdx::ZERO, values)) |
| } |
| |
| fn insert_deref(&mut self, ty: Ty<'tcx>, value: VnIndex) -> VnIndex { |
| let value = self.insert(ty, Value::Projection(value, ProjectionElem::Deref)); |
| self.derefs.push(value); |
| value |
| } |
| |
| fn invalidate_derefs(&mut self) { |
| for deref in std::mem::take(&mut self.derefs) { |
| let opaque = self.next_opaque(); |
| self.values.get_index_mut2(deref.index()).unwrap().0 = Value::Opaque(opaque); |
| } |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn eval_to_const(&mut self, value: VnIndex) -> Option<OpTy<'tcx>> { |
| use Value::*; |
| let ty = self.ty(value); |
| // Avoid computing layouts inside a coroutine, as that can cause cycles. |
| let ty = if !self.is_coroutine || ty.is_scalar() { |
| self.ecx.layout_of(ty).ok()? |
| } else { |
| return None; |
| }; |
| let op = match *self.get(value) { |
| _ if ty.is_zst() => ImmTy::uninit(ty).into(), |
| |
| Opaque(_) => return None, |
| // Do not bother evaluating repeat expressions. This would uselessly consume memory. |
| Repeat(..) => return None, |
| |
| Constant { ref value, disambiguator: _ } => { |
| self.ecx.eval_mir_constant(value, DUMMY_SP, None).discard_err()? |
| } |
| Aggregate(variant, ref fields) => { |
| let fields = fields |
| .iter() |
| .map(|&f| self.evaluated[f].as_ref()) |
| .collect::<Option<Vec<_>>>()?; |
| let variant = if ty.ty.is_enum() { Some(variant) } else { None }; |
| if matches!(ty.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) |
| { |
| let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?; |
| let variant_dest = if let Some(variant) = variant { |
| self.ecx.project_downcast(&dest, variant).discard_err()? |
| } else { |
| dest.clone() |
| }; |
| for (field_index, op) in fields.into_iter().enumerate() { |
| let field_dest = self |
| .ecx |
| .project_field(&variant_dest, FieldIdx::from_usize(field_index)) |
| .discard_err()?; |
| self.ecx.copy_op(op, &field_dest).discard_err()?; |
| } |
| self.ecx |
| .write_discriminant(variant.unwrap_or(FIRST_VARIANT), &dest) |
| .discard_err()?; |
| self.ecx |
| .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id()) |
| .discard_err()?; |
| dest.into() |
| } else { |
| return None; |
| } |
| } |
| RawPtr { pointer, metadata } => { |
| let pointer = self.evaluated[pointer].as_ref()?; |
| let metadata = self.evaluated[metadata].as_ref()?; |
| |
| // Pointers don't have fields, so don't `project_field` them. |
| let data = self.ecx.read_pointer(pointer).discard_err()?; |
| let meta = if metadata.layout.is_zst() { |
| MemPlaceMeta::None |
| } else { |
| MemPlaceMeta::Meta(self.ecx.read_scalar(metadata).discard_err()?) |
| }; |
| let ptr_imm = Immediate::new_pointer_with_meta(data, meta, &self.ecx); |
| ImmTy::from_immediate(ptr_imm, ty).into() |
| } |
| |
| Projection(base, elem) => { |
| let base = self.evaluated[base].as_ref()?; |
| let elem = match elem { |
| ProjectionElem::Deref => ProjectionElem::Deref, |
| ProjectionElem::Downcast(name, read_variant) => { |
| ProjectionElem::Downcast(name, read_variant) |
| } |
| ProjectionElem::Field(f, ()) => ProjectionElem::Field(f, ty.ty), |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } => { |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } |
| } |
| ProjectionElem::Subslice { from, to, from_end } => { |
| ProjectionElem::Subslice { from, to, from_end } |
| } |
| ProjectionElem::OpaqueCast(()) => ProjectionElem::OpaqueCast(ty.ty), |
| ProjectionElem::Subtype(()) => ProjectionElem::Subtype(ty.ty), |
| ProjectionElem::UnwrapUnsafeBinder(()) => { |
| ProjectionElem::UnwrapUnsafeBinder(ty.ty) |
| } |
| // This should have been replaced by a `ConstantIndex` earlier. |
| ProjectionElem::Index(_) => return None, |
| }; |
| self.ecx.project(base, elem).discard_err()? |
| } |
| Address { place, kind: _, provenance: _ } => { |
| if !place.is_indirect_first_projection() { |
| return None; |
| } |
| let local = self.locals[place.local]?; |
| let pointer = self.evaluated[local].as_ref()?; |
| let mut mplace = self.ecx.deref_pointer(pointer).discard_err()?; |
| for proj in place.projection.iter().skip(1) { |
| // We have no call stack to associate a local with a value, so we cannot |
| // interpret indexing. |
| if matches!(proj, ProjectionElem::Index(_)) { |
| return None; |
| } |
| mplace = self.ecx.project(&mplace, proj).discard_err()?; |
| } |
| let pointer = mplace.to_ref(&self.ecx); |
| ImmTy::from_immediate(pointer, ty).into() |
| } |
| |
| Discriminant(base) => { |
| let base = self.evaluated[base].as_ref()?; |
| let variant = self.ecx.read_discriminant(base).discard_err()?; |
| let discr_value = |
| self.ecx.discriminant_for_variant(base.layout.ty, variant).discard_err()?; |
| discr_value.into() |
| } |
| Len(slice) => { |
| let slice = self.evaluated[slice].as_ref()?; |
| let len = slice.len(&self.ecx).discard_err()?; |
| ImmTy::from_uint(len, ty).into() |
| } |
| NullaryOp(null_op, arg_ty) => { |
| let arg_layout = self.ecx.layout_of(arg_ty).ok()?; |
| if let NullOp::SizeOf | NullOp::AlignOf = null_op |
| && arg_layout.is_unsized() |
| { |
| return None; |
| } |
| let val = match null_op { |
| NullOp::SizeOf => arg_layout.size.bytes(), |
| NullOp::AlignOf => arg_layout.align.abi.bytes(), |
| NullOp::OffsetOf(fields) => self |
| .ecx |
| .tcx |
| .offset_of_subfield(self.typing_env(), arg_layout, fields.iter()) |
| .bytes(), |
| NullOp::UbChecks => return None, |
| NullOp::ContractChecks => return None, |
| }; |
| ImmTy::from_uint(val, ty).into() |
| } |
| UnaryOp(un_op, operand) => { |
| let operand = self.evaluated[operand].as_ref()?; |
| let operand = self.ecx.read_immediate(operand).discard_err()?; |
| let val = self.ecx.unary_op(un_op, &operand).discard_err()?; |
| val.into() |
| } |
| BinaryOp(bin_op, lhs, rhs) => { |
| let lhs = self.evaluated[lhs].as_ref()?; |
| let lhs = self.ecx.read_immediate(lhs).discard_err()?; |
| let rhs = self.evaluated[rhs].as_ref()?; |
| let rhs = self.ecx.read_immediate(rhs).discard_err()?; |
| let val = self.ecx.binary_op(bin_op, &lhs, &rhs).discard_err()?; |
| val.into() |
| } |
| Cast { kind, value } => match kind { |
| CastKind::IntToInt | CastKind::IntToFloat => { |
| let value = self.evaluated[value].as_ref()?; |
| let value = self.ecx.read_immediate(value).discard_err()?; |
| let res = self.ecx.int_to_int_or_float(&value, ty).discard_err()?; |
| res.into() |
| } |
| CastKind::FloatToFloat | CastKind::FloatToInt => { |
| let value = self.evaluated[value].as_ref()?; |
| let value = self.ecx.read_immediate(value).discard_err()?; |
| let res = self.ecx.float_to_float_or_int(&value, ty).discard_err()?; |
| res.into() |
| } |
| CastKind::Transmute => { |
| let value = self.evaluated[value].as_ref()?; |
| // `offset` for immediates generally only supports projections that match the |
| // type of the immediate. However, as a HACK, we exploit that it can also do |
| // limited transmutes: it only works between types with the same layout, and |
| // cannot transmute pointers to integers. |
| if value.as_mplace_or_imm().is_right() { |
| let can_transmute = match (value.layout.backend_repr, ty.backend_repr) { |
| (BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => { |
| s1.size(&self.ecx) == s2.size(&self.ecx) |
| && !matches!(s1.primitive(), Primitive::Pointer(..)) |
| } |
| (BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => { |
| a1.size(&self.ecx) == a2.size(&self.ecx) && |
| b1.size(&self.ecx) == b2.size(&self.ecx) && |
| // The alignment of the second component determines its offset, so that also needs to match. |
| b1.align(&self.ecx) == b2.align(&self.ecx) && |
| // None of the inputs may be a pointer. |
| !matches!(a1.primitive(), Primitive::Pointer(..)) |
| && !matches!(b1.primitive(), Primitive::Pointer(..)) |
| } |
| _ => false, |
| }; |
| if !can_transmute { |
| return None; |
| } |
| } |
| value.offset(Size::ZERO, ty, &self.ecx).discard_err()? |
| } |
| CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) => { |
| let src = self.evaluated[value].as_ref()?; |
| let dest = self.ecx.allocate(ty, MemoryKind::Stack).discard_err()?; |
| self.ecx.unsize_into(src, ty, &dest).discard_err()?; |
| self.ecx |
| .alloc_mark_immutable(dest.ptr().provenance.unwrap().alloc_id()) |
| .discard_err()?; |
| dest.into() |
| } |
| CastKind::FnPtrToPtr | CastKind::PtrToPtr => { |
| let src = self.evaluated[value].as_ref()?; |
| let src = self.ecx.read_immediate(src).discard_err()?; |
| let ret = self.ecx.ptr_to_ptr(&src, ty).discard_err()?; |
| ret.into() |
| } |
| CastKind::PointerCoercion(ty::adjustment::PointerCoercion::UnsafeFnPointer, _) => { |
| let src = self.evaluated[value].as_ref()?; |
| let src = self.ecx.read_immediate(src).discard_err()?; |
| ImmTy::from_immediate(*src, ty).into() |
| } |
| _ => return None, |
| }, |
| }; |
| Some(op) |
| } |
| |
| fn project( |
| &mut self, |
| place_ty: PlaceTy<'tcx>, |
| value: VnIndex, |
| proj: PlaceElem<'tcx>, |
| from_non_ssa_index: &mut bool, |
| ) -> Option<(PlaceTy<'tcx>, VnIndex)> { |
| let projection_ty = place_ty.projection_ty(self.tcx, proj); |
| let proj = match proj { |
| ProjectionElem::Deref => { |
| if let Some(Mutability::Not) = place_ty.ty.ref_mutability() |
| && projection_ty.ty.is_freeze(self.tcx, self.typing_env()) |
| { |
| // An immutable borrow `_x` always points to the same value for the |
| // lifetime of the borrow, so we can merge all instances of `*_x`. |
| return Some((projection_ty, self.insert_deref(projection_ty.ty, value))); |
| } else { |
| return None; |
| } |
| } |
| ProjectionElem::Downcast(name, index) => ProjectionElem::Downcast(name, index), |
| ProjectionElem::Field(f, _) => { |
| if let Value::Aggregate(_, fields) = self.get(value) { |
| return Some((projection_ty, fields[f.as_usize()])); |
| } else if let Value::Projection(outer_value, ProjectionElem::Downcast(_, read_variant)) = self.get(value) |
| && let Value::Aggregate(written_variant, fields) = self.get(*outer_value) |
| // This pass is not aware of control-flow, so we do not know whether the |
| // replacement we are doing is actually reachable. We could be in any arm of |
| // ``` |
| // match Some(x) { |
| // Some(y) => /* stuff */, |
| // None => /* other */, |
| // } |
| // ``` |
| // |
| // In surface rust, the current statement would be unreachable. |
| // |
| // However, from the reference chapter on enums and RFC 2195, |
| // accessing the wrong variant is not UB if the enum has repr. |
| // So it's not impossible for a series of MIR opts to generate |
| // a downcast to an inactive variant. |
| && written_variant == read_variant |
| { |
| return Some((projection_ty, fields[f.as_usize()])); |
| } |
| ProjectionElem::Field(f, ()) |
| } |
| ProjectionElem::Index(idx) => { |
| if let Value::Repeat(inner, _) = self.get(value) { |
| *from_non_ssa_index |= self.locals[idx].is_none(); |
| return Some((projection_ty, *inner)); |
| } |
| let idx = self.locals[idx]?; |
| ProjectionElem::Index(idx) |
| } |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } => { |
| match self.get(value) { |
| Value::Repeat(inner, _) => { |
| return Some((projection_ty, *inner)); |
| } |
| Value::Aggregate(_, operands) => { |
| let offset = if from_end { |
| operands.len() - offset as usize |
| } else { |
| offset as usize |
| }; |
| let value = operands.get(offset).copied()?; |
| return Some((projection_ty, value)); |
| } |
| _ => {} |
| }; |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } |
| } |
| ProjectionElem::Subslice { from, to, from_end } => { |
| ProjectionElem::Subslice { from, to, from_end } |
| } |
| ProjectionElem::OpaqueCast(_) => ProjectionElem::OpaqueCast(()), |
| ProjectionElem::Subtype(_) => ProjectionElem::Subtype(()), |
| ProjectionElem::UnwrapUnsafeBinder(_) => ProjectionElem::UnwrapUnsafeBinder(()), |
| }; |
| |
| let value = self.insert(projection_ty.ty, Value::Projection(value, proj)); |
| Some((projection_ty, value)) |
| } |
| |
| /// Simplify the projection chain if we know better. |
| #[instrument(level = "trace", skip(self))] |
| fn simplify_place_projection(&mut self, place: &mut Place<'tcx>, location: Location) { |
| // If the projection is indirect, we treat the local as a value, so can replace it with |
| // another local. |
| if place.is_indirect_first_projection() |
| && let Some(base) = self.locals[place.local] |
| && let Some(new_local) = self.try_as_local(base, location) |
| && place.local != new_local |
| { |
| place.local = new_local; |
| self.reused_locals.insert(new_local); |
| } |
| |
| let mut projection = Cow::Borrowed(&place.projection[..]); |
| |
| for i in 0..projection.len() { |
| let elem = projection[i]; |
| if let ProjectionElem::Index(idx_local) = elem |
| && let Some(idx) = self.locals[idx_local] |
| { |
| if let Some(offset) = self.evaluated[idx].as_ref() |
| && let Some(offset) = self.ecx.read_target_usize(offset).discard_err() |
| && let Some(min_length) = offset.checked_add(1) |
| { |
| projection.to_mut()[i] = |
| ProjectionElem::ConstantIndex { offset, min_length, from_end: false }; |
| } else if let Some(new_idx_local) = self.try_as_local(idx, location) |
| && idx_local != new_idx_local |
| { |
| projection.to_mut()[i] = ProjectionElem::Index(new_idx_local); |
| self.reused_locals.insert(new_idx_local); |
| } |
| } |
| } |
| |
| if projection.is_owned() { |
| place.projection = self.tcx.mk_place_elems(&projection); |
| } |
| |
| trace!(?place); |
| } |
| |
| /// Represent the *value* which would be read from `place`, and point `place` to a preexisting |
| /// place with the same value (if that already exists). |
| #[instrument(level = "trace", skip(self), ret)] |
| fn simplify_place_value( |
| &mut self, |
| place: &mut Place<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| self.simplify_place_projection(place, location); |
| |
| // Invariant: `place` and `place_ref` point to the same value, even if they point to |
| // different memory locations. |
| let mut place_ref = place.as_ref(); |
| |
| // Invariant: `value` holds the value up-to the `index`th projection excluded. |
| let mut value = self.locals[place.local]?; |
| // Invariant: `value` has type `place_ty`, with optional downcast variant if needed. |
| let mut place_ty = PlaceTy::from_ty(self.local_decls[place.local].ty); |
| let mut from_non_ssa_index = false; |
| for (index, proj) in place.projection.iter().enumerate() { |
| if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value) |
| && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer) |
| && let AddressKind::Ref(BorrowKind::Shared) = kind |
| && let Some(v) = self.simplify_place_value(&mut pointee, location) |
| { |
| value = v; |
| // `pointee` holds a `Place`, so `ProjectionElem::Index` holds a `Local`. |
| // That local is SSA, but we otherwise have no guarantee on that local's value at |
| // the current location compared to its value where `pointee` was borrowed. |
| if pointee.projection.iter().all(|elem| !matches!(elem, ProjectionElem::Index(_))) { |
| place_ref = |
| pointee.project_deeper(&place.projection[index..], self.tcx).as_ref(); |
| } |
| } |
| if let Some(local) = self.try_as_local(value, location) { |
| // Both `local` and `Place { local: place.local, projection: projection[..index] }` |
| // hold the same value. Therefore, following place holds the value in the original |
| // `place`. |
| place_ref = PlaceRef { local, projection: &place.projection[index..] }; |
| } |
| |
| (place_ty, value) = self.project(place_ty, value, proj, &mut from_non_ssa_index)?; |
| } |
| |
| if let Value::Projection(pointer, ProjectionElem::Deref) = *self.get(value) |
| && let Value::Address { place: mut pointee, kind, .. } = *self.get(pointer) |
| && let AddressKind::Ref(BorrowKind::Shared) = kind |
| && let Some(v) = self.simplify_place_value(&mut pointee, location) |
| { |
| value = v; |
| // `pointee` holds a `Place`, so `ProjectionElem::Index` holds a `Local`. |
| // That local is SSA, but we otherwise have no guarantee on that local's value at |
| // the current location compared to its value where `pointee` was borrowed. |
| if pointee.projection.iter().all(|elem| !matches!(elem, ProjectionElem::Index(_))) { |
| place_ref = pointee.project_deeper(&[], self.tcx).as_ref(); |
| } |
| } |
| if let Some(new_local) = self.try_as_local(value, location) { |
| place_ref = PlaceRef { local: new_local, projection: &[] }; |
| } else if from_non_ssa_index { |
| // If access to non-SSA locals is unavoidable, bail out. |
| return None; |
| } |
| |
| if place_ref.local != place.local || place_ref.projection.len() < place.projection.len() { |
| // By the invariant on `place_ref`. |
| *place = place_ref.project_deeper(&[], self.tcx); |
| self.reused_locals.insert(place_ref.local); |
| } |
| |
| Some(value) |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn simplify_operand( |
| &mut self, |
| operand: &mut Operand<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| match *operand { |
| Operand::Constant(ref constant) => Some(self.insert_constant(constant.const_)), |
| Operand::Copy(ref mut place) | Operand::Move(ref mut place) => { |
| let value = self.simplify_place_value(place, location)?; |
| if let Some(const_) = self.try_as_constant(value) { |
| *operand = Operand::Constant(Box::new(const_)); |
| } |
| Some(value) |
| } |
| } |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn simplify_rvalue( |
| &mut self, |
| lhs: &Place<'tcx>, |
| rvalue: &mut Rvalue<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| let value = match *rvalue { |
| // Forward values. |
| Rvalue::Use(ref mut operand) => return self.simplify_operand(operand, location), |
| Rvalue::CopyForDeref(place) => { |
| let mut operand = Operand::Copy(place); |
| let val = self.simplify_operand(&mut operand, location); |
| *rvalue = Rvalue::Use(operand); |
| return val; |
| } |
| |
| // Roots. |
| Rvalue::Repeat(ref mut op, amount) => { |
| let op = self.simplify_operand(op, location)?; |
| Value::Repeat(op, amount) |
| } |
| Rvalue::NullaryOp(op, ty) => Value::NullaryOp(op, ty), |
| Rvalue::Aggregate(..) => return self.simplify_aggregate(lhs, rvalue, location), |
| Rvalue::Ref(_, borrow_kind, ref mut place) => { |
| self.simplify_place_projection(place, location); |
| return Some(self.new_pointer(*place, AddressKind::Ref(borrow_kind))); |
| } |
| Rvalue::RawPtr(mutbl, ref mut place) => { |
| self.simplify_place_projection(place, location); |
| return Some(self.new_pointer(*place, AddressKind::Address(mutbl))); |
| } |
| Rvalue::WrapUnsafeBinder(ref mut op, _) => { |
| let value = self.simplify_operand(op, location)?; |
| Value::Cast { kind: CastKind::Transmute, value } |
| } |
| |
| // Operations. |
| Rvalue::Len(ref mut place) => return self.simplify_len(place, location), |
| Rvalue::Cast(ref mut kind, ref mut value, to) => { |
| return self.simplify_cast(kind, value, to, location); |
| } |
| Rvalue::BinaryOp(op, box (ref mut lhs, ref mut rhs)) => { |
| return self.simplify_binary(op, lhs, rhs, location); |
| } |
| Rvalue::UnaryOp(op, ref mut arg_op) => { |
| return self.simplify_unary(op, arg_op, location); |
| } |
| Rvalue::Discriminant(ref mut place) => { |
| let place = self.simplify_place_value(place, location)?; |
| if let Some(discr) = self.simplify_discriminant(place) { |
| return Some(discr); |
| } |
| Value::Discriminant(place) |
| } |
| |
| // Unsupported values. |
| Rvalue::ThreadLocalRef(..) | Rvalue::ShallowInitBox(..) => return None, |
| }; |
| let ty = rvalue.ty(self.local_decls, self.tcx); |
| Some(self.insert(ty, value)) |
| } |
| |
| fn simplify_discriminant(&mut self, place: VnIndex) -> Option<VnIndex> { |
| let enum_ty = self.ty(place); |
| if enum_ty.is_enum() |
| && let Value::Aggregate(variant, _) = *self.get(place) |
| { |
| let discr = self.ecx.discriminant_for_variant(enum_ty, variant).discard_err()?; |
| return Some(self.insert_scalar(discr.layout.ty, discr.to_scalar())); |
| } |
| |
| None |
| } |
| |
| fn try_as_place_elem( |
| &mut self, |
| ty: Ty<'tcx>, |
| proj: ProjectionElem<VnIndex, ()>, |
| loc: Location, |
| ) -> Option<PlaceElem<'tcx>> { |
| Some(match proj { |
| ProjectionElem::Deref => ProjectionElem::Deref, |
| ProjectionElem::Field(idx, ()) => ProjectionElem::Field(idx, ty), |
| ProjectionElem::Index(idx) => { |
| let Some(local) = self.try_as_local(idx, loc) else { |
| return None; |
| }; |
| self.reused_locals.insert(local); |
| ProjectionElem::Index(local) |
| } |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } => { |
| ProjectionElem::ConstantIndex { offset, min_length, from_end } |
| } |
| ProjectionElem::Subslice { from, to, from_end } => { |
| ProjectionElem::Subslice { from, to, from_end } |
| } |
| ProjectionElem::Downcast(symbol, idx) => ProjectionElem::Downcast(symbol, idx), |
| ProjectionElem::OpaqueCast(()) => ProjectionElem::OpaqueCast(ty), |
| ProjectionElem::Subtype(()) => ProjectionElem::Subtype(ty), |
| ProjectionElem::UnwrapUnsafeBinder(()) => ProjectionElem::UnwrapUnsafeBinder(ty), |
| }) |
| } |
| |
| fn simplify_aggregate_to_copy( |
| &mut self, |
| lhs: &Place<'tcx>, |
| rvalue: &mut Rvalue<'tcx>, |
| location: Location, |
| fields: &[VnIndex], |
| variant_index: VariantIdx, |
| ) -> Option<VnIndex> { |
| let Some(&first_field) = fields.first() else { |
| return None; |
| }; |
| let Value::Projection(copy_from_value, _) = *self.get(first_field) else { |
| return None; |
| }; |
| // All fields must correspond one-to-one and come from the same aggregate value. |
| if fields.iter().enumerate().any(|(index, &v)| { |
| if let Value::Projection(pointer, ProjectionElem::Field(from_index, _)) = *self.get(v) |
| && copy_from_value == pointer |
| && from_index.index() == index |
| { |
| return false; |
| } |
| true |
| }) { |
| return None; |
| } |
| |
| let mut copy_from_local_value = copy_from_value; |
| if let Value::Projection(pointer, proj) = *self.get(copy_from_value) |
| && let ProjectionElem::Downcast(_, read_variant) = proj |
| { |
| if variant_index == read_variant { |
| // When copying a variant, there is no need to downcast. |
| copy_from_local_value = pointer; |
| } else { |
| // The copied variant must be identical. |
| return None; |
| } |
| } |
| |
| // Allow introducing places with non-constant offsets, as those are still better than |
| // reconstructing an aggregate. |
| if self.ty(copy_from_local_value) == rvalue.ty(self.local_decls, self.tcx) |
| && let Some(place) = self.try_as_place(copy_from_local_value, location, true) |
| { |
| // Avoid creating `*a = copy (*b)`, as they might be aliases resulting in overlapping assignments. |
| // FIXME: This also avoids any kind of projection, not just derefs. We can add allowed projections. |
| if lhs.as_local().is_some() { |
| self.reused_locals.insert(place.local); |
| *rvalue = Rvalue::Use(Operand::Copy(place)); |
| } |
| return Some(copy_from_local_value); |
| } |
| |
| None |
| } |
| |
| fn simplify_aggregate( |
| &mut self, |
| lhs: &Place<'tcx>, |
| rvalue: &mut Rvalue<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| let tcx = self.tcx; |
| let ty = rvalue.ty(self.local_decls, tcx); |
| |
| let Rvalue::Aggregate(box ref kind, ref mut field_ops) = *rvalue else { bug!() }; |
| |
| if field_ops.is_empty() { |
| let is_zst = match *kind { |
| AggregateKind::Array(..) |
| | AggregateKind::Tuple |
| | AggregateKind::Closure(..) |
| | AggregateKind::CoroutineClosure(..) => true, |
| // Only enums can be non-ZST. |
| AggregateKind::Adt(did, ..) => tcx.def_kind(did) != DefKind::Enum, |
| // Coroutines are never ZST, as they at least contain the implicit states. |
| AggregateKind::Coroutine(..) => false, |
| AggregateKind::RawPtr(..) => bug!("MIR for RawPtr aggregate must have 2 fields"), |
| }; |
| |
| if is_zst { |
| return Some(self.insert_constant(Const::zero_sized(ty))); |
| } |
| } |
| |
| let fields: Vec<_> = field_ops |
| .iter_mut() |
| .map(|op| { |
| self.simplify_operand(op, location) |
| .unwrap_or_else(|| self.new_opaque(op.ty(self.local_decls, self.tcx))) |
| }) |
| .collect(); |
| |
| let variant_index = match *kind { |
| AggregateKind::Array(..) | AggregateKind::Tuple => { |
| assert!(!field_ops.is_empty()); |
| FIRST_VARIANT |
| } |
| AggregateKind::Closure(..) |
| | AggregateKind::CoroutineClosure(..) |
| | AggregateKind::Coroutine(..) => FIRST_VARIANT, |
| AggregateKind::Adt(_, variant_index, _, _, None) => variant_index, |
| // Do not track unions. |
| AggregateKind::Adt(_, _, _, _, Some(_)) => return None, |
| AggregateKind::RawPtr(..) => { |
| assert_eq!(field_ops.len(), 2); |
| let [mut pointer, metadata] = fields.try_into().unwrap(); |
| |
| // Any thin pointer of matching mutability is fine as the data pointer. |
| let mut was_updated = false; |
| while let Value::Cast { kind: CastKind::PtrToPtr, value: cast_value } = |
| self.get(pointer) |
| && let ty::RawPtr(from_pointee_ty, from_mtbl) = self.ty(*cast_value).kind() |
| && let ty::RawPtr(_, output_mtbl) = ty.kind() |
| && from_mtbl == output_mtbl |
| && from_pointee_ty.is_sized(self.tcx, self.typing_env()) |
| { |
| pointer = *cast_value; |
| was_updated = true; |
| } |
| |
| if was_updated && let Some(op) = self.try_as_operand(pointer, location) { |
| field_ops[FieldIdx::ZERO] = op; |
| } |
| |
| return Some(self.insert(ty, Value::RawPtr { pointer, metadata })); |
| } |
| }; |
| |
| if ty.is_array() && fields.len() > 4 { |
| let first = fields[0]; |
| if fields.iter().all(|&v| v == first) { |
| let len = ty::Const::from_target_usize(self.tcx, fields.len().try_into().unwrap()); |
| if let Some(op) = self.try_as_operand(first, location) { |
| *rvalue = Rvalue::Repeat(op, len); |
| } |
| return Some(self.insert(ty, Value::Repeat(first, len))); |
| } |
| } |
| |
| if let Some(value) = |
| self.simplify_aggregate_to_copy(lhs, rvalue, location, &fields, variant_index) |
| { |
| return Some(value); |
| } |
| |
| Some(self.insert(ty, Value::Aggregate(variant_index, fields))) |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn simplify_unary( |
| &mut self, |
| op: UnOp, |
| arg_op: &mut Operand<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| let mut arg_index = self.simplify_operand(arg_op, location)?; |
| let arg_ty = self.ty(arg_index); |
| let ret_ty = op.ty(self.tcx, arg_ty); |
| |
| // PtrMetadata doesn't care about *const vs *mut vs & vs &mut, |
| // so start by removing those distinctions so we can update the `Operand` |
| if op == UnOp::PtrMetadata { |
| let mut was_updated = false; |
| loop { |
| match self.get(arg_index) { |
| // Pointer casts that preserve metadata, such as |
| // `*const [i32]` <-> `*mut [i32]` <-> `*mut [f32]`. |
| // It's critical that this not eliminate cases like |
| // `*const [T]` -> `*const T` which remove metadata. |
| // We run on potentially-generic MIR, though, so unlike codegen |
| // we can't always know exactly what the metadata are. |
| // To allow things like `*mut (?A, ?T)` <-> `*mut (?B, ?T)`, |
| // it's fine to get a projection as the type. |
| Value::Cast { kind: CastKind::PtrToPtr, value: inner } |
| if self.pointers_have_same_metadata(self.ty(*inner), arg_ty) => |
| { |
| arg_index = *inner; |
| was_updated = true; |
| continue; |
| } |
| |
| // `&mut *p`, `&raw *p`, etc don't change metadata. |
| Value::Address { place, kind: _, provenance: _ } |
| if let PlaceRef { local, projection: [PlaceElem::Deref] } = |
| place.as_ref() |
| && let Some(local_index) = self.locals[local] => |
| { |
| arg_index = local_index; |
| was_updated = true; |
| continue; |
| } |
| |
| _ => { |
| if was_updated && let Some(op) = self.try_as_operand(arg_index, location) { |
| *arg_op = op; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| let value = match (op, self.get(arg_index)) { |
| (UnOp::Not, Value::UnaryOp(UnOp::Not, inner)) => return Some(*inner), |
| (UnOp::Neg, Value::UnaryOp(UnOp::Neg, inner)) => return Some(*inner), |
| (UnOp::Not, Value::BinaryOp(BinOp::Eq, lhs, rhs)) => { |
| Value::BinaryOp(BinOp::Ne, *lhs, *rhs) |
| } |
| (UnOp::Not, Value::BinaryOp(BinOp::Ne, lhs, rhs)) => { |
| Value::BinaryOp(BinOp::Eq, *lhs, *rhs) |
| } |
| (UnOp::PtrMetadata, Value::RawPtr { metadata, .. }) => return Some(*metadata), |
| // We have an unsizing cast, which assigns the length to wide pointer metadata. |
| ( |
| UnOp::PtrMetadata, |
| Value::Cast { |
| kind: CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _), |
| value: inner, |
| }, |
| ) if let ty::Slice(..) = arg_ty.builtin_deref(true).unwrap().kind() |
| && let ty::Array(_, len) = self.ty(*inner).builtin_deref(true).unwrap().kind() => |
| { |
| return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len))); |
| } |
| _ => Value::UnaryOp(op, arg_index), |
| }; |
| Some(self.insert(ret_ty, value)) |
| } |
| |
| #[instrument(level = "trace", skip(self), ret)] |
| fn simplify_binary( |
| &mut self, |
| op: BinOp, |
| lhs_operand: &mut Operand<'tcx>, |
| rhs_operand: &mut Operand<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| let lhs = self.simplify_operand(lhs_operand, location); |
| let rhs = self.simplify_operand(rhs_operand, location); |
| |
| // Only short-circuit options after we called `simplify_operand` |
| // on both operands for side effect. |
| let mut lhs = lhs?; |
| let mut rhs = rhs?; |
| |
| let lhs_ty = self.ty(lhs); |
| |
| // If we're comparing pointers, remove `PtrToPtr` casts if the from |
| // types of both casts and the metadata all match. |
| if let BinOp::Eq | BinOp::Ne | BinOp::Lt | BinOp::Le | BinOp::Gt | BinOp::Ge = op |
| && lhs_ty.is_any_ptr() |
| && let Value::Cast { kind: CastKind::PtrToPtr, value: lhs_value } = self.get(lhs) |
| && let Value::Cast { kind: CastKind::PtrToPtr, value: rhs_value } = self.get(rhs) |
| && let lhs_from = self.ty(*lhs_value) |
| && lhs_from == self.ty(*rhs_value) |
| && self.pointers_have_same_metadata(lhs_from, lhs_ty) |
| { |
| lhs = *lhs_value; |
| rhs = *rhs_value; |
| if let Some(lhs_op) = self.try_as_operand(lhs, location) |
| && let Some(rhs_op) = self.try_as_operand(rhs, location) |
| { |
| *lhs_operand = lhs_op; |
| *rhs_operand = rhs_op; |
| } |
| } |
| |
| if let Some(value) = self.simplify_binary_inner(op, lhs_ty, lhs, rhs) { |
| return Some(value); |
| } |
| let ty = op.ty(self.tcx, lhs_ty, self.ty(rhs)); |
| let value = Value::BinaryOp(op, lhs, rhs); |
| Some(self.insert(ty, value)) |
| } |
| |
| fn simplify_binary_inner( |
| &mut self, |
| op: BinOp, |
| lhs_ty: Ty<'tcx>, |
| lhs: VnIndex, |
| rhs: VnIndex, |
| ) -> Option<VnIndex> { |
| // Floats are weird enough that none of the logic below applies. |
| let reasonable_ty = |
| lhs_ty.is_integral() || lhs_ty.is_bool() || lhs_ty.is_char() || lhs_ty.is_any_ptr(); |
| if !reasonable_ty { |
| return None; |
| } |
| |
| let layout = self.ecx.layout_of(lhs_ty).ok()?; |
| |
| let as_bits = |value: VnIndex| { |
| let constant = self.evaluated[value].as_ref()?; |
| if layout.backend_repr.is_scalar() { |
| let scalar = self.ecx.read_scalar(constant).discard_err()?; |
| scalar.to_bits(constant.layout.size).discard_err() |
| } else { |
| // `constant` is a wide pointer. Do not evaluate to bits. |
| None |
| } |
| }; |
| |
| // Represent the values as `Left(bits)` or `Right(VnIndex)`. |
| use Either::{Left, Right}; |
| let a = as_bits(lhs).map_or(Right(lhs), Left); |
| let b = as_bits(rhs).map_or(Right(rhs), Left); |
| |
| let result = match (op, a, b) { |
| // Neutral elements. |
| ( |
| BinOp::Add |
| | BinOp::AddWithOverflow |
| | BinOp::AddUnchecked |
| | BinOp::BitOr |
| | BinOp::BitXor, |
| Left(0), |
| Right(p), |
| ) |
| | ( |
| BinOp::Add |
| | BinOp::AddWithOverflow |
| | BinOp::AddUnchecked |
| | BinOp::BitOr |
| | BinOp::BitXor |
| | BinOp::Sub |
| | BinOp::SubWithOverflow |
| | BinOp::SubUnchecked |
| | BinOp::Offset |
| | BinOp::Shl |
| | BinOp::Shr, |
| Right(p), |
| Left(0), |
| ) |
| | (BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked, Left(1), Right(p)) |
| | ( |
| BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::Div, |
| Right(p), |
| Left(1), |
| ) => p, |
| // Attempt to simplify `x & ALL_ONES` to `x`, with `ALL_ONES` depending on type size. |
| (BinOp::BitAnd, Right(p), Left(ones)) | (BinOp::BitAnd, Left(ones), Right(p)) |
| if ones == layout.size.truncate(u128::MAX) |
| || (layout.ty.is_bool() && ones == 1) => |
| { |
| p |
| } |
| // Absorbing elements. |
| ( |
| BinOp::Mul | BinOp::MulWithOverflow | BinOp::MulUnchecked | BinOp::BitAnd, |
| _, |
| Left(0), |
| ) |
| | (BinOp::Rem, _, Left(1)) |
| | ( |
| BinOp::Mul |
| | BinOp::MulWithOverflow |
| | BinOp::MulUnchecked |
| | BinOp::Div |
| | BinOp::Rem |
| | BinOp::BitAnd |
| | BinOp::Shl |
| | BinOp::Shr, |
| Left(0), |
| _, |
| ) => self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size)), |
| // Attempt to simplify `x | ALL_ONES` to `ALL_ONES`. |
| (BinOp::BitOr, _, Left(ones)) | (BinOp::BitOr, Left(ones), _) |
| if ones == layout.size.truncate(u128::MAX) |
| || (layout.ty.is_bool() && ones == 1) => |
| { |
| self.insert_scalar(lhs_ty, Scalar::from_uint(ones, layout.size)) |
| } |
| // Sub/Xor with itself. |
| (BinOp::Sub | BinOp::SubWithOverflow | BinOp::SubUnchecked | BinOp::BitXor, a, b) |
| if a == b => |
| { |
| self.insert_scalar(lhs_ty, Scalar::from_uint(0u128, layout.size)) |
| } |
| // Comparison: |
| // - if both operands can be computed as bits, just compare the bits; |
| // - if we proved that both operands have the same value, we can insert true/false; |
| // - otherwise, do nothing, as we do not try to prove inequality. |
| (BinOp::Eq, Left(a), Left(b)) => self.insert_bool(a == b), |
| (BinOp::Eq, a, b) if a == b => self.insert_bool(true), |
| (BinOp::Ne, Left(a), Left(b)) => self.insert_bool(a != b), |
| (BinOp::Ne, a, b) if a == b => self.insert_bool(false), |
| _ => return None, |
| }; |
| |
| if op.is_overflowing() { |
| let ty = Ty::new_tup(self.tcx, &[self.ty(result), self.tcx.types.bool]); |
| let false_val = self.insert_bool(false); |
| Some(self.insert_tuple(ty, vec![result, false_val])) |
| } else { |
| Some(result) |
| } |
| } |
| |
| fn simplify_cast( |
| &mut self, |
| initial_kind: &mut CastKind, |
| initial_operand: &mut Operand<'tcx>, |
| to: Ty<'tcx>, |
| location: Location, |
| ) -> Option<VnIndex> { |
| use CastKind::*; |
| use rustc_middle::ty::adjustment::PointerCoercion::*; |
| |
| let mut kind = *initial_kind; |
| let mut value = self.simplify_operand(initial_operand, location)?; |
| let mut from = self.ty(value); |
| if from == to { |
| return Some(value); |
| } |
| |
| if let CastKind::PointerCoercion(ReifyFnPointer | ClosureFnPointer(_), _) = kind { |
| // Each reification of a generic fn may get a different pointer. |
| // Do not try to merge them. |
| return Some(self.new_opaque(to)); |
| } |
| |
| let mut was_ever_updated = false; |
| loop { |
| let mut was_updated_this_iteration = false; |
| |
| // Transmuting between raw pointers is just a pointer cast so long as |
| // they have the same metadata type (like `*const i32` <=> `*mut u64` |
| // or `*mut [i32]` <=> `*const [u64]`), including the common special |
| // case of `*const T` <=> `*mut T`. |
| if let Transmute = kind |
| && from.is_raw_ptr() |
| && to.is_raw_ptr() |
| && self.pointers_have_same_metadata(from, to) |
| { |
| kind = PtrToPtr; |
| was_updated_this_iteration = true; |
| } |
| |
| // If a cast just casts away the metadata again, then we can get it by |
| // casting the original thin pointer passed to `from_raw_parts` |
| if let PtrToPtr = kind |
| && let Value::RawPtr { pointer, .. } = self.get(value) |
| && let ty::RawPtr(to_pointee, _) = to.kind() |
| && to_pointee.is_sized(self.tcx, self.typing_env()) |
| { |
| from = self.ty(*pointer); |
| value = *pointer; |
| was_updated_this_iteration = true; |
| if from == to { |
| return Some(*pointer); |
| } |
| } |
| |
| // Aggregate-then-Transmute can just transmute the original field value, |
| // so long as the bytes of a value from only from a single field. |
| if let Transmute = kind |
| && let Value::Aggregate(variant_idx, field_values) = self.get(value) |
| && let Some((field_idx, field_ty)) = |
| self.value_is_all_in_one_field(from, *variant_idx) |
| { |
| from = field_ty; |
| value = field_values[field_idx.as_usize()]; |
| was_updated_this_iteration = true; |
| if field_ty == to { |
| return Some(value); |
| } |
| } |
| |
| // Various cast-then-cast cases can be simplified. |
| if let Value::Cast { kind: inner_kind, value: inner_value } = *self.get(value) { |
| let inner_from = self.ty(inner_value); |
| let new_kind = match (inner_kind, kind) { |
| // Even if there's a narrowing cast in here that's fine, because |
| // things like `*mut [i32] -> *mut i32 -> *const i32` and |
| // `*mut [i32] -> *const [i32] -> *const i32` can skip the middle in MIR. |
| (PtrToPtr, PtrToPtr) => Some(PtrToPtr), |
| // PtrToPtr-then-Transmute is fine so long as the pointer cast is identity: |
| // `*const T -> *mut T -> NonNull<T>` is fine, but we need to check for narrowing |
| // to skip things like `*const [i32] -> *const i32 -> NonNull<T>`. |
| (PtrToPtr, Transmute) if self.pointers_have_same_metadata(inner_from, from) => { |
| Some(Transmute) |
| } |
| // Similarly, for Transmute-then-PtrToPtr. Note that we need to check different |
| // variables for their metadata, and thus this can't merge with the previous arm. |
| (Transmute, PtrToPtr) if self.pointers_have_same_metadata(from, to) => { |
| Some(Transmute) |
| } |
| // If would be legal to always do this, but we don't want to hide information |
| // from the backend that it'd otherwise be able to use for optimizations. |
| (Transmute, Transmute) |
| if !self.type_may_have_niche_of_interest_to_backend(from) => |
| { |
| Some(Transmute) |
| } |
| _ => None, |
| }; |
| if let Some(new_kind) = new_kind { |
| kind = new_kind; |
| from = inner_from; |
| value = inner_value; |
| was_updated_this_iteration = true; |
| if inner_from == to { |
| return Some(inner_value); |
| } |
| } |
| } |
| |
| if was_updated_this_iteration { |
| was_ever_updated = true; |
| } else { |
| break; |
| } |
| } |
| |
| if was_ever_updated && let Some(op) = self.try_as_operand(value, location) { |
| *initial_operand = op; |
| *initial_kind = kind; |
| } |
| |
| Some(self.insert(to, Value::Cast { kind, value })) |
| } |
| |
| fn simplify_len(&mut self, place: &mut Place<'tcx>, location: Location) -> Option<VnIndex> { |
| // Trivial case: we are fetching a statically known length. |
| let place_ty = place.ty(self.local_decls, self.tcx).ty; |
| if let ty::Array(_, len) = place_ty.kind() { |
| return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len))); |
| } |
| |
| let mut inner = self.simplify_place_value(place, location)?; |
| |
| // The length information is stored in the wide pointer. |
| // Reborrowing copies length information from one pointer to the other. |
| while let Value::Address { place: borrowed, .. } = self.get(inner) |
| && let [PlaceElem::Deref] = borrowed.projection[..] |
| && let Some(borrowed) = self.locals[borrowed.local] |
| { |
| inner = borrowed; |
| } |
| |
| // We have an unsizing cast, which assigns the length to wide pointer metadata. |
| if let Value::Cast { kind, value: from } = self.get(inner) |
| && let CastKind::PointerCoercion(ty::adjustment::PointerCoercion::Unsize, _) = kind |
| && let Some(from) = self.ty(*from).builtin_deref(true) |
| && let ty::Array(_, len) = from.kind() |
| && let Some(to) = self.ty(inner).builtin_deref(true) |
| && let ty::Slice(..) = to.kind() |
| { |
| return Some(self.insert_constant(Const::Ty(self.tcx.types.usize, *len))); |
| } |
| |
| // Fallback: a symbolic `Len`. |
| Some(self.insert(self.tcx.types.usize, Value::Len(inner))) |
| } |
| |
| fn pointers_have_same_metadata(&self, left_ptr_ty: Ty<'tcx>, right_ptr_ty: Ty<'tcx>) -> bool { |
| let left_meta_ty = left_ptr_ty.pointee_metadata_ty_or_projection(self.tcx); |
| let right_meta_ty = right_ptr_ty.pointee_metadata_ty_or_projection(self.tcx); |
| if left_meta_ty == right_meta_ty { |
| true |
| } else if let Ok(left) = |
| self.tcx.try_normalize_erasing_regions(self.typing_env(), left_meta_ty) |
| && let Ok(right) = |
| self.tcx.try_normalize_erasing_regions(self.typing_env(), right_meta_ty) |
| { |
| left == right |
| } else { |
| false |
| } |
| } |
| |
| /// Returns `false` if we know for sure that this type has no interesting niche, |
| /// and thus we can skip transmuting through it without worrying. |
| /// |
| /// The backend will emit `assume`s when transmuting between types with niches, |
| /// so we want to preserve `i32 -> char -> u32` so that that data is around, |
| /// but it's fine to skip whole-range-is-value steps like `A -> u32 -> B`. |
| fn type_may_have_niche_of_interest_to_backend(&self, ty: Ty<'tcx>) -> bool { |
| let Ok(layout) = self.ecx.layout_of(ty) else { |
| // If it's too generic or something, then assume it might be interesting later. |
| return true; |
| }; |
| |
| if layout.uninhabited { |
| return true; |
| } |
| |
| match layout.backend_repr { |
| BackendRepr::Scalar(a) => !a.is_always_valid(&self.ecx), |
| BackendRepr::ScalarPair(a, b) => { |
| !a.is_always_valid(&self.ecx) || !b.is_always_valid(&self.ecx) |
| } |
| BackendRepr::SimdVector { .. } | BackendRepr::Memory { .. } => false, |
| } |
| } |
| |
| fn value_is_all_in_one_field( |
| &self, |
| ty: Ty<'tcx>, |
| variant: VariantIdx, |
| ) -> Option<(FieldIdx, Ty<'tcx>)> { |
| if let Ok(layout) = self.ecx.layout_of(ty) |
| && let abi::Variants::Single { index } = layout.variants |
| && index == variant |
| && let Some((field_idx, field_layout)) = layout.non_1zst_field(&self.ecx) |
| && layout.size == field_layout.size |
| { |
| // We needed to check the variant to avoid trying to read the tag |
| // field from an enum where no fields have variants, since that tag |
| // field isn't in the `Aggregate` from which we're getting values. |
| Some((field_idx, field_layout.ty)) |
| } else if let ty::Adt(adt, args) = ty.kind() |
| && adt.is_struct() |
| && adt.repr().transparent() |
| && let [single_field] = adt.non_enum_variant().fields.raw.as_slice() |
| { |
| Some((FieldIdx::ZERO, single_field.ty(self.tcx, args))) |
| } else { |
| None |
| } |
| } |
| } |
| |
| fn op_to_prop_const<'tcx>( |
| ecx: &mut InterpCx<'tcx, DummyMachine>, |
| op: &OpTy<'tcx>, |
| ) -> Option<ConstValue> { |
| // Do not attempt to propagate unsized locals. |
| if op.layout.is_unsized() { |
| return None; |
| } |
| |
| // This constant is a ZST, just return an empty value. |
| if op.layout.is_zst() { |
| return Some(ConstValue::ZeroSized); |
| } |
| |
| // Do not synthetize too large constants. Codegen will just memcpy them, which we'd like to |
| // avoid. |
| if !matches!(op.layout.backend_repr, BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)) { |
| return None; |
| } |
| |
| // If this constant has scalar ABI, return it as a `ConstValue::Scalar`. |
| if let BackendRepr::Scalar(abi::Scalar::Initialized { .. }) = op.layout.backend_repr |
| && let Some(scalar) = ecx.read_scalar(op).discard_err() |
| { |
| if !scalar.try_to_scalar_int().is_ok() { |
| // Check that we do not leak a pointer. |
| // Those pointers may lose part of their identity in codegen. |
| // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed. |
| return None; |
| } |
| return Some(ConstValue::Scalar(scalar)); |
| } |
| |
| // If this constant is already represented as an `Allocation`, |
| // try putting it into global memory to return it. |
| if let Either::Left(mplace) = op.as_mplace_or_imm() { |
| let (size, _align) = ecx.size_and_align_of_val(&mplace).discard_err()??; |
| |
| // Do not try interning a value that contains provenance. |
| // Due to https://github.com/rust-lang/rust/issues/79738, doing so could lead to bugs. |
| // FIXME: remove this hack once that issue is fixed. |
| let alloc_ref = ecx.get_ptr_alloc(mplace.ptr(), size).discard_err()??; |
| if alloc_ref.has_provenance() { |
| return None; |
| } |
| |
| let pointer = mplace.ptr().into_pointer_or_addr().ok()?; |
| let (prov, offset) = pointer.prov_and_relative_offset(); |
| let alloc_id = prov.alloc_id(); |
| intern_const_alloc_for_constprop(ecx, alloc_id).discard_err()?; |
| |
| // `alloc_id` may point to a static. Codegen will choke on an `Indirect` with anything |
| // by `GlobalAlloc::Memory`, so do fall through to copying if needed. |
| // FIXME: find a way to treat this more uniformly (probably by fixing codegen) |
| if let GlobalAlloc::Memory(alloc) = ecx.tcx.global_alloc(alloc_id) |
| // Transmuting a constant is just an offset in the allocation. If the alignment of the |
| // allocation is not enough, fallback to copying into a properly aligned value. |
| && alloc.inner().align >= op.layout.align.abi |
| { |
| return Some(ConstValue::Indirect { alloc_id, offset }); |
| } |
| } |
| |
| // Everything failed: create a new allocation to hold the data. |
| let alloc_id = |
| ecx.intern_with_temp_alloc(op.layout, |ecx, dest| ecx.copy_op(op, dest)).discard_err()?; |
| let value = ConstValue::Indirect { alloc_id, offset: Size::ZERO }; |
| |
| // Check that we do not leak a pointer. |
| // Those pointers may lose part of their identity in codegen. |
| // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed. |
| if ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner().provenance().ptrs().is_empty() { |
| return Some(value); |
| } |
| |
| None |
| } |
| |
| impl<'tcx> VnState<'_, 'tcx> { |
| /// If either [`Self::try_as_constant`] as [`Self::try_as_place`] succeeds, |
| /// returns that result as an [`Operand`]. |
| fn try_as_operand(&mut self, index: VnIndex, location: Location) -> Option<Operand<'tcx>> { |
| if let Some(const_) = self.try_as_constant(index) { |
| Some(Operand::Constant(Box::new(const_))) |
| } else if let Some(place) = self.try_as_place(index, location, false) { |
| self.reused_locals.insert(place.local); |
| Some(Operand::Copy(place)) |
| } else { |
| None |
| } |
| } |
| |
| /// If `index` is a `Value::Constant`, return the `Constant` to be put in the MIR. |
| fn try_as_constant(&mut self, index: VnIndex) -> Option<ConstOperand<'tcx>> { |
| // This was already constant in MIR, do not change it. If the constant is not |
| // deterministic, adding an additional mention of it in MIR will not give the same value as |
| // the former mention. |
| if let Value::Constant { value, disambiguator: 0 } = *self.get(index) { |
| debug_assert!(value.is_deterministic()); |
| return Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_: value }); |
| } |
| |
| let op = self.evaluated[index].as_ref()?; |
| if op.layout.is_unsized() { |
| // Do not attempt to propagate unsized locals. |
| return None; |
| } |
| |
| let value = op_to_prop_const(&mut self.ecx, op)?; |
| |
| // Check that we do not leak a pointer. |
| // Those pointers may lose part of their identity in codegen. |
| // FIXME: remove this hack once https://github.com/rust-lang/rust/issues/79738 is fixed. |
| assert!(!value.may_have_provenance(self.tcx, op.layout.size)); |
| |
| let const_ = Const::Val(value, op.layout.ty); |
| Some(ConstOperand { span: DUMMY_SP, user_ty: None, const_ }) |
| } |
| |
| /// Construct a place which holds the same value as `index` and for which all locals strictly |
| /// dominate `loc`. If you used this place, add its base local to `reused_locals` to remove |
| /// storage statements. |
| #[instrument(level = "trace", skip(self), ret)] |
| fn try_as_place( |
| &mut self, |
| mut index: VnIndex, |
| loc: Location, |
| allow_complex_projection: bool, |
| ) -> Option<Place<'tcx>> { |
| let mut projection = SmallVec::<[PlaceElem<'tcx>; 1]>::new(); |
| loop { |
| if let Some(local) = self.try_as_local(index, loc) { |
| projection.reverse(); |
| let place = |
| Place { local, projection: self.tcx.mk_place_elems(projection.as_slice()) }; |
| return Some(place); |
| } else if let Value::Projection(pointer, proj) = *self.get(index) |
| && (allow_complex_projection || proj.is_stable_offset()) |
| && let Some(proj) = self.try_as_place_elem(self.ty(index), proj, loc) |
| { |
| projection.push(proj); |
| index = pointer; |
| } else { |
| return None; |
| } |
| } |
| } |
| |
| /// If there is a local which is assigned `index`, and its assignment strictly dominates `loc`, |
| /// return it. If you used this local, add it to `reused_locals` to remove storage statements. |
| fn try_as_local(&mut self, index: VnIndex, loc: Location) -> Option<Local> { |
| let other = self.rev_locals.get(index)?; |
| other |
| .iter() |
| .find(|&&other| self.ssa.assignment_dominates(&self.dominators, other, loc)) |
| .copied() |
| } |
| } |
| |
| impl<'tcx> MutVisitor<'tcx> for VnState<'_, 'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) { |
| self.simplify_place_projection(place, location); |
| if context.is_mutating_use() && place.is_indirect() { |
| // Non-local mutation maybe invalidate deref. |
| self.invalidate_derefs(); |
| } |
| self.super_place(place, context, location); |
| } |
| |
| fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) { |
| self.simplify_operand(operand, location); |
| self.super_operand(operand, location); |
| } |
| |
| fn visit_assign( |
| &mut self, |
| lhs: &mut Place<'tcx>, |
| rvalue: &mut Rvalue<'tcx>, |
| location: Location, |
| ) { |
| self.simplify_place_projection(lhs, location); |
| |
| let value = self.simplify_rvalue(lhs, rvalue, location); |
| if let Some(value) = value { |
| if let Some(const_) = self.try_as_constant(value) { |
| *rvalue = Rvalue::Use(Operand::Constant(Box::new(const_))); |
| } else if let Some(place) = self.try_as_place(value, location, false) |
| && *rvalue != Rvalue::Use(Operand::Move(place)) |
| && *rvalue != Rvalue::Use(Operand::Copy(place)) |
| { |
| *rvalue = Rvalue::Use(Operand::Copy(place)); |
| self.reused_locals.insert(place.local); |
| } |
| } |
| |
| if lhs.is_indirect() { |
| // Non-local mutation maybe invalidate deref. |
| self.invalidate_derefs(); |
| } |
| |
| if let Some(local) = lhs.as_local() |
| && self.ssa.is_ssa(local) |
| && let rvalue_ty = rvalue.ty(self.local_decls, self.tcx) |
| // FIXME(#112651) `rvalue` may have a subtype to `local`. We can only mark |
| // `local` as reusable if we have an exact type match. |
| && self.local_decls[local].ty == rvalue_ty |
| { |
| let value = value.unwrap_or_else(|| self.new_opaque(rvalue_ty)); |
| self.assign(local, value); |
| } |
| } |
| |
| fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) { |
| if let Terminator { kind: TerminatorKind::Call { destination, .. }, .. } = terminator { |
| if let Some(local) = destination.as_local() |
| && self.ssa.is_ssa(local) |
| { |
| let ty = self.local_decls[local].ty; |
| let opaque = self.new_opaque(ty); |
| self.assign(local, opaque); |
| } |
| } |
| // Function calls and ASM may invalidate (nested) derefs. We must handle them carefully. |
| // Currently, only preserving derefs for trivial terminators like SwitchInt and Goto. |
| let safe_to_preserve_derefs = matches!( |
| terminator.kind, |
| TerminatorKind::SwitchInt { .. } | TerminatorKind::Goto { .. } |
| ); |
| if !safe_to_preserve_derefs { |
| self.invalidate_derefs(); |
| } |
| self.super_terminator(terminator, location); |
| } |
| } |
| |
| struct StorageRemover<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| reused_locals: DenseBitSet<Local>, |
| } |
| |
| impl<'tcx> MutVisitor<'tcx> for StorageRemover<'tcx> { |
| fn tcx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn visit_operand(&mut self, operand: &mut Operand<'tcx>, _: Location) { |
| if let Operand::Move(place) = *operand |
| && !place.is_indirect_first_projection() |
| && self.reused_locals.contains(place.local) |
| { |
| *operand = Operand::Copy(place); |
| } |
| } |
| |
| fn visit_statement(&mut self, stmt: &mut Statement<'tcx>, loc: Location) { |
| match stmt.kind { |
| // When removing storage statements, we need to remove both (#107511). |
| StatementKind::StorageLive(l) | StatementKind::StorageDead(l) |
| if self.reused_locals.contains(l) => |
| { |
| stmt.make_nop() |
| } |
| _ => self.super_statement(stmt, loc), |
| } |
| } |
| } |