blob: 6db4998ffafb05c2f852a8281880a727acc5a7ed [file] [log] [blame] [edit]
use std::io::Write;
use std::iter;
use std::ops::ControlFlow;
use std::sync::Arc;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_errors::{Diag, DiagCtxtHandle};
use rustc_hir::def::DefKind;
use rustc_middle::query::{
CycleError, QueryInfo, QueryJob, QueryJobId, QueryLatch, QueryStackDeferred, QueryStackFrame,
QueryWaiter,
};
use rustc_session::Session;
use rustc_span::{DUMMY_SP, Span};
use crate::QueryCtxt;
use crate::dep_graph::DepContext;
/// Map from query job IDs to job information collected by
/// `collect_active_jobs_from_all_queries`.
#[derive(Debug, Default)]
pub struct QueryJobMap<'tcx> {
map: FxHashMap<QueryJobId, QueryJobInfo<'tcx>>,
}
impl<'tcx> QueryJobMap<'tcx> {
/// Adds information about a job ID to the job map.
///
/// Should only be called by `gather_active_jobs_inner`.
pub(crate) fn insert(&mut self, id: QueryJobId, info: QueryJobInfo<'tcx>) {
self.map.insert(id, info);
}
fn frame_of(&self, id: QueryJobId) -> &QueryStackFrame<QueryStackDeferred<'tcx>> {
&self.map[&id].frame
}
fn span_of(&self, id: QueryJobId) -> Span {
self.map[&id].job.span
}
fn parent_of(&self, id: QueryJobId) -> Option<QueryJobId> {
self.map[&id].job.parent
}
fn latch_of(&self, id: QueryJobId) -> Option<&QueryLatch<'tcx>> {
self.map[&id].job.latch.as_ref()
}
}
#[derive(Clone, Debug)]
pub(crate) struct QueryJobInfo<'tcx> {
pub(crate) frame: QueryStackFrame<QueryStackDeferred<'tcx>>,
pub(crate) job: QueryJob<'tcx>,
}
pub(crate) fn find_cycle_in_stack<'tcx>(
id: QueryJobId,
job_map: QueryJobMap<'tcx>,
current_job: &Option<QueryJobId>,
span: Span,
) -> CycleError<QueryStackDeferred<'tcx>> {
// Find the waitee amongst `current_job` parents
let mut cycle = Vec::new();
let mut current_job = Option::clone(current_job);
while let Some(job) = current_job {
let info = &job_map.map[&job];
cycle.push(QueryInfo { span: info.job.span, frame: info.frame.clone() });
if job == id {
cycle.reverse();
// This is the end of the cycle
// The span entry we included was for the usage
// of the cycle itself, and not part of the cycle
// Replace it with the span which caused the cycle to form
cycle[0].span = span;
// Find out why the cycle itself was used
let usage = try {
let parent = info.job.parent?;
(info.job.span, job_map.frame_of(parent).clone())
};
return CycleError { usage, cycle };
}
current_job = info.job.parent;
}
panic!("did not find a cycle")
}
#[cold]
#[inline(never)]
pub(crate) fn find_dep_kind_root<'tcx>(
id: QueryJobId,
job_map: QueryJobMap<'tcx>,
) -> (QueryJobInfo<'tcx>, usize) {
let mut depth = 1;
let info = &job_map.map[&id];
let dep_kind = info.frame.dep_kind;
let mut current_id = info.job.parent;
let mut last_layout = (info.clone(), depth);
while let Some(id) = current_id {
let info = &job_map.map[&id];
if info.frame.dep_kind == dep_kind {
depth += 1;
last_layout = (info.clone(), depth);
}
current_id = info.job.parent;
}
last_layout
}
/// A resumable waiter of a query. The usize is the index into waiters in the query's latch
type Waiter = (QueryJobId, usize);
/// Visits all the non-resumable and resumable waiters of a query.
/// Only waiters in a query are visited.
/// `visit` is called for every waiter and is passed a query waiting on `query`
/// and a span indicating the reason the query waited on `query`.
/// If `visit` returns `Break`, this function also returns `Break`,
/// and if all `visit` calls returns `Continue` it also returns `Continue`.
/// For visits of non-resumable waiters it returns the return value of `visit`.
/// For visits of resumable waiters it returns information required to resume that waiter.
fn visit_waiters<'tcx>(
job_map: &QueryJobMap<'tcx>,
query: QueryJobId,
mut visit: impl FnMut(Span, QueryJobId) -> ControlFlow<Option<Waiter>>,
) -> ControlFlow<Option<Waiter>> {
// Visit the parent query which is a non-resumable waiter since it's on the same stack
if let Some(parent) = job_map.parent_of(query) {
visit(job_map.span_of(query), parent)?;
}
// Visit the explicit waiters which use condvars and are resumable
if let Some(latch) = job_map.latch_of(query) {
for (i, waiter) in latch.info.lock().waiters.iter().enumerate() {
if let Some(waiter_query) = waiter.query {
// Return a value which indicates that this waiter can be resumed
visit(waiter.span, waiter_query).map_break(|_| Some((query, i)))?;
}
}
}
ControlFlow::Continue(())
}
/// Look for query cycles by doing a depth first search starting at `query`.
/// `span` is the reason for the `query` to execute. This is initially DUMMY_SP.
/// If a cycle is detected, this initial value is replaced with the span causing
/// the cycle.
fn cycle_check<'tcx>(
job_map: &QueryJobMap<'tcx>,
query: QueryJobId,
span: Span,
stack: &mut Vec<(Span, QueryJobId)>,
visited: &mut FxHashSet<QueryJobId>,
) -> ControlFlow<Option<Waiter>> {
if !visited.insert(query) {
return if let Some(p) = stack.iter().position(|q| q.1 == query) {
// We detected a query cycle, fix up the initial span and return Some
// Remove previous stack entries
stack.drain(0..p);
// Replace the span for the first query with the cycle cause
stack[0].0 = span;
ControlFlow::Break(None)
} else {
ControlFlow::Continue(())
};
}
// Query marked as visited is added it to the stack
stack.push((span, query));
// Visit all the waiters
let r = visit_waiters(job_map, query, |span, successor| {
cycle_check(job_map, successor, span, stack, visited)
});
// Remove the entry in our stack if we didn't find a cycle
if r.is_continue() {
stack.pop();
}
r
}
/// Finds out if there's a path to the compiler root (aka. code which isn't in a query)
/// from `query` without going through any of the queries in `visited`.
/// This is achieved with a depth first search.
fn connected_to_root<'tcx>(
job_map: &QueryJobMap<'tcx>,
query: QueryJobId,
visited: &mut FxHashSet<QueryJobId>,
) -> ControlFlow<Option<Waiter>> {
// We already visited this or we're deliberately ignoring it
if !visited.insert(query) {
return ControlFlow::Continue(());
}
// This query is connected to the root (it has no query parent), return true
if job_map.parent_of(query).is_none() {
return ControlFlow::Break(None);
}
visit_waiters(job_map, query, |_, successor| connected_to_root(job_map, successor, visited))
}
// Deterministically pick an query from a list
fn pick_query<'a, 'tcx, T, F>(job_map: &QueryJobMap<'tcx>, queries: &'a [T], f: F) -> &'a T
where
F: Fn(&T) -> (Span, QueryJobId),
{
// Deterministically pick an entry point
// FIXME: Sort this instead
queries
.iter()
.min_by_key(|v| {
let (span, query) = f(v);
let hash = job_map.frame_of(query).hash;
// Prefer entry points which have valid spans for nicer error messages
// We add an integer to the tuple ensuring that entry points
// with valid spans are picked first
let span_cmp = if span == DUMMY_SP { 1 } else { 0 };
(span_cmp, hash)
})
.unwrap()
}
/// Looks for query cycles starting from the last query in `jobs`.
/// If a cycle is found, all queries in the cycle is removed from `jobs` and
/// the function return true.
/// If a cycle was not found, the starting query is removed from `jobs` and
/// the function returns false.
fn remove_cycle<'tcx>(
job_map: &QueryJobMap<'tcx>,
jobs: &mut Vec<QueryJobId>,
wakelist: &mut Vec<Arc<QueryWaiter<'tcx>>>,
) -> bool {
let mut visited = FxHashSet::default();
let mut stack = Vec::new();
// Look for a cycle starting with the last query in `jobs`
if let ControlFlow::Break(waiter) =
cycle_check(job_map, jobs.pop().unwrap(), DUMMY_SP, &mut stack, &mut visited)
{
// The stack is a vector of pairs of spans and queries; reverse it so that
// the earlier entries require later entries
let (mut spans, queries): (Vec<_>, Vec<_>) = stack.into_iter().rev().unzip();
// Shift the spans so that queries are matched with the span for their waitee
spans.rotate_right(1);
// Zip them back together
let mut stack: Vec<_> = iter::zip(spans, queries).collect();
// Remove the queries in our cycle from the list of jobs to look at
for r in &stack {
if let Some(pos) = jobs.iter().position(|j| j == &r.1) {
jobs.remove(pos);
}
}
// Find the queries in the cycle which are
// connected to queries outside the cycle
let entry_points = stack
.iter()
.filter_map(|&(span, query)| {
if job_map.parent_of(query).is_none() {
// This query is connected to the root (it has no query parent)
Some((span, query, None))
} else {
let mut waiters = Vec::new();
// Find all the direct waiters who lead to the root
let _ = visit_waiters(job_map, query, |span, waiter| {
// Mark all the other queries in the cycle as already visited
let mut visited = FxHashSet::from_iter(stack.iter().map(|q| q.1));
if connected_to_root(job_map, waiter, &mut visited).is_break() {
waiters.push((span, waiter));
}
ControlFlow::Continue(())
});
if waiters.is_empty() {
None
} else {
// Deterministically pick one of the waiters to show to the user
let waiter = *pick_query(job_map, &waiters, |s| *s);
Some((span, query, Some(waiter)))
}
}
})
.collect::<Vec<(Span, QueryJobId, Option<(Span, QueryJobId)>)>>();
// Deterministically pick an entry point
let (_, entry_point, usage) = pick_query(job_map, &entry_points, |e| (e.0, e.1));
// Shift the stack so that our entry point is first
let entry_point_pos = stack.iter().position(|(_, query)| query == entry_point);
if let Some(pos) = entry_point_pos {
stack.rotate_left(pos);
}
let usage = usage.map(|(span, job)| (span, job_map.frame_of(job).clone()));
// Create the cycle error
let error = CycleError {
usage,
cycle: stack
.iter()
.map(|&(span, job)| QueryInfo { span, frame: job_map.frame_of(job).clone() })
.collect(),
};
// We unwrap `waiter` here since there must always be one
// edge which is resumable / waited using a query latch
let (waitee_query, waiter_idx) = waiter.unwrap();
// Extract the waiter we want to resume
let waiter = job_map.latch_of(waitee_query).unwrap().extract_waiter(waiter_idx);
// Set the cycle error so it will be picked up when resumed
*waiter.cycle.lock() = Some(error);
// Put the waiter on the list of things to resume
wakelist.push(waiter);
true
} else {
false
}
}
/// Detects query cycles by using depth first search over all active query jobs.
/// If a query cycle is found it will break the cycle by finding an edge which
/// uses a query latch and then resuming that waiter.
/// There may be multiple cycles involved in a deadlock, so this searches
/// all active queries for cycles before finally resuming all the waiters at once.
pub fn break_query_cycles<'tcx>(
job_map: QueryJobMap<'tcx>,
registry: &rustc_thread_pool::Registry,
) {
let mut wakelist = Vec::new();
// It is OK per the comments:
// - https://github.com/rust-lang/rust/pull/131200#issuecomment-2798854932
// - https://github.com/rust-lang/rust/pull/131200#issuecomment-2798866392
#[allow(rustc::potential_query_instability)]
let mut jobs: Vec<QueryJobId> = job_map.map.keys().copied().collect();
let mut found_cycle = false;
while jobs.len() > 0 {
if remove_cycle(&job_map, &mut jobs, &mut wakelist) {
found_cycle = true;
}
}
// Check that a cycle was found. It is possible for a deadlock to occur without
// a query cycle if a query which can be waited on uses Rayon to do multithreading
// internally. Such a query (X) may be executing on 2 threads (A and B) and A may
// wait using Rayon on B. Rayon may then switch to executing another query (Y)
// which in turn will wait on X causing a deadlock. We have a false dependency from
// X to Y due to Rayon waiting and a true dependency from Y to X. The algorithm here
// only considers the true dependency and won't detect a cycle.
if !found_cycle {
panic!(
"deadlock detected as we're unable to find a query cycle to break\n\
current query map:\n{job_map:#?}",
);
}
// Mark all the thread we're about to wake up as unblocked. This needs to be done before
// we wake the threads up as otherwise Rayon could detect a deadlock if a thread we
// resumed fell asleep and this thread had yet to mark the remaining threads as unblocked.
for _ in 0..wakelist.len() {
rustc_thread_pool::mark_unblocked(registry);
}
for waiter in wakelist.into_iter() {
waiter.condvar.notify_one();
}
}
pub fn print_query_stack<'tcx>(
qcx: QueryCtxt<'tcx>,
mut current_query: Option<QueryJobId>,
dcx: DiagCtxtHandle<'_>,
limit_frames: Option<usize>,
mut file: Option<std::fs::File>,
) -> usize {
// Be careful relying on global state here: this code is called from
// a panic hook, which means that the global `DiagCtxt` may be in a weird
// state if it was responsible for triggering the panic.
let mut count_printed = 0;
let mut count_total = 0;
// Make use of a partial query job map if we fail to take locks collecting active queries.
let job_map: QueryJobMap<'_> = qcx
.collect_active_jobs_from_all_queries(false)
.unwrap_or_else(|partial_job_map| partial_job_map);
if let Some(ref mut file) = file {
let _ = writeln!(file, "\n\nquery stack during panic:");
}
while let Some(query) = current_query {
let Some(query_info) = job_map.map.get(&query) else {
break;
};
let query_extra = query_info.frame.info.extract();
if Some(count_printed) < limit_frames || limit_frames.is_none() {
// Only print to stderr as many stack frames as `num_frames` when present.
dcx.struct_failure_note(format!(
"#{} [{:?}] {}",
count_printed, query_info.frame.dep_kind, query_extra.description
))
.with_span(query_info.job.span)
.emit();
count_printed += 1;
}
if let Some(ref mut file) = file {
let _ = writeln!(
file,
"#{} [{}] {}",
count_total,
qcx.tcx.dep_kind_vtable(query_info.frame.dep_kind).name,
query_extra.description
);
}
current_query = query_info.job.parent;
count_total += 1;
}
if let Some(ref mut file) = file {
let _ = writeln!(file, "end of query stack");
}
count_total
}
#[inline(never)]
#[cold]
pub(crate) fn report_cycle<'a>(
sess: &'a Session,
CycleError { usage, cycle: stack }: &CycleError,
) -> Diag<'a> {
assert!(!stack.is_empty());
let span = stack[0].frame.info.default_span(stack[1 % stack.len()].span);
let mut cycle_stack = Vec::new();
use crate::error::StackCount;
let stack_count = if stack.len() == 1 { StackCount::Single } else { StackCount::Multiple };
for i in 1..stack.len() {
let frame = &stack[i].frame;
let span = frame.info.default_span(stack[(i + 1) % stack.len()].span);
cycle_stack
.push(crate::error::CycleStack { span, desc: frame.info.description.to_owned() });
}
let mut cycle_usage = None;
if let Some((span, ref query)) = *usage {
cycle_usage = Some(crate::error::CycleUsage {
span: query.info.default_span(span),
usage: query.info.description.to_string(),
});
}
let alias =
if stack.iter().all(|entry| matches!(entry.frame.info.def_kind, Some(DefKind::TyAlias))) {
Some(crate::error::Alias::Ty)
} else if stack.iter().all(|entry| entry.frame.info.def_kind == Some(DefKind::TraitAlias)) {
Some(crate::error::Alias::Trait)
} else {
None
};
let cycle_diag = crate::error::Cycle {
span,
cycle_stack,
stack_bottom: stack[0].frame.info.description.to_owned(),
alias,
cycle_usage,
stack_count,
note_span: (),
};
sess.dcx().create_err(cycle_diag)
}