| use std::iter; |
| |
| use rustc_abi::{BackendRepr, HasDataLayout, Primitive, TyAbiInterface}; |
| |
| use crate::callconv::{ArgAbi, FnAbi, Reg, RegKind, Uniform}; |
| use crate::spec::{HasTargetSpec, Target}; |
| |
| /// Indicates the variant of the AArch64 ABI we are compiling for. |
| /// Used to accommodate Apple and Microsoft's deviations from the usual AAPCS ABI. |
| /// |
| /// Corresponds to Clang's `AArch64ABIInfo::ABIKind`. |
| #[derive(Copy, Clone, PartialEq)] |
| pub(crate) enum AbiKind { |
| AAPCS, |
| DarwinPCS, |
| Win64, |
| } |
| |
| fn is_homogeneous_aggregate<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) -> Option<Uniform> |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| arg.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()).and_then(|unit| { |
| let size = arg.layout.size; |
| |
| // Ensure we have at most four uniquely addressable members. |
| if size > unit.size.checked_mul(4, cx).unwrap() { |
| return None; |
| } |
| |
| let valid_unit = match unit.kind { |
| RegKind::Integer => false, |
| // The softfloat ABI treats floats like integers, so they |
| // do not get homogeneous aggregate treatment. |
| RegKind::Float => cx.target_spec().abi != "softfloat", |
| RegKind::Vector => size.bits() == 64 || size.bits() == 128, |
| }; |
| |
| valid_unit.then_some(Uniform::consecutive(unit, size)) |
| }) |
| } |
| |
| fn softfloat_float_abi<Ty>(target: &Target, arg: &mut ArgAbi<'_, Ty>) { |
| if target.abi != "softfloat" { |
| return; |
| } |
| // Do *not* use the float registers for passing arguments, as that would make LLVM pick the ABI |
| // and its choice depends on whether `neon` instructions are enabled. Instead, we follow the |
| // AAPCS "softfloat" ABI, which specifies that floats should be passed as equivalently-sized |
| // integers. Nominally this only exists for "R" profile chips, but sometimes people don't want |
| // to use hardfloats even if the hardware supports them, so we do this for all softfloat |
| // targets. |
| if let BackendRepr::Scalar(s) = arg.layout.backend_repr |
| && let Primitive::Float(f) = s.primitive() |
| { |
| arg.cast_to(Reg { kind: RegKind::Integer, size: f.size() }); |
| } else if let BackendRepr::ScalarPair(s1, s2) = arg.layout.backend_repr |
| && (matches!(s1.primitive(), Primitive::Float(_)) |
| || matches!(s2.primitive(), Primitive::Float(_))) |
| { |
| // This case can only be reached for the Rust ABI, so we can do whatever we want here as |
| // long as it does not depend on target features (i.e., as long as we do not use float |
| // registers). So we pass small things in integer registers and large things via pointer |
| // indirection. This means we lose the nice "pass it as two arguments" optimization, but we |
| // currently just have to way to combine a `PassMode::Cast` with that optimization (and we |
| // need a cast since we want to pass the float as an int). |
| if arg.layout.size.bits() <= target.pointer_width.into() { |
| arg.cast_to(Reg { kind: RegKind::Integer, size: arg.layout.size }); |
| } else { |
| arg.make_indirect(); |
| } |
| } |
| } |
| |
| fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>, kind: AbiKind) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| if !ret.layout.is_sized() { |
| // Not touching this... |
| return; |
| } |
| if !ret.layout.is_aggregate() { |
| if kind == AbiKind::DarwinPCS { |
| // On Darwin, when returning an i8/i16, it must be sign-extended to 32 bits, |
| // and likewise a u8/u16 must be zero-extended to 32-bits. |
| // See also: <https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Pass-Arguments-to-Functions-Correctly> |
| ret.extend_integer_width_to(32) |
| } |
| softfloat_float_abi(cx.target_spec(), ret); |
| return; |
| } |
| if let Some(uniform) = is_homogeneous_aggregate(cx, ret) { |
| ret.cast_to(uniform); |
| return; |
| } |
| let size = ret.layout.size; |
| let bits = size.bits(); |
| if bits <= 128 { |
| ret.cast_to(Uniform::new(Reg::i64(), size)); |
| return; |
| } |
| ret.make_indirect(); |
| } |
| |
| fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, kind: AbiKind) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| if !arg.layout.is_sized() { |
| // Not touching this... |
| return; |
| } |
| if !arg.layout.is_aggregate() { |
| if kind == AbiKind::DarwinPCS { |
| // On Darwin, when passing an i8/i16, it must be sign-extended to 32 bits, |
| // and likewise a u8/u16 must be zero-extended to 32-bits. |
| // See also: <https://developer.apple.com/documentation/xcode/writing-arm64-code-for-apple-platforms#Pass-Arguments-to-Functions-Correctly> |
| arg.extend_integer_width_to(32); |
| } |
| softfloat_float_abi(cx.target_spec(), arg); |
| |
| return; |
| } |
| if let Some(uniform) = is_homogeneous_aggregate(cx, arg) { |
| arg.cast_to(uniform); |
| return; |
| } |
| let size = arg.layout.size; |
| let align = if kind == AbiKind::AAPCS { |
| // When passing small aggregates by value, the AAPCS ABI mandates using the unadjusted |
| // alignment of the type (not including `repr(align)`). |
| // This matches behavior of `AArch64ABIInfo::classifyArgumentType` in Clang. |
| // See: <https://github.com/llvm/llvm-project/blob/5e691a1c9b0ad22689d4a434ddf4fed940e58dec/clang/lib/CodeGen/TargetInfo.cpp#L5816-L5823> |
| arg.layout.unadjusted_abi_align |
| } else { |
| arg.layout.align.abi |
| }; |
| if size.bits() <= 128 { |
| if align.bits() == 128 { |
| arg.cast_to(Uniform::new(Reg::i128(), size)); |
| } else { |
| arg.cast_to(Uniform::new(Reg::i64(), size)); |
| } |
| return; |
| } |
| arg.make_indirect(); |
| } |
| |
| pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, kind: AbiKind) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| if !fn_abi.ret.is_ignore() { |
| classify_ret(cx, &mut fn_abi.ret, kind); |
| } |
| |
| for arg in fn_abi.args.iter_mut() { |
| if arg.is_ignore() { |
| continue; |
| } |
| classify_arg(cx, arg, kind); |
| } |
| } |
| |
| pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) |
| where |
| Ty: TyAbiInterface<'a, C> + Copy, |
| C: HasDataLayout + HasTargetSpec, |
| { |
| for arg in fn_abi.args.iter_mut().chain(iter::once(&mut fn_abi.ret)) { |
| softfloat_float_abi(cx.target_spec(), arg); |
| } |
| } |