blob: 51d037ddfd2cce3dff319bd7c19906f369543c61 [file] [log] [blame]
//! The `Clone` trait for types that cannot be 'implicitly copied'.
//!
//! In Rust, some simple types are "implicitly copyable" and when you
//! assign them or pass them as arguments, the receiver will get a copy,
//! leaving the original value in place. These types do not require
//! allocation to copy and do not have finalizers (i.e., they do not
//! contain owned boxes or implement [`Drop`]), so the compiler considers
//! them cheap and safe to copy. For other types copies must be made
//! explicitly, by convention implementing the [`Clone`] trait and calling
//! the [`clone`] method.
//!
//! [`clone`]: Clone::clone
//!
//! Basic usage example:
//!
//! ```
//! let s = String::new(); // String type implements Clone
//! let copy = s.clone(); // so we can clone it
//! ```
//!
//! To easily implement the Clone trait, you can also use
//! `#[derive(Clone)]`. Example:
//!
//! ```
//! #[derive(Clone)] // we add the Clone trait to Morpheus struct
//! struct Morpheus {
//! blue_pill: f32,
//! red_pill: i64,
//! }
//!
//! fn main() {
//! let f = Morpheus { blue_pill: 0.0, red_pill: 0 };
//! let copy = f.clone(); // and now we can clone it!
//! }
//! ```
#![stable(feature = "rust1", since = "1.0.0")]
use crate::marker::{Destruct, PointeeSized};
mod uninit;
/// A common trait that allows explicit creation of a duplicate value.
///
/// Calling [`clone`] always produces a new value.
/// However, for types that are references to other data (such as smart pointers or references),
/// the new value may still point to the same underlying data, rather than duplicating it.
/// See [`Clone::clone`] for more details.
///
/// This distinction is especially important when using `#[derive(Clone)]` on structs containing
/// smart pointers like `Arc<Mutex<T>>` - the cloned struct will share mutable state with the
/// original.
///
/// Differs from [`Copy`] in that [`Copy`] is implicit and an inexpensive bit-wise copy, while
/// `Clone` is always explicit and may or may not be expensive. In order to enforce
/// these characteristics, Rust does not allow you to reimplement [`Copy`], but you
/// may reimplement `Clone` and run arbitrary code.
///
/// Since `Clone` is more general than [`Copy`], you can automatically make anything
/// [`Copy`] be `Clone` as well.
///
/// ## Derivable
///
/// This trait can be used with `#[derive]` if all fields are `Clone`. The `derive`d
/// implementation of [`Clone`] calls [`clone`] on each field.
///
/// [`clone`]: Clone::clone
///
/// For a generic struct, `#[derive]` implements `Clone` conditionally by adding bound `Clone` on
/// generic parameters.
///
/// ```
/// // `derive` implements Clone for Reading<T> when T is Clone.
/// #[derive(Clone)]
/// struct Reading<T> {
/// frequency: T,
/// }
/// ```
///
/// ## How can I implement `Clone`?
///
/// Types that are [`Copy`] should have a trivial implementation of `Clone`. More formally:
/// if `T: Copy`, `x: T`, and `y: &T`, then `let x = y.clone();` is equivalent to `let x = *y;`.
/// Manual implementations should be careful to uphold this invariant; however, unsafe code
/// must not rely on it to ensure memory safety.
///
/// An example is a generic struct holding a function pointer. In this case, the
/// implementation of `Clone` cannot be `derive`d, but can be implemented as:
///
/// ```
/// struct Generate<T>(fn() -> T);
///
/// impl<T> Copy for Generate<T> {}
///
/// impl<T> Clone for Generate<T> {
/// fn clone(&self) -> Self {
/// *self
/// }
/// }
/// ```
///
/// If we `derive`:
///
/// ```
/// #[derive(Copy, Clone)]
/// struct Generate<T>(fn() -> T);
/// ```
///
/// the auto-derived implementations will have unnecessary `T: Copy` and `T: Clone` bounds:
///
/// ```
/// # struct Generate<T>(fn() -> T);
///
/// // Automatically derived
/// impl<T: Copy> Copy for Generate<T> { }
///
/// // Automatically derived
/// impl<T: Clone> Clone for Generate<T> {
/// fn clone(&self) -> Generate<T> {
/// Generate(Clone::clone(&self.0))
/// }
/// }
/// ```
///
/// The bounds are unnecessary because clearly the function itself should be
/// copy- and cloneable even if its return type is not:
///
/// ```compile_fail,E0599
/// #[derive(Copy, Clone)]
/// struct Generate<T>(fn() -> T);
///
/// struct NotCloneable;
///
/// fn generate_not_cloneable() -> NotCloneable {
/// NotCloneable
/// }
///
/// Generate(generate_not_cloneable).clone(); // error: trait bounds were not satisfied
/// // Note: With the manual implementations the above line will compile.
/// ```
///
/// ## Additional implementors
///
/// In addition to the [implementors listed below][impls],
/// the following types also implement `Clone`:
///
/// * Function item types (i.e., the distinct types defined for each function)
/// * Function pointer types (e.g., `fn() -> i32`)
/// * Closure types, if they capture no value from the environment
/// or if all such captured values implement `Clone` themselves.
/// Note that variables captured by shared reference always implement `Clone`
/// (even if the referent doesn't),
/// while variables captured by mutable reference never implement `Clone`.
///
/// [impls]: #implementors
#[stable(feature = "rust1", since = "1.0.0")]
#[lang = "clone"]
#[rustc_diagnostic_item = "Clone"]
#[rustc_trivial_field_reads]
#[rustc_const_unstable(feature = "const_clone", issue = "142757")]
#[const_trait]
pub trait Clone: Sized {
/// Returns a duplicate of the value.
///
/// Note that what "duplicate" means varies by type:
/// - For most types, this creates a deep, independent copy
/// - For reference types like `&T`, this creates another reference to the same value
/// - For smart pointers like [`Arc`] or [`Rc`], this increments the reference count
/// but still points to the same underlying data
///
/// [`Arc`]: ../../std/sync/struct.Arc.html
/// [`Rc`]: ../../std/rc/struct.Rc.html
///
/// # Examples
///
/// ```
/// # #![allow(noop_method_call)]
/// let hello = "Hello"; // &str implements Clone
///
/// assert_eq!("Hello", hello.clone());
/// ```
///
/// Example with a reference-counted type:
///
/// ```
/// use std::sync::{Arc, Mutex};
///
/// let data = Arc::new(Mutex::new(vec![1, 2, 3]));
/// let data_clone = data.clone(); // Creates another Arc pointing to the same Mutex
///
/// {
/// let mut lock = data.lock().unwrap();
/// lock.push(4);
/// }
///
/// // Changes are visible through the clone because they share the same underlying data
/// assert_eq!(*data_clone.lock().unwrap(), vec![1, 2, 3, 4]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "cloning is often expensive and is not expected to have side effects"]
// Clone::clone is special because the compiler generates MIR to implement it for some types.
// See InstanceKind::CloneShim.
#[lang = "clone_fn"]
fn clone(&self) -> Self;
/// Performs copy-assignment from `source`.
///
/// `a.clone_from(&b)` is equivalent to `a = b.clone()` in functionality,
/// but can be overridden to reuse the resources of `a` to avoid unnecessary
/// allocations.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
fn clone_from(&mut self, source: &Self)
where
Self: ~const Destruct,
{
*self = source.clone()
}
}
/// Derive macro generating an impl of the trait `Clone`.
#[rustc_builtin_macro]
#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
#[allow_internal_unstable(core_intrinsics, derive_clone_copy)]
pub macro Clone($item:item) {
/* compiler built-in */
}
/// Trait for objects whose [`Clone`] impl is lightweight (e.g. reference-counted)
///
/// Cloning an object implementing this trait should in general:
/// - be O(1) (constant) time regardless of the amount of data managed by the object,
/// - not require a memory allocation,
/// - not require copying more than roughly 64 bytes (a typical cache line size),
/// - not block the current thread,
/// - not have any semantic side effects (e.g. allocating a file descriptor), and
/// - not have overhead larger than a couple of atomic operations.
///
/// The `UseCloned` trait does not provide a method; instead, it indicates that
/// `Clone::clone` is lightweight, and allows the use of the `.use` syntax.
///
/// ## .use postfix syntax
///
/// Values can be `.use`d by adding `.use` postfix to the value you want to use.
///
/// ```ignore (this won't work until we land use)
/// fn foo(f: Foo) {
/// // if `Foo` implements `Copy` f would be copied into x.
/// // if `Foo` implements `UseCloned` f would be cloned into x.
/// // otherwise f would be moved into x.
/// let x = f.use;
/// // ...
/// }
/// ```
///
/// ## use closures
///
/// Use closures allow captured values to be automatically used.
/// This is similar to have a closure that you would call `.use` over each captured value.
#[unstable(feature = "ergonomic_clones", issue = "132290")]
#[lang = "use_cloned"]
pub trait UseCloned: Clone {
// Empty.
}
macro_rules! impl_use_cloned {
($($t:ty)*) => {
$(
#[unstable(feature = "ergonomic_clones", issue = "132290")]
impl UseCloned for $t {}
)*
}
}
impl_use_cloned! {
usize u8 u16 u32 u64 u128
isize i8 i16 i32 i64 i128
f16 f32 f64 f128
bool char
}
// FIXME(aburka): these structs are used solely by #[derive] to
// assert that every component of a type implements Clone or Copy.
//
// These structs should never appear in user code.
#[doc(hidden)]
#[allow(missing_debug_implementations)]
#[unstable(
feature = "derive_clone_copy",
reason = "deriving hack, should not be public",
issue = "none"
)]
pub struct AssertParamIsClone<T: Clone + PointeeSized> {
_field: crate::marker::PhantomData<T>,
}
#[doc(hidden)]
#[allow(missing_debug_implementations)]
#[unstable(
feature = "derive_clone_copy",
reason = "deriving hack, should not be public",
issue = "none"
)]
pub struct AssertParamIsCopy<T: Copy + PointeeSized> {
_field: crate::marker::PhantomData<T>,
}
/// A generalization of [`Clone`] to [dynamically-sized types][DST] stored in arbitrary containers.
///
/// This trait is implemented for all types implementing [`Clone`], [slices](slice) of all
/// such types, and other dynamically-sized types in the standard library.
/// You may also implement this trait to enable cloning custom DSTs
/// (structures containing dynamically-sized fields), or use it as a supertrait to enable
/// cloning a [trait object].
///
/// This trait is normally used via operations on container types which support DSTs,
/// so you should not typically need to call `.clone_to_uninit()` explicitly except when
/// implementing such a container or otherwise performing explicit management of an allocation,
/// or when implementing `CloneToUninit` itself.
///
/// # Safety
///
/// Implementations must ensure that when `.clone_to_uninit(dest)` returns normally rather than
/// panicking, it always leaves `*dest` initialized as a valid value of type `Self`.
///
/// # Examples
///
// FIXME(#126799): when `Box::clone` allows use of `CloneToUninit`, rewrite these examples with it
// since `Rc` is a distraction.
///
/// If you are defining a trait, you can add `CloneToUninit` as a supertrait to enable cloning of
/// `dyn` values of your trait:
///
/// ```
/// #![feature(clone_to_uninit)]
/// use std::rc::Rc;
///
/// trait Foo: std::fmt::Debug + std::clone::CloneToUninit {
/// fn modify(&mut self);
/// fn value(&self) -> i32;
/// }
///
/// impl Foo for i32 {
/// fn modify(&mut self) {
/// *self *= 10;
/// }
/// fn value(&self) -> i32 {
/// *self
/// }
/// }
///
/// let first: Rc<dyn Foo> = Rc::new(1234);
///
/// let mut second = first.clone();
/// Rc::make_mut(&mut second).modify(); // make_mut() will call clone_to_uninit()
///
/// assert_eq!(first.value(), 1234);
/// assert_eq!(second.value(), 12340);
/// ```
///
/// The following is an example of implementing `CloneToUninit` for a custom DST.
/// (It is essentially a limited form of what `derive(CloneToUninit)` would do,
/// if such a derive macro existed.)
///
/// ```
/// #![feature(clone_to_uninit)]
/// use std::clone::CloneToUninit;
/// use std::mem::offset_of;
/// use std::rc::Rc;
///
/// #[derive(PartialEq)]
/// struct MyDst<T: ?Sized> {
/// label: String,
/// contents: T,
/// }
///
/// unsafe impl<T: ?Sized + CloneToUninit> CloneToUninit for MyDst<T> {
/// unsafe fn clone_to_uninit(&self, dest: *mut u8) {
/// // The offset of `self.contents` is dynamic because it depends on the alignment of T
/// // which can be dynamic (if `T = dyn SomeTrait`). Therefore, we have to obtain it
/// // dynamically by examining `self`, rather than using `offset_of!`.
/// //
/// // SAFETY: `self` by definition points somewhere before `&self.contents` in the same
/// // allocation.
/// let offset_of_contents = unsafe {
/// (&raw const self.contents).byte_offset_from_unsigned(self)
/// };
///
/// // Clone the *sized* fields of `self` (just one, in this example).
/// // (By cloning this first and storing it temporarily in a local variable, we avoid
/// // leaking it in case of any panic, using the ordinary automatic cleanup of local
/// // variables. Such a leak would be sound, but undesirable.)
/// let label = self.label.clone();
///
/// // SAFETY: The caller must provide a `dest` such that these field offsets are valid
/// // to write to.
/// unsafe {
/// // Clone the unsized field directly from `self` to `dest`.
/// self.contents.clone_to_uninit(dest.add(offset_of_contents));
///
/// // Now write all the sized fields.
/// //
/// // Note that we only do this once all of the clone() and clone_to_uninit() calls
/// // have completed, and therefore we know that there are no more possible panics;
/// // this ensures no memory leaks in case of panic.
/// dest.add(offset_of!(Self, label)).cast::<String>().write(label);
/// }
/// // All fields of the struct have been initialized; therefore, the struct is initialized,
/// // and we have satisfied our `unsafe impl CloneToUninit` obligations.
/// }
/// }
///
/// fn main() {
/// // Construct MyDst<[u8; 4]>, then coerce to MyDst<[u8]>.
/// let first: Rc<MyDst<[u8]>> = Rc::new(MyDst {
/// label: String::from("hello"),
/// contents: [1, 2, 3, 4],
/// });
///
/// let mut second = first.clone();
/// // make_mut() will call clone_to_uninit().
/// for elem in Rc::make_mut(&mut second).contents.iter_mut() {
/// *elem *= 10;
/// }
///
/// assert_eq!(first.contents, [1, 2, 3, 4]);
/// assert_eq!(second.contents, [10, 20, 30, 40]);
/// assert_eq!(second.label, "hello");
/// }
/// ```
///
/// # See Also
///
/// * [`Clone::clone_from`] is a safe function which may be used instead when [`Self: Sized`](Sized)
/// and the destination is already initialized; it may be able to reuse allocations owned by
/// the destination, whereas `clone_to_uninit` cannot, since its destination is assumed to be
/// uninitialized.
/// * [`ToOwned`], which allocates a new destination container.
///
/// [`ToOwned`]: ../../std/borrow/trait.ToOwned.html
/// [DST]: https://doc.rust-lang.org/reference/dynamically-sized-types.html
/// [trait object]: https://doc.rust-lang.org/reference/types/trait-object.html
#[unstable(feature = "clone_to_uninit", issue = "126799")]
pub unsafe trait CloneToUninit {
/// Performs copy-assignment from `self` to `dest`.
///
/// This is analogous to `std::ptr::write(dest.cast(), self.clone())`,
/// except that `Self` may be a dynamically-sized type ([`!Sized`](Sized)).
///
/// Before this function is called, `dest` may point to uninitialized memory.
/// After this function is called, `dest` will point to initialized memory; it will be
/// sound to create a `&Self` reference from the pointer with the [pointer metadata]
/// from `self`.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// * `dest` must be [valid] for writes for `size_of_val(self)` bytes.
/// * `dest` must be properly aligned to `align_of_val(self)`.
///
/// [valid]: crate::ptr#safety
/// [pointer metadata]: crate::ptr::metadata()
///
/// # Panics
///
/// This function may panic. (For example, it might panic if memory allocation for a clone
/// of a value owned by `self` fails.)
/// If the call panics, then `*dest` should be treated as uninitialized memory; it must not be
/// read or dropped, because even if it was previously valid, it may have been partially
/// overwritten.
///
/// The caller may wish to take care to deallocate the allocation pointed to by `dest`,
/// if applicable, to avoid a memory leak (but this is not a requirement).
///
/// Implementors should avoid leaking values by, upon unwinding, dropping all component values
/// that might have already been created. (For example, if a `[Foo]` of length 3 is being
/// cloned, and the second of the three calls to `Foo::clone()` unwinds, then the first `Foo`
/// cloned should be dropped.)
unsafe fn clone_to_uninit(&self, dest: *mut u8);
}
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for T {
#[inline]
unsafe fn clone_to_uninit(&self, dest: *mut u8) {
// SAFETY: we're calling a specialization with the same contract
unsafe { <T as self::uninit::CopySpec>::clone_one(self, dest.cast::<T>()) }
}
}
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl<T: Clone> CloneToUninit for [T] {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dest: *mut u8) {
let dest: *mut [T] = dest.with_metadata_of(self);
// SAFETY: we're calling a specialization with the same contract
unsafe { <T as self::uninit::CopySpec>::clone_slice(self, dest) }
}
}
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl CloneToUninit for str {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dest: *mut u8) {
// SAFETY: str is just a [u8] with UTF-8 invariant
unsafe { self.as_bytes().clone_to_uninit(dest) }
}
}
#[unstable(feature = "clone_to_uninit", issue = "126799")]
unsafe impl CloneToUninit for crate::ffi::CStr {
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dest: *mut u8) {
// SAFETY: For now, CStr is just a #[repr(trasnsparent)] [c_char] with some invariants.
// And we can cast [c_char] to [u8] on all supported platforms (see: to_bytes_with_nul).
// The pointer metadata properly preserves the length (so NUL is also copied).
// See: `cstr_metadata_is_length_with_nul` in tests.
unsafe { self.to_bytes_with_nul().clone_to_uninit(dest) }
}
}
#[unstable(feature = "bstr", issue = "134915")]
unsafe impl CloneToUninit for crate::bstr::ByteStr {
#[inline]
#[cfg_attr(debug_assertions, track_caller)]
unsafe fn clone_to_uninit(&self, dst: *mut u8) {
// SAFETY: ByteStr is a `#[repr(transparent)]` wrapper around `[u8]`
unsafe { self.as_bytes().clone_to_uninit(dst) }
}
}
/// Implementations of `Clone` for primitive types.
///
/// Implementations that cannot be described in Rust
/// are implemented in `traits::SelectionContext::copy_clone_conditions()`
/// in `rustc_trait_selection`.
mod impls {
use crate::marker::PointeeSized;
macro_rules! impl_clone {
($($t:ty)*) => {
$(
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for $t {
#[inline(always)]
fn clone(&self) -> Self {
*self
}
}
)*
}
}
impl_clone! {
usize u8 u16 u32 u64 u128
isize i8 i16 i32 i64 i128
f16 f32 f64 f128
bool char
}
#[unstable(feature = "never_type", issue = "35121")]
impl Clone for ! {
#[inline]
fn clone(&self) -> Self {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> Clone for *const T {
#[inline(always)]
fn clone(&self) -> Self {
*self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> Clone for *mut T {
#[inline(always)]
fn clone(&self) -> Self {
*self
}
}
/// Shared references can be cloned, but mutable references *cannot*!
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> Clone for &T {
#[inline(always)]
#[rustc_diagnostic_item = "noop_method_clone"]
fn clone(&self) -> Self {
self
}
}
/// Shared references can be cloned, but mutable references *cannot*!
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> !Clone for &mut T {}
}