| //! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on |
| //! how this works. |
| //! |
| //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html |
| //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html |
| |
| use std::fmt::Debug; |
| |
| use rustc_data_structures::fx::{FxHashSet, FxIndexSet}; |
| use rustc_errors::{Diag, EmissionGuarantee}; |
| use rustc_hir::def::DefKind; |
| use rustc_hir::def_id::{CRATE_DEF_ID, DefId}; |
| use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, TyCtxtInferExt}; |
| use rustc_infer::traits::PredicateObligations; |
| use rustc_macros::{TypeFoldable, TypeVisitable}; |
| use rustc_middle::bug; |
| use rustc_middle::traits::query::NoSolution; |
| use rustc_middle::traits::solve::{CandidateSource, Certainty, Goal}; |
| use rustc_middle::traits::specialization_graph::OverlapMode; |
| use rustc_middle::ty::fast_reject::DeepRejectCtxt; |
| use rustc_middle::ty::{ |
| self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode, |
| }; |
| pub use rustc_next_trait_solver::coherence::*; |
| use rustc_next_trait_solver::solve::SolverDelegateEvalExt; |
| use rustc_span::{DUMMY_SP, Span, sym}; |
| use tracing::{debug, instrument, warn}; |
| |
| use super::ObligationCtxt; |
| use crate::error_reporting::traits::suggest_new_overflow_limit; |
| use crate::infer::InferOk; |
| use crate::solve::inspect::{InspectGoal, ProofTreeInferCtxtExt, ProofTreeVisitor}; |
| use crate::solve::{SolverDelegate, deeply_normalize_for_diagnostics, inspect}; |
| use crate::traits::query::evaluate_obligation::InferCtxtExt; |
| use crate::traits::select::IntercrateAmbiguityCause; |
| use crate::traits::{ |
| FulfillmentErrorCode, NormalizeExt, Obligation, ObligationCause, PredicateObligation, |
| SelectionContext, SkipLeakCheck, util, |
| }; |
| |
| /// The "header" of an impl is everything outside the body: a Self type, a trait |
| /// ref (in the case of a trait impl), and a set of predicates (from the |
| /// bounds / where-clauses). |
| #[derive(Clone, Debug, TypeFoldable, TypeVisitable)] |
| pub struct ImplHeader<'tcx> { |
| pub impl_def_id: DefId, |
| pub impl_args: ty::GenericArgsRef<'tcx>, |
| pub self_ty: Ty<'tcx>, |
| pub trait_ref: Option<ty::TraitRef<'tcx>>, |
| pub predicates: Vec<ty::Predicate<'tcx>>, |
| } |
| |
| pub struct OverlapResult<'tcx> { |
| pub impl_header: ImplHeader<'tcx>, |
| pub intercrate_ambiguity_causes: FxIndexSet<IntercrateAmbiguityCause<'tcx>>, |
| |
| /// `true` if the overlap might've been permitted before the shift |
| /// to universes. |
| pub involves_placeholder: bool, |
| |
| /// Used in the new solver to suggest increasing the recursion limit. |
| pub overflowing_predicates: Vec<ty::Predicate<'tcx>>, |
| } |
| |
| pub fn add_placeholder_note<G: EmissionGuarantee>(err: &mut Diag<'_, G>) { |
| err.note( |
| "this behavior recently changed as a result of a bug fix; \ |
| see rust-lang/rust#56105 for details", |
| ); |
| } |
| |
| pub(crate) fn suggest_increasing_recursion_limit<'tcx, G: EmissionGuarantee>( |
| tcx: TyCtxt<'tcx>, |
| err: &mut Diag<'_, G>, |
| overflowing_predicates: &[ty::Predicate<'tcx>], |
| ) { |
| for pred in overflowing_predicates { |
| err.note(format!("overflow evaluating the requirement `{}`", pred)); |
| } |
| |
| suggest_new_overflow_limit(tcx, err); |
| } |
| |
| #[derive(Debug, Clone, Copy)] |
| enum TrackAmbiguityCauses { |
| Yes, |
| No, |
| } |
| |
| impl TrackAmbiguityCauses { |
| fn is_yes(self) -> bool { |
| match self { |
| TrackAmbiguityCauses::Yes => true, |
| TrackAmbiguityCauses::No => false, |
| } |
| } |
| } |
| |
| /// If there are types that satisfy both impls, returns `Some` |
| /// with a suitably-freshened `ImplHeader` with those types |
| /// instantiated. Otherwise, returns `None`. |
| #[instrument(skip(tcx, skip_leak_check), level = "debug")] |
| pub fn overlapping_impls( |
| tcx: TyCtxt<'_>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| skip_leak_check: SkipLeakCheck, |
| overlap_mode: OverlapMode, |
| ) -> Option<OverlapResult<'_>> { |
| // Before doing expensive operations like entering an inference context, do |
| // a quick check via fast_reject to tell if the impl headers could possibly |
| // unify. |
| let drcx = DeepRejectCtxt::relate_infer_infer(tcx); |
| let impl1_ref = tcx.impl_trait_ref(impl1_def_id); |
| let impl2_ref = tcx.impl_trait_ref(impl2_def_id); |
| let may_overlap = match (impl1_ref, impl2_ref) { |
| (Some(a), Some(b)) => drcx.args_may_unify(a.skip_binder().args, b.skip_binder().args), |
| (None, None) => { |
| let self_ty1 = tcx.type_of(impl1_def_id).skip_binder(); |
| let self_ty2 = tcx.type_of(impl2_def_id).skip_binder(); |
| drcx.types_may_unify(self_ty1, self_ty2) |
| } |
| _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"), |
| }; |
| |
| if !may_overlap { |
| // Some types involved are definitely different, so the impls couldn't possibly overlap. |
| debug!("overlapping_impls: fast_reject early-exit"); |
| return None; |
| } |
| |
| if tcx.next_trait_solver_in_coherence() { |
| overlap( |
| tcx, |
| TrackAmbiguityCauses::Yes, |
| skip_leak_check, |
| impl1_def_id, |
| impl2_def_id, |
| overlap_mode, |
| ) |
| } else { |
| let _overlap_with_bad_diagnostics = overlap( |
| tcx, |
| TrackAmbiguityCauses::No, |
| skip_leak_check, |
| impl1_def_id, |
| impl2_def_id, |
| overlap_mode, |
| )?; |
| |
| // In the case where we detect an error, run the check again, but |
| // this time tracking intercrate ambiguity causes for better |
| // diagnostics. (These take time and can lead to false errors.) |
| let overlap = overlap( |
| tcx, |
| TrackAmbiguityCauses::Yes, |
| skip_leak_check, |
| impl1_def_id, |
| impl2_def_id, |
| overlap_mode, |
| ) |
| .unwrap(); |
| Some(overlap) |
| } |
| } |
| |
| fn fresh_impl_header<'tcx>(infcx: &InferCtxt<'tcx>, impl_def_id: DefId) -> ImplHeader<'tcx> { |
| let tcx = infcx.tcx; |
| let impl_args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id); |
| |
| ImplHeader { |
| impl_def_id, |
| impl_args, |
| self_ty: tcx.type_of(impl_def_id).instantiate(tcx, impl_args), |
| trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.instantiate(tcx, impl_args)), |
| predicates: tcx |
| .predicates_of(impl_def_id) |
| .instantiate(tcx, impl_args) |
| .iter() |
| .map(|(c, _)| c.as_predicate()) |
| .collect(), |
| } |
| } |
| |
| fn fresh_impl_header_normalized<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| impl_def_id: DefId, |
| ) -> ImplHeader<'tcx> { |
| let header = fresh_impl_header(infcx, impl_def_id); |
| |
| let InferOk { value: mut header, obligations } = |
| infcx.at(&ObligationCause::dummy(), param_env).normalize(header); |
| |
| header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); |
| header |
| } |
| |
| /// Can both impl `a` and impl `b` be satisfied by a common type (including |
| /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. |
| #[instrument(level = "debug", skip(tcx))] |
| fn overlap<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| track_ambiguity_causes: TrackAmbiguityCauses, |
| skip_leak_check: SkipLeakCheck, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| overlap_mode: OverlapMode, |
| ) -> Option<OverlapResult<'tcx>> { |
| if overlap_mode.use_negative_impl() { |
| if impl_intersection_has_negative_obligation(tcx, impl1_def_id, impl2_def_id) |
| || impl_intersection_has_negative_obligation(tcx, impl2_def_id, impl1_def_id) |
| { |
| return None; |
| } |
| } |
| |
| let infcx = tcx |
| .infer_ctxt() |
| .skip_leak_check(skip_leak_check.is_yes()) |
| .with_next_trait_solver(tcx.next_trait_solver_in_coherence()) |
| .build(TypingMode::Coherence); |
| let selcx = &mut SelectionContext::new(&infcx); |
| if track_ambiguity_causes.is_yes() { |
| selcx.enable_tracking_intercrate_ambiguity_causes(); |
| } |
| |
| // For the purposes of this check, we don't bring any placeholder |
| // types into scope; instead, we replace the generic types with |
| // fresh type variables, and hence we do our evaluations in an |
| // empty environment. |
| let param_env = ty::ParamEnv::empty(); |
| |
| let impl1_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl1_def_id); |
| let impl2_header = fresh_impl_header_normalized(selcx.infcx, param_env, impl2_def_id); |
| |
| // Equate the headers to find their intersection (the general type, with infer vars, |
| // that may apply both impls). |
| let mut obligations = |
| equate_impl_headers(selcx.infcx, param_env, &impl1_header, &impl2_header)?; |
| debug!("overlap: unification check succeeded"); |
| |
| obligations.extend( |
| [&impl1_header.predicates, &impl2_header.predicates].into_iter().flatten().map( |
| |&predicate| Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, predicate), |
| ), |
| ); |
| |
| let mut overflowing_predicates = Vec::new(); |
| if overlap_mode.use_implicit_negative() { |
| match impl_intersection_has_impossible_obligation(selcx, &obligations) { |
| IntersectionHasImpossibleObligations::Yes => return None, |
| IntersectionHasImpossibleObligations::No { overflowing_predicates: p } => { |
| overflowing_predicates = p |
| } |
| } |
| } |
| |
| // We toggle the `leak_check` by using `skip_leak_check` when constructing the |
| // inference context, so this may be a noop. |
| if infcx.leak_check(ty::UniverseIndex::ROOT, None).is_err() { |
| debug!("overlap: leak check failed"); |
| return None; |
| } |
| |
| let intercrate_ambiguity_causes = if !overlap_mode.use_implicit_negative() { |
| Default::default() |
| } else if infcx.next_trait_solver() { |
| compute_intercrate_ambiguity_causes(&infcx, &obligations) |
| } else { |
| selcx.take_intercrate_ambiguity_causes() |
| }; |
| |
| debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); |
| let involves_placeholder = infcx |
| .inner |
| .borrow_mut() |
| .unwrap_region_constraints() |
| .data() |
| .constraints |
| .iter() |
| .any(|c| c.0.involves_placeholders()); |
| |
| let mut impl_header = infcx.resolve_vars_if_possible(impl1_header); |
| |
| // Deeply normalize the impl header for diagnostics, ignoring any errors if this fails. |
| if infcx.next_trait_solver() { |
| impl_header = deeply_normalize_for_diagnostics(&infcx, param_env, impl_header); |
| } |
| |
| Some(OverlapResult { |
| impl_header, |
| intercrate_ambiguity_causes, |
| involves_placeholder, |
| overflowing_predicates, |
| }) |
| } |
| |
| #[instrument(level = "debug", skip(infcx), ret)] |
| fn equate_impl_headers<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| impl1: &ImplHeader<'tcx>, |
| impl2: &ImplHeader<'tcx>, |
| ) -> Option<PredicateObligations<'tcx>> { |
| let result = |
| match (impl1.trait_ref, impl2.trait_ref) { |
| (Some(impl1_ref), Some(impl2_ref)) => infcx |
| .at(&ObligationCause::dummy(), param_env) |
| .eq(DefineOpaqueTypes::Yes, impl1_ref, impl2_ref), |
| (None, None) => infcx.at(&ObligationCause::dummy(), param_env).eq( |
| DefineOpaqueTypes::Yes, |
| impl1.self_ty, |
| impl2.self_ty, |
| ), |
| _ => bug!("equate_impl_headers given mismatched impl kinds"), |
| }; |
| |
| result.map(|infer_ok| infer_ok.obligations).ok() |
| } |
| |
| /// The result of [fn impl_intersection_has_impossible_obligation]. |
| #[derive(Debug)] |
| enum IntersectionHasImpossibleObligations<'tcx> { |
| Yes, |
| No { |
| /// With `-Znext-solver=coherence`, some obligations may |
| /// fail if only the user increased the recursion limit. |
| /// |
| /// We return those obligations here and mention them in the |
| /// error message. |
| overflowing_predicates: Vec<ty::Predicate<'tcx>>, |
| }, |
| } |
| |
| /// Check if both impls can be satisfied by a common type by considering whether |
| /// any of either impl's obligations is not known to hold. |
| /// |
| /// For example, given these two impls: |
| /// `impl From<MyLocalType> for Box<dyn Error>` (in my crate) |
| /// `impl<E> From<E> for Box<dyn Error> where E: Error` (in libstd) |
| /// |
| /// After replacing both impl headers with inference vars (which happens before |
| /// this function is called), we get: |
| /// `Box<dyn Error>: From<MyLocalType>` |
| /// `Box<dyn Error>: From<?E>` |
| /// |
| /// This gives us `?E = MyLocalType`. We then certainly know that `MyLocalType: Error` |
| /// never holds in intercrate mode since a local impl does not exist, and a |
| /// downstream impl cannot be added -- therefore can consider the intersection |
| /// of the two impls above to be empty. |
| /// |
| /// Importantly, this works even if there isn't a `impl !Error for MyLocalType`. |
| #[instrument(level = "debug", skip(selcx), ret)] |
| fn impl_intersection_has_impossible_obligation<'a, 'cx, 'tcx>( |
| selcx: &mut SelectionContext<'cx, 'tcx>, |
| obligations: &'a [PredicateObligation<'tcx>], |
| ) -> IntersectionHasImpossibleObligations<'tcx> { |
| let infcx = selcx.infcx; |
| |
| if infcx.next_trait_solver() { |
| // A fast path optimization, try evaluating all goals with |
| // a very low recursion depth and bail if any of them don't |
| // hold. |
| if !obligations.iter().all(|o| { |
| <&SolverDelegate<'tcx>>::from(infcx) |
| .root_goal_may_hold_with_depth(8, Goal::new(infcx.tcx, o.param_env, o.predicate)) |
| }) { |
| return IntersectionHasImpossibleObligations::Yes; |
| } |
| |
| let ocx = ObligationCtxt::new(infcx); |
| ocx.register_obligations(obligations.iter().cloned()); |
| let hard_errors = ocx.select_where_possible(); |
| if !hard_errors.is_empty() { |
| assert!( |
| hard_errors.iter().all(|e| e.is_true_error()), |
| "should not have detected ambiguity during first pass" |
| ); |
| return IntersectionHasImpossibleObligations::Yes; |
| } |
| |
| // Make a new `ObligationCtxt` and re-prove the ambiguities with a richer |
| // `FulfillmentError`. This is so that we can detect overflowing obligations |
| // without needing to run the `BestObligation` visitor on true errors. |
| let ambiguities = ocx.into_pending_obligations(); |
| let ocx = ObligationCtxt::new_with_diagnostics(infcx); |
| ocx.register_obligations(ambiguities); |
| let errors_and_ambiguities = ocx.select_all_or_error(); |
| // We only care about the obligations that are *definitely* true errors. |
| // Ambiguities do not prove the disjointness of two impls. |
| let (errors, ambiguities): (Vec<_>, Vec<_>) = |
| errors_and_ambiguities.into_iter().partition(|error| error.is_true_error()); |
| assert!(errors.is_empty(), "should not have ambiguities during second pass"); |
| |
| IntersectionHasImpossibleObligations::No { |
| overflowing_predicates: ambiguities |
| .into_iter() |
| .filter(|error| { |
| matches!(error.code, FulfillmentErrorCode::Ambiguity { overflow: Some(true) }) |
| }) |
| .map(|e| infcx.resolve_vars_if_possible(e.obligation.predicate)) |
| .collect(), |
| } |
| } else { |
| for obligation in obligations { |
| // We use `evaluate_root_obligation` to correctly track intercrate |
| // ambiguity clauses. |
| let evaluation_result = selcx.evaluate_root_obligation(obligation); |
| |
| match evaluation_result { |
| Ok(result) => { |
| if !result.may_apply() { |
| return IntersectionHasImpossibleObligations::Yes; |
| } |
| } |
| // If overflow occurs, we need to conservatively treat the goal as possibly holding, |
| // since there can be instantiations of this goal that don't overflow and result in |
| // success. While this isn't much of a problem in the old solver, since we treat overflow |
| // fatally, this still can be encountered: <https://github.com/rust-lang/rust/issues/105231>. |
| Err(_overflow) => {} |
| } |
| } |
| |
| IntersectionHasImpossibleObligations::No { overflowing_predicates: Vec::new() } |
| } |
| } |
| |
| /// Check if both impls can be satisfied by a common type by considering whether |
| /// any of first impl's obligations is known not to hold *via a negative predicate*. |
| /// |
| /// For example, given these two impls: |
| /// `struct MyCustomBox<T: ?Sized>(Box<T>);` |
| /// `impl From<&str> for MyCustomBox<dyn Error>` (in my crate) |
| /// `impl<E> From<E> for MyCustomBox<dyn Error> where E: Error` (in my crate) |
| /// |
| /// After replacing the second impl's header with inference vars, we get: |
| /// `MyCustomBox<dyn Error>: From<&str>` |
| /// `MyCustomBox<dyn Error>: From<?E>` |
| /// |
| /// This gives us `?E = &str`. We then try to prove the first impl's predicates |
| /// after negating, giving us `&str: !Error`. This is a negative impl provided by |
| /// libstd, and therefore we can guarantee for certain that libstd will never add |
| /// a positive impl for `&str: Error` (without it being a breaking change). |
| fn impl_intersection_has_negative_obligation( |
| tcx: TyCtxt<'_>, |
| impl1_def_id: DefId, |
| impl2_def_id: DefId, |
| ) -> bool { |
| debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); |
| |
| // N.B. We need to unify impl headers *with* intercrate mode, even if proving negative predicates |
| // do not need intercrate mode enabled. |
| let ref infcx = tcx.infer_ctxt().with_next_trait_solver(true).build(TypingMode::Coherence); |
| let root_universe = infcx.universe(); |
| assert_eq!(root_universe, ty::UniverseIndex::ROOT); |
| |
| let impl1_header = fresh_impl_header(infcx, impl1_def_id); |
| let param_env = |
| ty::EarlyBinder::bind(tcx.param_env(impl1_def_id)).instantiate(tcx, impl1_header.impl_args); |
| |
| let impl2_header = fresh_impl_header(infcx, impl2_def_id); |
| |
| // Equate the headers to find their intersection (the general type, with infer vars, |
| // that may apply both impls). |
| let Some(equate_obligations) = |
| equate_impl_headers(infcx, param_env, &impl1_header, &impl2_header) |
| else { |
| return false; |
| }; |
| |
| // FIXME(with_negative_coherence): the infcx has constraints from equating |
| // the impl headers. We should use these constraints as assumptions, not as |
| // requirements, when proving the negated where clauses below. |
| drop(equate_obligations); |
| drop(infcx.take_registered_region_obligations()); |
| drop(infcx.take_registered_region_assumptions()); |
| drop(infcx.take_and_reset_region_constraints()); |
| |
| plug_infer_with_placeholders( |
| infcx, |
| root_universe, |
| (impl1_header.impl_args, impl2_header.impl_args), |
| ); |
| let param_env = infcx.resolve_vars_if_possible(param_env); |
| |
| util::elaborate(tcx, tcx.predicates_of(impl2_def_id).instantiate(tcx, impl2_header.impl_args)) |
| .elaborate_sized() |
| .any(|(clause, _)| try_prove_negated_where_clause(infcx, clause, param_env)) |
| } |
| |
| fn plug_infer_with_placeholders<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| universe: ty::UniverseIndex, |
| value: impl TypeVisitable<TyCtxt<'tcx>>, |
| ) { |
| struct PlugInferWithPlaceholder<'a, 'tcx> { |
| infcx: &'a InferCtxt<'tcx>, |
| universe: ty::UniverseIndex, |
| var: ty::BoundVar, |
| } |
| |
| impl<'tcx> PlugInferWithPlaceholder<'_, 'tcx> { |
| fn next_var(&mut self) -> ty::BoundVar { |
| let var = self.var; |
| self.var = self.var + 1; |
| var |
| } |
| } |
| |
| impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for PlugInferWithPlaceholder<'_, 'tcx> { |
| fn visit_ty(&mut self, ty: Ty<'tcx>) { |
| let ty = self.infcx.shallow_resolve(ty); |
| if ty.is_ty_var() { |
| let Ok(InferOk { value: (), obligations }) = |
| self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( |
| // Comparing against a type variable never registers hidden types anyway |
| DefineOpaqueTypes::Yes, |
| ty, |
| Ty::new_placeholder( |
| self.infcx.tcx, |
| ty::Placeholder { |
| universe: self.universe, |
| bound: ty::BoundTy { |
| var: self.next_var(), |
| kind: ty::BoundTyKind::Anon, |
| }, |
| }, |
| ), |
| ) |
| else { |
| bug!("we always expect to be able to plug an infer var with placeholder") |
| }; |
| assert_eq!(obligations.len(), 0); |
| } else { |
| ty.super_visit_with(self); |
| } |
| } |
| |
| fn visit_const(&mut self, ct: ty::Const<'tcx>) { |
| let ct = self.infcx.shallow_resolve_const(ct); |
| if ct.is_ct_infer() { |
| let Ok(InferOk { value: (), obligations }) = |
| self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( |
| // The types of the constants are the same, so there is no hidden type |
| // registration happening anyway. |
| DefineOpaqueTypes::Yes, |
| ct, |
| ty::Const::new_placeholder( |
| self.infcx.tcx, |
| ty::Placeholder { universe: self.universe, bound: self.next_var() }, |
| ), |
| ) |
| else { |
| bug!("we always expect to be able to plug an infer var with placeholder") |
| }; |
| assert_eq!(obligations.len(), 0); |
| } else { |
| ct.super_visit_with(self); |
| } |
| } |
| |
| fn visit_region(&mut self, r: ty::Region<'tcx>) { |
| if let ty::ReVar(vid) = r.kind() { |
| let r = self |
| .infcx |
| .inner |
| .borrow_mut() |
| .unwrap_region_constraints() |
| .opportunistic_resolve_var(self.infcx.tcx, vid); |
| if r.is_var() { |
| let Ok(InferOk { value: (), obligations }) = |
| self.infcx.at(&ObligationCause::dummy(), ty::ParamEnv::empty()).eq( |
| // Lifetimes don't contain opaque types (or any types for that matter). |
| DefineOpaqueTypes::Yes, |
| r, |
| ty::Region::new_placeholder( |
| self.infcx.tcx, |
| ty::Placeholder { |
| universe: self.universe, |
| bound: ty::BoundRegion { |
| var: self.next_var(), |
| kind: ty::BoundRegionKind::Anon, |
| }, |
| }, |
| ), |
| ) |
| else { |
| bug!("we always expect to be able to plug an infer var with placeholder") |
| }; |
| assert_eq!(obligations.len(), 0); |
| } |
| } |
| } |
| } |
| |
| value.visit_with(&mut PlugInferWithPlaceholder { infcx, universe, var: ty::BoundVar::ZERO }); |
| } |
| |
| fn try_prove_negated_where_clause<'tcx>( |
| root_infcx: &InferCtxt<'tcx>, |
| clause: ty::Clause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> bool { |
| let Some(negative_predicate) = clause.as_predicate().flip_polarity(root_infcx.tcx) else { |
| return false; |
| }; |
| |
| // N.B. We don't need to use intercrate mode here because we're trying to prove |
| // the *existence* of a negative goal, not the non-existence of a positive goal. |
| // Without this, we over-eagerly register coherence ambiguity candidates when |
| // impl candidates do exist. |
| // FIXME(#132279): `TypingMode::non_body_analysis` is a bit questionable here as it |
| // would cause us to reveal opaque types to leak their auto traits. |
| let ref infcx = root_infcx.fork_with_typing_mode(TypingMode::non_body_analysis()); |
| let ocx = ObligationCtxt::new(infcx); |
| ocx.register_obligation(Obligation::new( |
| infcx.tcx, |
| ObligationCause::dummy(), |
| param_env, |
| negative_predicate, |
| )); |
| if !ocx.select_all_or_error().is_empty() { |
| return false; |
| } |
| |
| // FIXME: We could use the assumed_wf_types from both impls, I think, |
| // if that wasn't implemented just for LocalDefId, and we'd need to do |
| // the normalization ourselves since this is totally fallible... |
| let errors = ocx.resolve_regions(CRATE_DEF_ID, param_env, []); |
| if !errors.is_empty() { |
| return false; |
| } |
| |
| true |
| } |
| |
| /// Compute the `intercrate_ambiguity_causes` for the new solver using |
| /// "proof trees". |
| /// |
| /// This is a bit scuffed but seems to be good enough, at least |
| /// when looking at UI tests. Given that it is only used to improve |
| /// diagnostics this is good enough. We can always improve it once there |
| /// are test cases where it is currently not enough. |
| fn compute_intercrate_ambiguity_causes<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| obligations: &[PredicateObligation<'tcx>], |
| ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> { |
| let mut causes: FxIndexSet<IntercrateAmbiguityCause<'tcx>> = Default::default(); |
| |
| for obligation in obligations { |
| search_ambiguity_causes(infcx, obligation.as_goal(), &mut causes); |
| } |
| |
| causes |
| } |
| |
| struct AmbiguityCausesVisitor<'a, 'tcx> { |
| cache: FxHashSet<Goal<'tcx, ty::Predicate<'tcx>>>, |
| causes: &'a mut FxIndexSet<IntercrateAmbiguityCause<'tcx>>, |
| } |
| |
| impl<'a, 'tcx> ProofTreeVisitor<'tcx> for AmbiguityCausesVisitor<'a, 'tcx> { |
| fn span(&self) -> Span { |
| DUMMY_SP |
| } |
| |
| fn visit_goal(&mut self, goal: &InspectGoal<'_, 'tcx>) { |
| if !self.cache.insert(goal.goal()) { |
| return; |
| } |
| |
| let infcx = goal.infcx(); |
| for cand in goal.candidates() { |
| cand.visit_nested_in_probe(self); |
| } |
| // When searching for intercrate ambiguity causes, we only need to look |
| // at ambiguous goals, as for others the coherence unknowable candidate |
| // was irrelevant. |
| match goal.result() { |
| Ok(Certainty::Yes) | Err(NoSolution) => return, |
| Ok(Certainty::Maybe(_)) => {} |
| } |
| |
| // For bound predicates we simply call `infcx.enter_forall` |
| // and then prove the resulting predicate as a nested goal. |
| let Goal { param_env, predicate } = goal.goal(); |
| let trait_ref = match predicate.kind().no_bound_vars() { |
| Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(tr))) => tr.trait_ref, |
| Some(ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj))) |
| if matches!( |
| infcx.tcx.def_kind(proj.projection_term.def_id), |
| DefKind::AssocTy | DefKind::AssocConst |
| ) => |
| { |
| proj.projection_term.trait_ref(infcx.tcx) |
| } |
| _ => return, |
| }; |
| |
| if trait_ref.references_error() { |
| return; |
| } |
| |
| let mut candidates = goal.candidates(); |
| for cand in goal.candidates() { |
| if let inspect::ProbeKind::TraitCandidate { |
| source: CandidateSource::Impl(def_id), |
| result: Ok(_), |
| } = cand.kind() |
| && let ty::ImplPolarity::Reservation = infcx.tcx.impl_polarity(def_id) |
| { |
| let message = infcx |
| .tcx |
| .get_attr(def_id, sym::rustc_reservation_impl) |
| .and_then(|a| a.value_str()); |
| if let Some(message) = message { |
| self.causes.insert(IntercrateAmbiguityCause::ReservationImpl { message }); |
| } |
| } |
| } |
| |
| // We also look for unknowable candidates. In case a goal is unknowable, there's |
| // always exactly 1 candidate. |
| let Some(cand) = candidates.pop() else { |
| return; |
| }; |
| |
| let inspect::ProbeKind::TraitCandidate { |
| source: CandidateSource::CoherenceUnknowable, |
| result: Ok(_), |
| } = cand.kind() |
| else { |
| return; |
| }; |
| |
| let lazily_normalize_ty = |mut ty: Ty<'tcx>| { |
| if matches!(ty.kind(), ty::Alias(..)) { |
| let ocx = ObligationCtxt::new(infcx); |
| ty = ocx |
| .structurally_normalize_ty(&ObligationCause::dummy(), param_env, ty) |
| .map_err(|_| ())?; |
| if !ocx.select_where_possible().is_empty() { |
| return Err(()); |
| } |
| } |
| Ok(ty) |
| }; |
| |
| infcx.probe(|_| { |
| let conflict = match trait_ref_is_knowable(infcx, trait_ref, lazily_normalize_ty) { |
| Err(()) => return, |
| Ok(Ok(())) => { |
| warn!("expected an unknowable trait ref: {trait_ref:?}"); |
| return; |
| } |
| Ok(Err(conflict)) => conflict, |
| }; |
| |
| // It is only relevant that a goal is unknowable if it would have otherwise |
| // failed. |
| // FIXME(#132279): Forking with `TypingMode::non_body_analysis` is a bit questionable |
| // as it would allow us to reveal opaque types, potentially causing unexpected |
| // cycles. |
| let non_intercrate_infcx = infcx.fork_with_typing_mode(TypingMode::non_body_analysis()); |
| if non_intercrate_infcx.predicate_may_hold(&Obligation::new( |
| infcx.tcx, |
| ObligationCause::dummy(), |
| param_env, |
| predicate, |
| )) { |
| return; |
| } |
| |
| // Normalize the trait ref for diagnostics, ignoring any errors if this fails. |
| let trait_ref = deeply_normalize_for_diagnostics(infcx, param_env, trait_ref); |
| let self_ty = trait_ref.self_ty(); |
| let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty); |
| self.causes.insert(match conflict { |
| Conflict::Upstream => { |
| IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } |
| } |
| Conflict::Downstream => { |
| IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } |
| } |
| }); |
| }); |
| } |
| } |
| |
| fn search_ambiguity_causes<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| goal: Goal<'tcx, ty::Predicate<'tcx>>, |
| causes: &mut FxIndexSet<IntercrateAmbiguityCause<'tcx>>, |
| ) { |
| infcx.probe(|_| { |
| infcx.visit_proof_tree( |
| goal, |
| &mut AmbiguityCausesVisitor { cache: Default::default(), causes }, |
| ) |
| }); |
| } |