blob: 3f628d806620318c568df62e4a898e9020e3fc12 [file] [log] [blame]
use std::marker::PhantomData;
use std::mem;
use std::ops::ControlFlow;
use rustc_data_structures::thinvec::ExtractIf;
use rustc_hir::def_id::LocalDefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::{
FromSolverError, PredicateObligation, PredicateObligations, TraitEngine,
};
use rustc_middle::ty::{
self, DelayedSet, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor,
TypingMode,
};
use rustc_next_trait_solver::delegate::SolverDelegate as _;
use rustc_next_trait_solver::solve::{
GoalEvaluation, GoalStalledOn, HasChanged, SolverDelegateEvalExt as _,
};
use rustc_span::Span;
use thin_vec::ThinVec;
use tracing::instrument;
use self::derive_errors::*;
use super::Certainty;
use super::delegate::SolverDelegate;
use super::inspect::{self, ProofTreeInferCtxtExt};
use crate::traits::{FulfillmentError, ScrubbedTraitError};
mod derive_errors;
// FIXME: Do we need to use a `ThinVec` here?
type PendingObligations<'tcx> =
ThinVec<(PredicateObligation<'tcx>, Option<GoalStalledOn<TyCtxt<'tcx>>>)>;
/// A trait engine using the new trait solver.
///
/// This is mostly identical to how `evaluate_all` works inside of the
/// solver, except that the requirements are slightly different.
///
/// Unlike `evaluate_all` it is possible to add new obligations later on
/// and we also have to track diagnostics information by using `Obligation`
/// instead of `Goal`.
///
/// It is also likely that we want to use slightly different datastructures
/// here as this will have to deal with far more root goals than `evaluate_all`.
pub struct FulfillmentCtxt<'tcx, E: 'tcx> {
obligations: ObligationStorage<'tcx>,
/// The snapshot in which this context was created. Using the context
/// outside of this snapshot leads to subtle bugs if the snapshot
/// gets rolled back. Because of this we explicitly check that we only
/// use the context in exactly this snapshot.
usable_in_snapshot: usize,
_errors: PhantomData<E>,
}
#[derive(Default, Debug)]
struct ObligationStorage<'tcx> {
/// Obligations which resulted in an overflow in fulfillment itself.
///
/// We cannot eagerly return these as error so we instead store them here
/// to avoid recomputing them each time `select_where_possible` is called.
/// This also allows us to return the correct `FulfillmentError` for them.
overflowed: Vec<PredicateObligation<'tcx>>,
pending: PendingObligations<'tcx>,
}
impl<'tcx> ObligationStorage<'tcx> {
fn register(
&mut self,
obligation: PredicateObligation<'tcx>,
stalled_on: Option<GoalStalledOn<TyCtxt<'tcx>>>,
) {
self.pending.push((obligation, stalled_on));
}
fn has_pending_obligations(&self) -> bool {
!self.pending.is_empty() || !self.overflowed.is_empty()
}
fn clone_pending(&self) -> PredicateObligations<'tcx> {
let mut obligations: PredicateObligations<'tcx> =
self.pending.iter().map(|(o, _)| o.clone()).collect();
obligations.extend(self.overflowed.iter().cloned());
obligations
}
fn drain_pending(
&mut self,
cond: impl Fn(&PredicateObligation<'tcx>) -> bool,
) -> PendingObligations<'tcx> {
let (unstalled, pending) =
mem::take(&mut self.pending).into_iter().partition(|(o, _)| cond(o));
self.pending = pending;
unstalled
}
fn on_fulfillment_overflow(&mut self, infcx: &InferCtxt<'tcx>) {
infcx.probe(|_| {
// IMPORTANT: we must not use solve any inference variables in the obligations
// as this is all happening inside of a probe. We use a probe to make sure
// we get all obligations involved in the overflow. We pretty much check: if
// we were to do another step of `select_where_possible`, which goals would
// change.
// FIXME: <https://github.com/Gankra/thin-vec/pull/66> is merged, this can be removed.
self.overflowed.extend(
ExtractIf::new(&mut self.pending, |(o, stalled_on)| {
let goal = o.as_goal();
let result = <&SolverDelegate<'tcx>>::from(infcx).evaluate_root_goal(
goal,
o.cause.span,
stalled_on.take(),
);
matches!(result, Ok(GoalEvaluation { has_changed: HasChanged::Yes, .. }))
})
.map(|(o, _)| o),
);
})
}
}
impl<'tcx, E: 'tcx> FulfillmentCtxt<'tcx, E> {
pub fn new(infcx: &InferCtxt<'tcx>) -> FulfillmentCtxt<'tcx, E> {
assert!(
infcx.next_trait_solver(),
"new trait solver fulfillment context created when \
infcx is set up for old trait solver"
);
FulfillmentCtxt {
obligations: Default::default(),
usable_in_snapshot: infcx.num_open_snapshots(),
_errors: PhantomData,
}
}
fn inspect_evaluated_obligation(
&self,
infcx: &InferCtxt<'tcx>,
obligation: &PredicateObligation<'tcx>,
result: &Result<GoalEvaluation<TyCtxt<'tcx>>, NoSolution>,
) {
if let Some(inspector) = infcx.obligation_inspector.get() {
let result = match result {
Ok(GoalEvaluation { certainty, .. }) => Ok(*certainty),
Err(NoSolution) => Err(NoSolution),
};
(inspector)(infcx, &obligation, result);
}
}
}
impl<'tcx, E> TraitEngine<'tcx, E> for FulfillmentCtxt<'tcx, E>
where
E: FromSolverError<'tcx, NextSolverError<'tcx>>,
{
#[instrument(level = "trace", skip(self, infcx))]
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'tcx>,
obligation: PredicateObligation<'tcx>,
) {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
self.obligations.register(obligation, None);
}
fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
self.obligations
.pending
.drain(..)
.map(|(obligation, _)| NextSolverError::Ambiguity(obligation))
.chain(
self.obligations
.overflowed
.drain(..)
.map(|obligation| NextSolverError::Overflow(obligation)),
)
.map(|e| E::from_solver_error(infcx, e))
.collect()
}
fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
let mut errors = Vec::new();
loop {
let mut any_changed = false;
for (mut obligation, stalled_on) in self.obligations.drain_pending(|_| true) {
if !infcx.tcx.recursion_limit().value_within_limit(obligation.recursion_depth) {
self.obligations.on_fulfillment_overflow(infcx);
// Only return true errors that we have accumulated while processing.
return errors;
}
let goal = obligation.as_goal();
let delegate = <&SolverDelegate<'tcx>>::from(infcx);
if let Some(certainty) =
delegate.compute_goal_fast_path(goal, obligation.cause.span)
{
match certainty {
// This fast path doesn't depend on region identity so it doesn't
// matter if the goal contains inference variables or not, so we
// don't need to call `push_hir_typeck_potentially_region_dependent_goal`
// here.
//
// Only goals proven via the trait solver should be region dependent.
Certainty::Yes => {}
Certainty::Maybe(_) => {
self.obligations.register(obligation, None);
}
}
continue;
}
let result = delegate.evaluate_root_goal(goal, obligation.cause.span, stalled_on);
self.inspect_evaluated_obligation(infcx, &obligation, &result);
let GoalEvaluation { goal, certainty, has_changed, stalled_on } = match result {
Ok(result) => result,
Err(NoSolution) => {
errors.push(E::from_solver_error(
infcx,
NextSolverError::TrueError(obligation),
));
continue;
}
};
// We've resolved the goal in `evaluate_root_goal`, avoid redoing this work
// in the next iteration. This does not resolve the inference variables
// constrained by evaluating the goal.
obligation.predicate = goal.predicate;
if has_changed == HasChanged::Yes {
// We increment the recursion depth here to track the number of times
// this goal has resulted in inference progress. This doesn't precisely
// model the way that we track recursion depth in the old solver due
// to the fact that we only process root obligations, but it is a good
// approximation and should only result in fulfillment overflow in
// pathological cases.
obligation.recursion_depth += 1;
any_changed = true;
}
match certainty {
Certainty::Yes => {
// Goals may depend on structural identity. Region uniquification at the
// start of MIR borrowck may cause things to no longer be so, potentially
// causing an ICE.
//
// While we uniquify root goals in HIR this does not handle cases where
// regions are hidden inside of a type or const inference variable.
//
// FIXME(-Znext-solver): This does not handle inference variables hidden
// inside of an opaque type, e.g. if there's `Opaque = (?x, ?x)` in the
// storage, we can also rely on structural identity of `?x` even if we
// later uniquify it in MIR borrowck.
if infcx.in_hir_typeck && obligation.has_non_region_infer() {
infcx.push_hir_typeck_potentially_region_dependent_goal(obligation);
}
}
Certainty::Maybe(_) => self.obligations.register(obligation, stalled_on),
}
}
if !any_changed {
break;
}
}
errors
}
fn has_pending_obligations(&self) -> bool {
self.obligations.has_pending_obligations()
}
fn pending_obligations(&self) -> PredicateObligations<'tcx> {
self.obligations.clone_pending()
}
fn drain_stalled_obligations_for_coroutines(
&mut self,
infcx: &InferCtxt<'tcx>,
) -> PredicateObligations<'tcx> {
let stalled_coroutines = match infcx.typing_mode() {
TypingMode::Analysis { defining_opaque_types_and_generators } => {
defining_opaque_types_and_generators
}
TypingMode::Coherence
| TypingMode::Borrowck { defining_opaque_types: _ }
| TypingMode::PostBorrowckAnalysis { defined_opaque_types: _ }
| TypingMode::PostAnalysis => return Default::default(),
};
if stalled_coroutines.is_empty() {
return Default::default();
}
self.obligations
.drain_pending(|obl| {
infcx.probe(|_| {
infcx
.visit_proof_tree(
obl.as_goal(),
&mut StalledOnCoroutines {
stalled_coroutines,
span: obl.cause.span,
cache: Default::default(),
},
)
.is_break()
})
})
.into_iter()
.map(|(o, _)| o)
.collect()
}
}
/// Detect if a goal is stalled on a coroutine that is owned by the current typeck root.
///
/// This function can (erroneously) fail to detect a predicate, i.e. it doesn't need to
/// be complete. However, this will lead to ambiguity errors, so we want to make it
/// accurate.
///
/// This function can be also return false positives, which will lead to poor diagnostics
/// so we want to keep this visitor *precise* too.
pub struct StalledOnCoroutines<'tcx> {
pub stalled_coroutines: &'tcx ty::List<LocalDefId>,
pub span: Span,
pub cache: DelayedSet<Ty<'tcx>>,
}
impl<'tcx> inspect::ProofTreeVisitor<'tcx> for StalledOnCoroutines<'tcx> {
type Result = ControlFlow<()>;
fn span(&self) -> rustc_span::Span {
self.span
}
fn visit_goal(&mut self, inspect_goal: &super::inspect::InspectGoal<'_, 'tcx>) -> Self::Result {
inspect_goal.goal().predicate.visit_with(self)?;
if let Some(candidate) = inspect_goal.unique_applicable_candidate() {
candidate.visit_nested_no_probe(self)
} else {
ControlFlow::Continue(())
}
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for StalledOnCoroutines<'tcx> {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
if !self.cache.insert(ty) {
return ControlFlow::Continue(());
}
if let ty::Coroutine(def_id, _) = *ty.kind()
&& def_id.as_local().is_some_and(|def_id| self.stalled_coroutines.contains(&def_id))
{
ControlFlow::Break(())
} else if ty.has_coroutines() {
ty.super_visit_with(self)
} else {
ControlFlow::Continue(())
}
}
}
pub enum NextSolverError<'tcx> {
TrueError(PredicateObligation<'tcx>),
Ambiguity(PredicateObligation<'tcx>),
Overflow(PredicateObligation<'tcx>),
}
impl<'tcx> FromSolverError<'tcx, NextSolverError<'tcx>> for FulfillmentError<'tcx> {
fn from_solver_error(infcx: &InferCtxt<'tcx>, error: NextSolverError<'tcx>) -> Self {
match error {
NextSolverError::TrueError(obligation) => {
fulfillment_error_for_no_solution(infcx, obligation)
}
NextSolverError::Ambiguity(obligation) => {
fulfillment_error_for_stalled(infcx, obligation)
}
NextSolverError::Overflow(obligation) => {
fulfillment_error_for_overflow(infcx, obligation)
}
}
}
}
impl<'tcx> FromSolverError<'tcx, NextSolverError<'tcx>> for ScrubbedTraitError<'tcx> {
fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: NextSolverError<'tcx>) -> Self {
match error {
NextSolverError::TrueError(_) => ScrubbedTraitError::TrueError,
NextSolverError::Ambiguity(_) | NextSolverError::Overflow(_) => {
ScrubbedTraitError::Ambiguity
}
}
}
}