blob: 53899da183a3ab3bc319b5f335e73d6e0af6ce10 [file] [log] [blame]
use std::collections::VecDeque;
use std::ffi::{CStr, CString};
use std::fmt::Write;
use std::path::Path;
use std::sync::Once;
use std::{ptr, slice, str};
use libc::c_int;
use rustc_codegen_ssa::base::wants_wasm_eh;
use rustc_codegen_ssa::target_features::cfg_target_feature;
use rustc_codegen_ssa::{TargetConfig, target_features};
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_fs_util::path_to_c_string;
use rustc_middle::bug;
use rustc_session::Session;
use rustc_session::config::{PrintKind, PrintRequest};
use rustc_target::spec::{MergeFunctions, PanicStrategy, SmallDataThresholdSupport};
use smallvec::{SmallVec, smallvec};
use crate::back::write::create_informational_target_machine;
use crate::{errors, llvm};
static INIT: Once = Once::new();
pub(crate) fn init(sess: &Session) {
unsafe {
// Before we touch LLVM, make sure that multithreading is enabled.
if llvm::LLVMIsMultithreaded() != 1 {
bug!("LLVM compiled without support for threads");
}
INIT.call_once(|| {
configure_llvm(sess);
});
}
}
fn require_inited() {
if !INIT.is_completed() {
bug!("LLVM is not initialized");
}
}
unsafe fn configure_llvm(sess: &Session) {
let n_args = sess.opts.cg.llvm_args.len() + sess.target.llvm_args.len();
let mut llvm_c_strs = Vec::with_capacity(n_args + 1);
let mut llvm_args = Vec::with_capacity(n_args + 1);
unsafe {
llvm::LLVMRustInstallErrorHandlers();
}
// On Windows, an LLVM assertion will open an Abort/Retry/Ignore dialog
// box for the purpose of launching a debugger. However, on CI this will
// cause it to hang until it times out, which can take several hours.
if std::env::var_os("CI").is_some() {
unsafe {
llvm::LLVMRustDisableSystemDialogsOnCrash();
}
}
fn llvm_arg_to_arg_name(full_arg: &str) -> &str {
full_arg.trim().split(|c: char| c == '=' || c.is_whitespace()).next().unwrap_or("")
}
let cg_opts = sess.opts.cg.llvm_args.iter().map(AsRef::as_ref);
let tg_opts = sess.target.llvm_args.iter().map(AsRef::as_ref);
let sess_args = cg_opts.chain(tg_opts);
let user_specified_args: FxHashSet<_> =
sess_args.clone().map(|s| llvm_arg_to_arg_name(s)).filter(|s| !s.is_empty()).collect();
{
// This adds the given argument to LLVM. Unless `force` is true
// user specified arguments are *not* overridden.
let mut add = |arg: &str, force: bool| {
if force || !user_specified_args.contains(llvm_arg_to_arg_name(arg)) {
let s = CString::new(arg).unwrap();
llvm_args.push(s.as_ptr());
llvm_c_strs.push(s);
}
};
// Set the llvm "program name" to make usage and invalid argument messages more clear.
add("rustc -Cllvm-args=\"...\" with", true);
if sess.opts.unstable_opts.time_llvm_passes {
add("-time-passes", false);
}
if sess.opts.unstable_opts.print_llvm_passes {
add("-debug-pass=Structure", false);
}
if sess.target.generate_arange_section
&& !sess.opts.unstable_opts.no_generate_arange_section
{
add("-generate-arange-section", false);
}
match sess.opts.unstable_opts.merge_functions.unwrap_or(sess.target.merge_functions) {
MergeFunctions::Disabled | MergeFunctions::Trampolines => {}
MergeFunctions::Aliases => {
add("-mergefunc-use-aliases", false);
}
}
if wants_wasm_eh(sess) {
add("-wasm-enable-eh", false);
}
if sess.target.os == "emscripten"
&& !sess.opts.unstable_opts.emscripten_wasm_eh
&& sess.panic_strategy() == PanicStrategy::Unwind
{
add("-enable-emscripten-cxx-exceptions", false);
}
// HACK(eddyb) LLVM inserts `llvm.assume` calls to preserve align attributes
// during inlining. Unfortunately these may block other optimizations.
add("-preserve-alignment-assumptions-during-inlining=false", false);
// Use non-zero `import-instr-limit` multiplier for cold callsites.
add("-import-cold-multiplier=0.1", false);
if sess.print_llvm_stats() {
add("-stats", false);
}
for arg in sess_args {
add(&(*arg), true);
}
match (
sess.opts.unstable_opts.small_data_threshold,
sess.target.small_data_threshold_support(),
) {
// Set up the small-data optimization limit for architectures that use
// an LLVM argument to control this.
(Some(threshold), SmallDataThresholdSupport::LlvmArg(arg)) => {
add(&format!("--{arg}={threshold}"), false)
}
_ => (),
};
}
if sess.opts.unstable_opts.llvm_time_trace {
unsafe { llvm::LLVMRustTimeTraceProfilerInitialize() };
}
rustc_llvm::initialize_available_targets();
unsafe { llvm::LLVMRustSetLLVMOptions(llvm_args.len() as c_int, llvm_args.as_ptr()) };
}
pub(crate) fn time_trace_profiler_finish(file_name: &Path) {
unsafe {
let file_name = path_to_c_string(file_name);
llvm::LLVMRustTimeTraceProfilerFinish(file_name.as_ptr());
}
}
enum TargetFeatureFoldStrength<'a> {
// The feature is only tied when enabling the feature, disabling
// this feature shouldn't disable the tied feature.
EnableOnly(&'a str),
// The feature is tied for both enabling and disabling this feature.
Both(&'a str),
}
impl<'a> TargetFeatureFoldStrength<'a> {
fn as_str(&self) -> &'a str {
match self {
TargetFeatureFoldStrength::EnableOnly(feat) => feat,
TargetFeatureFoldStrength::Both(feat) => feat,
}
}
}
pub(crate) struct LLVMFeature<'a> {
llvm_feature_name: &'a str,
dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
}
impl<'a> LLVMFeature<'a> {
fn new(llvm_feature_name: &'a str) -> Self {
Self { llvm_feature_name, dependencies: SmallVec::new() }
}
fn with_dependencies(
llvm_feature_name: &'a str,
dependencies: SmallVec<[TargetFeatureFoldStrength<'a>; 1]>,
) -> Self {
Self { llvm_feature_name, dependencies }
}
}
impl<'a> IntoIterator for LLVMFeature<'a> {
type Item = &'a str;
type IntoIter = impl Iterator<Item = &'a str>;
fn into_iter(self) -> Self::IntoIter {
let dependencies = self.dependencies.into_iter().map(|feat| feat.as_str());
std::iter::once(self.llvm_feature_name).chain(dependencies)
}
}
/// Convert a Rust feature name to an LLVM feature name. Returning `None` means the
/// feature should be skipped, usually because it is not supported by the current
/// LLVM version.
///
/// WARNING: the features after applying `to_llvm_features` must be known
/// to LLVM or the feature detection code will walk past the end of the feature
/// array, leading to crashes.
///
/// To find a list of LLVM's names, see llvm-project/llvm/lib/Target/{ARCH}/*.td
/// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
///
/// Check the current rustc fork of LLVM in the repo at
/// <https://github.com/rust-lang/llvm-project/>. The commit in use can be found via the
/// `llvm-project` submodule in <https://github.com/rust-lang/rust/tree/master/src> Though note that
/// Rust can also be build with an external precompiled version of LLVM which might lead to failures
/// if the oldest tested / supported LLVM version doesn't yet support the relevant intrinsics.
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
let arch = if sess.target.arch == "x86_64" {
"x86"
} else if sess.target.arch == "arm64ec" {
"aarch64"
} else if sess.target.arch == "sparc64" {
"sparc"
} else if sess.target.arch == "powerpc64" {
"powerpc"
} else {
&*sess.target.arch
};
match (arch, s) {
("x86", "sse4.2") => Some(LLVMFeature::with_dependencies(
"sse4.2",
smallvec![TargetFeatureFoldStrength::EnableOnly("crc32")],
)),
("x86", "pclmulqdq") => Some(LLVMFeature::new("pclmul")),
("x86", "rdrand") => Some(LLVMFeature::new("rdrnd")),
("x86", "bmi1") => Some(LLVMFeature::new("bmi")),
("x86", "cmpxchg16b") => Some(LLVMFeature::new("cx16")),
("x86", "lahfsahf") => Some(LLVMFeature::new("sahf")),
("aarch64", "rcpc2") => Some(LLVMFeature::new("rcpc-immo")),
("aarch64", "dpb") => Some(LLVMFeature::new("ccpp")),
("aarch64", "dpb2") => Some(LLVMFeature::new("ccdp")),
("aarch64", "frintts") => Some(LLVMFeature::new("fptoint")),
("aarch64", "fcma") => Some(LLVMFeature::new("complxnum")),
("aarch64", "pmuv3") => Some(LLVMFeature::new("perfmon")),
("aarch64", "paca") => Some(LLVMFeature::new("pauth")),
("aarch64", "pacg") => Some(LLVMFeature::new("pauth")),
// Before LLVM 20 those two features were packaged together as b16b16
("aarch64", "sve-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
("aarch64", "sme-b16b16") if get_version().0 < 20 => Some(LLVMFeature::new("b16b16")),
("aarch64", "flagm2") => Some(LLVMFeature::new("altnzcv")),
// Rust ties fp and neon together.
("aarch64", "neon") => Some(LLVMFeature::with_dependencies(
"neon",
smallvec![TargetFeatureFoldStrength::Both("fp-armv8")],
)),
// In LLVM neon implicitly enables fp, but we manually enable
// neon when a feature only implicitly enables fp
("aarch64", "fhm") => Some(LLVMFeature::new("fp16fml")),
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
// Filter out features that are not supported by the current LLVM version
("aarch64", "fpmr") => None, // only existed in 18
("arm", "fp16") => Some(LLVMFeature::new("fullfp16")),
// Filter out features that are not supported by the current LLVM version
("loongarch64", "div32" | "lam-bh" | "lamcas" | "ld-seq-sa" | "scq")
if get_version().0 < 20 =>
{
None
}
// Filter out features that are not supported by the current LLVM version
("riscv32" | "riscv64", "zacas") if get_version().0 < 20 => None,
(
"s390x",
"message-security-assist-extension12"
| "concurrent-functions"
| "miscellaneous-extensions-4"
| "vector-enhancements-3"
| "vector-packed-decimal-enhancement-3",
) if get_version().0 < 20 => None,
// Enable the evex512 target feature if an avx512 target feature is enabled.
("x86", s) if s.starts_with("avx512") => Some(LLVMFeature::with_dependencies(
s,
smallvec![TargetFeatureFoldStrength::EnableOnly("evex512")],
)),
// Support for `wide-arithmetic` will first land in LLVM 20 as part of
// llvm/llvm-project#111598
("wasm32" | "wasm64", "wide-arithmetic") if get_version() < (20, 0, 0) => None,
("sparc", "leoncasa") => Some(LLVMFeature::new("hasleoncasa")),
// In LLVM 19, there is no `v8plus` feature and `v9` means "SPARC-V9 instruction available and SPARC-V8+ ABI used".
// https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L27-L28
// Before LLVM 19, there was no `v8plus` feature and `v9` means "SPARC-V9 instruction available".
// https://github.com/llvm/llvm-project/blob/llvmorg-18.1.0/llvm/lib/Target/Sparc/MCTargetDesc/SparcELFObjectWriter.cpp#L26
("sparc", "v8plus") if get_version().0 == 19 => Some(LLVMFeature::new("v9")),
("powerpc", "power8-crypto") => Some(LLVMFeature::new("crypto")),
// These new `amx` variants and `movrs` were introduced in LLVM20
("x86", "amx-avx512" | "amx-fp8" | "amx-movrs" | "amx-tf32" | "amx-transpose")
if get_version().0 < 20 =>
{
None
}
("x86", "movrs") if get_version().0 < 20 => None,
("x86", "avx10.1") => Some(LLVMFeature::new("avx10.1-512")),
("x86", "avx10.2") if get_version().0 < 20 => None,
("x86", "avx10.2") if get_version().0 >= 20 => Some(LLVMFeature::new("avx10.2-512")),
("x86", "apxf") => Some(LLVMFeature::with_dependencies(
"egpr",
smallvec![
TargetFeatureFoldStrength::Both("push2pop2"),
TargetFeatureFoldStrength::Both("ppx"),
TargetFeatureFoldStrength::Both("ndd"),
TargetFeatureFoldStrength::Both("ccmp"),
TargetFeatureFoldStrength::Both("cf"),
TargetFeatureFoldStrength::Both("nf"),
TargetFeatureFoldStrength::Both("zu"),
],
)),
(_, s) => Some(LLVMFeature::new(s)),
}
}
/// Used to generate cfg variables and apply features.
/// Must express features in the way Rust understands them.
///
/// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled outside codegen.
pub(crate) fn target_config(sess: &Session) -> TargetConfig {
// Add base features for the target.
// We do *not* add the -Ctarget-features there, and instead duplicate the logic for that below.
// The reason is that if LLVM considers a feature implied but we do not, we don't want that to
// show up in `cfg`. That way, `cfg` is entirely under our control -- except for the handling of
// the target CPU, that is still expanded to target features (with all their implied features)
// by LLVM.
let target_machine = create_informational_target_machine(sess, true);
let (unstable_target_features, target_features) = cfg_target_feature(sess, |feature| {
if let Some(feat) = to_llvm_features(sess, feature) {
// All the LLVM features this expands to must be enabled.
for llvm_feature in feat {
let cstr = SmallCStr::new(llvm_feature);
// `LLVMRustHasFeature` is moderately expensive. On targets with many
// features (e.g. x86) these calls take a non-trivial fraction of runtime
// when compiling very small programs.
if !unsafe { llvm::LLVMRustHasFeature(target_machine.raw(), cstr.as_ptr()) } {
return false;
}
}
true
} else {
false
}
});
let mut cfg = TargetConfig {
target_features,
unstable_target_features,
has_reliable_f16: true,
has_reliable_f16_math: true,
has_reliable_f128: true,
has_reliable_f128_math: true,
};
update_target_reliable_float_cfg(sess, &mut cfg);
cfg
}
/// Determine whether or not experimental float types are reliable based on known bugs.
fn update_target_reliable_float_cfg(sess: &Session, cfg: &mut TargetConfig) {
let target_arch = sess.target.arch.as_ref();
let target_os = sess.target.options.os.as_ref();
let target_env = sess.target.options.env.as_ref();
let target_abi = sess.target.options.abi.as_ref();
let target_pointer_width = sess.target.pointer_width;
let version = get_version();
cfg.has_reliable_f16 = match (target_arch, target_os) {
// Selection failure <https://github.com/llvm/llvm-project/issues/50374>
("s390x", _) => false,
// LLVM crash without neon <https://github.com/llvm/llvm-project/issues/129394> (now fixed)
("aarch64", _)
if !cfg.target_features.iter().any(|f| f.as_str() == "neon")
&& version < (20, 1, 1) =>
{
false
}
// Unsupported <https://github.com/llvm/llvm-project/issues/94434>
("arm64ec", _) => false,
// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false,
// Infinite recursion <https://github.com/llvm/llvm-project/issues/97981>
("csky", _) => false,
("hexagon", _) => false,
("powerpc" | "powerpc64", _) => false,
("sparc" | "sparc64", _) => false,
("wasm32" | "wasm64", _) => false,
// `f16` support only requires that symbols converting to and from `f32` are available. We
// provide these in `compiler-builtins`, so `f16` should be available on all platforms that
// do not have other ABI issues or LLVM crashes.
_ => true,
};
cfg.has_reliable_f128 = match (target_arch, target_os) {
// Unsupported <https://github.com/llvm/llvm-project/issues/94434>
("arm64ec", _) => false,
// Selection bug <https://github.com/llvm/llvm-project/issues/96432>
("mips64" | "mips64r6", _) => false,
// Selection bug <https://github.com/llvm/llvm-project/issues/95471>
("nvptx64", _) => false,
// Unsupported https://github.com/llvm/llvm-project/issues/121122
("amdgpu", _) => false,
// ABI bugs <https://github.com/rust-lang/rust/issues/125109> et al. (full
// list at <https://github.com/rust-lang/rust/issues/116909>)
("powerpc" | "powerpc64", _) => false,
// ABI unsupported <https://github.com/llvm/llvm-project/issues/41838>
("sparc", _) => false,
// Stack alignment bug <https://github.com/llvm/llvm-project/issues/77401>. NB: tests may
// not fail if our compiler-builtins is linked.
("x86", _) => false,
// MinGW ABI bugs <https://gcc.gnu.org/bugzilla/show_bug.cgi?id=115054>
("x86_64", "windows") if target_env == "gnu" && target_abi != "llvm" => false,
// There are no known problems on other platforms, so the only requirement is that symbols
// are available. `compiler-builtins` provides all symbols required for core `f128`
// support, so this should work for everything else.
_ => true,
};
// Assume that working `f16` means working `f16` math for most platforms, since
// operations just go through `f32`.
cfg.has_reliable_f16_math = cfg.has_reliable_f16;
cfg.has_reliable_f128_math = match (target_arch, target_os) {
// LLVM lowers `fp128` math to `long double` symbols even on platforms where
// `long double` is not IEEE binary128. See
// <https://github.com/llvm/llvm-project/issues/44744>.
//
// This rules out anything that doesn't have `long double` = `binary128`; <= 32 bits
// (ld is `f64`), anything other than Linux (Windows and MacOS use `f64`), and `x86`
// (ld is 80-bit extended precision).
//
// musl does not implement the symbols required for f128 math at all.
_ if target_env == "musl" => false,
("x86_64", _) => false,
(_, "linux") if target_pointer_width == 64 => true,
_ => false,
} && cfg.has_reliable_f128;
}
pub(crate) fn print_version() {
let (major, minor, patch) = get_version();
println!("LLVM version: {major}.{minor}.{patch}");
}
pub(crate) fn get_version() -> (u32, u32, u32) {
// Can be called without initializing LLVM
unsafe {
(llvm::LLVMRustVersionMajor(), llvm::LLVMRustVersionMinor(), llvm::LLVMRustVersionPatch())
}
}
pub(crate) fn print_passes() {
// Can be called without initializing LLVM
unsafe {
llvm::LLVMRustPrintPasses();
}
}
fn llvm_target_features(tm: &llvm::TargetMachine) -> Vec<(&str, &str)> {
let len = unsafe { llvm::LLVMRustGetTargetFeaturesCount(tm) };
let mut ret = Vec::with_capacity(len);
for i in 0..len {
unsafe {
let mut feature = ptr::null();
let mut desc = ptr::null();
llvm::LLVMRustGetTargetFeature(tm, i, &mut feature, &mut desc);
if feature.is_null() || desc.is_null() {
bug!("LLVM returned a `null` target feature string");
}
let feature = CStr::from_ptr(feature).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
let desc = CStr::from_ptr(desc).to_str().unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 feature string: {}", e);
});
ret.push((feature, desc));
}
}
ret
}
pub(crate) fn print(req: &PrintRequest, out: &mut String, sess: &Session) {
require_inited();
let tm = create_informational_target_machine(sess, false);
match req.kind {
PrintKind::TargetCPUs => print_target_cpus(sess, tm.raw(), out),
PrintKind::TargetFeatures => print_target_features(sess, tm.raw(), out),
_ => bug!("rustc_codegen_llvm can't handle print request: {:?}", req),
}
}
fn print_target_cpus(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
let cpu_names = llvm::build_string(|s| unsafe {
llvm::LLVMRustPrintTargetCPUs(&tm, s);
})
.unwrap();
struct Cpu<'a> {
cpu_name: &'a str,
remark: String,
}
// Compare CPU against current target to label the default.
let target_cpu = handle_native(&sess.target.cpu);
let make_remark = |cpu_name| {
if cpu_name == target_cpu {
// FIXME(#132514): This prints the LLVM target string, which can be
// different from the Rust target string. Is that intended?
let target = &sess.target.llvm_target;
format!(
" - This is the default target CPU for the current build target (currently {target})."
)
} else {
"".to_owned()
}
};
let mut cpus = cpu_names
.lines()
.map(|cpu_name| Cpu { cpu_name, remark: make_remark(cpu_name) })
.collect::<VecDeque<_>>();
// Only print the "native" entry when host and target are the same arch,
// since otherwise it could be wrong or misleading.
if sess.host.arch == sess.target.arch {
let host = get_host_cpu_name();
cpus.push_front(Cpu {
cpu_name: "native",
remark: format!(" - Select the CPU of the current host (currently {host})."),
});
}
let max_name_width = cpus.iter().map(|cpu| cpu.cpu_name.len()).max().unwrap_or(0);
writeln!(out, "Available CPUs for this target:").unwrap();
for Cpu { cpu_name, remark } in cpus {
// Only pad the CPU name if there's a remark to print after it.
let width = if remark.is_empty() { 0 } else { max_name_width };
writeln!(out, " {cpu_name:<width$}{remark}").unwrap();
}
}
fn print_target_features(sess: &Session, tm: &llvm::TargetMachine, out: &mut String) {
let mut llvm_target_features = llvm_target_features(tm);
let mut known_llvm_target_features = FxHashSet::<&'static str>::default();
let mut rustc_target_features = sess
.target
.rust_target_features()
.iter()
.filter_map(|(feature, gate, _implied)| {
if !gate.in_cfg() {
// Only list (experimentally) supported features.
return None;
}
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
// strings.
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
let desc =
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
Some(index) => {
known_llvm_target_features.insert(llvm_feature);
llvm_target_features[index].1
}
None => "",
};
Some((*feature, desc))
})
.collect::<Vec<_>>();
// Since we add this at the end ...
rustc_target_features.extend_from_slice(&[(
"crt-static",
"Enables C Run-time Libraries to be statically linked",
)]);
// ... we need to sort the list again.
rustc_target_features.sort();
llvm_target_features.retain(|(f, _d)| !known_llvm_target_features.contains(f));
let max_feature_len = llvm_target_features
.iter()
.chain(rustc_target_features.iter())
.map(|(feature, _desc)| feature.len())
.max()
.unwrap_or(0);
writeln!(out, "Features supported by rustc for this target:").unwrap();
for (feature, desc) in &rustc_target_features {
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
}
writeln!(out, "\nCode-generation features supported by LLVM for this target:").unwrap();
for (feature, desc) in &llvm_target_features {
writeln!(out, " {feature:max_feature_len$} - {desc}.").unwrap();
}
if llvm_target_features.is_empty() {
writeln!(out, " Target features listing is not supported by this LLVM version.")
.unwrap();
}
writeln!(out, "\nUse +feature to enable a feature, or -feature to disable it.").unwrap();
writeln!(out, "For example, rustc -C target-cpu=mycpu -C target-feature=+feature1,-feature2\n")
.unwrap();
writeln!(out, "Code-generation features cannot be used in cfg or #[target_feature],").unwrap();
writeln!(out, "and may be renamed or removed in a future version of LLVM or rustc.\n").unwrap();
}
/// Returns the host CPU name, according to LLVM.
fn get_host_cpu_name() -> &'static str {
let mut len = 0;
// SAFETY: The underlying C++ global function returns a `StringRef` that
// isn't tied to any particular backing buffer, so it must be 'static.
let slice: &'static [u8] = unsafe {
let ptr = llvm::LLVMRustGetHostCPUName(&mut len);
assert!(!ptr.is_null());
slice::from_raw_parts(ptr, len)
};
str::from_utf8(slice).expect("host CPU name should be UTF-8")
}
/// If the given string is `"native"`, returns the host CPU name according to
/// LLVM. Otherwise, the string is returned as-is.
fn handle_native(cpu_name: &str) -> &str {
match cpu_name {
"native" => get_host_cpu_name(),
_ => cpu_name,
}
}
pub(crate) fn target_cpu(sess: &Session) -> &str {
let cpu_name = sess.opts.cg.target_cpu.as_deref().unwrap_or_else(|| &sess.target.cpu);
handle_native(cpu_name)
}
/// The target features for compiler flags other than `-Ctarget-features`.
fn llvm_features_by_flags(sess: &Session, features: &mut Vec<String>) {
target_features::retpoline_features_by_flags(sess, features);
// -Zfixed-x18
if sess.opts.unstable_opts.fixed_x18 {
if sess.target.arch != "aarch64" {
sess.dcx().emit_fatal(errors::FixedX18InvalidArch { arch: &sess.target.arch });
} else {
features.push("+reserve-x18".into());
}
}
}
/// The list of LLVM features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`,
/// `--target` and similar).
pub(crate) fn global_llvm_features(
sess: &Session,
diagnostics: bool,
only_base_features: bool,
) -> Vec<String> {
// Features that come earlier are overridden by conflicting features later in the string.
// Typically we'll want more explicit settings to override the implicit ones, so:
//
// * Features from -Ctarget-cpu=*; are overridden by [^1]
// * Features implied by --target; are overridden by
// * Features from -Ctarget-feature; are overridden by
// * function specific features.
//
// [^1]: target-cpu=native is handled here, other target-cpu values are handled implicitly
// through LLVM TargetMachine implementation.
//
// FIXME(nagisa): it isn't clear what's the best interaction between features implied by
// `-Ctarget-cpu` and `--target` are. On one hand, you'd expect CLI arguments to always
// override anything that's implicit, so e.g. when there's no `--target` flag, features implied
// the host target are overridden by `-Ctarget-cpu=*`. On the other hand, what about when both
// `--target` and `-Ctarget-cpu=*` are specified? Both then imply some target features and both
// flags are specified by the user on the CLI. It isn't as clear-cut which order of precedence
// should be taken in cases like these.
let mut features = vec![];
// -Ctarget-cpu=native
match sess.opts.cg.target_cpu {
Some(ref s) if s == "native" => {
// We have already figured out the actual CPU name with `LLVMRustGetHostCPUName` and set
// that for LLVM, so the features implied by that CPU name will be available everywhere.
// However, that is not sufficient: e.g. `skylake` alone is not sufficient to tell if
// some of the instructions are available or not. So we have to also explicitly ask for
// the exact set of features available on the host, and enable all of them.
let features_string = unsafe {
let ptr = llvm::LLVMGetHostCPUFeatures();
let features_string = if !ptr.is_null() {
CStr::from_ptr(ptr)
.to_str()
.unwrap_or_else(|e| {
bug!("LLVM returned a non-utf8 features string: {}", e);
})
.to_owned()
} else {
bug!("could not allocate host CPU features, LLVM returned a `null` string");
};
llvm::LLVMDisposeMessage(ptr);
features_string
};
features.extend(features_string.split(',').map(String::from));
}
Some(_) | None => {}
};
// Features implied by an implicit or explicit `--target`.
features.extend(
sess.target
.features
.split(',')
.filter(|v| !v.is_empty())
// Drop +v8plus feature introduced in LLVM 20.
// (Hard-coded target features do not go through `to_llvm_feature` since they already
// are LLVM feature names, hence we need a special case here.)
.filter(|v| *v != "+v8plus" || get_version() >= (20, 0, 0))
.map(String::from),
);
if wants_wasm_eh(sess) && sess.panic_strategy() == PanicStrategy::Unwind {
features.push("+exception-handling".into());
}
// -Ctarget-features
if !only_base_features {
target_features::flag_to_backend_features(
sess,
diagnostics,
|feature| {
to_llvm_features(sess, feature)
.map(|f| SmallVec::<[&str; 2]>::from_iter(f.into_iter()))
.unwrap_or_default()
},
|feature, enable| {
let enable_disable = if enable { '+' } else { '-' };
// We run through `to_llvm_features` when
// passing requests down to LLVM. This means that all in-language
// features also work on the command line instead of having two
// different names when the LLVM name and the Rust name differ.
let Some(llvm_feature) = to_llvm_features(sess, feature) else { return };
features.extend(
std::iter::once(format!(
"{}{}",
enable_disable, llvm_feature.llvm_feature_name
))
.chain(llvm_feature.dependencies.into_iter().filter_map(
move |feat| match (enable, feat) {
(_, TargetFeatureFoldStrength::Both(f))
| (true, TargetFeatureFoldStrength::EnableOnly(f)) => {
Some(format!("{enable_disable}{f}"))
}
_ => None,
},
)),
)
},
);
}
// We add this in the "base target" so that these show up in `sess.unstable_target_features`.
llvm_features_by_flags(sess, &mut features);
features
}
pub(crate) fn tune_cpu(sess: &Session) -> Option<&str> {
let name = sess.opts.unstable_opts.tune_cpu.as_ref()?;
Some(handle_native(name))
}