blob: ee77774c68832ae581e50826514cb0d657aa26f4 [file] [log] [blame]
use std::borrow::{Borrow, Cow};
use std::cell::{Cell, RefCell};
use std::ffi::{CStr, c_char, c_uint};
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut};
use std::str;
use rustc_abi::{HasDataLayout, Size, TargetDataLayout, VariantIdx};
use rustc_codegen_ssa::back::versioned_llvm_target;
use rustc_codegen_ssa::base::{wants_msvc_seh, wants_wasm_eh};
use rustc_codegen_ssa::common::TypeKind;
use rustc_codegen_ssa::errors as ssa_errors;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::base_n::{ALPHANUMERIC_ONLY, ToBaseN};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_hir::def_id::DefId;
use rustc_middle::middle::codegen_fn_attrs::PatchableFunctionEntry;
use rustc_middle::mir::mono::CodegenUnit;
use rustc_middle::ty::layout::{
FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasTypingEnv, LayoutError, LayoutOfHelpers,
};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_session::Session;
use rustc_session::config::{
BranchProtection, CFGuard, CFProtection, CrateType, DebugInfo, FunctionReturn, PAuthKey, PacRet,
};
use rustc_span::source_map::Spanned;
use rustc_span::{DUMMY_SP, Span};
use rustc_symbol_mangling::mangle_internal_symbol;
use rustc_target::spec::{HasTargetSpec, RelocModel, SmallDataThresholdSupport, Target, TlsModel};
use smallvec::SmallVec;
use crate::back::write::to_llvm_code_model;
use crate::callee::get_fn;
use crate::debuginfo::metadata::apply_vcall_visibility_metadata;
use crate::llvm::Metadata;
use crate::type_::Type;
use crate::value::Value;
use crate::{attributes, common, coverageinfo, debuginfo, llvm, llvm_util};
/// `TyCtxt` (and related cache datastructures) can't be move between threads.
/// However, there are various cx related functions which we want to be available to the builder and
/// other compiler pieces. Here we define a small subset which has enough information and can be
/// moved around more freely.
pub(crate) struct SCx<'ll> {
pub llmod: &'ll llvm::Module,
pub llcx: &'ll llvm::Context,
pub isize_ty: &'ll Type,
}
impl<'ll> Borrow<SCx<'ll>> for FullCx<'ll, '_> {
fn borrow(&self) -> &SCx<'ll> {
&self.scx
}
}
impl<'ll, 'tcx> Deref for FullCx<'ll, 'tcx> {
type Target = SimpleCx<'ll>;
#[inline]
fn deref(&self) -> &Self::Target {
&self.scx
}
}
pub(crate) struct GenericCx<'ll, T: Borrow<SCx<'ll>>>(T, PhantomData<SCx<'ll>>);
impl<'ll, T: Borrow<SCx<'ll>>> Deref for GenericCx<'ll, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<'ll, T: Borrow<SCx<'ll>>> DerefMut for GenericCx<'ll, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
pub(crate) type SimpleCx<'ll> = GenericCx<'ll, SCx<'ll>>;
/// There is one `CodegenCx` per codegen unit. Each one has its own LLVM
/// `llvm::Context` so that several codegen units may be processed in parallel.
/// All other LLVM data structures in the `CodegenCx` are tied to that `llvm::Context`.
pub(crate) type CodegenCx<'ll, 'tcx> = GenericCx<'ll, FullCx<'ll, 'tcx>>;
pub(crate) struct FullCx<'ll, 'tcx> {
pub tcx: TyCtxt<'tcx>,
pub scx: SimpleCx<'ll>,
pub use_dll_storage_attrs: bool,
pub tls_model: llvm::ThreadLocalMode,
pub codegen_unit: &'tcx CodegenUnit<'tcx>,
/// Cache instances of monomorphic and polymorphic items
pub instances: RefCell<FxHashMap<Instance<'tcx>, &'ll Value>>,
/// Cache generated vtables
pub vtables: RefCell<FxHashMap<(Ty<'tcx>, Option<ty::ExistentialTraitRef<'tcx>>), &'ll Value>>,
/// Cache of constant strings,
pub const_str_cache: RefCell<FxHashMap<String, &'ll Value>>,
/// Cache of emitted const globals (value -> global)
pub const_globals: RefCell<FxHashMap<&'ll Value, &'ll Value>>,
/// List of globals for static variables which need to be passed to the
/// LLVM function ReplaceAllUsesWith (RAUW) when codegen is complete.
/// (We have to make sure we don't invalidate any Values referring
/// to constants.)
pub statics_to_rauw: RefCell<Vec<(&'ll Value, &'ll Value)>>,
/// Statics that will be placed in the llvm.used variable
/// See <https://llvm.org/docs/LangRef.html#the-llvm-used-global-variable> for details
pub used_statics: Vec<&'ll Value>,
/// Statics that will be placed in the llvm.compiler.used variable
/// See <https://llvm.org/docs/LangRef.html#the-llvm-compiler-used-global-variable> for details
pub compiler_used_statics: Vec<&'ll Value>,
/// Mapping of non-scalar types to llvm types.
pub type_lowering: RefCell<FxHashMap<(Ty<'tcx>, Option<VariantIdx>), &'ll Type>>,
/// Mapping of scalar types to llvm types.
pub scalar_lltypes: RefCell<FxHashMap<Ty<'tcx>, &'ll Type>>,
/// Extra per-CGU codegen state needed when coverage instrumentation is enabled.
pub coverage_cx: Option<coverageinfo::CguCoverageContext<'ll, 'tcx>>,
pub dbg_cx: Option<debuginfo::CodegenUnitDebugContext<'ll, 'tcx>>,
eh_personality: Cell<Option<&'ll Value>>,
eh_catch_typeinfo: Cell<Option<&'ll Value>>,
pub rust_try_fn: Cell<Option<(&'ll Type, &'ll Value)>>,
intrinsics:
RefCell<FxHashMap<(Cow<'static, str>, SmallVec<[&'ll Type; 2]>), (&'ll Type, &'ll Value)>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
/// `codegen_static` will sometimes create a second global variable with a
/// different type and clear the symbol name of the original global.
/// `global_asm!` needs to be able to find this new global so that it can
/// compute the correct mangled symbol name to insert into the asm.
pub renamed_statics: RefCell<FxHashMap<DefId, &'ll Value>>,
}
fn to_llvm_tls_model(tls_model: TlsModel) -> llvm::ThreadLocalMode {
match tls_model {
TlsModel::GeneralDynamic => llvm::ThreadLocalMode::GeneralDynamic,
TlsModel::LocalDynamic => llvm::ThreadLocalMode::LocalDynamic,
TlsModel::InitialExec => llvm::ThreadLocalMode::InitialExec,
TlsModel::LocalExec => llvm::ThreadLocalMode::LocalExec,
TlsModel::Emulated => llvm::ThreadLocalMode::GeneralDynamic,
}
}
pub(crate) unsafe fn create_module<'ll>(
tcx: TyCtxt<'_>,
llcx: &'ll llvm::Context,
mod_name: &str,
) -> &'ll llvm::Module {
let sess = tcx.sess;
let mod_name = SmallCStr::new(mod_name);
let llmod = unsafe { llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx) };
let cx = SimpleCx::new(llmod, llcx, tcx.data_layout.pointer_size());
let mut target_data_layout = sess.target.data_layout.to_string();
let llvm_version = llvm_util::get_version();
if llvm_version < (20, 0, 0) {
if sess.target.arch == "aarch64" || sess.target.arch.starts_with("arm64") {
// LLVM 20 defines three additional address spaces for alternate
// pointer kinds used in Windows.
// See https://github.com/llvm/llvm-project/pull/111879
target_data_layout =
target_data_layout.replace("-p270:32:32-p271:32:32-p272:64:64", "");
}
if sess.target.arch.starts_with("sparc") {
// LLVM 20 updates the sparc layout to correctly align 128 bit integers to 128 bit.
// See https://github.com/llvm/llvm-project/pull/106951
target_data_layout = target_data_layout.replace("-i128:128", "");
}
if sess.target.arch.starts_with("mips64") {
// LLVM 20 updates the mips64 layout to correctly align 128 bit integers to 128 bit.
// See https://github.com/llvm/llvm-project/pull/112084
target_data_layout = target_data_layout.replace("-i128:128", "");
}
if sess.target.arch.starts_with("powerpc64") {
// LLVM 20 updates the powerpc64 layout to correctly align 128 bit integers to 128 bit.
// See https://github.com/llvm/llvm-project/pull/118004
target_data_layout = target_data_layout.replace("-i128:128", "");
}
if sess.target.arch.starts_with("wasm32") || sess.target.arch.starts_with("wasm64") {
// LLVM 20 updates the wasm(32|64) layout to correctly align 128 bit integers to 128 bit.
// See https://github.com/llvm/llvm-project/pull/119204
target_data_layout = target_data_layout.replace("-i128:128", "");
}
}
if llvm_version < (21, 0, 0) {
if sess.target.arch == "nvptx64" {
// LLVM 21 updated the default layout on nvptx: https://github.com/llvm/llvm-project/pull/124961
target_data_layout = target_data_layout.replace("e-p6:32:32-i64", "e-i64");
}
if sess.target.arch == "amdgpu" {
// LLVM 21 adds the address width for address space 8.
// See https://github.com/llvm/llvm-project/pull/139419
target_data_layout = target_data_layout.replace("p8:128:128:128:48", "p8:128:128")
}
}
// Ensure the data-layout values hardcoded remain the defaults.
{
let tm = crate::back::write::create_informational_target_machine(sess, false);
unsafe {
llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm.raw());
}
let llvm_data_layout = unsafe { llvm::LLVMGetDataLayoutStr(llmod) };
let llvm_data_layout =
str::from_utf8(unsafe { CStr::from_ptr(llvm_data_layout) }.to_bytes())
.expect("got a non-UTF8 data-layout from LLVM");
if target_data_layout != llvm_data_layout {
tcx.dcx().emit_err(crate::errors::MismatchedDataLayout {
rustc_target: sess.opts.target_triple.to_string().as_str(),
rustc_layout: target_data_layout.as_str(),
llvm_target: sess.target.llvm_target.borrow(),
llvm_layout: llvm_data_layout,
});
}
}
let data_layout = SmallCStr::new(&target_data_layout);
unsafe {
llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr());
}
let llvm_target = SmallCStr::new(&versioned_llvm_target(sess));
unsafe {
llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr());
}
let reloc_model = sess.relocation_model();
if matches!(reloc_model, RelocModel::Pic | RelocModel::Pie) {
unsafe {
llvm::LLVMRustSetModulePICLevel(llmod);
}
// PIE is potentially more effective than PIC, but can only be used in executables.
// If all our outputs are executables, then we can relax PIC to PIE.
if reloc_model == RelocModel::Pie
|| tcx.crate_types().iter().all(|ty| *ty == CrateType::Executable)
{
unsafe {
llvm::LLVMRustSetModulePIELevel(llmod);
}
}
}
// Linking object files with different code models is undefined behavior
// because the compiler would have to generate additional code (to span
// longer jumps) if a larger code model is used with a smaller one.
//
// See https://reviews.llvm.org/D52322 and https://reviews.llvm.org/D52323.
unsafe {
llvm::LLVMRustSetModuleCodeModel(llmod, to_llvm_code_model(sess.code_model()));
}
// If skipping the PLT is enabled, we need to add some module metadata
// to ensure intrinsic calls don't use it.
if !sess.needs_plt() {
llvm::add_module_flag_u32(llmod, llvm::ModuleFlagMergeBehavior::Warning, "RtLibUseGOT", 1);
}
// Enable canonical jump tables if CFI is enabled. (See https://reviews.llvm.org/D65629.)
if sess.is_sanitizer_cfi_canonical_jump_tables_enabled() && sess.is_sanitizer_cfi_enabled() {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"CFI Canonical Jump Tables",
1,
);
}
// If we're normalizing integers with CFI, ensure LLVM generated functions do the same.
// See https://github.com/llvm/llvm-project/pull/104826
if sess.is_sanitizer_cfi_normalize_integers_enabled() {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"cfi-normalize-integers",
1,
);
}
// Enable LTO unit splitting if specified or if CFI is enabled. (See
// https://reviews.llvm.org/D53891.)
if sess.is_split_lto_unit_enabled() || sess.is_sanitizer_cfi_enabled() {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"EnableSplitLTOUnit",
1,
);
}
// Add "kcfi" module flag if KCFI is enabled. (See https://reviews.llvm.org/D119296.)
if sess.is_sanitizer_kcfi_enabled() {
llvm::add_module_flag_u32(llmod, llvm::ModuleFlagMergeBehavior::Override, "kcfi", 1);
// Add "kcfi-offset" module flag with -Z patchable-function-entry (See
// https://reviews.llvm.org/D141172).
let pfe =
PatchableFunctionEntry::from_config(sess.opts.unstable_opts.patchable_function_entry);
if pfe.prefix() > 0 {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"kcfi-offset",
pfe.prefix().into(),
);
}
// Add "kcfi-arity" module flag if KCFI arity indicator is enabled. (See
// https://github.com/llvm/llvm-project/pull/117121.)
if sess.is_sanitizer_kcfi_arity_enabled() {
// KCFI arity indicator requires LLVM 21.0.0 or later.
if llvm_version < (21, 0, 0) {
tcx.dcx().emit_err(crate::errors::SanitizerKcfiArityRequiresLLVM2100);
}
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"kcfi-arity",
1,
);
}
}
// Control Flow Guard is currently only supported by MSVC and LLVM on Windows.
if sess.target.is_like_msvc
|| (sess.target.options.os == "windows"
&& sess.target.options.env == "gnu"
&& sess.target.options.abi == "llvm")
{
match sess.opts.cg.control_flow_guard {
CFGuard::Disabled => {}
CFGuard::NoChecks => {
// Set `cfguard=1` module flag to emit metadata only.
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Warning,
"cfguard",
1,
);
}
CFGuard::Checks => {
// Set `cfguard=2` module flag to emit metadata and checks.
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Warning,
"cfguard",
2,
);
}
}
}
if let Some(BranchProtection { bti, pac_ret }) = sess.opts.unstable_opts.branch_protection {
if sess.target.arch == "aarch64" {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Min,
"branch-target-enforcement",
bti.into(),
);
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Min,
"sign-return-address",
pac_ret.is_some().into(),
);
let pac_opts = pac_ret.unwrap_or(PacRet { leaf: false, pc: false, key: PAuthKey::A });
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Min,
"branch-protection-pauth-lr",
pac_opts.pc.into(),
);
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Min,
"sign-return-address-all",
pac_opts.leaf.into(),
);
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Min,
"sign-return-address-with-bkey",
u32::from(pac_opts.key == PAuthKey::B),
);
} else {
bug!(
"branch-protection used on non-AArch64 target; \
this should be checked in rustc_session."
);
}
}
// Pass on the control-flow protection flags to LLVM (equivalent to `-fcf-protection` in Clang).
if let CFProtection::Branch | CFProtection::Full = sess.opts.unstable_opts.cf_protection {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"cf-protection-branch",
1,
);
}
if let CFProtection::Return | CFProtection::Full = sess.opts.unstable_opts.cf_protection {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"cf-protection-return",
1,
);
}
if sess.opts.unstable_opts.virtual_function_elimination {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Error,
"Virtual Function Elim",
1,
);
}
// Set module flag to enable Windows EHCont Guard (/guard:ehcont).
if sess.opts.unstable_opts.ehcont_guard {
llvm::add_module_flag_u32(llmod, llvm::ModuleFlagMergeBehavior::Warning, "ehcontguard", 1);
}
match sess.opts.unstable_opts.function_return {
FunctionReturn::Keep => {}
FunctionReturn::ThunkExtern => {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Override,
"function_return_thunk_extern",
1,
);
}
}
match (sess.opts.unstable_opts.small_data_threshold, sess.target.small_data_threshold_support())
{
// Set up the small-data optimization limit for architectures that use
// an LLVM module flag to control this.
(Some(threshold), SmallDataThresholdSupport::LlvmModuleFlag(flag)) => {
llvm::add_module_flag_u32(
llmod,
llvm::ModuleFlagMergeBehavior::Error,
&flag,
threshold as u32,
);
}
_ => (),
};
// Insert `llvm.ident` metadata.
//
// On the wasm targets it will get hooked up to the "producer" sections
// `processed-by` information.
#[allow(clippy::option_env_unwrap)]
let rustc_producer =
format!("rustc version {}", option_env!("CFG_VERSION").expect("CFG_VERSION"));
let name_metadata = cx.create_metadata(rustc_producer.as_bytes());
unsafe {
llvm::LLVMAddNamedMetadataOperand(
llmod,
c"llvm.ident".as_ptr(),
&cx.get_metadata_value(llvm::LLVMMDNodeInContext2(llcx, &name_metadata, 1)),
);
}
// Emit RISC-V specific target-abi metadata
// to workaround lld as the LTO plugin not
// correctly setting target-abi for the LTO object
// FIXME: https://github.com/llvm/llvm-project/issues/50591
// If llvm_abiname is empty, emit nothing.
let llvm_abiname = &sess.target.options.llvm_abiname;
if matches!(sess.target.arch.as_ref(), "riscv32" | "riscv64") && !llvm_abiname.is_empty() {
llvm::add_module_flag_str(
llmod,
llvm::ModuleFlagMergeBehavior::Error,
"target-abi",
llvm_abiname,
);
}
// Add module flags specified via -Z llvm_module_flag
for (key, value, merge_behavior) in &sess.opts.unstable_opts.llvm_module_flag {
let merge_behavior = match merge_behavior.as_str() {
"error" => llvm::ModuleFlagMergeBehavior::Error,
"warning" => llvm::ModuleFlagMergeBehavior::Warning,
"require" => llvm::ModuleFlagMergeBehavior::Require,
"override" => llvm::ModuleFlagMergeBehavior::Override,
"append" => llvm::ModuleFlagMergeBehavior::Append,
"appendunique" => llvm::ModuleFlagMergeBehavior::AppendUnique,
"max" => llvm::ModuleFlagMergeBehavior::Max,
"min" => llvm::ModuleFlagMergeBehavior::Min,
// We already checked this during option parsing
_ => unreachable!(),
};
llvm::add_module_flag_u32(llmod, merge_behavior, key, *value);
}
llmod
}
impl<'ll, 'tcx> CodegenCx<'ll, 'tcx> {
pub(crate) fn new(
tcx: TyCtxt<'tcx>,
codegen_unit: &'tcx CodegenUnit<'tcx>,
llvm_module: &'ll crate::ModuleLlvm,
) -> Self {
// An interesting part of Windows which MSVC forces our hand on (and
// apparently MinGW didn't) is the usage of `dllimport` and `dllexport`
// attributes in LLVM IR as well as native dependencies (in C these
// correspond to `__declspec(dllimport)`).
//
// LD (BFD) in MinGW mode can often correctly guess `dllexport` but
// relying on that can result in issues like #50176.
// LLD won't support that and expects symbols with proper attributes.
// Because of that we make MinGW target emit dllexport just like MSVC.
// When it comes to dllimport we use it for constants but for functions
// rely on the linker to do the right thing. Opposed to dllexport this
// task is easy for them (both LD and LLD) and allows us to easily use
// symbols from static libraries in shared libraries.
//
// Whenever a dynamic library is built on Windows it must have its public
// interface specified by functions tagged with `dllexport` or otherwise
// they're not available to be linked against. This poses a few problems
// for the compiler, some of which are somewhat fundamental, but we use
// the `use_dll_storage_attrs` variable below to attach the `dllexport`
// attribute to all LLVM functions that are exported e.g., they're
// already tagged with external linkage). This is suboptimal for a few
// reasons:
//
// * If an object file will never be included in a dynamic library,
// there's no need to attach the dllexport attribute. Most object
// files in Rust are not destined to become part of a dll as binaries
// are statically linked by default.
// * If the compiler is emitting both an rlib and a dylib, the same
// source object file is currently used but with MSVC this may be less
// feasible. The compiler may be able to get around this, but it may
// involve some invasive changes to deal with this.
//
// The flip side of this situation is that whenever you link to a dll and
// you import a function from it, the import should be tagged with
// `dllimport`. At this time, however, the compiler does not emit
// `dllimport` for any declarations other than constants (where it is
// required), which is again suboptimal for even more reasons!
//
// * Calling a function imported from another dll without using
// `dllimport` causes the linker/compiler to have extra overhead (one
// `jmp` instruction on x86) when calling the function.
// * The same object file may be used in different circumstances, so a
// function may be imported from a dll if the object is linked into a
// dll, but it may be just linked against if linked into an rlib.
// * The compiler has no knowledge about whether native functions should
// be tagged dllimport or not.
//
// For now the compiler takes the perf hit (I do not have any numbers to
// this effect) by marking very little as `dllimport` and praying the
// linker will take care of everything. Fixing this problem will likely
// require adding a few attributes to Rust itself (feature gated at the
// start) and then strongly recommending static linkage on Windows!
let use_dll_storage_attrs = tcx.sess.target.is_like_windows;
let tls_model = to_llvm_tls_model(tcx.sess.tls_model());
let (llcx, llmod) = (&*llvm_module.llcx, llvm_module.llmod());
let coverage_cx =
tcx.sess.instrument_coverage().then(coverageinfo::CguCoverageContext::new);
let dbg_cx = if tcx.sess.opts.debuginfo != DebugInfo::None {
let dctx = debuginfo::CodegenUnitDebugContext::new(llmod);
debuginfo::metadata::build_compile_unit_di_node(
tcx,
codegen_unit.name().as_str(),
&dctx,
);
Some(dctx)
} else {
None
};
GenericCx(
FullCx {
tcx,
scx: SimpleCx::new(llmod, llcx, tcx.data_layout.pointer_size()),
use_dll_storage_attrs,
tls_model,
codegen_unit,
instances: Default::default(),
vtables: Default::default(),
const_str_cache: Default::default(),
const_globals: Default::default(),
statics_to_rauw: RefCell::new(Vec::new()),
used_statics: Vec::new(),
compiler_used_statics: Vec::new(),
type_lowering: Default::default(),
scalar_lltypes: Default::default(),
coverage_cx,
dbg_cx,
eh_personality: Cell::new(None),
eh_catch_typeinfo: Cell::new(None),
rust_try_fn: Cell::new(None),
intrinsics: Default::default(),
local_gen_sym_counter: Cell::new(0),
renamed_statics: Default::default(),
},
PhantomData,
)
}
pub(crate) fn statics_to_rauw(&self) -> &RefCell<Vec<(&'ll Value, &'ll Value)>> {
&self.statics_to_rauw
}
/// Extra state that is only available when coverage instrumentation is enabled.
#[inline]
#[track_caller]
pub(crate) fn coverage_cx(&self) -> &coverageinfo::CguCoverageContext<'ll, 'tcx> {
self.coverage_cx.as_ref().expect("only called when coverage instrumentation is enabled")
}
pub(crate) fn create_used_variable_impl(&self, name: &'static CStr, values: &[&'ll Value]) {
let array = self.const_array(self.type_ptr(), values);
let g = llvm::add_global(self.llmod, self.val_ty(array), name);
llvm::set_initializer(g, array);
llvm::set_linkage(g, llvm::Linkage::AppendingLinkage);
llvm::set_section(g, c"llvm.metadata");
}
}
impl<'ll> SimpleCx<'ll> {
pub(crate) fn get_return_type(&self, ty: &'ll Type) -> &'ll Type {
assert_eq!(self.type_kind(ty), TypeKind::Function);
unsafe { llvm::LLVMGetReturnType(ty) }
}
pub(crate) fn get_type_of_global(&self, val: &'ll Value) -> &'ll Type {
unsafe { llvm::LLVMGlobalGetValueType(val) }
}
pub(crate) fn val_ty(&self, v: &'ll Value) -> &'ll Type {
common::val_ty(v)
}
}
impl<'ll> SimpleCx<'ll> {
pub(crate) fn new(
llmod: &'ll llvm::Module,
llcx: &'ll llvm::Context,
pointer_size: Size,
) -> Self {
let isize_ty = llvm::Type::ix_llcx(llcx, pointer_size.bits());
Self(SCx { llmod, llcx, isize_ty }, PhantomData)
}
}
impl<'ll, CX: Borrow<SCx<'ll>>> GenericCx<'ll, CX> {
pub(crate) fn get_metadata_value(&self, metadata: &'ll Metadata) -> &'ll Value {
llvm::LLVMMetadataAsValue(self.llcx(), metadata)
}
pub(crate) fn get_const_int(&self, ty: &'ll Type, val: u64) -> &'ll Value {
unsafe { llvm::LLVMConstInt(ty, val, llvm::False) }
}
pub(crate) fn get_const_i64(&self, n: u64) -> &'ll Value {
self.get_const_int(self.type_i64(), n)
}
pub(crate) fn get_const_i32(&self, n: u64) -> &'ll Value {
self.get_const_int(self.type_i32(), n)
}
pub(crate) fn get_const_i16(&self, n: u64) -> &'ll Value {
self.get_const_int(self.type_i16(), n)
}
pub(crate) fn get_const_i8(&self, n: u64) -> &'ll Value {
self.get_const_int(self.type_i8(), n)
}
pub(crate) fn get_function(&self, name: &str) -> Option<&'ll Value> {
let name = SmallCStr::new(name);
unsafe { llvm::LLVMGetNamedFunction((**self).borrow().llmod, name.as_ptr()) }
}
pub(crate) fn get_md_kind_id(&self, name: &str) -> llvm::MetadataKindId {
unsafe {
llvm::LLVMGetMDKindIDInContext(
self.llcx(),
name.as_ptr() as *const c_char,
name.len() as c_uint,
)
}
}
pub(crate) fn create_metadata(&self, name: &[u8]) -> &'ll Metadata {
unsafe {
llvm::LLVMMDStringInContext2(self.llcx(), name.as_ptr() as *const c_char, name.len())
}
}
pub(crate) fn get_functions(&self) -> Vec<&'ll Value> {
let mut functions = vec![];
let mut func = unsafe { llvm::LLVMGetFirstFunction(self.llmod()) };
while let Some(f) = func {
functions.push(f);
func = unsafe { llvm::LLVMGetNextFunction(f) }
}
functions
}
}
impl<'ll, 'tcx> MiscCodegenMethods<'tcx> for CodegenCx<'ll, 'tcx> {
fn vtables(
&self,
) -> &RefCell<FxHashMap<(Ty<'tcx>, Option<ty::ExistentialTraitRef<'tcx>>), &'ll Value>> {
&self.vtables
}
fn apply_vcall_visibility_metadata(
&self,
ty: Ty<'tcx>,
poly_trait_ref: Option<ty::ExistentialTraitRef<'tcx>>,
vtable: &'ll Value,
) {
apply_vcall_visibility_metadata(self, ty, poly_trait_ref, vtable);
}
fn get_fn(&self, instance: Instance<'tcx>) -> &'ll Value {
get_fn(self, instance)
}
fn get_fn_addr(&self, instance: Instance<'tcx>) -> &'ll Value {
get_fn(self, instance)
}
fn eh_personality(&self) -> &'ll Value {
// The exception handling personality function.
//
// If our compilation unit has the `eh_personality` lang item somewhere
// within it, then we just need to codegen that. Otherwise, we're
// building an rlib which will depend on some upstream implementation of
// this function, so we just codegen a generic reference to it. We don't
// specify any of the types for the function, we just make it a symbol
// that LLVM can later use.
//
// Note that MSVC is a little special here in that we don't use the
// `eh_personality` lang item at all. Currently LLVM has support for
// both Dwarf and SEH unwind mechanisms for MSVC targets and uses the
// *name of the personality function* to decide what kind of unwind side
// tables/landing pads to emit. It looks like Dwarf is used by default,
// injecting a dependency on the `_Unwind_Resume` symbol for resuming
// an "exception", but for MSVC we want to force SEH. This means that we
// can't actually have the personality function be our standard
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.eh_personality.get() {
return llpersonality;
}
let name = if wants_msvc_seh(self.sess()) {
Some("__CxxFrameHandler3")
} else if wants_wasm_eh(self.sess()) {
// LLVM specifically tests for the name of the personality function
// There is no need for this function to exist anywhere, it will
// not be called. However, its name has to be "__gxx_wasm_personality_v0"
// for native wasm exceptions.
Some("__gxx_wasm_personality_v0")
} else {
None
};
let tcx = self.tcx;
let llfn = match tcx.lang_items().eh_personality() {
Some(def_id) if name.is_none() => self.get_fn_addr(ty::Instance::expect_resolve(
tcx,
self.typing_env(),
def_id,
ty::List::empty(),
DUMMY_SP,
)),
_ => {
let name = name.unwrap_or("rust_eh_personality");
if let Some(llfn) = self.get_declared_value(name) {
llfn
} else {
let fty = self.type_variadic_func(&[], self.type_i32());
let llfn = self.declare_cfn(name, llvm::UnnamedAddr::Global, fty);
let target_cpu = attributes::target_cpu_attr(self);
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &[target_cpu]);
llfn
}
}
};
self.eh_personality.set(Some(llfn));
llfn
}
fn sess(&self) -> &Session {
self.tcx.sess
}
fn set_frame_pointer_type(&self, llfn: &'ll Value) {
if let Some(attr) = attributes::frame_pointer_type_attr(self) {
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &[attr]);
}
}
fn apply_target_cpu_attr(&self, llfn: &'ll Value) {
let mut attrs = SmallVec::<[_; 2]>::new();
attrs.push(attributes::target_cpu_attr(self));
attrs.extend(attributes::tune_cpu_attr(self));
attributes::apply_to_llfn(llfn, llvm::AttributePlace::Function, &attrs);
}
fn declare_c_main(&self, fn_type: Self::Type) -> Option<Self::Function> {
let entry_name = self.sess().target.entry_name.as_ref();
if self.get_declared_value(entry_name).is_none() {
Some(self.declare_entry_fn(
entry_name,
llvm::CallConv::from_conv(
self.sess().target.entry_abi,
self.sess().target.arch.borrow(),
),
llvm::UnnamedAddr::Global,
fn_type,
))
} else {
// If the symbol already exists, it is an error: for example, the user wrote
// #[no_mangle] extern "C" fn main(..) {..}
None
}
}
}
impl<'ll> CodegenCx<'ll, '_> {
pub(crate) fn get_intrinsic(
&self,
base_name: Cow<'static, str>,
type_params: &[&'ll Type],
) -> (&'ll Type, &'ll Value) {
*self
.intrinsics
.borrow_mut()
.entry((base_name, SmallVec::from_slice(type_params)))
.or_insert_with_key(|(base_name, type_params)| {
self.declare_intrinsic(base_name, type_params)
})
}
fn declare_intrinsic(
&self,
base_name: &str,
type_params: &[&'ll Type],
) -> (&'ll Type, &'ll Value) {
// This isn't an "LLVM intrinsic", but LLVM's optimization passes
// recognize it like one (including turning it into `bcmp` sometimes)
// and we use it to implement intrinsics like `raw_eq` and `compare_bytes`
if base_name == "memcmp" {
let fn_ty = self
.type_func(&[self.type_ptr(), self.type_ptr(), self.type_isize()], self.type_int());
let f = self.declare_cfn("memcmp", llvm::UnnamedAddr::No, fn_ty);
return (fn_ty, f);
}
let intrinsic = llvm::Intrinsic::lookup(base_name.as_bytes())
.unwrap_or_else(|| bug!("Unknown intrinsic: `{base_name}`"));
let f = intrinsic.get_declaration(self.llmod, &type_params);
(self.get_type_of_global(f), f)
}
pub(crate) fn eh_catch_typeinfo(&self) -> &'ll Value {
if let Some(eh_catch_typeinfo) = self.eh_catch_typeinfo.get() {
return eh_catch_typeinfo;
}
let tcx = self.tcx;
assert!(self.sess().target.os == "emscripten");
let eh_catch_typeinfo = match tcx.lang_items().eh_catch_typeinfo() {
Some(def_id) => self.get_static(def_id),
_ => {
let ty = self.type_struct(&[self.type_ptr(), self.type_ptr()], false);
self.declare_global(&mangle_internal_symbol(self.tcx, "rust_eh_catch_typeinfo"), ty)
}
};
self.eh_catch_typeinfo.set(Some(eh_catch_typeinfo));
eh_catch_typeinfo
}
}
impl CodegenCx<'_, '_> {
/// Generates a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub(crate) fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local_gen_sym_counter.get();
self.local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
name.push_str(prefix);
name.push('.');
name.push_str(&(idx as u64).to_base(ALPHANUMERIC_ONLY));
name
}
}
impl<'ll, CX: Borrow<SCx<'ll>>> GenericCx<'ll, CX> {
/// A wrapper for [`llvm::LLVMSetMetadata`], but it takes `Metadata` as a parameter instead of `Value`.
pub(crate) fn set_metadata<'a>(
&self,
val: &'a Value,
kind_id: impl Into<llvm::MetadataKindId>,
md: &'ll Metadata,
) {
let node = self.get_metadata_value(md);
llvm::LLVMSetMetadata(val, kind_id.into(), node);
}
}
impl HasDataLayout for CodegenCx<'_, '_> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl HasTargetSpec for CodegenCx<'_, '_> {
#[inline]
fn target_spec(&self) -> &Target {
&self.tcx.sess.target
}
}
impl<'tcx> ty::layout::HasTyCtxt<'tcx> for CodegenCx<'_, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'tcx, 'll> HasTypingEnv<'tcx> for CodegenCx<'ll, 'tcx> {
fn typing_env(&self) -> ty::TypingEnv<'tcx> {
ty::TypingEnv::fully_monomorphized()
}
}
impl<'tcx> LayoutOfHelpers<'tcx> for CodegenCx<'_, 'tcx> {
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
if let LayoutError::SizeOverflow(_) | LayoutError::ReferencesError(_) = err {
self.tcx.dcx().emit_fatal(Spanned { span, node: err.into_diagnostic() })
} else {
self.tcx.dcx().emit_fatal(ssa_errors::FailedToGetLayout { span, ty, err })
}
}
}
impl<'tcx> FnAbiOfHelpers<'tcx> for CodegenCx<'_, 'tcx> {
#[inline]
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
span: Span,
fn_abi_request: FnAbiRequest<'tcx>,
) -> ! {
match err {
FnAbiError::Layout(LayoutError::SizeOverflow(_) | LayoutError::Cycle(_)) => {
self.tcx.dcx().emit_fatal(Spanned { span, node: err });
}
_ => match fn_abi_request {
FnAbiRequest::OfFnPtr { sig, extra_args } => {
span_bug!(span, "`fn_abi_of_fn_ptr({sig}, {extra_args:?})` failed: {err:?}",);
}
FnAbiRequest::OfInstance { instance, extra_args } => {
span_bug!(
span,
"`fn_abi_of_instance({instance}, {extra_args:?})` failed: {err:?}",
);
}
},
}
}
}