|  | use std::assert_matches::assert_matches; | 
|  |  | 
|  | use rustc_abi::{BackendRepr, FieldsShape, Scalar, Size, TagEncoding, Variants}; | 
|  | use rustc_middle::bug; | 
|  | use rustc_middle::ty::layout::{HasTyCtxt, LayoutCx, TyAndLayout}; | 
|  |  | 
|  | /// Enforce some basic invariants on layouts. | 
|  | pub(super) fn layout_sanity_check<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { | 
|  | let tcx = cx.tcx(); | 
|  |  | 
|  | if !layout.size.bytes().is_multiple_of(layout.align.bytes()) { | 
|  | bug!("size is not a multiple of align, in the following layout:\n{layout:#?}"); | 
|  | } | 
|  | if layout.size.bytes() >= tcx.data_layout.obj_size_bound() { | 
|  | bug!("size is too large, in the following layout:\n{layout:#?}"); | 
|  | } | 
|  |  | 
|  | if !cfg!(debug_assertions) { | 
|  | // Stop here, the rest is kind of expensive. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Type-level uninhabitedness should always imply ABI uninhabitedness. This can be expensive on | 
|  | // big non-exhaustive types, and is [hard to | 
|  | // fix](https://github.com/rust-lang/rust/issues/141006#issuecomment-2883415000) in general. | 
|  | // Only doing this sanity check when debug assertions are turned on avoids the issue for the | 
|  | // very specific case of #140944. | 
|  | if layout.ty.is_privately_uninhabited(tcx, cx.typing_env) { | 
|  | assert!( | 
|  | layout.is_uninhabited(), | 
|  | "{:?} is type-level uninhabited but not ABI-uninhabited?", | 
|  | layout.ty | 
|  | ); | 
|  | } | 
|  |  | 
|  | /// Yields non-ZST fields of the type | 
|  | fn non_zst_fields<'tcx, 'a>( | 
|  | cx: &'a LayoutCx<'tcx>, | 
|  | layout: &'a TyAndLayout<'tcx>, | 
|  | ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> { | 
|  | (0..layout.layout.fields().count()).filter_map(|i| { | 
|  | let field = layout.field(cx, i); | 
|  | // Also checking `align == 1` here leads to test failures in | 
|  | // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with | 
|  | // alignment 4 that still gets ignored during layout computation (which is okay | 
|  | // since other fields already force alignment 4). | 
|  | let zst = field.is_zst(); | 
|  | (!zst).then(|| (layout.fields.offset(i), field)) | 
|  | }) | 
|  | } | 
|  |  | 
|  | fn skip_newtypes<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) -> TyAndLayout<'tcx> { | 
|  | if matches!(layout.layout.variants(), Variants::Multiple { .. }) { | 
|  | // Definitely not a newtype of anything. | 
|  | return *layout; | 
|  | } | 
|  | let mut fields = non_zst_fields(cx, layout); | 
|  | let Some(first) = fields.next() else { | 
|  | // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing | 
|  | return *layout; | 
|  | }; | 
|  | if fields.next().is_none() { | 
|  | let (offset, first) = first; | 
|  | if offset == Size::ZERO && first.layout.size() == layout.size { | 
|  | // This is a newtype, so keep recursing. | 
|  | // FIXME(RalfJung): I don't think it would be correct to do any checks for | 
|  | // alignment here, so we don't. Is that correct? | 
|  | return skip_newtypes(cx, &first); | 
|  | } | 
|  | } | 
|  | // No more newtypes here. | 
|  | *layout | 
|  | } | 
|  |  | 
|  | fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { | 
|  | // Verify the ABI-mandated alignment and size for scalars. | 
|  | let align = layout.backend_repr.scalar_align(cx); | 
|  | let size = layout.backend_repr.scalar_size(cx); | 
|  | if let Some(align) = align { | 
|  | assert_eq!( | 
|  | layout.layout.align().abi, | 
|  | align, | 
|  | "alignment mismatch between ABI and layout in {layout:#?}" | 
|  | ); | 
|  | } | 
|  | if let Some(size) = size { | 
|  | assert_eq!( | 
|  | layout.layout.size(), | 
|  | size, | 
|  | "size mismatch between ABI and layout in {layout:#?}" | 
|  | ); | 
|  | } | 
|  |  | 
|  | // Verify per-ABI invariants | 
|  | match layout.layout.backend_repr() { | 
|  | BackendRepr::Scalar(_) => { | 
|  | // These must always be present for `Scalar` types. | 
|  | let align = align.unwrap(); | 
|  | let size = size.unwrap(); | 
|  | // Check that this matches the underlying field. | 
|  | let inner = skip_newtypes(cx, layout); | 
|  | assert!( | 
|  | matches!(inner.layout.backend_repr(), BackendRepr::Scalar(_)), | 
|  | "`Scalar` type {} is newtype around non-`Scalar` type {}", | 
|  | layout.ty, | 
|  | inner.ty | 
|  | ); | 
|  | match inner.layout.fields() { | 
|  | FieldsShape::Primitive => { | 
|  | // Fine. | 
|  | } | 
|  | FieldsShape::Union(..) => { | 
|  | // FIXME: I guess we could also check something here? Like, look at all fields? | 
|  | return; | 
|  | } | 
|  | FieldsShape::Arbitrary { .. } => { | 
|  | // Should be an enum, the only field is the discriminant. | 
|  | assert!( | 
|  | inner.ty.is_enum(), | 
|  | "`Scalar` layout for non-primitive non-enum type {}", | 
|  | inner.ty | 
|  | ); | 
|  | assert_eq!( | 
|  | inner.layout.fields().count(), | 
|  | 1, | 
|  | "`Scalar` layout for multiple-field type in {inner:#?}", | 
|  | ); | 
|  | let offset = inner.layout.fields().offset(0); | 
|  | let field = inner.field(cx, 0); | 
|  | // The field should be at the right offset, and match the `scalar` layout. | 
|  | assert_eq!( | 
|  | offset, | 
|  | Size::ZERO, | 
|  | "`Scalar` field at non-0 offset in {inner:#?}", | 
|  | ); | 
|  | assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",); | 
|  | assert_eq!( | 
|  | field.align.abi, align, | 
|  | "`Scalar` field with bad align in {inner:#?}", | 
|  | ); | 
|  | assert!( | 
|  | matches!(field.backend_repr, BackendRepr::Scalar(_)), | 
|  | "`Scalar` field with bad ABI in {inner:#?}", | 
|  | ); | 
|  | } | 
|  | _ => { | 
|  | panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty); | 
|  | } | 
|  | } | 
|  | } | 
|  | BackendRepr::ScalarPair(scalar1, scalar2) => { | 
|  | // Check that the underlying pair of fields matches. | 
|  | let inner = skip_newtypes(cx, layout); | 
|  | assert!( | 
|  | matches!(inner.layout.backend_repr(), BackendRepr::ScalarPair(..)), | 
|  | "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}", | 
|  | layout.ty, | 
|  | inner.ty | 
|  | ); | 
|  | if matches!(inner.layout.variants(), Variants::Multiple { .. }) { | 
|  | // FIXME: ScalarPair for enums is enormously complicated and it is very hard | 
|  | // to check anything about them. | 
|  | return; | 
|  | } | 
|  | match inner.layout.fields() { | 
|  | FieldsShape::Arbitrary { .. } => { | 
|  | // Checked below. | 
|  | } | 
|  | FieldsShape::Union(..) => { | 
|  | // FIXME: I guess we could also check something here? Like, look at all fields? | 
|  | return; | 
|  | } | 
|  | _ => { | 
|  | panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}"); | 
|  | } | 
|  | } | 
|  | let mut fields = non_zst_fields(cx, &inner); | 
|  | let (offset1, field1) = fields.next().unwrap_or_else(|| { | 
|  | panic!( | 
|  | "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}" | 
|  | ) | 
|  | }); | 
|  | let (offset2, field2) = fields.next().unwrap_or_else(|| { | 
|  | panic!( | 
|  | "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}" | 
|  | ) | 
|  | }); | 
|  | assert_matches!( | 
|  | fields.next(), | 
|  | None, | 
|  | "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}" | 
|  | ); | 
|  | // The fields might be in opposite order. | 
|  | let (offset1, field1, offset2, field2) = if offset1 <= offset2 { | 
|  | (offset1, field1, offset2, field2) | 
|  | } else { | 
|  | (offset2, field2, offset1, field1) | 
|  | }; | 
|  | // The fields should be at the right offset, and match the `scalar` layout. | 
|  | let size1 = scalar1.size(cx); | 
|  | let align1 = scalar1.align(cx).abi; | 
|  | let size2 = scalar2.size(cx); | 
|  | let align2 = scalar2.align(cx).abi; | 
|  | assert_eq!( | 
|  | offset1, | 
|  | Size::ZERO, | 
|  | "`ScalarPair` first field at non-0 offset in {inner:#?}", | 
|  | ); | 
|  | assert_eq!( | 
|  | field1.size, size1, | 
|  | "`ScalarPair` first field with bad size in {inner:#?}", | 
|  | ); | 
|  | assert_eq!( | 
|  | field1.align.abi, align1, | 
|  | "`ScalarPair` first field with bad align in {inner:#?}", | 
|  | ); | 
|  | assert_matches!( | 
|  | field1.backend_repr, | 
|  | BackendRepr::Scalar(_), | 
|  | "`ScalarPair` first field with bad ABI in {inner:#?}", | 
|  | ); | 
|  | let field2_offset = size1.align_to(align2); | 
|  | assert_eq!( | 
|  | offset2, field2_offset, | 
|  | "`ScalarPair` second field at bad offset in {inner:#?}", | 
|  | ); | 
|  | assert_eq!( | 
|  | field2.size, size2, | 
|  | "`ScalarPair` second field with bad size in {inner:#?}", | 
|  | ); | 
|  | assert_eq!( | 
|  | field2.align.abi, align2, | 
|  | "`ScalarPair` second field with bad align in {inner:#?}", | 
|  | ); | 
|  | assert_matches!( | 
|  | field2.backend_repr, | 
|  | BackendRepr::Scalar(_), | 
|  | "`ScalarPair` second field with bad ABI in {inner:#?}", | 
|  | ); | 
|  | } | 
|  | BackendRepr::SimdVector { element, count } => { | 
|  | let align = layout.align.abi; | 
|  | let size = layout.size; | 
|  | let element_align = element.align(cx).abi; | 
|  | let element_size = element.size(cx); | 
|  | // Currently, vectors must always be aligned to at least their elements: | 
|  | assert!(align >= element_align); | 
|  | // And the size has to be element * count plus alignment padding, of course | 
|  | assert!(size == (element_size * count).align_to(align)); | 
|  | } | 
|  | BackendRepr::Memory { .. } => {} // Nothing to check. | 
|  | } | 
|  | } | 
|  |  | 
|  | check_layout_abi(cx, layout); | 
|  |  | 
|  | match &layout.variants { | 
|  | Variants::Empty => { | 
|  | assert!(layout.is_uninhabited()); | 
|  | } | 
|  | Variants::Single { index } => { | 
|  | if let Some(variants) = layout.ty.variant_range(tcx) { | 
|  | assert!(variants.contains(index)); | 
|  | } else { | 
|  | // Types without variants use `0` as dummy variant index. | 
|  | assert!(index.as_u32() == 0); | 
|  | } | 
|  | } | 
|  | Variants::Multiple { variants, tag, tag_encoding, .. } => { | 
|  | if let TagEncoding::Niche { niche_start, untagged_variant, niche_variants } = | 
|  | tag_encoding | 
|  | { | 
|  | let niche_size = tag.size(cx); | 
|  | assert!(*niche_start <= niche_size.unsigned_int_max()); | 
|  | for (idx, variant) in variants.iter_enumerated() { | 
|  | // Ensure all inhabited variants are accounted for. | 
|  | if !variant.is_uninhabited() { | 
|  | assert!(idx == *untagged_variant || niche_variants.contains(&idx)); | 
|  | } | 
|  |  | 
|  | // Ensure that for niche encoded tags the discriminant coincides with the variant index. | 
|  | assert_eq!( | 
|  | layout.ty.discriminant_for_variant(tcx, idx).unwrap().val, | 
|  | u128::from(idx.as_u32()), | 
|  | ); | 
|  | } | 
|  | } | 
|  | for variant in variants.iter() { | 
|  | // No nested "multiple". | 
|  | assert_matches!(variant.variants, Variants::Single { .. }); | 
|  | // Variants should have the same or a smaller size as the full thing, | 
|  | // and same for alignment. | 
|  | if variant.size > layout.size { | 
|  | bug!( | 
|  | "Type with size {} bytes has variant with size {} bytes: {layout:#?}", | 
|  | layout.size.bytes(), | 
|  | variant.size.bytes(), | 
|  | ) | 
|  | } | 
|  | if variant.align.abi > layout.align.abi { | 
|  | bug!( | 
|  | "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}", | 
|  | layout.align.bytes(), | 
|  | variant.align.bytes(), | 
|  | ) | 
|  | } | 
|  | // Skip empty variants. | 
|  | if variant.size == Size::ZERO | 
|  | || variant.fields.count() == 0 | 
|  | || variant.is_uninhabited() | 
|  | { | 
|  | // These are never actually accessed anyway, so we can skip the coherence check | 
|  | // for them. They also fail that check, since they may have | 
|  | // a different ABI even when the main type is | 
|  | // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size | 
|  | // 0, and sometimes, variants without fields have non-0 size.) | 
|  | continue; | 
|  | } | 
|  | // The top-level ABI and the ABI of the variants should be coherent. | 
|  | let scalar_coherent = |s1: Scalar, s2: Scalar| { | 
|  | s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx) | 
|  | }; | 
|  | let abi_coherent = match (layout.backend_repr, variant.backend_repr) { | 
|  | (BackendRepr::Scalar(s1), BackendRepr::Scalar(s2)) => scalar_coherent(s1, s2), | 
|  | (BackendRepr::ScalarPair(a1, b1), BackendRepr::ScalarPair(a2, b2)) => { | 
|  | scalar_coherent(a1, a2) && scalar_coherent(b1, b2) | 
|  | } | 
|  | (BackendRepr::Memory { .. }, _) => true, | 
|  | _ => false, | 
|  | }; | 
|  | if !abi_coherent { | 
|  | bug!( | 
|  | "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}", | 
|  | variant | 
|  | ); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } |