|  | use std::collections::BTreeMap; | 
|  | use std::ffi::{CStr, CString}; | 
|  | use std::fs::File; | 
|  | use std::path::Path; | 
|  | use std::ptr::NonNull; | 
|  | use std::sync::Arc; | 
|  | use std::{io, iter, slice}; | 
|  |  | 
|  | use object::read::archive::ArchiveFile; | 
|  | use rustc_codegen_ssa::back::lto::{LtoModuleCodegen, SerializedModule, ThinModule, ThinShared}; | 
|  | use rustc_codegen_ssa::back::symbol_export; | 
|  | use rustc_codegen_ssa::back::write::{CodegenContext, FatLtoInput}; | 
|  | use rustc_codegen_ssa::traits::*; | 
|  | use rustc_codegen_ssa::{ModuleCodegen, ModuleKind, looks_like_rust_object_file}; | 
|  | use rustc_data_structures::fx::FxHashMap; | 
|  | use rustc_data_structures::memmap::Mmap; | 
|  | use rustc_errors::{DiagCtxtHandle, FatalError}; | 
|  | use rustc_hir::def_id::LOCAL_CRATE; | 
|  | use rustc_middle::bug; | 
|  | use rustc_middle::dep_graph::WorkProduct; | 
|  | use rustc_middle::middle::exported_symbols::{SymbolExportInfo, SymbolExportLevel}; | 
|  | use rustc_session::config::{self, CrateType, Lto}; | 
|  | use tracing::{debug, info}; | 
|  |  | 
|  | use crate::back::write::{ | 
|  | self, CodegenDiagnosticsStage, DiagnosticHandlers, bitcode_section_name, save_temp_bitcode, | 
|  | }; | 
|  | use crate::errors::{ | 
|  | DynamicLinkingWithLTO, LlvmError, LtoBitcodeFromRlib, LtoDisallowed, LtoDylib, LtoProcMacro, | 
|  | }; | 
|  | use crate::llvm::AttributePlace::Function; | 
|  | use crate::llvm::{self, build_string}; | 
|  | use crate::{LlvmCodegenBackend, ModuleLlvm, SimpleCx, attributes}; | 
|  |  | 
|  | /// We keep track of the computed LTO cache keys from the previous | 
|  | /// session to determine which CGUs we can reuse. | 
|  | const THIN_LTO_KEYS_INCR_COMP_FILE_NAME: &str = "thin-lto-past-keys.bin"; | 
|  |  | 
|  | fn crate_type_allows_lto(crate_type: CrateType) -> bool { | 
|  | match crate_type { | 
|  | CrateType::Executable | 
|  | | CrateType::Dylib | 
|  | | CrateType::Staticlib | 
|  | | CrateType::Cdylib | 
|  | | CrateType::ProcMacro | 
|  | | CrateType::Sdylib => true, | 
|  | CrateType::Rlib => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | fn prepare_lto( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | dcx: DiagCtxtHandle<'_>, | 
|  | ) -> Result<(Vec<CString>, Vec<(SerializedModule<ModuleBuffer>, CString)>), FatalError> { | 
|  | let export_threshold = match cgcx.lto { | 
|  | // We're just doing LTO for our one crate | 
|  | Lto::ThinLocal => SymbolExportLevel::Rust, | 
|  |  | 
|  | // We're doing LTO for the entire crate graph | 
|  | Lto::Fat | Lto::Thin => symbol_export::crates_export_threshold(&cgcx.crate_types), | 
|  |  | 
|  | Lto::No => panic!("didn't request LTO but we're doing LTO"), | 
|  | }; | 
|  |  | 
|  | let symbol_filter = &|&(ref name, info): &(String, SymbolExportInfo)| { | 
|  | if info.level.is_below_threshold(export_threshold) || info.used { | 
|  | Some(CString::new(name.as_str()).unwrap()) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | }; | 
|  | let exported_symbols = cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); | 
|  | let mut symbols_below_threshold = { | 
|  | let _timer = cgcx.prof.generic_activity("LLVM_lto_generate_symbols_below_threshold"); | 
|  | exported_symbols[&LOCAL_CRATE].iter().filter_map(symbol_filter).collect::<Vec<CString>>() | 
|  | }; | 
|  | info!("{} symbols to preserve in this crate", symbols_below_threshold.len()); | 
|  |  | 
|  | // If we're performing LTO for the entire crate graph, then for each of our | 
|  | // upstream dependencies, find the corresponding rlib and load the bitcode | 
|  | // from the archive. | 
|  | // | 
|  | // We save off all the bytecode and LLVM module ids for later processing | 
|  | // with either fat or thin LTO | 
|  | let mut upstream_modules = Vec::new(); | 
|  | if cgcx.lto != Lto::ThinLocal { | 
|  | // Make sure we actually can run LTO | 
|  | for crate_type in cgcx.crate_types.iter() { | 
|  | if !crate_type_allows_lto(*crate_type) { | 
|  | dcx.emit_err(LtoDisallowed); | 
|  | return Err(FatalError); | 
|  | } else if *crate_type == CrateType::Dylib { | 
|  | if !cgcx.opts.unstable_opts.dylib_lto { | 
|  | dcx.emit_err(LtoDylib); | 
|  | return Err(FatalError); | 
|  | } | 
|  | } else if *crate_type == CrateType::ProcMacro && !cgcx.opts.unstable_opts.dylib_lto { | 
|  | dcx.emit_err(LtoProcMacro); | 
|  | return Err(FatalError); | 
|  | } | 
|  | } | 
|  |  | 
|  | if cgcx.opts.cg.prefer_dynamic && !cgcx.opts.unstable_opts.dylib_lto { | 
|  | dcx.emit_err(DynamicLinkingWithLTO); | 
|  | return Err(FatalError); | 
|  | } | 
|  |  | 
|  | for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() { | 
|  | let exported_symbols = | 
|  | cgcx.exported_symbols.as_ref().expect("needs exported symbols for LTO"); | 
|  | { | 
|  | let _timer = | 
|  | cgcx.prof.generic_activity("LLVM_lto_generate_symbols_below_threshold"); | 
|  | symbols_below_threshold | 
|  | .extend(exported_symbols[&cnum].iter().filter_map(symbol_filter)); | 
|  | } | 
|  |  | 
|  | let archive_data = unsafe { | 
|  | Mmap::map(std::fs::File::open(&path).expect("couldn't open rlib")) | 
|  | .expect("couldn't map rlib") | 
|  | }; | 
|  | let archive = ArchiveFile::parse(&*archive_data).expect("wanted an rlib"); | 
|  | let obj_files = archive | 
|  | .members() | 
|  | .filter_map(|child| { | 
|  | child.ok().and_then(|c| { | 
|  | std::str::from_utf8(c.name()).ok().map(|name| (name.trim(), c)) | 
|  | }) | 
|  | }) | 
|  | .filter(|&(name, _)| looks_like_rust_object_file(name)); | 
|  | for (name, child) in obj_files { | 
|  | info!("adding bitcode from {}", name); | 
|  | match get_bitcode_slice_from_object_data( | 
|  | child.data(&*archive_data).expect("corrupt rlib"), | 
|  | cgcx, | 
|  | ) { | 
|  | Ok(data) => { | 
|  | let module = SerializedModule::FromRlib(data.to_vec()); | 
|  | upstream_modules.push((module, CString::new(name).unwrap())); | 
|  | } | 
|  | Err(e) => { | 
|  | dcx.emit_err(e); | 
|  | return Err(FatalError); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // __llvm_profile_counter_bias is pulled in at link time by an undefined reference to | 
|  | // __llvm_profile_runtime, therefore we won't know until link time if this symbol | 
|  | // should have default visibility. | 
|  | symbols_below_threshold.push(c"__llvm_profile_counter_bias".to_owned()); | 
|  | Ok((symbols_below_threshold, upstream_modules)) | 
|  | } | 
|  |  | 
|  | fn get_bitcode_slice_from_object_data<'a>( | 
|  | obj: &'a [u8], | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | ) -> Result<&'a [u8], LtoBitcodeFromRlib> { | 
|  | // We're about to assume the data here is an object file with sections, but if it's raw LLVM IR | 
|  | // that won't work. Fortunately, if that's what we have we can just return the object directly, | 
|  | // so we sniff the relevant magic strings here and return. | 
|  | if obj.starts_with(b"\xDE\xC0\x17\x0B") || obj.starts_with(b"BC\xC0\xDE") { | 
|  | return Ok(obj); | 
|  | } | 
|  | // We drop the "__LLVM," prefix here because on Apple platforms there's a notion of "segment | 
|  | // name" which in the public API for sections gets treated as part of the section name, but | 
|  | // internally in MachOObjectFile.cpp gets treated separately. | 
|  | let section_name = bitcode_section_name(cgcx).to_str().unwrap().trim_start_matches("__LLVM,"); | 
|  | let mut len = 0; | 
|  | let data = unsafe { | 
|  | llvm::LLVMRustGetSliceFromObjectDataByName( | 
|  | obj.as_ptr(), | 
|  | obj.len(), | 
|  | section_name.as_ptr(), | 
|  | section_name.len(), | 
|  | &mut len, | 
|  | ) | 
|  | }; | 
|  | if !data.is_null() { | 
|  | assert!(len != 0); | 
|  | let bc = unsafe { slice::from_raw_parts(data, len) }; | 
|  |  | 
|  | // `bc` must be a sub-slice of `obj`. | 
|  | assert!(obj.as_ptr() <= bc.as_ptr()); | 
|  | assert!(bc[bc.len()..bc.len()].as_ptr() <= obj[obj.len()..obj.len()].as_ptr()); | 
|  |  | 
|  | Ok(bc) | 
|  | } else { | 
|  | assert!(len == 0); | 
|  | Err(LtoBitcodeFromRlib { | 
|  | llvm_err: llvm::last_error().unwrap_or_else(|| "unknown LLVM error".to_string()), | 
|  | }) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Performs fat LTO by merging all modules into a single one and returning it | 
|  | /// for further optimization. | 
|  | pub(crate) fn run_fat( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | modules: Vec<FatLtoInput<LlvmCodegenBackend>>, | 
|  | cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, | 
|  | ) -> Result<LtoModuleCodegen<LlvmCodegenBackend>, FatalError> { | 
|  | let dcx = cgcx.create_dcx(); | 
|  | let dcx = dcx.handle(); | 
|  | let (symbols_below_threshold, upstream_modules) = prepare_lto(cgcx, dcx)?; | 
|  | let symbols_below_threshold = | 
|  | symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>(); | 
|  | fat_lto(cgcx, dcx, modules, cached_modules, upstream_modules, &symbols_below_threshold) | 
|  | } | 
|  |  | 
|  | /// Performs thin LTO by performing necessary global analysis and returning two | 
|  | /// lists, one of the modules that need optimization and another for modules that | 
|  | /// can simply be copied over from the incr. comp. cache. | 
|  | pub(crate) fn run_thin( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | modules: Vec<(String, ThinBuffer)>, | 
|  | cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, | 
|  | ) -> Result<(Vec<LtoModuleCodegen<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> { | 
|  | let dcx = cgcx.create_dcx(); | 
|  | let dcx = dcx.handle(); | 
|  | let (symbols_below_threshold, upstream_modules) = prepare_lto(cgcx, dcx)?; | 
|  | let symbols_below_threshold = | 
|  | symbols_below_threshold.iter().map(|c| c.as_ptr()).collect::<Vec<_>>(); | 
|  | if cgcx.opts.cg.linker_plugin_lto.enabled() { | 
|  | unreachable!( | 
|  | "We should never reach this case if the LTO step \ | 
|  | is deferred to the linker" | 
|  | ); | 
|  | } | 
|  | thin_lto(cgcx, dcx, modules, upstream_modules, cached_modules, &symbols_below_threshold) | 
|  | } | 
|  |  | 
|  | pub(crate) fn prepare_thin( | 
|  | module: ModuleCodegen<ModuleLlvm>, | 
|  | emit_summary: bool, | 
|  | ) -> (String, ThinBuffer) { | 
|  | let name = module.name; | 
|  | let buffer = ThinBuffer::new(module.module_llvm.llmod(), true, emit_summary); | 
|  | (name, buffer) | 
|  | } | 
|  |  | 
|  | fn fat_lto( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | dcx: DiagCtxtHandle<'_>, | 
|  | modules: Vec<FatLtoInput<LlvmCodegenBackend>>, | 
|  | cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, | 
|  | mut serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, | 
|  | symbols_below_threshold: &[*const libc::c_char], | 
|  | ) -> Result<LtoModuleCodegen<LlvmCodegenBackend>, FatalError> { | 
|  | let _timer = cgcx.prof.generic_activity("LLVM_fat_lto_build_monolithic_module"); | 
|  | info!("going for a fat lto"); | 
|  |  | 
|  | // Sort out all our lists of incoming modules into two lists. | 
|  | // | 
|  | // * `serialized_modules` (also and argument to this function) contains all | 
|  | //   modules that are serialized in-memory. | 
|  | // * `in_memory` contains modules which are already parsed and in-memory, | 
|  | //   such as from multi-CGU builds. | 
|  | // | 
|  | // All of `cached_modules` (cached from previous incremental builds) can | 
|  | // immediately go onto the `serialized_modules` modules list and then we can | 
|  | // split the `modules` array into these two lists. | 
|  | let mut in_memory = Vec::new(); | 
|  | serialized_modules.extend(cached_modules.into_iter().map(|(buffer, wp)| { | 
|  | info!("pushing cached module {:?}", wp.cgu_name); | 
|  | (buffer, CString::new(wp.cgu_name).unwrap()) | 
|  | })); | 
|  | for module in modules { | 
|  | match module { | 
|  | FatLtoInput::InMemory(m) => in_memory.push(m), | 
|  | FatLtoInput::Serialized { name, buffer } => { | 
|  | info!("pushing serialized module {:?}", name); | 
|  | let buffer = SerializedModule::Local(buffer); | 
|  | serialized_modules.push((buffer, CString::new(name).unwrap())); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the "costliest" module and merge everything into that codegen unit. | 
|  | // All the other modules will be serialized and reparsed into the new | 
|  | // context, so this hopefully avoids serializing and parsing the largest | 
|  | // codegen unit. | 
|  | // | 
|  | // Additionally use a regular module as the base here to ensure that various | 
|  | // file copy operations in the backend work correctly. The only other kind | 
|  | // of module here should be an allocator one, and if your crate is smaller | 
|  | // than the allocator module then the size doesn't really matter anyway. | 
|  | let costliest_module = in_memory | 
|  | .iter() | 
|  | .enumerate() | 
|  | .filter(|&(_, module)| module.kind == ModuleKind::Regular) | 
|  | .map(|(i, module)| { | 
|  | let cost = unsafe { llvm::LLVMRustModuleCost(module.module_llvm.llmod()) }; | 
|  | (cost, i) | 
|  | }) | 
|  | .max(); | 
|  |  | 
|  | // If we found a costliest module, we're good to go. Otherwise all our | 
|  | // inputs were serialized which could happen in the case, for example, that | 
|  | // all our inputs were incrementally reread from the cache and we're just | 
|  | // re-executing the LTO passes. If that's the case deserialize the first | 
|  | // module and create a linker with it. | 
|  | let module: ModuleCodegen<ModuleLlvm> = match costliest_module { | 
|  | Some((_cost, i)) => in_memory.remove(i), | 
|  | None => { | 
|  | assert!(!serialized_modules.is_empty(), "must have at least one serialized module"); | 
|  | let (buffer, name) = serialized_modules.remove(0); | 
|  | info!("no in-memory regular modules to choose from, parsing {:?}", name); | 
|  | let llvm_module = ModuleLlvm::parse(cgcx, &name, buffer.data(), dcx)?; | 
|  | ModuleCodegen::new_regular(name.into_string().unwrap(), llvm_module) | 
|  | } | 
|  | }; | 
|  | { | 
|  | let (llcx, llmod) = { | 
|  | let llvm = &module.module_llvm; | 
|  | (&llvm.llcx, llvm.llmod()) | 
|  | }; | 
|  | info!("using {:?} as a base module", module.name); | 
|  |  | 
|  | // The linking steps below may produce errors and diagnostics within LLVM | 
|  | // which we'd like to handle and print, so set up our diagnostic handlers | 
|  | // (which get unregistered when they go out of scope below). | 
|  | let _handler = | 
|  | DiagnosticHandlers::new(cgcx, dcx, llcx, &module, CodegenDiagnosticsStage::LTO); | 
|  |  | 
|  | // For all other modules we codegened we'll need to link them into our own | 
|  | // bitcode. All modules were codegened in their own LLVM context, however, | 
|  | // and we want to move everything to the same LLVM context. Currently the | 
|  | // way we know of to do that is to serialize them to a string and them parse | 
|  | // them later. Not great but hey, that's why it's "fat" LTO, right? | 
|  | for module in in_memory { | 
|  | let buffer = ModuleBuffer::new(module.module_llvm.llmod()); | 
|  | let llmod_id = CString::new(&module.name[..]).unwrap(); | 
|  | serialized_modules.push((SerializedModule::Local(buffer), llmod_id)); | 
|  | } | 
|  | // Sort the modules to ensure we produce deterministic results. | 
|  | serialized_modules.sort_by(|module1, module2| module1.1.cmp(&module2.1)); | 
|  |  | 
|  | // For all serialized bitcode files we parse them and link them in as we did | 
|  | // above, this is all mostly handled in C++. | 
|  | let mut linker = Linker::new(llmod); | 
|  | for (bc_decoded, name) in serialized_modules { | 
|  | let _timer = cgcx | 
|  | .prof | 
|  | .generic_activity_with_arg_recorder("LLVM_fat_lto_link_module", |recorder| { | 
|  | recorder.record_arg(format!("{name:?}")) | 
|  | }); | 
|  | info!("linking {:?}", name); | 
|  | let data = bc_decoded.data(); | 
|  | linker.add(data).map_err(|()| write::llvm_err(dcx, LlvmError::LoadBitcode { name }))?; | 
|  | } | 
|  | drop(linker); | 
|  | save_temp_bitcode(cgcx, &module, "lto.input"); | 
|  |  | 
|  | // Internalize everything below threshold to help strip out more modules and such. | 
|  | unsafe { | 
|  | let ptr = symbols_below_threshold.as_ptr(); | 
|  | llvm::LLVMRustRunRestrictionPass( | 
|  | llmod, | 
|  | ptr as *const *const libc::c_char, | 
|  | symbols_below_threshold.len() as libc::size_t, | 
|  | ); | 
|  | } | 
|  | save_temp_bitcode(cgcx, &module, "lto.after-restriction"); | 
|  | } | 
|  |  | 
|  | Ok(LtoModuleCodegen::Fat(module)) | 
|  | } | 
|  |  | 
|  | pub(crate) struct Linker<'a>(&'a mut llvm::Linker<'a>); | 
|  |  | 
|  | impl<'a> Linker<'a> { | 
|  | pub(crate) fn new(llmod: &'a llvm::Module) -> Self { | 
|  | unsafe { Linker(llvm::LLVMRustLinkerNew(llmod)) } | 
|  | } | 
|  |  | 
|  | pub(crate) fn add(&mut self, bytecode: &[u8]) -> Result<(), ()> { | 
|  | unsafe { | 
|  | if llvm::LLVMRustLinkerAdd( | 
|  | self.0, | 
|  | bytecode.as_ptr() as *const libc::c_char, | 
|  | bytecode.len(), | 
|  | ) { | 
|  | Ok(()) | 
|  | } else { | 
|  | Err(()) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Drop for Linker<'_> { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | llvm::LLVMRustLinkerFree(&mut *(self.0 as *mut _)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Prepare "thin" LTO to get run on these modules. | 
|  | /// | 
|  | /// The general structure of ThinLTO is quite different from the structure of | 
|  | /// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into | 
|  | /// one giant LLVM module, and then we run more optimization passes over this | 
|  | /// big module after internalizing most symbols. Thin LTO, on the other hand, | 
|  | /// avoid this large bottleneck through more targeted optimization. | 
|  | /// | 
|  | /// At a high level Thin LTO looks like: | 
|  | /// | 
|  | ///    1. Prepare a "summary" of each LLVM module in question which describes | 
|  | ///       the values inside, cost of the values, etc. | 
|  | ///    2. Merge the summaries of all modules in question into one "index" | 
|  | ///    3. Perform some global analysis on this index | 
|  | ///    4. For each module, use the index and analysis calculated previously to | 
|  | ///       perform local transformations on the module, for example inlining | 
|  | ///       small functions from other modules. | 
|  | ///    5. Run thin-specific optimization passes over each module, and then code | 
|  | ///       generate everything at the end. | 
|  | /// | 
|  | /// The summary for each module is intended to be quite cheap, and the global | 
|  | /// index is relatively quite cheap to create as well. As a result, the goal of | 
|  | /// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more | 
|  | /// situations. For example one cheap optimization is that we can parallelize | 
|  | /// all codegen modules, easily making use of all the cores on a machine. | 
|  | /// | 
|  | /// With all that in mind, the function here is designed at specifically just | 
|  | /// calculating the *index* for ThinLTO. This index will then be shared amongst | 
|  | /// all of the `LtoModuleCodegen` units returned below and destroyed once | 
|  | /// they all go out of scope. | 
|  | fn thin_lto( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | dcx: DiagCtxtHandle<'_>, | 
|  | modules: Vec<(String, ThinBuffer)>, | 
|  | serialized_modules: Vec<(SerializedModule<ModuleBuffer>, CString)>, | 
|  | cached_modules: Vec<(SerializedModule<ModuleBuffer>, WorkProduct)>, | 
|  | symbols_below_threshold: &[*const libc::c_char], | 
|  | ) -> Result<(Vec<LtoModuleCodegen<LlvmCodegenBackend>>, Vec<WorkProduct>), FatalError> { | 
|  | let _timer = cgcx.prof.generic_activity("LLVM_thin_lto_global_analysis"); | 
|  | unsafe { | 
|  | info!("going for that thin, thin LTO"); | 
|  |  | 
|  | let green_modules: FxHashMap<_, _> = | 
|  | cached_modules.iter().map(|(_, wp)| (wp.cgu_name.clone(), wp.clone())).collect(); | 
|  |  | 
|  | let full_scope_len = modules.len() + serialized_modules.len() + cached_modules.len(); | 
|  | let mut thin_buffers = Vec::with_capacity(modules.len()); | 
|  | let mut module_names = Vec::with_capacity(full_scope_len); | 
|  | let mut thin_modules = Vec::with_capacity(full_scope_len); | 
|  |  | 
|  | for (i, (name, buffer)) in modules.into_iter().enumerate() { | 
|  | info!("local module: {} - {}", i, name); | 
|  | let cname = CString::new(name.as_bytes()).unwrap(); | 
|  | thin_modules.push(llvm::ThinLTOModule { | 
|  | identifier: cname.as_ptr(), | 
|  | data: buffer.data().as_ptr(), | 
|  | len: buffer.data().len(), | 
|  | }); | 
|  | thin_buffers.push(buffer); | 
|  | module_names.push(cname); | 
|  | } | 
|  |  | 
|  | // FIXME: All upstream crates are deserialized internally in the | 
|  | //        function below to extract their summary and modules. Note that | 
|  | //        unlike the loop above we *must* decode and/or read something | 
|  | //        here as these are all just serialized files on disk. An | 
|  | //        improvement, however, to make here would be to store the | 
|  | //        module summary separately from the actual module itself. Right | 
|  | //        now this is store in one large bitcode file, and the entire | 
|  | //        file is deflate-compressed. We could try to bypass some of the | 
|  | //        decompression by storing the index uncompressed and only | 
|  | //        lazily decompressing the bytecode if necessary. | 
|  | // | 
|  | //        Note that truly taking advantage of this optimization will | 
|  | //        likely be further down the road. We'd have to implement | 
|  | //        incremental ThinLTO first where we could actually avoid | 
|  | //        looking at upstream modules entirely sometimes (the contents, | 
|  | //        we must always unconditionally look at the index). | 
|  | let mut serialized = Vec::with_capacity(serialized_modules.len() + cached_modules.len()); | 
|  |  | 
|  | let cached_modules = | 
|  | cached_modules.into_iter().map(|(sm, wp)| (sm, CString::new(wp.cgu_name).unwrap())); | 
|  |  | 
|  | for (module, name) in serialized_modules.into_iter().chain(cached_modules) { | 
|  | info!("upstream or cached module {:?}", name); | 
|  | thin_modules.push(llvm::ThinLTOModule { | 
|  | identifier: name.as_ptr(), | 
|  | data: module.data().as_ptr(), | 
|  | len: module.data().len(), | 
|  | }); | 
|  | serialized.push(module); | 
|  | module_names.push(name); | 
|  | } | 
|  |  | 
|  | // Sanity check | 
|  | assert_eq!(thin_modules.len(), module_names.len()); | 
|  |  | 
|  | // Delegate to the C++ bindings to create some data here. Once this is a | 
|  | // tried-and-true interface we may wish to try to upstream some of this | 
|  | // to LLVM itself, right now we reimplement a lot of what they do | 
|  | // upstream... | 
|  | let data = llvm::LLVMRustCreateThinLTOData( | 
|  | thin_modules.as_ptr(), | 
|  | thin_modules.len(), | 
|  | symbols_below_threshold.as_ptr(), | 
|  | symbols_below_threshold.len(), | 
|  | ) | 
|  | .ok_or_else(|| write::llvm_err(dcx, LlvmError::PrepareThinLtoContext))?; | 
|  |  | 
|  | let data = ThinData(data); | 
|  |  | 
|  | info!("thin LTO data created"); | 
|  |  | 
|  | let (key_map_path, prev_key_map, curr_key_map) = if let Some(ref incr_comp_session_dir) = | 
|  | cgcx.incr_comp_session_dir | 
|  | { | 
|  | let path = incr_comp_session_dir.join(THIN_LTO_KEYS_INCR_COMP_FILE_NAME); | 
|  | // If the previous file was deleted, or we get an IO error | 
|  | // reading the file, then we'll just use `None` as the | 
|  | // prev_key_map, which will force the code to be recompiled. | 
|  | let prev = | 
|  | if path.exists() { ThinLTOKeysMap::load_from_file(&path).ok() } else { None }; | 
|  | let curr = ThinLTOKeysMap::from_thin_lto_modules(&data, &thin_modules, &module_names); | 
|  | (Some(path), prev, curr) | 
|  | } else { | 
|  | // If we don't compile incrementally, we don't need to load the | 
|  | // import data from LLVM. | 
|  | assert!(green_modules.is_empty()); | 
|  | let curr = ThinLTOKeysMap::default(); | 
|  | (None, None, curr) | 
|  | }; | 
|  | info!("thin LTO cache key map loaded"); | 
|  | info!("prev_key_map: {:#?}", prev_key_map); | 
|  | info!("curr_key_map: {:#?}", curr_key_map); | 
|  |  | 
|  | // Throw our data in an `Arc` as we'll be sharing it across threads. We | 
|  | // also put all memory referenced by the C++ data (buffers, ids, etc) | 
|  | // into the arc as well. After this we'll create a thin module | 
|  | // codegen per module in this data. | 
|  | let shared = Arc::new(ThinShared { | 
|  | data, | 
|  | thin_buffers, | 
|  | serialized_modules: serialized, | 
|  | module_names, | 
|  | }); | 
|  |  | 
|  | let mut copy_jobs = vec![]; | 
|  | let mut opt_jobs = vec![]; | 
|  |  | 
|  | info!("checking which modules can be-reused and which have to be re-optimized."); | 
|  | for (module_index, module_name) in shared.module_names.iter().enumerate() { | 
|  | let module_name = module_name_to_str(module_name); | 
|  | if let (Some(prev_key_map), true) = | 
|  | (prev_key_map.as_ref(), green_modules.contains_key(module_name)) | 
|  | { | 
|  | assert!(cgcx.incr_comp_session_dir.is_some()); | 
|  |  | 
|  | // If a module exists in both the current and the previous session, | 
|  | // and has the same LTO cache key in both sessions, then we can re-use it | 
|  | if prev_key_map.keys.get(module_name) == curr_key_map.keys.get(module_name) { | 
|  | let work_product = green_modules[module_name].clone(); | 
|  | copy_jobs.push(work_product); | 
|  | info!(" - {}: re-used", module_name); | 
|  | assert!(cgcx.incr_comp_session_dir.is_some()); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | info!(" - {}: re-compiled", module_name); | 
|  | opt_jobs.push(LtoModuleCodegen::Thin(ThinModule { | 
|  | shared: Arc::clone(&shared), | 
|  | idx: module_index, | 
|  | })); | 
|  | } | 
|  |  | 
|  | // Save the current ThinLTO import information for the next compilation | 
|  | // session, overwriting the previous serialized data (if any). | 
|  | if let Some(path) = key_map_path { | 
|  | if let Err(err) = curr_key_map.save_to_file(&path) { | 
|  | return Err(write::llvm_err(dcx, LlvmError::WriteThinLtoKey { err })); | 
|  | } | 
|  | } | 
|  |  | 
|  | Ok((opt_jobs, copy_jobs)) | 
|  | } | 
|  | } | 
|  |  | 
|  | fn enable_autodiff_settings(ad: &[config::AutoDiff]) { | 
|  | for val in ad { | 
|  | // We intentionally don't use a wildcard, to not forget handling anything new. | 
|  | match val { | 
|  | config::AutoDiff::PrintPerf => { | 
|  | llvm::set_print_perf(true); | 
|  | } | 
|  | config::AutoDiff::PrintAA => { | 
|  | llvm::set_print_activity(true); | 
|  | } | 
|  | config::AutoDiff::PrintTA => { | 
|  | llvm::set_print_type(true); | 
|  | } | 
|  | config::AutoDiff::PrintTAFn(fun) => { | 
|  | llvm::set_print_type(true); // Enable general type printing | 
|  | llvm::set_print_type_fun(&fun); // Set specific function to analyze | 
|  | } | 
|  | config::AutoDiff::Inline => { | 
|  | llvm::set_inline(true); | 
|  | } | 
|  | config::AutoDiff::LooseTypes => { | 
|  | llvm::set_loose_types(true); | 
|  | } | 
|  | config::AutoDiff::PrintSteps => { | 
|  | llvm::set_print(true); | 
|  | } | 
|  | // We handle this in the PassWrapper.cpp | 
|  | config::AutoDiff::PrintPasses => {} | 
|  | // We handle this in the PassWrapper.cpp | 
|  | config::AutoDiff::PrintModBefore => {} | 
|  | // We handle this in the PassWrapper.cpp | 
|  | config::AutoDiff::PrintModAfter => {} | 
|  | // We handle this in the PassWrapper.cpp | 
|  | config::AutoDiff::PrintModFinal => {} | 
|  | // This is required and already checked | 
|  | config::AutoDiff::Enable => {} | 
|  | // We handle this below | 
|  | config::AutoDiff::NoPostopt => {} | 
|  | } | 
|  | } | 
|  | // This helps with handling enums for now. | 
|  | llvm::set_strict_aliasing(false); | 
|  | // FIXME(ZuseZ4): Test this, since it was added a long time ago. | 
|  | llvm::set_rust_rules(true); | 
|  | } | 
|  |  | 
|  | pub(crate) fn run_pass_manager( | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | dcx: DiagCtxtHandle<'_>, | 
|  | module: &mut ModuleCodegen<ModuleLlvm>, | 
|  | thin: bool, | 
|  | ) -> Result<(), FatalError> { | 
|  | let _timer = cgcx.prof.generic_activity_with_arg("LLVM_lto_optimize", &*module.name); | 
|  | let config = cgcx.config(module.kind); | 
|  |  | 
|  | // Now we have one massive module inside of llmod. Time to run the | 
|  | // LTO-specific optimization passes that LLVM provides. | 
|  | // | 
|  | // This code is based off the code found in llvm's LTO code generator: | 
|  | //      llvm/lib/LTO/LTOCodeGenerator.cpp | 
|  | debug!("running the pass manager"); | 
|  | let opt_stage = if thin { llvm::OptStage::ThinLTO } else { llvm::OptStage::FatLTO }; | 
|  | let opt_level = config.opt_level.unwrap_or(config::OptLevel::No); | 
|  |  | 
|  | // The PostAD behavior is the same that we would have if no autodiff was used. | 
|  | // It will run the default optimization pipeline. If AD is enabled we select | 
|  | // the DuringAD stage, which will disable vectorization and loop unrolling, and | 
|  | // schedule two autodiff optimization + differentiation passes. | 
|  | // We then run the llvm_optimize function a second time, to optimize the code which we generated | 
|  | // in the enzyme differentiation pass. | 
|  | let enable_ad = config.autodiff.contains(&config::AutoDiff::Enable); | 
|  | let stage = if thin { | 
|  | write::AutodiffStage::PreAD | 
|  | } else { | 
|  | if enable_ad { write::AutodiffStage::DuringAD } else { write::AutodiffStage::PostAD } | 
|  | }; | 
|  |  | 
|  | if enable_ad { | 
|  | enable_autodiff_settings(&config.autodiff); | 
|  | } | 
|  |  | 
|  | unsafe { | 
|  | write::llvm_optimize(cgcx, dcx, module, None, config, opt_level, opt_stage, stage)?; | 
|  | } | 
|  |  | 
|  | if cfg!(llvm_enzyme) && enable_ad && !thin { | 
|  | let cx = | 
|  | SimpleCx::new(module.module_llvm.llmod(), &module.module_llvm.llcx, cgcx.pointer_size); | 
|  |  | 
|  | for function in cx.get_functions() { | 
|  | let enzyme_marker = "enzyme_marker"; | 
|  | if attributes::has_string_attr(function, enzyme_marker) { | 
|  | // Sanity check: Ensure 'noinline' is present before replacing it. | 
|  | assert!( | 
|  | !attributes::has_attr(function, Function, llvm::AttributeKind::NoInline), | 
|  | "Expected __enzyme function to have 'noinline' before adding 'alwaysinline'" | 
|  | ); | 
|  |  | 
|  | attributes::remove_from_llfn(function, Function, llvm::AttributeKind::NoInline); | 
|  | attributes::remove_string_attr_from_llfn(function, enzyme_marker); | 
|  |  | 
|  | assert!( | 
|  | !attributes::has_string_attr(function, enzyme_marker), | 
|  | "Expected function to not have 'enzyme_marker'" | 
|  | ); | 
|  |  | 
|  | let always_inline = llvm::AttributeKind::AlwaysInline.create_attr(cx.llcx); | 
|  | attributes::apply_to_llfn(function, Function, &[always_inline]); | 
|  | } | 
|  | } | 
|  |  | 
|  | let opt_stage = llvm::OptStage::FatLTO; | 
|  | let stage = write::AutodiffStage::PostAD; | 
|  | if !config.autodiff.contains(&config::AutoDiff::NoPostopt) { | 
|  | unsafe { | 
|  | write::llvm_optimize(cgcx, dcx, module, None, config, opt_level, opt_stage, stage)?; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This is the final IR, so people should be able to inspect the optimized autodiff output, | 
|  | // for manual inspection. | 
|  | if config.autodiff.contains(&config::AutoDiff::PrintModFinal) { | 
|  | unsafe { llvm::LLVMDumpModule(module.module_llvm.llmod()) }; | 
|  | } | 
|  | } | 
|  |  | 
|  | debug!("lto done"); | 
|  | Ok(()) | 
|  | } | 
|  |  | 
|  | pub struct ModuleBuffer(&'static mut llvm::ModuleBuffer); | 
|  |  | 
|  | unsafe impl Send for ModuleBuffer {} | 
|  | unsafe impl Sync for ModuleBuffer {} | 
|  |  | 
|  | impl ModuleBuffer { | 
|  | pub(crate) fn new(m: &llvm::Module) -> ModuleBuffer { | 
|  | ModuleBuffer(unsafe { llvm::LLVMRustModuleBufferCreate(m) }) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl ModuleBufferMethods for ModuleBuffer { | 
|  | fn data(&self) -> &[u8] { | 
|  | unsafe { | 
|  | let ptr = llvm::LLVMRustModuleBufferPtr(self.0); | 
|  | let len = llvm::LLVMRustModuleBufferLen(self.0); | 
|  | slice::from_raw_parts(ptr, len) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Drop for ModuleBuffer { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | llvm::LLVMRustModuleBufferFree(&mut *(self.0 as *mut _)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub struct ThinData(&'static mut llvm::ThinLTOData); | 
|  |  | 
|  | unsafe impl Send for ThinData {} | 
|  | unsafe impl Sync for ThinData {} | 
|  |  | 
|  | impl Drop for ThinData { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | llvm::LLVMRustFreeThinLTOData(&mut *(self.0 as *mut _)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub struct ThinBuffer(&'static mut llvm::ThinLTOBuffer); | 
|  |  | 
|  | unsafe impl Send for ThinBuffer {} | 
|  | unsafe impl Sync for ThinBuffer {} | 
|  |  | 
|  | impl ThinBuffer { | 
|  | pub(crate) fn new(m: &llvm::Module, is_thin: bool, emit_summary: bool) -> ThinBuffer { | 
|  | unsafe { | 
|  | let buffer = llvm::LLVMRustThinLTOBufferCreate(m, is_thin, emit_summary); | 
|  | ThinBuffer(buffer) | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) unsafe fn from_raw_ptr(ptr: *mut llvm::ThinLTOBuffer) -> ThinBuffer { | 
|  | let mut ptr = NonNull::new(ptr).unwrap(); | 
|  | ThinBuffer(unsafe { ptr.as_mut() }) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl ThinBufferMethods for ThinBuffer { | 
|  | fn data(&self) -> &[u8] { | 
|  | unsafe { | 
|  | let ptr = llvm::LLVMRustThinLTOBufferPtr(self.0) as *const _; | 
|  | let len = llvm::LLVMRustThinLTOBufferLen(self.0); | 
|  | slice::from_raw_parts(ptr, len) | 
|  | } | 
|  | } | 
|  |  | 
|  | fn thin_link_data(&self) -> &[u8] { | 
|  | unsafe { | 
|  | let ptr = llvm::LLVMRustThinLTOBufferThinLinkDataPtr(self.0) as *const _; | 
|  | let len = llvm::LLVMRustThinLTOBufferThinLinkDataLen(self.0); | 
|  | slice::from_raw_parts(ptr, len) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Drop for ThinBuffer { | 
|  | fn drop(&mut self) { | 
|  | unsafe { | 
|  | llvm::LLVMRustThinLTOBufferFree(&mut *(self.0 as *mut _)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub(crate) fn optimize_thin_module( | 
|  | thin_module: ThinModule<LlvmCodegenBackend>, | 
|  | cgcx: &CodegenContext<LlvmCodegenBackend>, | 
|  | ) -> Result<ModuleCodegen<ModuleLlvm>, FatalError> { | 
|  | let dcx = cgcx.create_dcx(); | 
|  | let dcx = dcx.handle(); | 
|  |  | 
|  | let module_name = &thin_module.shared.module_names[thin_module.idx]; | 
|  |  | 
|  | // Right now the implementation we've got only works over serialized | 
|  | // modules, so we create a fresh new LLVM context and parse the module | 
|  | // into that context. One day, however, we may do this for upstream | 
|  | // crates but for locally codegened modules we may be able to reuse | 
|  | // that LLVM Context and Module. | 
|  | let module_llvm = ModuleLlvm::parse(cgcx, module_name, thin_module.data(), dcx)?; | 
|  | let mut module = ModuleCodegen::new_regular(thin_module.name(), module_llvm); | 
|  | // Given that the newly created module lacks a thinlto buffer for embedding, we need to re-add it here. | 
|  | if cgcx.config(ModuleKind::Regular).embed_bitcode() { | 
|  | module.thin_lto_buffer = Some(thin_module.data().to_vec()); | 
|  | } | 
|  | { | 
|  | let target = &*module.module_llvm.tm; | 
|  | let llmod = module.module_llvm.llmod(); | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-input"); | 
|  |  | 
|  | // Up next comes the per-module local analyses that we do for Thin LTO. | 
|  | // Each of these functions is basically copied from the LLVM | 
|  | // implementation and then tailored to suit this implementation. Ideally | 
|  | // each of these would be supported by upstream LLVM but that's perhaps | 
|  | // a patch for another day! | 
|  | // | 
|  | // You can find some more comments about these functions in the LLVM | 
|  | // bindings we've got (currently `PassWrapper.cpp`) | 
|  | { | 
|  | let _timer = | 
|  | cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_rename", thin_module.name()); | 
|  | unsafe { | 
|  | llvm::LLVMRustPrepareThinLTORename(thin_module.shared.data.0, llmod, target.raw()) | 
|  | }; | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-after-rename"); | 
|  | } | 
|  |  | 
|  | { | 
|  | let _timer = cgcx | 
|  | .prof | 
|  | .generic_activity_with_arg("LLVM_thin_lto_resolve_weak", thin_module.name()); | 
|  | if unsafe { !llvm::LLVMRustPrepareThinLTOResolveWeak(thin_module.shared.data.0, llmod) } | 
|  | { | 
|  | return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); | 
|  | } | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-after-resolve"); | 
|  | } | 
|  |  | 
|  | { | 
|  | let _timer = cgcx | 
|  | .prof | 
|  | .generic_activity_with_arg("LLVM_thin_lto_internalize", thin_module.name()); | 
|  | if unsafe { !llvm::LLVMRustPrepareThinLTOInternalize(thin_module.shared.data.0, llmod) } | 
|  | { | 
|  | return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); | 
|  | } | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-after-internalize"); | 
|  | } | 
|  |  | 
|  | { | 
|  | let _timer = | 
|  | cgcx.prof.generic_activity_with_arg("LLVM_thin_lto_import", thin_module.name()); | 
|  | if unsafe { | 
|  | !llvm::LLVMRustPrepareThinLTOImport(thin_module.shared.data.0, llmod, target.raw()) | 
|  | } { | 
|  | return Err(write::llvm_err(dcx, LlvmError::PrepareThinLtoModule)); | 
|  | } | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-after-import"); | 
|  | } | 
|  |  | 
|  | // Alright now that we've done everything related to the ThinLTO | 
|  | // analysis it's time to run some optimizations! Here we use the same | 
|  | // `run_pass_manager` as the "fat" LTO above except that we tell it to | 
|  | // populate a thin-specific pass manager, which presumably LLVM treats a | 
|  | // little differently. | 
|  | { | 
|  | info!("running thin lto passes over {}", module.name); | 
|  | run_pass_manager(cgcx, dcx, &mut module, true)?; | 
|  | save_temp_bitcode(cgcx, &module, "thin-lto-after-pm"); | 
|  | } | 
|  | } | 
|  | Ok(module) | 
|  | } | 
|  |  | 
|  | /// Maps LLVM module identifiers to their corresponding LLVM LTO cache keys | 
|  | #[derive(Debug, Default)] | 
|  | struct ThinLTOKeysMap { | 
|  | // key = llvm name of importing module, value = LLVM cache key | 
|  | keys: BTreeMap<String, String>, | 
|  | } | 
|  |  | 
|  | impl ThinLTOKeysMap { | 
|  | fn save_to_file(&self, path: &Path) -> io::Result<()> { | 
|  | use std::io::Write; | 
|  | let mut writer = File::create_buffered(path)?; | 
|  | // The entries are loaded back into a hash map in `load_from_file()`, so | 
|  | // the order in which we write them to file here does not matter. | 
|  | for (module, key) in &self.keys { | 
|  | writeln!(writer, "{module} {key}")?; | 
|  | } | 
|  | Ok(()) | 
|  | } | 
|  |  | 
|  | fn load_from_file(path: &Path) -> io::Result<Self> { | 
|  | use std::io::BufRead; | 
|  | let mut keys = BTreeMap::default(); | 
|  | let file = File::open_buffered(path)?; | 
|  | for line in file.lines() { | 
|  | let line = line?; | 
|  | let mut split = line.split(' '); | 
|  | let module = split.next().unwrap(); | 
|  | let key = split.next().unwrap(); | 
|  | assert_eq!(split.next(), None, "Expected two space-separated values, found {line:?}"); | 
|  | keys.insert(module.to_string(), key.to_string()); | 
|  | } | 
|  | Ok(Self { keys }) | 
|  | } | 
|  |  | 
|  | fn from_thin_lto_modules( | 
|  | data: &ThinData, | 
|  | modules: &[llvm::ThinLTOModule], | 
|  | names: &[CString], | 
|  | ) -> Self { | 
|  | let keys = iter::zip(modules, names) | 
|  | .map(|(module, name)| { | 
|  | let key = build_string(|rust_str| unsafe { | 
|  | llvm::LLVMRustComputeLTOCacheKey(rust_str, module.identifier, data.0); | 
|  | }) | 
|  | .expect("Invalid ThinLTO module key"); | 
|  | (module_name_to_str(name).to_string(), key) | 
|  | }) | 
|  | .collect(); | 
|  | Self { keys } | 
|  | } | 
|  | } | 
|  |  | 
|  | fn module_name_to_str(c_str: &CStr) -> &str { | 
|  | c_str.to_str().unwrap_or_else(|e| { | 
|  | bug!("Encountered non-utf8 LLVM module name `{}`: {}", c_str.to_string_lossy(), e) | 
|  | }) | 
|  | } | 
|  |  | 
|  | pub(crate) fn parse_module<'a>( | 
|  | cx: &'a llvm::Context, | 
|  | name: &CStr, | 
|  | data: &[u8], | 
|  | dcx: DiagCtxtHandle<'_>, | 
|  | ) -> Result<&'a llvm::Module, FatalError> { | 
|  | unsafe { | 
|  | llvm::LLVMRustParseBitcodeForLTO(cx, data.as_ptr(), data.len(), name.as_ptr()) | 
|  | .ok_or_else(|| write::llvm_err(dcx, LlvmError::ParseBitcode)) | 
|  | } | 
|  | } |