blob: 3fe4b08d459e0bbbcb3327d34c4d9dffff2c3adf [file] [log] [blame]
use super::*;
use crate::cmp::Ordering::{Equal, Greater, Less};
use crate::intrinsics::const_eval_select;
use crate::marker::PointeeSized;
use crate::mem::{self, SizedTypeProperties};
use crate::slice::{self, SliceIndex};
impl<T: PointeeSized> *mut T {
#[doc = include_str!("docs/is_null.md")]
///
/// # Examples
///
/// ```
/// let mut s = [1, 2, 3];
/// let ptr: *mut u32 = s.as_mut_ptr();
/// assert!(!ptr.is_null());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_ptr_is_null", since = "1.84.0")]
#[rustc_diagnostic_item = "ptr_is_null"]
#[inline]
pub const fn is_null(self) -> bool {
self.cast_const().is_null()
}
/// Casts to a pointer of another type.
#[stable(feature = "ptr_cast", since = "1.38.0")]
#[rustc_const_stable(feature = "const_ptr_cast", since = "1.38.0")]
#[rustc_diagnostic_item = "ptr_cast"]
#[inline(always)]
pub const fn cast<U>(self) -> *mut U {
self as _
}
/// Try to cast to a pointer of another type by checking alignment.
///
/// If the pointer is properly aligned to the target type, it will be
/// cast to the target type. Otherwise, `None` is returned.
///
/// # Examples
///
/// ```rust
/// #![feature(pointer_try_cast_aligned)]
///
/// let mut x = 0u64;
///
/// let aligned: *mut u64 = &mut x;
/// let unaligned = unsafe { aligned.byte_add(1) };
///
/// assert!(aligned.try_cast_aligned::<u32>().is_some());
/// assert!(unaligned.try_cast_aligned::<u32>().is_none());
/// ```
#[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub fn try_cast_aligned<U>(self) -> Option<*mut U> {
if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
}
/// Uses the address value in a new pointer of another type.
///
/// This operation will ignore the address part of its `meta` operand and discard existing
/// metadata of `self`. For pointers to a sized types (thin pointers), this has the same effect
/// as a simple cast. For pointers to an unsized type (fat pointers) this recombines the address
/// with new metadata such as slice lengths or `dyn`-vtable.
///
/// The resulting pointer will have provenance of `self`. This operation is semantically the
/// same as creating a new pointer with the data pointer value of `self` but the metadata of
/// `meta`, being fat or thin depending on the `meta` operand.
///
/// # Examples
///
/// This function is primarily useful for enabling pointer arithmetic on potentially fat
/// pointers. The pointer is cast to a sized pointee to utilize offset operations and then
/// recombined with its own original metadata.
///
/// ```
/// #![feature(set_ptr_value)]
/// # use core::fmt::Debug;
/// let mut arr: [i32; 3] = [1, 2, 3];
/// let mut ptr = arr.as_mut_ptr() as *mut dyn Debug;
/// let thin = ptr as *mut u8;
/// unsafe {
/// ptr = thin.add(8).with_metadata_of(ptr);
/// # assert_eq!(*(ptr as *mut i32), 3);
/// println!("{:?}", &*ptr); // will print "3"
/// }
/// ```
///
/// # *Incorrect* usage
///
/// The provenance from pointers is *not* combined. The result must only be used to refer to the
/// address allowed by `self`.
///
/// ```rust,no_run
/// #![feature(set_ptr_value)]
/// let mut x = 0u32;
/// let mut y = 1u32;
///
/// let x = (&mut x) as *mut u32;
/// let y = (&mut y) as *mut u32;
///
/// let offset = (x as usize - y as usize) / 4;
/// let bad = x.wrapping_add(offset).with_metadata_of(y);
///
/// // This dereference is UB. The pointer only has provenance for `x` but points to `y`.
/// println!("{:?}", unsafe { &*bad });
#[unstable(feature = "set_ptr_value", issue = "75091")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[inline]
pub const fn with_metadata_of<U>(self, meta: *const U) -> *mut U
where
U: PointeeSized,
{
from_raw_parts_mut::<U>(self as *mut (), metadata(meta))
}
/// Changes constness without changing the type.
///
/// This is a bit safer than `as` because it wouldn't silently change the type if the code is
/// refactored.
///
/// While not strictly required (`*mut T` coerces to `*const T`), this is provided for symmetry
/// with [`cast_mut`] on `*const T` and may have documentation value if used instead of implicit
/// coercion.
///
/// [`cast_mut`]: pointer::cast_mut
#[stable(feature = "ptr_const_cast", since = "1.65.0")]
#[rustc_const_stable(feature = "ptr_const_cast", since = "1.65.0")]
#[rustc_diagnostic_item = "ptr_cast_const"]
#[inline(always)]
pub const fn cast_const(self) -> *const T {
self as _
}
/// Gets the "address" portion of the pointer.
///
/// This is similar to `self as usize`, except that the [provenance][crate::ptr#provenance] of
/// the pointer is discarded and not [exposed][crate::ptr#exposed-provenance]. This means that
/// casting the returned address back to a pointer yields a [pointer without
/// provenance][without_provenance_mut], which is undefined behavior to dereference. To properly
/// restore the lost information and obtain a dereferenceable pointer, use
/// [`with_addr`][pointer::with_addr] or [`map_addr`][pointer::map_addr].
///
/// If using those APIs is not possible because there is no way to preserve a pointer with the
/// required provenance, then Strict Provenance might not be for you. Use pointer-integer casts
/// or [`expose_provenance`][pointer::expose_provenance] and [`with_exposed_provenance`][with_exposed_provenance]
/// instead. However, note that this makes your code less portable and less amenable to tools
/// that check for compliance with the Rust memory model.
///
/// On most platforms this will produce a value with the same bytes as the original
/// pointer, because all the bytes are dedicated to describing the address.
/// Platforms which need to store additional information in the pointer may
/// perform a change of representation to produce a value containing only the address
/// portion of the pointer. What that means is up to the platform to define.
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline(always)]
#[stable(feature = "strict_provenance", since = "1.84.0")]
pub fn addr(self) -> usize {
// A pointer-to-integer transmute currently has exactly the right semantics: it returns the
// address without exposing the provenance. Note that this is *not* a stable guarantee about
// transmute semantics, it relies on sysroot crates having special status.
// SAFETY: Pointer-to-integer transmutes are valid (if you are okay with losing the
// provenance).
unsafe { mem::transmute(self.cast::<()>()) }
}
/// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
/// [`with_exposed_provenance_mut`] and returns the "address" portion.
///
/// This is equivalent to `self as usize`, which semantically discards provenance information.
/// Furthermore, this (like the `as` cast) has the implicit side-effect of marking the
/// provenance as 'exposed', so on platforms that support it you can later call
/// [`with_exposed_provenance_mut`] to reconstitute the original pointer including its provenance.
///
/// Due to its inherent ambiguity, [`with_exposed_provenance_mut`] may not be supported by tools
/// that help you to stay conformant with the Rust memory model. It is recommended to use
/// [Strict Provenance][crate::ptr#strict-provenance] APIs such as [`with_addr`][pointer::with_addr]
/// wherever possible, in which case [`addr`][pointer::addr] should be used instead of `expose_provenance`.
///
/// On most platforms this will produce a value with the same bytes as the original pointer,
/// because all the bytes are dedicated to describing the address. Platforms which need to store
/// additional information in the pointer may not support this operation, since the 'expose'
/// side-effect which is required for [`with_exposed_provenance_mut`] to work is typically not
/// available.
///
/// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
///
/// [`with_exposed_provenance_mut`]: with_exposed_provenance_mut
#[inline(always)]
#[stable(feature = "exposed_provenance", since = "1.84.0")]
pub fn expose_provenance(self) -> usize {
self.cast::<()>() as usize
}
/// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
/// `self`.
///
/// This is similar to a `addr as *mut T` cast, but copies
/// the *provenance* of `self` to the new pointer.
/// This avoids the inherent ambiguity of the unary cast.
///
/// This is equivalent to using [`wrapping_offset`][pointer::wrapping_offset] to offset
/// `self` to the given address, and therefore has all the same capabilities and restrictions.
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline]
#[stable(feature = "strict_provenance", since = "1.84.0")]
pub fn with_addr(self, addr: usize) -> Self {
// This should probably be an intrinsic to avoid doing any sort of arithmetic, but
// meanwhile, we can implement it with `wrapping_offset`, which preserves the pointer's
// provenance.
let self_addr = self.addr() as isize;
let dest_addr = addr as isize;
let offset = dest_addr.wrapping_sub(self_addr);
self.wrapping_byte_offset(offset)
}
/// Creates a new pointer by mapping `self`'s address to a new one, preserving the original
/// pointer's [provenance][crate::ptr#provenance].
///
/// This is a convenience for [`with_addr`][pointer::with_addr], see that method for details.
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline]
#[stable(feature = "strict_provenance", since = "1.84.0")]
pub fn map_addr(self, f: impl FnOnce(usize) -> usize) -> Self {
self.with_addr(f(self.addr()))
}
/// Decompose a (possibly wide) pointer into its data pointer and metadata components.
///
/// The pointer can be later reconstructed with [`from_raw_parts_mut`].
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[inline]
pub const fn to_raw_parts(self) -> (*mut (), <T as super::Pointee>::Metadata) {
(self.cast(), super::metadata(self))
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// For the mutable counterpart see [`as_mut`].
///
/// [`as_uninit_ref`]: pointer#method.as_uninit_ref-1
/// [`as_mut`]: #method.as_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Panics during const evaluation
///
/// This method will panic during const evaluation if the pointer cannot be
/// determined to be null or not. See [`is_null`] for more information.
///
/// [`is_null`]: #method.is_null-1
///
/// # Examples
///
/// ```
/// let ptr: *mut u8 = &mut 10u8 as *mut u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_ref() {
/// println!("We got back the value: {val_back}!");
/// }
/// }
/// ```
///
/// # Null-unchecked version
///
/// If you are sure the pointer can never be null and are looking for some kind of
/// `as_ref_unchecked` that returns the `&T` instead of `Option<&T>`, know that you can
/// dereference the pointer directly.
///
/// ```
/// let ptr: *mut u8 = &mut 10u8 as *mut u8;
///
/// unsafe {
/// let val_back = &*ptr;
/// println!("We got back the value: {val_back}!");
/// }
/// ```
#[stable(feature = "ptr_as_ref", since = "1.9.0")]
#[rustc_const_stable(feature = "const_ptr_is_null", since = "1.84.0")]
#[inline]
pub const unsafe fn as_ref<'a>(self) -> Option<&'a T> {
// SAFETY: the caller must guarantee that `self` is valid for a
// reference if it isn't null.
if self.is_null() { None } else { unsafe { Some(&*self) } }
}
/// Returns a shared reference to the value behind the pointer.
/// If the pointer may be null or the value may be uninitialized, [`as_uninit_ref`] must be used instead.
/// If the pointer may be null, but the value is known to have been initialized, [`as_ref`] must be used instead.
///
/// For the mutable counterpart see [`as_mut_unchecked`].
///
/// [`as_ref`]: #method.as_ref
/// [`as_uninit_ref`]: #method.as_uninit_ref
/// [`as_mut_unchecked`]: #method.as_mut_unchecked
///
/// # Safety
///
/// When calling this method, you have to ensure that the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// #![feature(ptr_as_ref_unchecked)]
/// let ptr: *mut u8 = &mut 10u8 as *mut u8;
///
/// unsafe {
/// println!("We got back the value: {}!", ptr.as_ref_unchecked());
/// }
/// ```
// FIXME: mention it in the docs for `as_ref` and `as_uninit_ref` once stabilized.
#[unstable(feature = "ptr_as_ref_unchecked", issue = "122034")]
#[inline]
#[must_use]
pub const unsafe fn as_ref_unchecked<'a>(self) -> &'a T {
// SAFETY: the caller must guarantee that `self` is valid for a reference
unsafe { &*self }
}
/// Returns `None` if the pointer is null, or else returns a shared reference to
/// the value wrapped in `Some`. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_mut`].
///
/// [`as_ref`]: pointer#method.as_ref-1
/// [`as_uninit_mut`]: #method.as_uninit_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
/// Note that because the created reference is to `MaybeUninit<T>`, the
/// source pointer can point to uninitialized memory.
///
/// # Panics during const evaluation
///
/// This method will panic during const evaluation if the pointer cannot be
/// determined to be null or not. See [`is_null`] for more information.
///
/// [`is_null`]: #method.is_null-1
///
/// # Examples
///
/// ```
/// #![feature(ptr_as_uninit)]
///
/// let ptr: *mut u8 = &mut 10u8 as *mut u8;
///
/// unsafe {
/// if let Some(val_back) = ptr.as_uninit_ref() {
/// println!("We got back the value: {}!", val_back.assume_init());
/// }
/// }
/// ```
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_ref<'a>(self) -> Option<&'a MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &*(self as *const MaybeUninit<T>) }) }
}
#[doc = include_str!("./docs/offset.md")]
///
/// # Examples
///
/// ```
/// let mut s = [1, 2, 3];
/// let ptr: *mut u32 = s.as_mut_ptr();
///
/// unsafe {
/// assert_eq!(2, *ptr.offset(1));
/// assert_eq!(3, *ptr.offset(2));
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn offset(self, count: isize) -> *mut T
where
T: Sized,
{
#[inline]
#[rustc_allow_const_fn_unstable(const_eval_select)]
const fn runtime_offset_nowrap(this: *const (), count: isize, size: usize) -> bool {
// We can use const_eval_select here because this is only for UB checks.
const_eval_select!(
@capture { this: *const (), count: isize, size: usize } -> bool:
if const {
true
} else {
// `size` is the size of a Rust type, so we know that
// `size <= isize::MAX` and thus `as` cast here is not lossy.
let Some(byte_offset) = count.checked_mul(size as isize) else {
return false;
};
let (_, overflow) = this.addr().overflowing_add_signed(byte_offset);
!overflow
}
)
}
ub_checks::assert_unsafe_precondition!(
check_language_ub,
"ptr::offset requires the address calculation to not overflow",
(
this: *const () = self as *const (),
count: isize = count,
size: usize = size_of::<T>(),
) => runtime_offset_nowrap(this, count, size)
);
// SAFETY: the caller must uphold the safety contract for `offset`.
// The obtained pointer is valid for writes since the caller must
// guarantee that it points to the same allocation as `self`.
unsafe { intrinsics::offset(self, count) }
}
/// Adds a signed offset in bytes to a pointer.
///
/// `count` is in units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [offset][pointer::offset] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[track_caller]
pub const unsafe fn byte_offset(self, count: isize) -> Self {
// SAFETY: the caller must uphold the safety contract for `offset`.
unsafe { self.cast::<u8>().offset(count).with_metadata_of(self) }
}
/// Adds a signed offset to a pointer using wrapping arithmetic.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// This operation itself is always safe, but using the resulting pointer is not.
///
/// The resulting pointer "remembers" the [allocation] that `self` points to
/// (this is called "[Provenance](ptr/index.html#provenance)").
/// The pointer must not be used to read or write other allocations.
///
/// In other words, `let z = x.wrapping_offset((y as isize) - (x as isize))` does *not* make `z`
/// the same as `y` even if we assume `T` has size `1` and there is no overflow: `z` is still
/// attached to the object `x` is attached to, and dereferencing it is Undefined Behavior unless
/// `x` and `y` point into the same allocation.
///
/// Compared to [`offset`], this method basically delays the requirement of staying within the
/// same allocation: [`offset`] is immediate Undefined Behavior when crossing object
/// boundaries; `wrapping_offset` produces a pointer but still leads to Undefined Behavior if a
/// pointer is dereferenced when it is out-of-bounds of the object it is attached to. [`offset`]
/// can be optimized better and is thus preferable in performance-sensitive code.
///
/// The delayed check only considers the value of the pointer that was dereferenced, not the
/// intermediate values used during the computation of the final result. For example,
/// `x.wrapping_offset(o).wrapping_offset(o.wrapping_neg())` is always the same as `x`. In other
/// words, leaving the allocation and then re-entering it later is permitted.
///
/// [`offset`]: #method.offset
/// [allocation]: crate::ptr#allocation
///
/// # Examples
///
/// ```
/// // Iterate using a raw pointer in increments of two elements
/// let mut data = [1u8, 2, 3, 4, 5];
/// let mut ptr: *mut u8 = data.as_mut_ptr();
/// let step = 2;
/// let end_rounded_up = ptr.wrapping_offset(6);
///
/// while ptr != end_rounded_up {
/// unsafe {
/// *ptr = 0;
/// }
/// ptr = ptr.wrapping_offset(step);
/// }
/// assert_eq!(&data, &[0, 2, 0, 4, 0]);
/// ```
#[stable(feature = "ptr_wrapping_offset", since = "1.16.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
pub const fn wrapping_offset(self, count: isize) -> *mut T
where
T: Sized,
{
// SAFETY: the `arith_offset` intrinsic has no prerequisites to be called.
unsafe { intrinsics::arith_offset(self, count) as *mut T }
}
/// Adds a signed offset in bytes to a pointer using wrapping arithmetic.
///
/// `count` is in units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [wrapping_offset][pointer::wrapping_offset] on it. See that method
/// for documentation.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
pub const fn wrapping_byte_offset(self, count: isize) -> Self {
self.cast::<u8>().wrapping_offset(count).with_metadata_of(self)
}
/// Masks out bits of the pointer according to a mask.
///
/// This is convenience for `ptr.map_addr(|a| a & mask)`.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
///
/// ## Examples
///
/// ```
/// #![feature(ptr_mask)]
/// let mut v = 17_u32;
/// let ptr: *mut u32 = &mut v;
///
/// // `u32` is 4 bytes aligned,
/// // which means that lower 2 bits are always 0.
/// let tag_mask = 0b11;
/// let ptr_mask = !tag_mask;
///
/// // We can store something in these lower bits
/// let tagged_ptr = ptr.map_addr(|a| a | 0b10);
///
/// // Get the "tag" back
/// let tag = tagged_ptr.addr() & tag_mask;
/// assert_eq!(tag, 0b10);
///
/// // Note that `tagged_ptr` is unaligned, it's UB to read from/write to it.
/// // To get original pointer `mask` can be used:
/// let masked_ptr = tagged_ptr.mask(ptr_mask);
/// assert_eq!(unsafe { *masked_ptr }, 17);
///
/// unsafe { *masked_ptr = 0 };
/// assert_eq!(v, 0);
/// ```
#[unstable(feature = "ptr_mask", issue = "98290")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[inline(always)]
pub fn mask(self, mask: usize) -> *mut T {
intrinsics::ptr_mask(self.cast::<()>(), mask).cast_mut().with_metadata_of(self)
}
/// Returns `None` if the pointer is null, or else returns a unique reference to
/// the value wrapped in `Some`. If the value may be uninitialized, [`as_uninit_mut`]
/// must be used instead.
///
/// For the shared counterpart see [`as_ref`].
///
/// [`as_uninit_mut`]: #method.as_uninit_mut
/// [`as_ref`]: pointer#method.as_ref-1
///
/// # Safety
///
/// When calling this method, you have to ensure that *either*
/// the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Panics during const evaluation
///
/// This method will panic during const evaluation if the pointer cannot be
/// determined to be null or not. See [`is_null`] for more information.
///
/// [`is_null`]: #method.is_null-1
///
/// # Examples
///
/// ```
/// let mut s = [1, 2, 3];
/// let ptr: *mut u32 = s.as_mut_ptr();
/// let first_value = unsafe { ptr.as_mut().unwrap() };
/// *first_value = 4;
/// # assert_eq!(s, [4, 2, 3]);
/// println!("{s:?}"); // It'll print: "[4, 2, 3]".
/// ```
///
/// # Null-unchecked version
///
/// If you are sure the pointer can never be null and are looking for some kind of
/// `as_mut_unchecked` that returns the `&mut T` instead of `Option<&mut T>`, know that
/// you can dereference the pointer directly.
///
/// ```
/// let mut s = [1, 2, 3];
/// let ptr: *mut u32 = s.as_mut_ptr();
/// let first_value = unsafe { &mut *ptr };
/// *first_value = 4;
/// # assert_eq!(s, [4, 2, 3]);
/// println!("{s:?}"); // It'll print: "[4, 2, 3]".
/// ```
#[stable(feature = "ptr_as_ref", since = "1.9.0")]
#[rustc_const_stable(feature = "const_ptr_is_null", since = "1.84.0")]
#[inline]
pub const unsafe fn as_mut<'a>(self) -> Option<&'a mut T> {
// SAFETY: the caller must guarantee that `self` is be valid for
// a mutable reference if it isn't null.
if self.is_null() { None } else { unsafe { Some(&mut *self) } }
}
/// Returns a unique reference to the value behind the pointer.
/// If the pointer may be null or the value may be uninitialized, [`as_uninit_mut`] must be used instead.
/// If the pointer may be null, but the value is known to have been initialized, [`as_mut`] must be used instead.
///
/// For the shared counterpart see [`as_ref_unchecked`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_mut`]: #method.as_uninit_mut
/// [`as_ref_unchecked`]: #method.as_mut_unchecked
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// #![feature(ptr_as_ref_unchecked)]
/// let mut s = [1, 2, 3];
/// let ptr: *mut u32 = s.as_mut_ptr();
/// let first_value = unsafe { ptr.as_mut_unchecked() };
/// *first_value = 4;
/// # assert_eq!(s, [4, 2, 3]);
/// println!("{s:?}"); // It'll print: "[4, 2, 3]".
/// ```
// FIXME: mention it in the docs for `as_mut` and `as_uninit_mut` once stabilized.
#[unstable(feature = "ptr_as_ref_unchecked", issue = "122034")]
#[inline]
#[must_use]
pub const unsafe fn as_mut_unchecked<'a>(self) -> &'a mut T {
// SAFETY: the caller must guarantee that `self` is valid for a reference
unsafe { &mut *self }
}
/// Returns `None` if the pointer is null, or else returns a unique reference to
/// the value wrapped in `Some`. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_ref`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_ref`]: pointer#method.as_uninit_ref-1
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Panics during const evaluation
///
/// This method will panic during const evaluation if the pointer cannot be
/// determined to be null or not. See [`is_null`] for more information.
///
/// [`is_null`]: #method.is_null-1
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_mut<'a>(self) -> Option<&'a mut MaybeUninit<T>>
where
T: Sized,
{
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
if self.is_null() { None } else { Some(unsafe { &mut *(self as *mut MaybeUninit<T>) }) }
}
/// Returns whether two pointers are guaranteed to be equal.
///
/// At runtime this function behaves like `Some(self == other)`.
/// However, in some contexts (e.g., compile-time evaluation),
/// it is not always possible to determine equality of two pointers, so this function may
/// spuriously return `None` for pointers that later actually turn out to have its equality known.
/// But when it returns `Some`, the pointers' equality is guaranteed to be known.
///
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
/// version and unsafe code must not
/// rely on the result of this function for soundness. It is suggested to only use this function
/// for performance optimizations where spurious `None` return values by this function do not
/// affect the outcome, but just the performance.
/// The consequences of using this method to make runtime and compile-time code behave
/// differently have not been explored. This method should not be used to introduce such
/// differences, and it should also not be stabilized before we have a better understanding
/// of this issue.
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[inline]
pub const fn guaranteed_eq(self, other: *mut T) -> Option<bool>
where
T: Sized,
{
(self as *const T).guaranteed_eq(other as _)
}
/// Returns whether two pointers are guaranteed to be inequal.
///
/// At runtime this function behaves like `Some(self != other)`.
/// However, in some contexts (e.g., compile-time evaluation),
/// it is not always possible to determine inequality of two pointers, so this function may
/// spuriously return `None` for pointers that later actually turn out to have its inequality known.
/// But when it returns `Some`, the pointers' inequality is guaranteed to be known.
///
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
/// version and unsafe code must not
/// rely on the result of this function for soundness. It is suggested to only use this function
/// for performance optimizations where spurious `None` return values by this function do not
/// affect the outcome, but just the performance.
/// The consequences of using this method to make runtime and compile-time code behave
/// differently have not been explored. This method should not be used to introduce such
/// differences, and it should also not be stabilized before we have a better understanding
/// of this issue.
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
#[inline]
pub const fn guaranteed_ne(self, other: *mut T) -> Option<bool>
where
T: Sized,
{
(self as *const T).guaranteed_ne(other as _)
}
/// Calculates the distance between two pointers within the same allocation. The returned value is in
/// units of T: the distance in bytes divided by `size_of::<T>()`.
///
/// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
/// except that it has a lot more opportunities for UB, in exchange for the compiler
/// better understanding what you are doing.
///
/// The primary motivation of this method is for computing the `len` of an array/slice
/// of `T` that you are currently representing as a "start" and "end" pointer
/// (and "end" is "one past the end" of the array).
/// In that case, `end.offset_from(start)` gets you the length of the array.
///
/// All of the following safety requirements are trivially satisfied for this usecase.
///
/// [`offset`]: pointer#method.offset-1
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * `self` and `origin` must either
///
/// * point to the same address, or
/// * both be [derived from][crate::ptr#provenance] a pointer to the same [allocation], and the memory range between
/// the two pointers must be in bounds of that object. (See below for an example.)
///
/// * The distance between the pointers, in bytes, must be an exact multiple
/// of the size of `T`.
///
/// As a consequence, the absolute distance between the pointers, in bytes, computed on
/// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
/// implied by the in-bounds requirement, and the fact that no allocation can be larger
/// than `isize::MAX` bytes.
///
/// The requirement for pointers to be derived from the same allocation is primarily
/// needed for `const`-compatibility: the distance between pointers into *different* allocated
/// objects is not known at compile-time. However, the requirement also exists at
/// runtime and may be exploited by optimizations. If you wish to compute the difference between
/// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
/// origin as isize) / size_of::<T>()`.
// FIXME: recommend `addr()` instead of `as usize` once that is stable.
///
/// [`add`]: #method.add
/// [allocation]: crate::ptr#allocation
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// let mut a = [0; 5];
/// let ptr1: *mut i32 = &mut a[1];
/// let ptr2: *mut i32 = &mut a[3];
/// unsafe {
/// assert_eq!(ptr2.offset_from(ptr1), 2);
/// assert_eq!(ptr1.offset_from(ptr2), -2);
/// assert_eq!(ptr1.offset(2), ptr2);
/// assert_eq!(ptr2.offset(-2), ptr1);
/// }
/// ```
///
/// *Incorrect* usage:
///
/// ```rust,no_run
/// let ptr1 = Box::into_raw(Box::new(0u8));
/// let ptr2 = Box::into_raw(Box::new(1u8));
/// let diff = (ptr2 as isize).wrapping_sub(ptr1 as isize);
/// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
/// let ptr2_other = (ptr1 as *mut u8).wrapping_offset(diff).wrapping_offset(1);
/// assert_eq!(ptr2 as usize, ptr2_other as usize);
/// // Since ptr2_other and ptr2 are derived from pointers to different objects,
/// // computing their offset is undefined behavior, even though
/// // they point to addresses that are in-bounds of the same object!
/// unsafe {
/// let one = ptr2_other.offset_from(ptr2); // Undefined Behavior! ⚠️
/// }
/// ```
#[stable(feature = "ptr_offset_from", since = "1.47.0")]
#[rustc_const_stable(feature = "const_ptr_offset_from", since = "1.65.0")]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn offset_from(self, origin: *const T) -> isize
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset_from`.
unsafe { (self as *const T).offset_from(origin) }
}
/// Calculates the distance between two pointers within the same allocation. The returned value is in
/// units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`offset_from`][pointer::offset_from] on it. See that method for
/// documentation and safety requirements.
///
/// For non-`Sized` pointees this operation considers only the data pointers,
/// ignoring the metadata.
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: *const U) -> isize {
// SAFETY: the caller must uphold the safety contract for `offset_from`.
unsafe { self.cast::<u8>().offset_from(origin.cast::<u8>()) }
}
/// Calculates the distance between two pointers within the same allocation, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of T: the distance in bytes is divided by `size_of::<T>()`.
///
/// This computes the same value that [`offset_from`](#method.offset_from)
/// would compute, but with the added precondition that the offset is
/// guaranteed to be non-negative. This method is equivalent to
/// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
/// but it provides slightly more information to the optimizer, which can
/// sometimes allow it to optimize slightly better with some backends.
///
/// This method can be thought of as recovering the `count` that was passed
/// to [`add`](#method.add) (or, with the parameters in the other order,
/// to [`sub`](#method.sub)). The following are all equivalent, assuming
/// that their safety preconditions are met:
/// ```rust
/// # unsafe fn blah(ptr: *mut i32, origin: *mut i32, count: usize) -> bool { unsafe {
/// ptr.offset_from_unsigned(origin) == count
/// # &&
/// origin.add(count) == ptr
/// # &&
/// ptr.sub(count) == origin
/// # } }
/// ```
///
/// # Safety
///
/// - The distance between the pointers must be non-negative (`self >= origin`)
///
/// - *All* the safety conditions of [`offset_from`](#method.offset_from)
/// apply to this method as well; see it for the full details.
///
/// Importantly, despite the return type of this method being able to represent
/// a larger offset, it's still *not permitted* to pass pointers which differ
/// by more than `isize::MAX` *bytes*. As such, the result of this method will
/// always be less than or equal to `isize::MAX as usize`.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// ```
/// let mut a = [0; 5];
/// let p: *mut i32 = a.as_mut_ptr();
/// unsafe {
/// let ptr1: *mut i32 = p.add(1);
/// let ptr2: *mut i32 = p.add(3);
///
/// assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
/// assert_eq!(ptr1.add(2), ptr2);
/// assert_eq!(ptr2.sub(2), ptr1);
/// assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
/// }
///
/// // This would be incorrect, as the pointers are not correctly ordered:
/// // ptr1.offset_from(ptr2)
/// ```
#[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
#[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
#[inline]
#[track_caller]
pub const unsafe fn offset_from_unsigned(self, origin: *const T) -> usize
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
unsafe { (self as *const T).offset_from_unsigned(origin) }
}
/// Calculates the distance between two pointers within the same allocation, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`offset_from_unsigned`][pointer::offset_from_unsigned] on it.
/// See that method for documentation and safety requirements.
///
/// For non-`Sized` pointees this operation considers only the data pointers,
/// ignoring the metadata.
#[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
#[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
#[inline]
#[track_caller]
pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: *mut U) -> usize {
// SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
unsafe { (self as *const T).byte_offset_from_unsigned(origin) }
}
#[doc = include_str!("./docs/add.md")]
///
/// # Examples
///
/// ```
/// let mut s: String = "123".to_string();
/// let ptr: *mut u8 = s.as_mut_ptr();
///
/// unsafe {
/// assert_eq!('2', *ptr.add(1) as char);
/// assert_eq!('3', *ptr.add(2) as char);
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn add(self, count: usize) -> Self
where
T: Sized,
{
#[cfg(debug_assertions)]
#[inline]
#[rustc_allow_const_fn_unstable(const_eval_select)]
const fn runtime_add_nowrap(this: *const (), count: usize, size: usize) -> bool {
const_eval_select!(
@capture { this: *const (), count: usize, size: usize } -> bool:
if const {
true
} else {
let Some(byte_offset) = count.checked_mul(size) else {
return false;
};
let (_, overflow) = this.addr().overflowing_add(byte_offset);
byte_offset <= (isize::MAX as usize) && !overflow
}
)
}
#[cfg(debug_assertions)] // Expensive, and doesn't catch much in the wild.
ub_checks::assert_unsafe_precondition!(
check_language_ub,
"ptr::add requires that the address calculation does not overflow",
(
this: *const () = self as *const (),
count: usize = count,
size: usize = size_of::<T>(),
) => runtime_add_nowrap(this, count, size)
);
// SAFETY: the caller must uphold the safety contract for `offset`.
unsafe { intrinsics::offset(self, count) }
}
/// Adds an unsigned offset in bytes to a pointer.
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [add][pointer::add] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[track_caller]
pub const unsafe fn byte_add(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `add`.
unsafe { self.cast::<u8>().add(count).with_metadata_of(self) }
}
/// Subtracts an unsigned offset from a pointer.
///
/// This can only move the pointer backward (or not move it). If you need to move forward or
/// backward depending on the value, then you might want [`offset`](#method.offset) instead
/// which takes a signed offset.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The offset in bytes, `count * size_of::<T>()`, computed on mathematical integers (without
/// "wrapping around"), must fit in an `isize`.
///
/// * If the computed offset is non-zero, then `self` must be [derived from][crate::ptr#provenance] a pointer to some
/// [allocation], and the entire memory range between `self` and the result must be in
/// bounds of that allocation. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocations can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocation, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// Consider using [`wrapping_sub`] instead if these constraints are
/// difficult to satisfy. The only advantage of this method is that it
/// enables more aggressive compiler optimizations.
///
/// [`wrapping_sub`]: #method.wrapping_sub
/// [allocation]: crate::ptr#allocation
///
/// # Examples
///
/// ```
/// let s: &str = "123";
///
/// unsafe {
/// let end: *const u8 = s.as_ptr().add(3);
/// assert_eq!('3', *end.sub(1) as char);
/// assert_eq!('2', *end.sub(2) as char);
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn sub(self, count: usize) -> Self
where
T: Sized,
{
#[cfg(debug_assertions)]
#[inline]
#[rustc_allow_const_fn_unstable(const_eval_select)]
const fn runtime_sub_nowrap(this: *const (), count: usize, size: usize) -> bool {
const_eval_select!(
@capture { this: *const (), count: usize, size: usize } -> bool:
if const {
true
} else {
let Some(byte_offset) = count.checked_mul(size) else {
return false;
};
byte_offset <= (isize::MAX as usize) && this.addr() >= byte_offset
}
)
}
#[cfg(debug_assertions)] // Expensive, and doesn't catch much in the wild.
ub_checks::assert_unsafe_precondition!(
check_language_ub,
"ptr::sub requires that the address calculation does not overflow",
(
this: *const () = self as *const (),
count: usize = count,
size: usize = size_of::<T>(),
) => runtime_sub_nowrap(this, count, size)
);
if T::IS_ZST {
// Pointer arithmetic does nothing when the pointee is a ZST.
self
} else {
// SAFETY: the caller must uphold the safety contract for `offset`.
// Because the pointee is *not* a ZST, that means that `count` is
// at most `isize::MAX`, and thus the negation cannot overflow.
unsafe { intrinsics::offset(self, intrinsics::unchecked_sub(0, count as isize)) }
}
}
/// Subtracts an unsigned offset in bytes from a pointer.
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [sub][pointer::sub] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
#[track_caller]
pub const unsafe fn byte_sub(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `sub`.
unsafe { self.cast::<u8>().sub(count).with_metadata_of(self) }
}
/// Adds an unsigned offset to a pointer using wrapping arithmetic.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// This operation itself is always safe, but using the resulting pointer is not.
///
/// The resulting pointer "remembers" the [allocation] that `self` points to; it must not
/// be used to read or write other allocations.
///
/// In other words, `let z = x.wrapping_add((y as usize) - (x as usize))` does *not* make `z`
/// the same as `y` even if we assume `T` has size `1` and there is no overflow: `z` is still
/// attached to the object `x` is attached to, and dereferencing it is Undefined Behavior unless
/// `x` and `y` point into the same allocation.
///
/// Compared to [`add`], this method basically delays the requirement of staying within the
/// same allocation: [`add`] is immediate Undefined Behavior when crossing object
/// boundaries; `wrapping_add` produces a pointer but still leads to Undefined Behavior if a
/// pointer is dereferenced when it is out-of-bounds of the object it is attached to. [`add`]
/// can be optimized better and is thus preferable in performance-sensitive code.
///
/// The delayed check only considers the value of the pointer that was dereferenced, not the
/// intermediate values used during the computation of the final result. For example,
/// `x.wrapping_add(o).wrapping_sub(o)` is always the same as `x`. In other words, leaving the
/// allocation and then re-entering it later is permitted.
///
/// [`add`]: #method.add
/// [allocation]: crate::ptr#allocation
///
/// # Examples
///
/// ```
/// // Iterate using a raw pointer in increments of two elements
/// let data = [1u8, 2, 3, 4, 5];
/// let mut ptr: *const u8 = data.as_ptr();
/// let step = 2;
/// let end_rounded_up = ptr.wrapping_add(6);
///
/// // This loop prints "1, 3, 5, "
/// while ptr != end_rounded_up {
/// unsafe {
/// print!("{}, ", *ptr);
/// }
/// ptr = ptr.wrapping_add(step);
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
pub const fn wrapping_add(self, count: usize) -> Self
where
T: Sized,
{
self.wrapping_offset(count as isize)
}
/// Adds an unsigned offset in bytes to a pointer using wrapping arithmetic.
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [wrapping_add][pointer::wrapping_add] on it. See that method for documentation.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
pub const fn wrapping_byte_add(self, count: usize) -> Self {
self.cast::<u8>().wrapping_add(count).with_metadata_of(self)
}
/// Subtracts an unsigned offset from a pointer using wrapping arithmetic.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// This operation itself is always safe, but using the resulting pointer is not.
///
/// The resulting pointer "remembers" the [allocation] that `self` points to; it must not
/// be used to read or write other allocations.
///
/// In other words, `let z = x.wrapping_sub((x as usize) - (y as usize))` does *not* make `z`
/// the same as `y` even if we assume `T` has size `1` and there is no overflow: `z` is still
/// attached to the object `x` is attached to, and dereferencing it is Undefined Behavior unless
/// `x` and `y` point into the same allocation.
///
/// Compared to [`sub`], this method basically delays the requirement of staying within the
/// same allocation: [`sub`] is immediate Undefined Behavior when crossing object
/// boundaries; `wrapping_sub` produces a pointer but still leads to Undefined Behavior if a
/// pointer is dereferenced when it is out-of-bounds of the object it is attached to. [`sub`]
/// can be optimized better and is thus preferable in performance-sensitive code.
///
/// The delayed check only considers the value of the pointer that was dereferenced, not the
/// intermediate values used during the computation of the final result. For example,
/// `x.wrapping_add(o).wrapping_sub(o)` is always the same as `x`. In other words, leaving the
/// allocation and then re-entering it later is permitted.
///
/// [`sub`]: #method.sub
/// [allocation]: crate::ptr#allocation
///
/// # Examples
///
/// ```
/// // Iterate using a raw pointer in increments of two elements (backwards)
/// let data = [1u8, 2, 3, 4, 5];
/// let mut ptr: *const u8 = data.as_ptr();
/// let start_rounded_down = ptr.wrapping_sub(2);
/// ptr = ptr.wrapping_add(4);
/// let step = 2;
/// // This loop prints "5, 3, 1, "
/// while ptr != start_rounded_down {
/// unsafe {
/// print!("{}, ", *ptr);
/// }
/// ptr = ptr.wrapping_sub(step);
/// }
/// ```
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[must_use = "returns a new pointer rather than modifying its argument"]
#[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
#[inline(always)]
pub const fn wrapping_sub(self, count: usize) -> Self
where
T: Sized,
{
self.wrapping_offset((count as isize).wrapping_neg())
}
/// Subtracts an unsigned offset in bytes from a pointer using wrapping arithmetic.
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [wrapping_sub][pointer::wrapping_sub] on it. See that method for documentation.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[stable(feature = "pointer_byte_offsets", since = "1.75.0")]
#[rustc_const_stable(feature = "const_pointer_byte_offsets", since = "1.75.0")]
pub const fn wrapping_byte_sub(self, count: usize) -> Self {
self.cast::<u8>().wrapping_sub(count).with_metadata_of(self)
}
/// Reads the value from `self` without moving it. This leaves the
/// memory in `self` unchanged.
///
/// See [`ptr::read`] for safety concerns and examples.
///
/// [`ptr::read`]: crate::ptr::read()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_ptr_read", since = "1.71.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn read(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for ``.
unsafe { read(self) }
}
/// Performs a volatile read of the value from `self` without moving it. This
/// leaves the memory in `self` unchanged.
///
/// Volatile operations are intended to act on I/O memory, and are guaranteed
/// to not be elided or reordered by the compiler across other volatile
/// operations.
///
/// See [`ptr::read_volatile`] for safety concerns and examples.
///
/// [`ptr::read_volatile`]: crate::ptr::read_volatile()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub unsafe fn read_volatile(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `read_volatile`.
unsafe { read_volatile(self) }
}
/// Reads the value from `self` without moving it. This leaves the
/// memory in `self` unchanged.
///
/// Unlike `read`, the pointer may be unaligned.
///
/// See [`ptr::read_unaligned`] for safety concerns and examples.
///
/// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_ptr_read", since = "1.71.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn read_unaligned(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `read_unaligned`.
unsafe { read_unaligned(self) }
}
/// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
/// and destination may overlap.
///
/// NOTE: this has the *same* argument order as [`ptr::copy`].
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy()
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn copy_to(self, dest: *mut T, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy`.
unsafe { copy(self, dest, count) }
}
/// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
/// and destination may *not* overlap.
///
/// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn copy_to_nonoverlapping(self, dest: *mut T, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
unsafe { copy_nonoverlapping(self, dest, count) }
}
/// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
/// and destination may overlap.
///
/// NOTE: this has the *opposite* argument order of [`ptr::copy`].
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy()
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn copy_from(self, src: *const T, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy`.
unsafe { copy(src, self, count) }
}
/// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
/// and destination may *not* overlap.
///
/// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn copy_from_nonoverlapping(self, src: *const T, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
unsafe { copy_nonoverlapping(src, self, count) }
}
/// Executes the destructor (if any) of the pointed-to value.
///
/// See [`ptr::drop_in_place`] for safety concerns and examples.
///
/// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
pub unsafe fn drop_in_place(self) {
// SAFETY: the caller must uphold the safety contract for `drop_in_place`.
unsafe { drop_in_place(self) }
}
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// See [`ptr::write`] for safety concerns and examples.
///
/// [`ptr::write`]: crate::ptr::write()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn write(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write`.
unsafe { write(self, val) }
}
/// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
/// bytes of memory starting at `self` to `val`.
///
/// See [`ptr::write_bytes`] for safety concerns and examples.
///
/// [`ptr::write_bytes`]: crate::ptr::write_bytes()
#[doc(alias = "memset")]
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn write_bytes(self, val: u8, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_bytes`.
unsafe { write_bytes(self, val, count) }
}
/// Performs a volatile write of a memory location with the given value without
/// reading or dropping the old value.
///
/// Volatile operations are intended to act on I/O memory, and are guaranteed
/// to not be elided or reordered by the compiler across other volatile
/// operations.
///
/// See [`ptr::write_volatile`] for safety concerns and examples.
///
/// [`ptr::write_volatile`]: crate::ptr::write_volatile()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[inline(always)]
#[track_caller]
pub unsafe fn write_volatile(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_volatile`.
unsafe { write_volatile(self, val) }
}
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// Unlike `write`, the pointer may be unaligned.
///
/// See [`ptr::write_unaligned`] for safety concerns and examples.
///
/// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
#[inline(always)]
#[track_caller]
pub const unsafe fn write_unaligned(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_unaligned`.
unsafe { write_unaligned(self, val) }
}
/// Replaces the value at `self` with `src`, returning the old
/// value, without dropping either.
///
/// See [`ptr::replace`] for safety concerns and examples.
///
/// [`ptr::replace`]: crate::ptr::replace()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
#[inline(always)]
pub const unsafe fn replace(self, src: T) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `replace`.
unsafe { replace(self, src) }
}
/// Swaps the values at two mutable locations of the same type, without
/// deinitializing either. They may overlap, unlike `mem::swap` which is
/// otherwise equivalent.
///
/// See [`ptr::swap`] for safety concerns and examples.
///
/// [`ptr::swap`]: crate::ptr::swap()
#[stable(feature = "pointer_methods", since = "1.26.0")]
#[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
#[inline(always)]
pub const unsafe fn swap(self, with: *mut T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `swap`.
unsafe { swap(self, with) }
}
/// Computes the offset that needs to be applied to the pointer in order to make it aligned to
/// `align`.
///
/// If it is not possible to align the pointer, the implementation returns
/// `usize::MAX`.
///
/// The offset is expressed in number of `T` elements, and not bytes. The value returned can be
/// used with the `wrapping_add` method.
///
/// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
/// beyond the allocation that the pointer points into. It is up to the caller to ensure that
/// the returned offset is correct in all terms other than alignment.
///
/// # Panics
///
/// The function panics if `align` is not a power-of-two.
///
/// # Examples
///
/// Accessing adjacent `u8` as `u16`
///
/// ```
/// # unsafe {
/// let mut x = [5_u8, 6, 7, 8, 9];
/// let ptr = x.as_mut_ptr();
/// let offset = ptr.align_offset(align_of::<u16>());
///
/// if offset < x.len() - 1 {
/// let u16_ptr = ptr.add(offset).cast::<u16>();
/// *u16_ptr = 0;
///
/// assert!(x == [0, 0, 7, 8, 9] || x == [5, 0, 0, 8, 9]);
/// } else {
/// // while the pointer can be aligned via `offset`, it would point
/// // outside the allocation
/// }
/// # }
/// ```
#[must_use]
#[inline]
#[stable(feature = "align_offset", since = "1.36.0")]
pub fn align_offset(self, align: usize) -> usize
where
T: Sized,
{
if !align.is_power_of_two() {
panic!("align_offset: align is not a power-of-two");
}
// SAFETY: `align` has been checked to be a power of 2 above
let ret = unsafe { align_offset(self, align) };
// Inform Miri that we want to consider the resulting pointer to be suitably aligned.
#[cfg(miri)]
if ret != usize::MAX {
intrinsics::miri_promise_symbolic_alignment(
self.wrapping_add(ret).cast_const().cast(),
align,
);
}
ret
}
/// Returns whether the pointer is properly aligned for `T`.
///
/// # Examples
///
/// ```
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// let mut data = AlignedI32(42);
/// let ptr = &mut data as *mut AlignedI32;
///
/// assert!(ptr.is_aligned());
/// assert!(!ptr.wrapping_byte_add(1).is_aligned());
/// ```
#[must_use]
#[inline]
#[stable(feature = "pointer_is_aligned", since = "1.79.0")]
pub fn is_aligned(self) -> bool
where
T: Sized,
{
self.is_aligned_to(align_of::<T>())
}
/// Returns whether the pointer is aligned to `align`.
///
/// For non-`Sized` pointees this operation considers only the data pointer,
/// ignoring the metadata.
///
/// # Panics
///
/// The function panics if `align` is not a power-of-two (this includes 0).
///
/// # Examples
///
/// ```
/// #![feature(pointer_is_aligned_to)]
///
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// let mut data = AlignedI32(42);
/// let ptr = &mut data as *mut AlignedI32;
///
/// assert!(ptr.is_aligned_to(1));
/// assert!(ptr.is_aligned_to(2));
/// assert!(ptr.is_aligned_to(4));
///
/// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
/// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
///
/// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
/// ```
#[must_use]
#[inline]
#[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
pub fn is_aligned_to(self, align: usize) -> bool {
if !align.is_power_of_two() {
panic!("is_aligned_to: align is not a power-of-two");
}
self.addr() & (align - 1) == 0
}
}
impl<T> *mut T {
/// Casts from a type to its maybe-uninitialized version.
///
/// This is always safe, since UB can only occur if the pointer is read
/// before being initialized.
#[must_use]
#[inline(always)]
#[unstable(feature = "cast_maybe_uninit", issue = "145036")]
pub const fn cast_uninit(self) -> *mut MaybeUninit<T> {
self as _
}
}
impl<T> *mut MaybeUninit<T> {
/// Casts from a maybe-uninitialized type to its initialized version.
///
/// This is always safe, since UB can only occur if the pointer is read
/// before being initialized.
#[must_use]
#[inline(always)]
#[unstable(feature = "cast_maybe_uninit", issue = "145036")]
pub const fn cast_init(self) -> *mut T {
self as _
}
}
impl<T> *mut [T] {
/// Returns the length of a raw slice.
///
/// The returned value is the number of **elements**, not the number of bytes.
///
/// This function is safe, even when the raw slice cannot be cast to a slice
/// reference because the pointer is null or unaligned.
///
/// # Examples
///
/// ```rust
/// use std::ptr;
///
/// let slice: *mut [i8] = ptr::slice_from_raw_parts_mut(ptr::null_mut(), 3);
/// assert_eq!(slice.len(), 3);
/// ```
#[inline(always)]
#[stable(feature = "slice_ptr_len", since = "1.79.0")]
#[rustc_const_stable(feature = "const_slice_ptr_len", since = "1.79.0")]
pub const fn len(self) -> usize {
metadata(self)
}
/// Returns `true` if the raw slice has a length of 0.
///
/// # Examples
///
/// ```
/// use std::ptr;
///
/// let slice: *mut [i8] = ptr::slice_from_raw_parts_mut(ptr::null_mut(), 3);
/// assert!(!slice.is_empty());
/// ```
#[inline(always)]
#[stable(feature = "slice_ptr_len", since = "1.79.0")]
#[rustc_const_stable(feature = "const_slice_ptr_len", since = "1.79.0")]
pub const fn is_empty(self) -> bool {
self.len() == 0
}
/// Gets a raw, mutable pointer to the underlying array.
///
/// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
#[unstable(feature = "slice_as_array", issue = "133508")]
#[inline]
#[must_use]
pub const fn as_mut_array<const N: usize>(self) -> Option<*mut [T; N]> {
if self.len() == N {
let me = self.as_mut_ptr() as *mut [T; N];
Some(me)
} else {
None
}
}
/// Divides one mutable raw slice into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// # Panics
///
/// Panics if `mid > len`.
///
/// # Safety
///
/// `mid` must be [in-bounds] of the underlying [allocation].
/// Which means `self` must be dereferenceable and span a single allocation
/// that is at least `mid * size_of::<T>()` bytes long. Not upholding these
/// requirements is *[undefined behavior]* even if the resulting pointers are not used.
///
/// Since `len` being in-bounds it is not a safety invariant of `*mut [T]` the
/// safety requirements of this method are the same as for [`split_at_mut_unchecked`].
/// The explicit bounds check is only as useful as `len` is correct.
///
/// [`split_at_mut_unchecked`]: #method.split_at_mut_unchecked
/// [in-bounds]: #method.add
/// [allocation]: crate::ptr#allocation
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(raw_slice_split)]
/// #![feature(slice_ptr_get)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// let ptr = &mut v as *mut [_];
/// unsafe {
/// let (left, right) = ptr.split_at_mut(2);
/// assert_eq!(&*left, [1, 0]);
/// assert_eq!(&*right, [3, 0, 5, 6]);
/// }
/// ```
#[inline(always)]
#[track_caller]
#[unstable(feature = "raw_slice_split", issue = "95595")]
pub unsafe fn split_at_mut(self, mid: usize) -> (*mut [T], *mut [T]) {
assert!(mid <= self.len());
// SAFETY: The assert above is only a safety-net as long as `self.len()` is correct
// The actual safety requirements of this function are the same as for `split_at_mut_unchecked`
unsafe { self.split_at_mut_unchecked(mid) }
}
/// Divides one mutable raw slice into two at an index, without doing bounds checking.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// # Safety
///
/// `mid` must be [in-bounds] of the underlying [allocation].
/// Which means `self` must be dereferenceable and span a single allocation
/// that is at least `mid * size_of::<T>()` bytes long. Not upholding these
/// requirements is *[undefined behavior]* even if the resulting pointers are not used.
///
/// [in-bounds]: #method.add
/// [out-of-bounds index]: #method.add
/// [allocation]: crate::ptr#allocation
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(raw_slice_split)]
///
/// let mut v = [1, 0, 3, 0, 5, 6];
/// // scoped to restrict the lifetime of the borrows
/// unsafe {
/// let ptr = &mut v as *mut [_];
/// let (left, right) = ptr.split_at_mut_unchecked(2);
/// assert_eq!(&*left, [1, 0]);
/// assert_eq!(&*right, [3, 0, 5, 6]);
/// (&mut *left)[1] = 2;
/// (&mut *right)[1] = 4;
/// }
/// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
/// ```
#[inline(always)]
#[unstable(feature = "raw_slice_split", issue = "95595")]
pub unsafe fn split_at_mut_unchecked(self, mid: usize) -> (*mut [T], *mut [T]) {
let len = self.len();
let ptr = self.as_mut_ptr();
// SAFETY: Caller must pass a valid pointer and an index that is in-bounds.
let tail = unsafe { ptr.add(mid) };
(
crate::ptr::slice_from_raw_parts_mut(ptr, mid),
crate::ptr::slice_from_raw_parts_mut(tail, len - mid),
)
}
/// Returns a raw pointer to the slice's buffer.
///
/// This is equivalent to casting `self` to `*mut T`, but more type-safe.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_get)]
/// use std::ptr;
///
/// let slice: *mut [i8] = ptr::slice_from_raw_parts_mut(ptr::null_mut(), 3);
/// assert_eq!(slice.as_mut_ptr(), ptr::null_mut());
/// ```
#[inline(always)]
#[unstable(feature = "slice_ptr_get", issue = "74265")]
pub const fn as_mut_ptr(self) -> *mut T {
self as *mut T
}
/// Returns a raw pointer to an element or subslice, without doing bounds
/// checking.
///
/// Calling this method with an [out-of-bounds index] or when `self` is not dereferenceable
/// is *[undefined behavior]* even if the resulting pointer is not used.
///
/// [out-of-bounds index]: #method.add
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(slice_ptr_get)]
///
/// let x = &mut [1, 2, 4] as *mut [i32];
///
/// unsafe {
/// assert_eq!(x.get_unchecked_mut(1), x.as_mut_ptr().add(1));
/// }
/// ```
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[rustc_const_unstable(feature = "const_index", issue = "143775")]
#[inline(always)]
pub const unsafe fn get_unchecked_mut<I>(self, index: I) -> *mut I::Output
where
I: [const] SliceIndex<[T]>,
{
// SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
unsafe { index.get_unchecked_mut(self) }
}
#[doc = include_str!("docs/as_uninit_slice.md")]
///
/// # See Also
/// For the mutable counterpart see [`as_uninit_slice_mut`](pointer::as_uninit_slice_mut).
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_slice<'a>(self) -> Option<&'a [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
Some(unsafe { slice::from_raw_parts(self as *const MaybeUninit<T>, self.len()) })
}
}
/// Returns `None` if the pointer is null, or else returns a unique slice to
/// the value wrapped in `Some`. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_slice`].
///
/// [`as_mut`]: #method.as_mut
/// [`as_uninit_slice`]: #method.as_uninit_slice-1
///
/// # Safety
///
/// When calling this method, you have to ensure that *either* the pointer is null *or*
/// all of the following is true:
///
/// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
/// many bytes, and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single [allocation]!
/// Slices can never span across multiple allocations.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, while this reference exists, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts_mut`][].
///
/// [valid]: crate::ptr#safety
/// [allocation]: crate::ptr#allocation
///
/// # Panics during const evaluation
///
/// This method will panic during const evaluation if the pointer cannot be
/// determined to be null or not. See [`is_null`] for more information.
///
/// [`is_null`]: #method.is_null-1
#[inline]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_slice_mut<'a>(self) -> Option<&'a mut [MaybeUninit<T>]> {
if self.is_null() {
None
} else {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
Some(unsafe { slice::from_raw_parts_mut(self as *mut MaybeUninit<T>, self.len()) })
}
}
}
impl<T> *mut T {
/// Casts from a pointer-to-`T` to a pointer-to-`[T; N]`.
#[inline]
#[unstable(feature = "ptr_cast_array", issue = "144514")]
pub const fn cast_array<const N: usize>(self) -> *mut [T; N] {
self.cast()
}
}
impl<T, const N: usize> *mut [T; N] {
/// Returns a raw pointer to the array's buffer.
///
/// This is equivalent to casting `self` to `*mut T`, but more type-safe.
///
/// # Examples
///
/// ```rust
/// #![feature(array_ptr_get)]
/// use std::ptr;
///
/// let arr: *mut [i8; 3] = ptr::null_mut();
/// assert_eq!(arr.as_mut_ptr(), ptr::null_mut());
/// ```
#[inline]
#[unstable(feature = "array_ptr_get", issue = "119834")]
pub const fn as_mut_ptr(self) -> *mut T {
self as *mut T
}
/// Returns a raw pointer to a mutable slice containing the entire array.
///
/// # Examples
///
/// ```
/// #![feature(array_ptr_get)]
///
/// let mut arr = [1, 2, 5];
/// let ptr: *mut [i32; 3] = &mut arr;
/// unsafe {
/// (&mut *ptr.as_mut_slice())[..2].copy_from_slice(&[3, 4]);
/// }
/// assert_eq!(arr, [3, 4, 5]);
/// ```
#[inline]
#[unstable(feature = "array_ptr_get", issue = "119834")]
pub const fn as_mut_slice(self) -> *mut [T] {
self
}
}
/// Pointer equality is by address, as produced by the [`<*mut T>::addr`](pointer::addr) method.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> PartialEq for *mut T {
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn eq(&self, other: &*mut T) -> bool {
*self == *other
}
}
/// Pointer equality is an equivalence relation.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> Eq for *mut T {}
/// Pointer comparison is by address, as produced by the [`<*mut T>::addr`](pointer::addr) method.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> Ord for *mut T {
#[inline]
#[allow(ambiguous_wide_pointer_comparisons)]
fn cmp(&self, other: &*mut T) -> Ordering {
if self < other {
Less
} else if self == other {
Equal
} else {
Greater
}
}
}
/// Pointer comparison is by address, as produced by the [`<*mut T>::addr`](pointer::addr) method.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PointeeSized> PartialOrd for *mut T {
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn partial_cmp(&self, other: &*mut T) -> Option<Ordering> {
Some(self.cmp(other))
}
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn lt(&self, other: &*mut T) -> bool {
*self < *other
}
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn le(&self, other: &*mut T) -> bool {
*self <= *other
}
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn gt(&self, other: &*mut T) -> bool {
*self > *other
}
#[inline(always)]
#[allow(ambiguous_wide_pointer_comparisons)]
fn ge(&self, other: &*mut T) -> bool {
*self >= *other
}
}
#[stable(feature = "raw_ptr_default", since = "1.88.0")]
impl<T: ?Sized + Thin> Default for *mut T {
/// Returns the default value of [`null_mut()`][crate::ptr::null_mut].
fn default() -> Self {
crate::ptr::null_mut()
}
}