blob: 3d55064ea130477fcf2fafe9253bc5038dc60eaa [file] [log] [blame]
use std::ffi::CString;
use llvm::Linkage::*;
use rustc_abi::Align;
use rustc_codegen_ssa::back::write::CodegenContext;
use rustc_codegen_ssa::traits::BaseTypeCodegenMethods;
use crate::builder::SBuilder;
use crate::common::AsCCharPtr;
use crate::llvm::AttributePlace::Function;
use crate::llvm::{self, Linkage, Type, Value};
use crate::{LlvmCodegenBackend, SimpleCx, attributes};
pub(crate) fn handle_gpu_code<'ll>(
_cgcx: &CodegenContext<LlvmCodegenBackend>,
cx: &'ll SimpleCx<'_>,
) {
// The offload memory transfer type for each kernel
let mut memtransfer_types = vec![];
let mut region_ids = vec![];
let offload_entry_ty = TgtOffloadEntry::new_decl(&cx);
for num in 0..9 {
let kernel = cx.get_function(&format!("kernel_{num}"));
if let Some(kernel) = kernel {
let (o, k) = gen_define_handling(&cx, kernel, offload_entry_ty, num);
memtransfer_types.push(o);
region_ids.push(k);
}
}
gen_call_handling(&cx, &memtransfer_types, &region_ids);
}
// ; Function Attrs: nounwind
// declare i32 @__tgt_target_kernel(ptr, i64, i32, i32, ptr, ptr) #2
fn generate_launcher<'ll>(cx: &'ll SimpleCx<'_>) -> (&'ll llvm::Value, &'ll llvm::Type) {
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let args = vec![tptr, ti64, ti32, ti32, tptr, tptr];
let tgt_fn_ty = cx.type_func(&args, ti32);
let name = "__tgt_target_kernel";
let tgt_decl = declare_offload_fn(&cx, name, tgt_fn_ty);
let nounwind = llvm::AttributeKind::NoUnwind.create_attr(cx.llcx);
attributes::apply_to_llfn(tgt_decl, Function, &[nounwind]);
(tgt_decl, tgt_fn_ty)
}
// What is our @1 here? A magic global, used in our data_{begin/update/end}_mapper:
// @0 = private unnamed_addr constant [23 x i8] c";unknown;unknown;0;0;;\00", align 1
// @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8
// FIXME(offload): @0 should include the file name (e.g. lib.rs) in which the function to be
// offloaded was defined.
fn generate_at_one<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Value {
let unknown_txt = ";unknown;unknown;0;0;;";
let c_entry_name = CString::new(unknown_txt).unwrap();
let c_val = c_entry_name.as_bytes_with_nul();
let initializer = crate::common::bytes_in_context(cx.llcx, c_val);
let at_zero = add_unnamed_global(&cx, &"", initializer, PrivateLinkage);
llvm::set_alignment(at_zero, Align::ONE);
// @1 = private unnamed_addr constant %struct.ident_t { i32 0, i32 2, i32 0, i32 22, ptr @0 }, align 8
let struct_ident_ty = cx.type_named_struct("struct.ident_t");
let struct_elems = vec![
cx.get_const_i32(0),
cx.get_const_i32(2),
cx.get_const_i32(0),
cx.get_const_i32(22),
at_zero,
];
let struct_elems_ty: Vec<_> = struct_elems.iter().map(|&x| cx.val_ty(x)).collect();
let initializer = crate::common::named_struct(struct_ident_ty, &struct_elems);
cx.set_struct_body(struct_ident_ty, &struct_elems_ty, false);
let at_one = add_unnamed_global(&cx, &"", initializer, PrivateLinkage);
llvm::set_alignment(at_one, Align::EIGHT);
at_one
}
struct TgtOffloadEntry {
// uint64_t Reserved;
// uint16_t Version;
// uint16_t Kind;
// uint32_t Flags; Flags associated with the entry (see Target Region Entry Flags)
// void *Address; Address of global symbol within device image (function or global)
// char *SymbolName;
// uint64_t Size; Size of the entry info (0 if it is a function)
// uint64_t Data;
// void *AuxAddr;
}
impl TgtOffloadEntry {
pub(crate) fn new_decl<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll llvm::Type {
let offload_entry_ty = cx.type_named_struct("struct.__tgt_offload_entry");
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let ti16 = cx.type_i16();
// For each kernel to run on the gpu, we will later generate one entry of this type.
// copied from LLVM
let entry_elements = vec![ti64, ti16, ti16, ti32, tptr, tptr, ti64, ti64, tptr];
cx.set_struct_body(offload_entry_ty, &entry_elements, false);
offload_entry_ty
}
fn new<'ll>(
cx: &'ll SimpleCx<'_>,
region_id: &'ll Value,
llglobal: &'ll Value,
) -> [&'ll Value; 9] {
let reserved = cx.get_const_i64(0);
let version = cx.get_const_i16(1);
let kind = cx.get_const_i16(1);
let flags = cx.get_const_i32(0);
let size = cx.get_const_i64(0);
let data = cx.get_const_i64(0);
let aux_addr = cx.const_null(cx.type_ptr());
[reserved, version, kind, flags, region_id, llglobal, size, data, aux_addr]
}
}
// Taken from the LLVM APITypes.h declaration:
struct KernelArgsTy {
// uint32_t Version = 0; // Version of this struct for ABI compatibility.
// uint32_t NumArgs = 0; // Number of arguments in each input pointer.
// void **ArgBasePtrs =
// nullptr; // Base pointer of each argument (e.g. a struct).
// void **ArgPtrs = nullptr; // Pointer to the argument data.
// int64_t *ArgSizes = nullptr; // Size of the argument data in bytes.
// int64_t *ArgTypes = nullptr; // Type of the data (e.g. to / from).
// void **ArgNames = nullptr; // Name of the data for debugging, possibly null.
// void **ArgMappers = nullptr; // User-defined mappers, possibly null.
// uint64_t Tripcount =
// 0; // Tripcount for the teams / distribute loop, 0 otherwise.
// struct {
// uint64_t NoWait : 1; // Was this kernel spawned with a `nowait` clause.
// uint64_t IsCUDA : 1; // Was this kernel spawned via CUDA.
// uint64_t Unused : 62;
// } Flags = {0, 0, 0}; // totals to 64 Bit, 8 Byte
// // The number of teams (for x,y,z dimension).
// uint32_t NumTeams[3] = {0, 0, 0};
// // The number of threads (for x,y,z dimension).
// uint32_t ThreadLimit[3] = {0, 0, 0};
// uint32_t DynCGroupMem = 0; // Amount of dynamic cgroup memory requested.
}
impl KernelArgsTy {
const OFFLOAD_VERSION: u64 = 3;
const FLAGS: u64 = 0;
const TRIPCOUNT: u64 = 0;
fn new_decl<'ll>(cx: &'ll SimpleCx<'_>) -> &'ll Type {
let kernel_arguments_ty = cx.type_named_struct("struct.__tgt_kernel_arguments");
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let tarr = cx.type_array(ti32, 3);
let kernel_elements =
vec![ti32, ti32, tptr, tptr, tptr, tptr, tptr, tptr, ti64, ti64, tarr, tarr, ti32];
cx.set_struct_body(kernel_arguments_ty, &kernel_elements, false);
kernel_arguments_ty
}
fn new<'ll>(
cx: &'ll SimpleCx<'_>,
num_args: u64,
memtransfer_types: &[&'ll Value],
geps: [&'ll Value; 3],
) -> [(Align, &'ll Value); 13] {
let four = Align::from_bytes(4).expect("4 Byte alignment should work");
let eight = Align::EIGHT;
let ti32 = cx.type_i32();
let ci32_0 = cx.get_const_i32(0);
[
(four, cx.get_const_i32(KernelArgsTy::OFFLOAD_VERSION)),
(four, cx.get_const_i32(num_args)),
(eight, geps[0]),
(eight, geps[1]),
(eight, geps[2]),
(eight, memtransfer_types[0]),
// The next two are debug infos. FIXME(offload): set them
(eight, cx.const_null(cx.type_ptr())), // dbg
(eight, cx.const_null(cx.type_ptr())), // dbg
(eight, cx.get_const_i64(KernelArgsTy::TRIPCOUNT)),
(eight, cx.get_const_i64(KernelArgsTy::FLAGS)),
(four, cx.const_array(ti32, &[cx.get_const_i32(2097152), ci32_0, ci32_0])),
(four, cx.const_array(ti32, &[cx.get_const_i32(256), ci32_0, ci32_0])),
(four, cx.get_const_i32(0)),
]
}
}
fn gen_tgt_data_mappers<'ll>(
cx: &'ll SimpleCx<'_>,
) -> (&'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Value, &'ll llvm::Type) {
let tptr = cx.type_ptr();
let ti64 = cx.type_i64();
let ti32 = cx.type_i32();
let args = vec![tptr, ti64, ti32, tptr, tptr, tptr, tptr, tptr, tptr];
let mapper_fn_ty = cx.type_func(&args, cx.type_void());
let mapper_begin = "__tgt_target_data_begin_mapper";
let mapper_update = "__tgt_target_data_update_mapper";
let mapper_end = "__tgt_target_data_end_mapper";
let begin_mapper_decl = declare_offload_fn(&cx, mapper_begin, mapper_fn_ty);
let update_mapper_decl = declare_offload_fn(&cx, mapper_update, mapper_fn_ty);
let end_mapper_decl = declare_offload_fn(&cx, mapper_end, mapper_fn_ty);
let nounwind = llvm::AttributeKind::NoUnwind.create_attr(cx.llcx);
attributes::apply_to_llfn(begin_mapper_decl, Function, &[nounwind]);
attributes::apply_to_llfn(update_mapper_decl, Function, &[nounwind]);
attributes::apply_to_llfn(end_mapper_decl, Function, &[nounwind]);
(begin_mapper_decl, update_mapper_decl, end_mapper_decl, mapper_fn_ty)
}
fn add_priv_unnamed_arr<'ll>(cx: &SimpleCx<'ll>, name: &str, vals: &[u64]) -> &'ll llvm::Value {
let ti64 = cx.type_i64();
let mut size_val = Vec::with_capacity(vals.len());
for &val in vals {
size_val.push(cx.get_const_i64(val));
}
let initializer = cx.const_array(ti64, &size_val);
add_unnamed_global(cx, name, initializer, PrivateLinkage)
}
pub(crate) fn add_unnamed_global<'ll>(
cx: &SimpleCx<'ll>,
name: &str,
initializer: &'ll llvm::Value,
l: Linkage,
) -> &'ll llvm::Value {
let llglobal = add_global(cx, name, initializer, l);
llvm::LLVMSetUnnamedAddress(llglobal, llvm::UnnamedAddr::Global);
llglobal
}
pub(crate) fn add_global<'ll>(
cx: &SimpleCx<'ll>,
name: &str,
initializer: &'ll llvm::Value,
l: Linkage,
) -> &'ll llvm::Value {
let c_name = CString::new(name).unwrap();
let llglobal: &'ll llvm::Value = llvm::add_global(cx.llmod, cx.val_ty(initializer), &c_name);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, l);
llvm::set_initializer(llglobal, initializer);
llglobal
}
// This function returns a memtransfer value which encodes how arguments to this kernel shall be
// mapped to/from the gpu. It also returns a region_id with the name of this kernel, to be
// concatenated into the list of region_ids.
fn gen_define_handling<'ll>(
cx: &'ll SimpleCx<'_>,
kernel: &'ll llvm::Value,
offload_entry_ty: &'ll llvm::Type,
num: i64,
) -> (&'ll llvm::Value, &'ll llvm::Value) {
let types = cx.func_params_types(cx.get_type_of_global(kernel));
// It seems like non-pointer values are automatically mapped. So here, we focus on pointer (or
// reference) types.
let num_ptr_types = types
.iter()
.filter(|&x| matches!(cx.type_kind(x), rustc_codegen_ssa::common::TypeKind::Pointer))
.count();
// We do not know their size anymore at this level, so hardcode a placeholder.
// A follow-up pr will track these from the frontend, where we still have Rust types.
// Then, we will be able to figure out that e.g. `&[f32;256]` will result in 4*256 bytes.
// I decided that 1024 bytes is a great placeholder value for now.
add_priv_unnamed_arr(&cx, &format!(".offload_sizes.{num}"), &vec![1024; num_ptr_types]);
// Here we figure out whether something needs to be copied to the gpu (=1), from the gpu (=2),
// or both to and from the gpu (=3). Other values shouldn't affect us for now.
// A non-mutable reference or pointer will be 1, an array that's not read, but fully overwritten
// will be 2. For now, everything is 3, until we have our frontend set up.
// 1+2+32: 1 (MapTo), 2 (MapFrom), 32 (Add one extra input ptr per function, to be used later).
let memtransfer_types = add_priv_unnamed_arr(
&cx,
&format!(".offload_maptypes.{num}"),
&vec![1 + 2 + 32; num_ptr_types],
);
// Next: For each function, generate these three entries. A weak constant,
// the llvm.rodata entry name, and the llvm_offload_entries value
let name = format!(".kernel_{num}.region_id");
let initializer = cx.get_const_i8(0);
let region_id = add_unnamed_global(&cx, &name, initializer, WeakAnyLinkage);
let c_entry_name = CString::new(format!("kernel_{num}")).unwrap();
let c_val = c_entry_name.as_bytes_with_nul();
let offload_entry_name = format!(".offloading.entry_name.{num}");
let initializer = crate::common::bytes_in_context(cx.llcx, c_val);
let llglobal = add_unnamed_global(&cx, &offload_entry_name, initializer, InternalLinkage);
llvm::set_alignment(llglobal, Align::ONE);
llvm::set_section(llglobal, c".llvm.rodata.offloading");
let name = format!(".offloading.entry.kernel_{num}");
// See the __tgt_offload_entry documentation above.
let elems = TgtOffloadEntry::new(&cx, region_id, llglobal);
let initializer = crate::common::named_struct(offload_entry_ty, &elems);
let c_name = CString::new(name).unwrap();
let llglobal = llvm::add_global(cx.llmod, offload_entry_ty, &c_name);
llvm::set_global_constant(llglobal, true);
llvm::set_linkage(llglobal, WeakAnyLinkage);
llvm::set_initializer(llglobal, initializer);
llvm::set_alignment(llglobal, Align::EIGHT);
let c_section_name = CString::new("llvm_offload_entries").unwrap();
llvm::set_section(llglobal, &c_section_name);
(memtransfer_types, region_id)
}
pub(crate) fn declare_offload_fn<'ll>(
cx: &'ll SimpleCx<'_>,
name: &str,
ty: &'ll llvm::Type,
) -> &'ll llvm::Value {
crate::declare::declare_simple_fn(
cx,
name,
llvm::CallConv::CCallConv,
llvm::UnnamedAddr::No,
llvm::Visibility::Default,
ty,
)
}
// For each kernel *call*, we now use some of our previous declared globals to move data to and from
// the gpu. We don't have a proper frontend yet, so we assume that every call to a kernel function
// from main is intended to run on the GPU. For now, we only handle the data transfer part of it.
// If two consecutive kernels use the same memory, we still move it to the host and back to the gpu.
// Since in our frontend users (by default) don't have to specify data transfer, this is something
// we should optimize in the future! We also assume that everything should be copied back and forth,
// but sometimes we can directly zero-allocate on the device and only move back, or if something is
// immutable, we might only copy it to the device, but not back.
//
// Current steps:
// 0. Alloca some variables for the following steps
// 1. set insert point before kernel call.
// 2. generate all the GEPS and stores, to be used in 3)
// 3. generate __tgt_target_data_begin calls to move data to the GPU
//
// unchanged: keep kernel call. Later move the kernel to the GPU
//
// 4. set insert point after kernel call.
// 5. generate all the GEPS and stores, to be used in 6)
// 6. generate __tgt_target_data_end calls to move data from the GPU
fn gen_call_handling<'ll>(
cx: &'ll SimpleCx<'_>,
memtransfer_types: &[&'ll llvm::Value],
region_ids: &[&'ll llvm::Value],
) {
let (tgt_decl, tgt_target_kernel_ty) = generate_launcher(&cx);
// %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr }
let tptr = cx.type_ptr();
let ti32 = cx.type_i32();
let tgt_bin_desc_ty = vec![ti32, tptr, tptr, tptr];
let tgt_bin_desc = cx.type_named_struct("struct.__tgt_bin_desc");
cx.set_struct_body(tgt_bin_desc, &tgt_bin_desc_ty, false);
let tgt_kernel_decl = KernelArgsTy::new_decl(&cx);
let (begin_mapper_decl, _, end_mapper_decl, fn_ty) = gen_tgt_data_mappers(&cx);
let main_fn = cx.get_function("main");
let Some(main_fn) = main_fn else { return };
let kernel_name = "kernel_1";
let call = unsafe {
llvm::LLVMRustGetFunctionCall(main_fn, kernel_name.as_c_char_ptr(), kernel_name.len())
};
let Some(kernel_call) = call else {
return;
};
let kernel_call_bb = unsafe { llvm::LLVMGetInstructionParent(kernel_call) };
let called = unsafe { llvm::LLVMGetCalledValue(kernel_call).unwrap() };
let mut builder = SBuilder::build(cx, kernel_call_bb);
let types = cx.func_params_types(cx.get_type_of_global(called));
let num_args = types.len() as u64;
// Step 0)
// %struct.__tgt_bin_desc = type { i32, ptr, ptr, ptr }
// %6 = alloca %struct.__tgt_bin_desc, align 8
unsafe { llvm::LLVMRustPositionBuilderPastAllocas(builder.llbuilder, main_fn) };
let tgt_bin_desc_alloca = builder.direct_alloca(tgt_bin_desc, Align::EIGHT, "EmptyDesc");
let ty = cx.type_array(cx.type_ptr(), num_args);
// Baseptr are just the input pointer to the kernel, stored in a local alloca
let a1 = builder.direct_alloca(ty, Align::EIGHT, ".offload_baseptrs");
// Ptrs are the result of a gep into the baseptr, at least for our trivial types.
let a2 = builder.direct_alloca(ty, Align::EIGHT, ".offload_ptrs");
// These represent the sizes in bytes, e.g. the entry for `&[f64; 16]` will be 8*16.
let ty2 = cx.type_array(cx.type_i64(), num_args);
let a4 = builder.direct_alloca(ty2, Align::EIGHT, ".offload_sizes");
//%kernel_args = alloca %struct.__tgt_kernel_arguments, align 8
let a5 = builder.direct_alloca(tgt_kernel_decl, Align::EIGHT, "kernel_args");
// Step 1)
unsafe { llvm::LLVMRustPositionBefore(builder.llbuilder, kernel_call) };
builder.memset(tgt_bin_desc_alloca, cx.get_const_i8(0), cx.get_const_i64(32), Align::EIGHT);
// Now we allocate once per function param, a copy to be passed to one of our maps.
let mut vals = vec![];
let mut geps = vec![];
let i32_0 = cx.get_const_i32(0);
for index in 0..types.len() {
let v = unsafe { llvm::LLVMGetOperand(kernel_call, index as u32).unwrap() };
let gep = builder.inbounds_gep(cx.type_f32(), v, &[i32_0]);
vals.push(v);
geps.push(gep);
}
let mapper_fn_ty = cx.type_func(&[cx.type_ptr()], cx.type_void());
let register_lib_decl = declare_offload_fn(&cx, "__tgt_register_lib", mapper_fn_ty);
let unregister_lib_decl = declare_offload_fn(&cx, "__tgt_unregister_lib", mapper_fn_ty);
let init_ty = cx.type_func(&[], cx.type_void());
let init_rtls_decl = declare_offload_fn(cx, "__tgt_init_all_rtls", init_ty);
// FIXME(offload): Later we want to add them to the wrapper code, rather than our main function.
// call void @__tgt_register_lib(ptr noundef %6)
builder.call(mapper_fn_ty, register_lib_decl, &[tgt_bin_desc_alloca], None);
// call void @__tgt_init_all_rtls()
builder.call(init_ty, init_rtls_decl, &[], None);
for i in 0..num_args {
let idx = cx.get_const_i32(i);
let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, idx]);
builder.store(vals[i as usize], gep1, Align::EIGHT);
let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, idx]);
builder.store(geps[i as usize], gep2, Align::EIGHT);
let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, idx]);
// As mentioned above, we don't use Rust type information yet. So for now we will just
// assume that we have 1024 bytes, 256 f32 values.
// FIXME(offload): write an offload frontend and handle arbitrary types.
builder.store(cx.get_const_i64(1024), gep3, Align::EIGHT);
}
// For now we have a very simplistic indexing scheme into our
// offload_{baseptrs,ptrs,sizes}. We will probably improve this along with our gpu frontend pr.
fn get_geps<'a, 'll>(
builder: &mut SBuilder<'a, 'll>,
cx: &'ll SimpleCx<'ll>,
ty: &'ll Type,
ty2: &'ll Type,
a1: &'ll Value,
a2: &'ll Value,
a4: &'ll Value,
) -> [&'ll Value; 3] {
let i32_0 = cx.get_const_i32(0);
let gep1 = builder.inbounds_gep(ty, a1, &[i32_0, i32_0]);
let gep2 = builder.inbounds_gep(ty, a2, &[i32_0, i32_0]);
let gep3 = builder.inbounds_gep(ty2, a4, &[i32_0, i32_0]);
[gep1, gep2, gep3]
}
fn generate_mapper_call<'a, 'll>(
builder: &mut SBuilder<'a, 'll>,
cx: &'ll SimpleCx<'ll>,
geps: [&'ll Value; 3],
o_type: &'ll Value,
fn_to_call: &'ll Value,
fn_ty: &'ll Type,
num_args: u64,
s_ident_t: &'ll Value,
) {
let nullptr = cx.const_null(cx.type_ptr());
let i64_max = cx.get_const_i64(u64::MAX);
let num_args = cx.get_const_i32(num_args);
let args =
vec![s_ident_t, i64_max, num_args, geps[0], geps[1], geps[2], o_type, nullptr, nullptr];
builder.call(fn_ty, fn_to_call, &args, None);
}
// Step 2)
let s_ident_t = generate_at_one(&cx);
let o = memtransfer_types[0];
let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4);
generate_mapper_call(&mut builder, &cx, geps, o, begin_mapper_decl, fn_ty, num_args, s_ident_t);
let values = KernelArgsTy::new(&cx, num_args, memtransfer_types, geps);
// Step 3)
// Here we fill the KernelArgsTy, see the documentation above
for (i, value) in values.iter().enumerate() {
let ptr = builder.inbounds_gep(tgt_kernel_decl, a5, &[i32_0, cx.get_const_i32(i as u64)]);
builder.store(value.1, ptr, value.0);
}
let args = vec![
s_ident_t,
// FIXME(offload) give users a way to select which GPU to use.
cx.get_const_i64(u64::MAX), // MAX == -1.
// FIXME(offload): Don't hardcode the numbers of threads in the future.
cx.get_const_i32(2097152),
cx.get_const_i32(256),
region_ids[0],
a5,
];
let offload_success = builder.call(tgt_target_kernel_ty, tgt_decl, &args, None);
// %41 = call i32 @__tgt_target_kernel(ptr @1, i64 -1, i32 2097152, i32 256, ptr @.kernel_1.region_id, ptr %kernel_args)
unsafe {
let next = llvm::LLVMGetNextInstruction(offload_success).unwrap();
llvm::LLVMRustPositionAfter(builder.llbuilder, next);
llvm::LLVMInstructionEraseFromParent(next);
}
// Step 4)
let geps = get_geps(&mut builder, &cx, ty, ty2, a1, a2, a4);
generate_mapper_call(&mut builder, &cx, geps, o, end_mapper_decl, fn_ty, num_args, s_ident_t);
builder.call(mapper_fn_ty, unregister_lib_decl, &[tgt_bin_desc_alloca], None);
drop(builder);
// FIXME(offload) The issue is that we right now add a call to the gpu version of the function,
// and then delete the call to the CPU version. In the future, we should use an intrinsic which
// directly resolves to a call to the GPU version.
unsafe { llvm::LLVMDeleteFunction(called) };
}