blob: f6945a95a7c381cd0c9042be2cec303b4723e71c [file] [log] [blame]
mod counters;
mod graph;
mod mappings;
pub(super) mod query;
mod spans;
#[cfg(test)]
mod tests;
mod unexpand;
use rustc_hir as hir;
use rustc_hir::intravisit::{Visitor, walk_expr};
use rustc_middle::hir::nested_filter;
use rustc_middle::mir::coverage::{CoverageKind, FunctionCoverageInfo, Mapping, MappingKind};
use rustc_middle::mir::{self, BasicBlock, Statement, StatementKind, TerminatorKind};
use rustc_middle::ty::TyCtxt;
use rustc_span::Span;
use rustc_span::def_id::LocalDefId;
use tracing::{debug, debug_span, trace};
use crate::coverage::counters::BcbCountersData;
use crate::coverage::graph::CoverageGraph;
use crate::coverage::mappings::ExtractedMappings;
/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
/// to construct the coverage map.
pub(super) struct InstrumentCoverage;
impl<'tcx> crate::MirPass<'tcx> for InstrumentCoverage {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
sess.instrument_coverage()
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
let mir_source = mir_body.source;
// This pass runs after MIR promotion, but before promoted MIR starts to
// be transformed, so it should never see promoted MIR.
assert!(mir_source.promoted.is_none());
let def_id = mir_source.def_id().expect_local();
if !tcx.is_eligible_for_coverage(def_id) {
trace!("InstrumentCoverage skipped for {def_id:?} (not eligible)");
return;
}
// An otherwise-eligible function is still skipped if its start block
// is known to be unreachable.
match mir_body.basic_blocks[mir::START_BLOCK].terminator().kind {
TerminatorKind::Unreachable => {
trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`");
return;
}
_ => {}
}
instrument_function_for_coverage(tcx, mir_body);
}
fn is_required(&self) -> bool {
false
}
}
fn instrument_function_for_coverage<'tcx>(tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
let def_id = mir_body.source.def_id();
let _span = debug_span!("instrument_function_for_coverage", ?def_id).entered();
let hir_info = extract_hir_info(tcx, def_id.expect_local());
// Build the coverage graph, which is a simplified view of the MIR control-flow
// graph that ignores some details not relevant to coverage instrumentation.
let graph = CoverageGraph::from_mir(mir_body);
////////////////////////////////////////////////////
// Extract coverage spans and other mapping info from MIR.
let extracted_mappings =
mappings::extract_all_mapping_info_from_mir(tcx, mir_body, &hir_info, &graph);
let mappings = create_mappings(&extracted_mappings);
if mappings.is_empty() {
// No spans could be converted into valid mappings, so skip this function.
debug!("no spans could be converted into valid mappings; skipping");
return;
}
// Use the coverage graph to prepare intermediate data that will eventually
// be used to assign physical counters and counter expressions to points in
// the control-flow graph.
let BcbCountersData { node_flow_data, priority_list } =
counters::prepare_bcb_counters_data(&graph);
// Inject coverage statements into MIR.
inject_coverage_statements(mir_body, &graph);
mir_body.function_coverage_info = Some(Box::new(FunctionCoverageInfo {
function_source_hash: hir_info.function_source_hash,
node_flow_data,
priority_list,
mappings,
}));
}
/// For each coverage span extracted from MIR, create a corresponding mapping.
///
/// FIXME(Zalathar): This used to be where BCBs in the extracted mappings were
/// resolved to a `CovTerm`. But that is now handled elsewhere, so this
/// function can potentially be simplified even further.
fn create_mappings(extracted_mappings: &ExtractedMappings) -> Vec<Mapping> {
// Fully destructure the mappings struct to make sure we don't miss any kinds.
let ExtractedMappings { code_mappings, branch_pairs } = extracted_mappings;
let mut mappings = Vec::new();
mappings.extend(code_mappings.iter().map(
// Ordinary code mappings are the simplest kind.
|&mappings::CodeMapping { span, bcb }| {
let kind = MappingKind::Code { bcb };
Mapping { kind, span }
},
));
mappings.extend(branch_pairs.iter().map(
|&mappings::BranchPair { span, true_bcb, false_bcb }| {
let kind = MappingKind::Branch { true_bcb, false_bcb };
Mapping { kind, span }
},
));
mappings
}
/// Inject any necessary coverage statements into MIR, so that they influence codegen.
fn inject_coverage_statements<'tcx>(mir_body: &mut mir::Body<'tcx>, graph: &CoverageGraph) {
for (bcb, data) in graph.iter_enumerated() {
let target_bb = data.leader_bb();
inject_statement(mir_body, CoverageKind::VirtualCounter { bcb }, target_bb);
}
}
fn inject_statement(mir_body: &mut mir::Body<'_>, counter_kind: CoverageKind, bb: BasicBlock) {
debug!(" injecting statement {counter_kind:?} for {bb:?}");
let data = &mut mir_body[bb];
let source_info = data.terminator().source_info;
let statement = Statement::new(source_info, StatementKind::Coverage(counter_kind));
data.statements.insert(0, statement);
}
/// Function information extracted from HIR by the coverage instrumentor.
#[derive(Debug)]
struct ExtractedHirInfo {
function_source_hash: u64,
is_async_fn: bool,
/// The span of the function's signature, if available.
/// Must have the same context and filename as the body span.
fn_sig_span: Option<Span>,
body_span: Span,
/// "Holes" are regions within the function body (or its expansions) that
/// should not be included in coverage spans for this function
/// (e.g. closures and nested items).
hole_spans: Vec<Span>,
}
fn extract_hir_info<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> ExtractedHirInfo {
// FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back
// to HIR for it.
// HACK: For synthetic MIR bodies (async closures), use the def id of the HIR body.
if tcx.is_synthetic_mir(def_id) {
return extract_hir_info(tcx, tcx.local_parent(def_id));
}
let hir_node = tcx.hir_node_by_def_id(def_id);
let fn_body_id = hir_node.body_id().expect("HIR node is a function with body");
let hir_body = tcx.hir_body(fn_body_id);
let maybe_fn_sig = hir_node.fn_sig();
let is_async_fn = maybe_fn_sig.is_some_and(|fn_sig| fn_sig.header.is_async());
let mut body_span = hir_body.value.span;
use hir::{Closure, Expr, ExprKind, Node};
// Unexpand a closure's body span back to the context of its declaration.
// This helps with closure bodies that consist of just a single bang-macro,
// and also with closure bodies produced by async desugaring.
if let Node::Expr(&Expr { kind: ExprKind::Closure(&Closure { fn_decl_span, .. }), .. }) =
hir_node
{
body_span = body_span.find_ancestor_in_same_ctxt(fn_decl_span).unwrap_or(body_span);
}
// The actual signature span is only used if it has the same context and
// filename as the body, and precedes the body.
let fn_sig_span = maybe_fn_sig.map(|fn_sig| fn_sig.span).filter(|&fn_sig_span| {
let source_map = tcx.sess.source_map();
let file_idx = |span: Span| source_map.lookup_source_file_idx(span.lo());
fn_sig_span.eq_ctxt(body_span)
&& fn_sig_span.hi() <= body_span.lo()
&& file_idx(fn_sig_span) == file_idx(body_span)
});
let function_source_hash = hash_mir_source(tcx, hir_body);
let hole_spans = extract_hole_spans_from_hir(tcx, hir_body);
ExtractedHirInfo { function_source_hash, is_async_fn, fn_sig_span, body_span, hole_spans }
}
fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx hir::Body<'tcx>) -> u64 {
// FIXME(cjgillot) Stop hashing HIR manually here.
let owner = hir_body.id().hir_id.owner;
tcx.hir_owner_nodes(owner).opt_hash_including_bodies.unwrap().to_smaller_hash().as_u64()
}
fn extract_hole_spans_from_hir<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &hir::Body<'tcx>) -> Vec<Span> {
struct HolesVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
hole_spans: Vec<Span>,
}
impl<'tcx> Visitor<'tcx> for HolesVisitor<'tcx> {
/// We have special handling for nested items, but we still want to
/// traverse into nested bodies of things that are not considered items,
/// such as "anon consts" (e.g. array lengths).
type NestedFilter = nested_filter::OnlyBodies;
fn maybe_tcx(&mut self) -> TyCtxt<'tcx> {
self.tcx
}
/// We override `visit_nested_item` instead of `visit_item` because we
/// only need the item's span, not the item itself.
fn visit_nested_item(&mut self, id: hir::ItemId) -> Self::Result {
let span = self.tcx.def_span(id.owner_id.def_id);
self.visit_hole_span(span);
// Having visited this item, we don't care about its children,
// so don't call `walk_item`.
}
// We override `visit_expr` instead of the more specific expression
// visitors, so that we have direct access to the expression span.
fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
match expr.kind {
hir::ExprKind::Closure(_) | hir::ExprKind::ConstBlock(_) => {
self.visit_hole_span(expr.span);
// Having visited this expression, we don't care about its
// children, so don't call `walk_expr`.
}
// For other expressions, recursively visit as normal.
_ => walk_expr(self, expr),
}
}
}
impl HolesVisitor<'_> {
fn visit_hole_span(&mut self, hole_span: Span) {
self.hole_spans.push(hole_span);
}
}
let mut visitor = HolesVisitor { tcx, hole_spans: vec![] };
visitor.visit_body(hir_body);
visitor.hole_spans
}