|  | //===- Object.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                      The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Object.h" | 
|  | #include "llvm-objcopy.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/BinaryFormat/ELF.h" | 
|  | #include "llvm/MC/MCTargetOptions.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/Compression.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include <algorithm> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  | namespace objcopy { | 
|  | namespace elf { | 
|  |  | 
|  | using namespace object; | 
|  | using namespace ELF; | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) { | 
|  | uint8_t *B = Buf.getBufferStart(); | 
|  | B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr); | 
|  | Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B); | 
|  | Phdr.p_type = Seg.Type; | 
|  | Phdr.p_flags = Seg.Flags; | 
|  | Phdr.p_offset = Seg.Offset; | 
|  | Phdr.p_vaddr = Seg.VAddr; | 
|  | Phdr.p_paddr = Seg.PAddr; | 
|  | Phdr.p_filesz = Seg.FileSize; | 
|  | Phdr.p_memsz = Seg.MemSize; | 
|  | Phdr.p_align = Seg.Align; | 
|  | } | 
|  |  | 
|  | void SectionBase::removeSectionReferences(const SectionBase *Sec) {} | 
|  | void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {} | 
|  | void SectionBase::initialize(SectionTableRef SecTable) {} | 
|  | void SectionBase::finalize() {} | 
|  | void SectionBase::markSymbols() {} | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) { | 
|  | uint8_t *B = Buf.getBufferStart(); | 
|  | B += Sec.HeaderOffset; | 
|  | Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); | 
|  | Shdr.sh_name = Sec.NameIndex; | 
|  | Shdr.sh_type = Sec.Type; | 
|  | Shdr.sh_flags = Sec.Flags; | 
|  | Shdr.sh_addr = Sec.Addr; | 
|  | Shdr.sh_offset = Sec.Offset; | 
|  | Shdr.sh_size = Sec.Size; | 
|  | Shdr.sh_link = Sec.Link; | 
|  | Shdr.sh_info = Sec.Info; | 
|  | Shdr.sh_addralign = Sec.Align; | 
|  | Shdr.sh_entsize = Sec.EntrySize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) { | 
|  | Sec.EntrySize = sizeof(Elf_Sym); | 
|  | Sec.Size = Sec.Symbols.size() * Sec.EntrySize; | 
|  | // Align to the largest field in Elf_Sym. | 
|  | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) { | 
|  | Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela); | 
|  | Sec.Size = Sec.Relocations.size() * Sec.EntrySize; | 
|  | // Align to the largest field in Elf_Rel(a). | 
|  | Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {} | 
|  |  | 
|  | void BinarySectionWriter::visit(const SectionIndexSection &Sec) { | 
|  | error("Cannot write symbol section index table '" + Sec.Name + "' "); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const SymbolTableSection &Sec) { | 
|  | error("Cannot write symbol table '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const RelocationSection &Sec) { | 
|  | error("Cannot write relocation section '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) { | 
|  | error("Cannot write '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const GroupSection &Sec) { | 
|  | error("Cannot write '" + Sec.Name + "' out to binary"); | 
|  | } | 
|  |  | 
|  | void SectionWriter::visit(const Section &Sec) { | 
|  | if (Sec.Type == SHT_NOBITS) | 
|  | return; | 
|  | uint8_t *Buf = Out.getBufferStart() + Sec.Offset; | 
|  | llvm::copy(Sec.Contents, Buf); | 
|  | } | 
|  |  | 
|  | void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); } | 
|  |  | 
|  | void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); } | 
|  |  | 
|  | void SectionWriter::visit(const OwnedDataSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart() + Sec.Offset; | 
|  | llvm::copy(Sec.Data, Buf); | 
|  | } | 
|  |  | 
|  | static const std::vector<uint8_t> ZlibGnuMagic = {'Z', 'L', 'I', 'B'}; | 
|  |  | 
|  | static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) { | 
|  | return Data.size() > ZlibGnuMagic.size() && | 
|  | std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static std::tuple<uint64_t, uint64_t> | 
|  | getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) { | 
|  | const bool IsGnuDebug = isDataGnuCompressed(Data); | 
|  | const uint64_t DecompressedSize = | 
|  | IsGnuDebug | 
|  | ? support::endian::read64be(reinterpret_cast<const uint64_t *>( | 
|  | Data.data() + ZlibGnuMagic.size())) | 
|  | : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size; | 
|  | const uint64_t DecompressedAlign = | 
|  | IsGnuDebug ? 1 | 
|  | : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data()) | 
|  | ->ch_addralign; | 
|  |  | 
|  | return std::make_tuple(DecompressedSize, DecompressedAlign); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart() + Sec.Offset; | 
|  |  | 
|  | if (!zlib::isAvailable()) { | 
|  | std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData) | 
|  | ? (ZlibGnuMagic.size() + sizeof(Sec.Size)) | 
|  | : sizeof(Elf_Chdr_Impl<ELFT>); | 
|  |  | 
|  | StringRef CompressedContent( | 
|  | reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset, | 
|  | Sec.OriginalData.size() - DataOffset); | 
|  |  | 
|  | SmallVector<char, 128> DecompressedContent; | 
|  | if (Error E = zlib::uncompress(CompressedContent, DecompressedContent, | 
|  | static_cast<size_t>(Sec.Size))) | 
|  | reportError(Sec.Name, std::move(E)); | 
|  |  | 
|  | std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const DecompressedSection &Sec) { | 
|  | error("Cannot write compressed section '" + Sec.Name + "' "); | 
|  | } | 
|  |  | 
|  | void DecompressedSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void DecompressedSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void OwnedDataSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void OwnedDataSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void BinarySectionWriter::visit(const CompressedSection &Sec) { | 
|  | error("Cannot write compressed section '" + Sec.Name + "' "); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart(); | 
|  | Buf += Sec.Offset; | 
|  |  | 
|  | if (Sec.CompressionType == DebugCompressionType::None) { | 
|  | std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Sec.CompressionType == DebugCompressionType::GNU) { | 
|  | const char *Magic = "ZLIB"; | 
|  | memcpy(Buf, Magic, strlen(Magic)); | 
|  | Buf += strlen(Magic); | 
|  | const uint64_t DecompressedSize = | 
|  | support::endian::read64be(&Sec.DecompressedSize); | 
|  | memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize)); | 
|  | Buf += sizeof(DecompressedSize); | 
|  | } else { | 
|  | Elf_Chdr_Impl<ELFT> Chdr; | 
|  | Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB; | 
|  | Chdr.ch_size = Sec.DecompressedSize; | 
|  | Chdr.ch_addralign = Sec.DecompressedAlign; | 
|  | memcpy(Buf, &Chdr, sizeof(Chdr)); | 
|  | Buf += sizeof(Chdr); | 
|  | } | 
|  |  | 
|  | std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf); | 
|  | } | 
|  |  | 
|  | CompressedSection::CompressedSection(const SectionBase &Sec, | 
|  | DebugCompressionType CompressionType) | 
|  | : SectionBase(Sec), CompressionType(CompressionType), | 
|  | DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) { | 
|  |  | 
|  | if (!zlib::isAvailable()) { | 
|  | CompressionType = DebugCompressionType::None; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Error E = zlib::compress( | 
|  | StringRef(reinterpret_cast<const char *>(OriginalData.data()), | 
|  | OriginalData.size()), | 
|  | CompressedData)) | 
|  | reportError(Name, std::move(E)); | 
|  |  | 
|  | size_t ChdrSize; | 
|  | if (CompressionType == DebugCompressionType::GNU) { | 
|  | Name = ".z" + Sec.Name.substr(1); | 
|  | ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t); | 
|  | } else { | 
|  | Flags |= ELF::SHF_COMPRESSED; | 
|  | ChdrSize = | 
|  | std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>), | 
|  | sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)), | 
|  | std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>), | 
|  | sizeof(object::Elf_Chdr_Impl<object::ELF32BE>))); | 
|  | } | 
|  | Size = ChdrSize + CompressedData.size(); | 
|  | Align = 8; | 
|  | } | 
|  |  | 
|  | CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData, | 
|  | uint64_t DecompressedSize, | 
|  | uint64_t DecompressedAlign) | 
|  | : CompressionType(DebugCompressionType::None), | 
|  | DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) { | 
|  | OriginalData = CompressedData; | 
|  | } | 
|  |  | 
|  | void CompressedSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void CompressedSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void StringTableSection::addString(StringRef Name) { | 
|  | StrTabBuilder.add(Name); | 
|  | Size = StrTabBuilder.getSize(); | 
|  | } | 
|  |  | 
|  | uint32_t StringTableSection::findIndex(StringRef Name) const { | 
|  | return StrTabBuilder.getOffset(Name); | 
|  | } | 
|  |  | 
|  | void StringTableSection::finalize() { StrTabBuilder.finalize(); } | 
|  |  | 
|  | void SectionWriter::visit(const StringTableSection &Sec) { | 
|  | Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset); | 
|  | } | 
|  |  | 
|  | void StringTableSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void StringTableSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart() + Sec.Offset; | 
|  | auto *IndexesBuffer = reinterpret_cast<Elf_Word *>(Buf); | 
|  | llvm::copy(Sec.Indexes, IndexesBuffer); | 
|  | } | 
|  |  | 
|  | void SectionIndexSection::initialize(SectionTableRef SecTable) { | 
|  | Size = 0; | 
|  | setSymTab(SecTable.getSectionOfType<SymbolTableSection>( | 
|  | Link, | 
|  | "Link field value " + Twine(Link) + " in section " + Name + " is invalid", | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is not a symbol table")); | 
|  | Symbols->setShndxTable(this); | 
|  | } | 
|  |  | 
|  | void SectionIndexSection::finalize() { Link = Symbols->Index; } | 
|  |  | 
|  | void SectionIndexSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void SectionIndexSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) { | 
|  | switch (Index) { | 
|  | case SHN_ABS: | 
|  | case SHN_COMMON: | 
|  | return true; | 
|  | } | 
|  | if (Machine == EM_HEXAGON) { | 
|  | switch (Index) { | 
|  | case SHN_HEXAGON_SCOMMON: | 
|  | case SHN_HEXAGON_SCOMMON_2: | 
|  | case SHN_HEXAGON_SCOMMON_4: | 
|  | case SHN_HEXAGON_SCOMMON_8: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Large indexes force us to clarify exactly what this function should do. This | 
|  | // function should return the value that will appear in st_shndx when written | 
|  | // out. | 
|  | uint16_t Symbol::getShndx() const { | 
|  | if (DefinedIn != nullptr) { | 
|  | if (DefinedIn->Index >= SHN_LORESERVE) | 
|  | return SHN_XINDEX; | 
|  | return DefinedIn->Index; | 
|  | } | 
|  | switch (ShndxType) { | 
|  | // This means that we don't have a defined section but we do need to | 
|  | // output a legitimate section index. | 
|  | case SYMBOL_SIMPLE_INDEX: | 
|  | return SHN_UNDEF; | 
|  | case SYMBOL_ABS: | 
|  | case SYMBOL_COMMON: | 
|  | case SYMBOL_HEXAGON_SCOMMON: | 
|  | case SYMBOL_HEXAGON_SCOMMON_2: | 
|  | case SYMBOL_HEXAGON_SCOMMON_4: | 
|  | case SYMBOL_HEXAGON_SCOMMON_8: | 
|  | case SYMBOL_XINDEX: | 
|  | return static_cast<uint16_t>(ShndxType); | 
|  | } | 
|  | llvm_unreachable("Symbol with invalid ShndxType encountered"); | 
|  | } | 
|  |  | 
|  | bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; } | 
|  |  | 
|  | void SymbolTableSection::assignIndices() { | 
|  | uint32_t Index = 0; | 
|  | for (auto &Sym : Symbols) | 
|  | Sym->Index = Index++; | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type, | 
|  | SectionBase *DefinedIn, uint64_t Value, | 
|  | uint8_t Visibility, uint16_t Shndx, | 
|  | uint64_t Size) { | 
|  | Symbol Sym; | 
|  | Sym.Name = Name.str(); | 
|  | Sym.Binding = Bind; | 
|  | Sym.Type = Type; | 
|  | Sym.DefinedIn = DefinedIn; | 
|  | if (DefinedIn != nullptr) | 
|  | DefinedIn->HasSymbol = true; | 
|  | if (DefinedIn == nullptr) { | 
|  | if (Shndx >= SHN_LORESERVE) | 
|  | Sym.ShndxType = static_cast<SymbolShndxType>(Shndx); | 
|  | else | 
|  | Sym.ShndxType = SYMBOL_SIMPLE_INDEX; | 
|  | } | 
|  | Sym.Value = Value; | 
|  | Sym.Visibility = Visibility; | 
|  | Sym.Size = Size; | 
|  | Sym.Index = Symbols.size(); | 
|  | Symbols.emplace_back(llvm::make_unique<Symbol>(Sym)); | 
|  | Size += this->EntrySize; | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) { | 
|  | if (SectionIndexTable == Sec) | 
|  | SectionIndexTable = nullptr; | 
|  | if (SymbolNames == Sec) { | 
|  | error("String table " + SymbolNames->Name + | 
|  | " cannot be removed because it is referenced by the symbol table " + | 
|  | this->Name); | 
|  | } | 
|  | removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; }); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) { | 
|  | std::for_each(std::begin(Symbols) + 1, std::end(Symbols), | 
|  | [Callable](SymPtr &Sym) { Callable(*Sym); }); | 
|  | std::stable_partition( | 
|  | std::begin(Symbols), std::end(Symbols), | 
|  | [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; }); | 
|  | assignIndices(); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::removeSymbols( | 
|  | function_ref<bool(const Symbol &)> ToRemove) { | 
|  | Symbols.erase( | 
|  | std::remove_if(std::begin(Symbols) + 1, std::end(Symbols), | 
|  | [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }), | 
|  | std::end(Symbols)); | 
|  | Size = Symbols.size() * EntrySize; | 
|  | assignIndices(); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::initialize(SectionTableRef SecTable) { | 
|  | Size = 0; | 
|  | setStrTab(SecTable.getSectionOfType<StringTableSection>( | 
|  | Link, | 
|  | "Symbol table has link index of " + Twine(Link) + | 
|  | " which is not a valid index", | 
|  | "Symbol table has link index of " + Twine(Link) + | 
|  | " which is not a string table")); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::finalize() { | 
|  | // Make sure SymbolNames is finalized before getting name indexes. | 
|  | SymbolNames->finalize(); | 
|  |  | 
|  | uint32_t MaxLocalIndex = 0; | 
|  | for (auto &Sym : Symbols) { | 
|  | Sym->NameIndex = SymbolNames->findIndex(Sym->Name); | 
|  | if (Sym->Binding == STB_LOCAL) | 
|  | MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index); | 
|  | } | 
|  | // Now we need to set the Link and Info fields. | 
|  | Link = SymbolNames->Index; | 
|  | Info = MaxLocalIndex + 1; | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::prepareForLayout() { | 
|  | // Add all potential section indexes before file layout so that the section | 
|  | // index section has the approprite size. | 
|  | if (SectionIndexTable != nullptr) { | 
|  | for (const auto &Sym : Symbols) { | 
|  | if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE) | 
|  | SectionIndexTable->addIndex(Sym->DefinedIn->Index); | 
|  | else | 
|  | SectionIndexTable->addIndex(SHN_UNDEF); | 
|  | } | 
|  | } | 
|  | // Add all of our strings to SymbolNames so that SymbolNames has the right | 
|  | // size before layout is decided. | 
|  | for (auto &Sym : Symbols) | 
|  | SymbolNames->addString(Sym->Name); | 
|  | } | 
|  |  | 
|  | const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const { | 
|  | if (Symbols.size() <= Index) | 
|  | error("Invalid symbol index: " + Twine(Index)); | 
|  | return Symbols[Index].get(); | 
|  | } | 
|  |  | 
|  | Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) { | 
|  | return const_cast<Symbol *>( | 
|  | static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart(); | 
|  | Buf += Sec.Offset; | 
|  | Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Buf); | 
|  | // Loop though symbols setting each entry of the symbol table. | 
|  | for (auto &Symbol : Sec.Symbols) { | 
|  | Sym->st_name = Symbol->NameIndex; | 
|  | Sym->st_value = Symbol->Value; | 
|  | Sym->st_size = Symbol->Size; | 
|  | Sym->st_other = Symbol->Visibility; | 
|  | Sym->setBinding(Symbol->Binding); | 
|  | Sym->setType(Symbol->Type); | 
|  | Sym->st_shndx = Symbol->getShndx(); | 
|  | ++Sym; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void SymbolTableSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | template <class SymTabType> | 
|  | void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences( | 
|  | const SectionBase *Sec) { | 
|  | if (Symbols == Sec) { | 
|  | error("Symbol table " + Symbols->Name + | 
|  | " cannot be removed because it is " | 
|  | "referenced by the relocation " | 
|  | "section " + | 
|  | this->Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class SymTabType> | 
|  | void RelocSectionWithSymtabBase<SymTabType>::initialize( | 
|  | SectionTableRef SecTable) { | 
|  | if (Link != SHN_UNDEF) | 
|  | setSymTab(SecTable.getSectionOfType<SymTabType>( | 
|  | Link, | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is invalid", | 
|  | "Link field value " + Twine(Link) + " in section " + Name + | 
|  | " is not a symbol table")); | 
|  |  | 
|  | if (Info != SHN_UNDEF) | 
|  | setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) + | 
|  | " in section " + Name + | 
|  | " is invalid")); | 
|  | else | 
|  | setSection(nullptr); | 
|  | } | 
|  |  | 
|  | template <class SymTabType> | 
|  | void RelocSectionWithSymtabBase<SymTabType>::finalize() { | 
|  | this->Link = Symbols ? Symbols->Index : 0; | 
|  |  | 
|  | if (SecToApplyRel != nullptr) | 
|  | this->Info = SecToApplyRel->Index; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) { | 
|  | Rela.r_addend = Addend; | 
|  | } | 
|  |  | 
|  | template <class RelRange, class T> | 
|  | static void writeRel(const RelRange &Relocations, T *Buf) { | 
|  | for (const auto &Reloc : Relocations) { | 
|  | Buf->r_offset = Reloc.Offset; | 
|  | setAddend(*Buf, Reloc.Addend); | 
|  | Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false); | 
|  | ++Buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) { | 
|  | uint8_t *Buf = Out.getBufferStart() + Sec.Offset; | 
|  | if (Sec.Type == SHT_REL) | 
|  | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf)); | 
|  | else | 
|  | writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf)); | 
|  | } | 
|  |  | 
|  | void RelocationSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void RelocationSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void RelocationSection::removeSymbols( | 
|  | function_ref<bool(const Symbol &)> ToRemove) { | 
|  | for (const Relocation &Reloc : Relocations) | 
|  | if (ToRemove(*Reloc.RelocSymbol)) | 
|  | error("not stripping symbol '" + Reloc.RelocSymbol->Name + | 
|  | "' because it is named in a relocation"); | 
|  | } | 
|  |  | 
|  | void RelocationSection::markSymbols() { | 
|  | for (const Relocation &Reloc : Relocations) | 
|  | Reloc.RelocSymbol->Referenced = true; | 
|  | } | 
|  |  | 
|  | void SectionWriter::visit(const DynamicRelocationSection &Sec) { | 
|  | llvm::copy(Sec.Contents, | 
|  | Out.getBufferStart() + Sec.Offset); | 
|  | } | 
|  |  | 
|  | void DynamicRelocationSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void Section::removeSectionReferences(const SectionBase *Sec) { | 
|  | if (LinkSection == Sec) { | 
|  | error("Section " + LinkSection->Name + | 
|  | " cannot be removed because it is " | 
|  | "referenced by the section " + | 
|  | this->Name); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GroupSection::finalize() { | 
|  | this->Info = Sym->Index; | 
|  | this->Link = SymTab->Index; | 
|  | } | 
|  |  | 
|  | void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { | 
|  | if (ToRemove(*Sym)) { | 
|  | error("Symbol " + Sym->Name + | 
|  | " cannot be removed because it is " | 
|  | "referenced by the section " + | 
|  | this->Name + "[" + Twine(this->Index) + "]"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GroupSection::markSymbols() { | 
|  | if (Sym) | 
|  | Sym->Referenced = true; | 
|  | } | 
|  |  | 
|  | void Section::initialize(SectionTableRef SecTable) { | 
|  | if (Link != ELF::SHN_UNDEF) { | 
|  | LinkSection = | 
|  | SecTable.getSection(Link, "Link field value " + Twine(Link) + | 
|  | " in section " + Name + " is invalid"); | 
|  | if (LinkSection->Type == ELF::SHT_SYMTAB) | 
|  | LinkSection = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; } | 
|  |  | 
|  | void GnuDebugLinkSection::init(StringRef File, StringRef Data) { | 
|  | FileName = sys::path::filename(File); | 
|  | // The format for the .gnu_debuglink starts with the file name and is | 
|  | // followed by a null terminator and then the CRC32 of the file. The CRC32 | 
|  | // should be 4 byte aligned. So we add the FileName size, a 1 for the null | 
|  | // byte, and then finally push the size to alignment and add 4. | 
|  | Size = alignTo(FileName.size() + 1, 4) + 4; | 
|  | // The CRC32 will only be aligned if we align the whole section. | 
|  | Align = 4; | 
|  | Type = ELF::SHT_PROGBITS; | 
|  | Name = ".gnu_debuglink"; | 
|  | // For sections not found in segments, OriginalOffset is only used to | 
|  | // establish the order that sections should go in. By using the maximum | 
|  | // possible offset we cause this section to wind up at the end. | 
|  | OriginalOffset = std::numeric_limits<uint64_t>::max(); | 
|  | JamCRC CRC; | 
|  | CRC.update(ArrayRef<char>(Data.data(), Data.size())); | 
|  | // The CRC32 value needs to be complemented because the JamCRC dosn't | 
|  | // finalize the CRC32 value. It also dosn't negate the initial CRC32 value | 
|  | // but it starts by default at 0xFFFFFFFF which is the complement of zero. | 
|  | CRC32 = ~CRC.getCRC(); | 
|  | } | 
|  |  | 
|  | GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) { | 
|  | // Read in the file to compute the CRC of it. | 
|  | auto DebugOrErr = MemoryBuffer::getFile(File); | 
|  | if (!DebugOrErr) | 
|  | error("'" + File + "': " + DebugOrErr.getError().message()); | 
|  | auto Debug = std::move(*DebugOrErr); | 
|  | init(File, Debug->getBuffer()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) { | 
|  | auto Buf = Out.getBufferStart() + Sec.Offset; | 
|  | char *File = reinterpret_cast<char *>(Buf); | 
|  | Elf_Word *CRC = | 
|  | reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word)); | 
|  | *CRC = Sec.CRC32; | 
|  | llvm::copy(Sec.FileName, File); | 
|  | } | 
|  |  | 
|  | void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) { | 
|  | ELF::Elf32_Word *Buf = | 
|  | reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset); | 
|  | *Buf++ = Sec.FlagWord; | 
|  | for (const auto *S : Sec.GroupMembers) | 
|  | support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index); | 
|  | } | 
|  |  | 
|  | void GroupSection::accept(SectionVisitor &Visitor) const { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | void GroupSection::accept(MutableSectionVisitor &Visitor) { | 
|  | Visitor.visit(*this); | 
|  | } | 
|  |  | 
|  | // Returns true IFF a section is wholly inside the range of a segment | 
|  | static bool sectionWithinSegment(const SectionBase &Section, | 
|  | const Segment &Segment) { | 
|  | // If a section is empty it should be treated like it has a size of 1. This is | 
|  | // to clarify the case when an empty section lies on a boundary between two | 
|  | // segments and ensures that the section "belongs" to the second segment and | 
|  | // not the first. | 
|  | uint64_t SecSize = Section.Size ? Section.Size : 1; | 
|  | return Segment.Offset <= Section.OriginalOffset && | 
|  | Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize; | 
|  | } | 
|  |  | 
|  | // Returns true IFF a segment's original offset is inside of another segment's | 
|  | // range. | 
|  | static bool segmentOverlapsSegment(const Segment &Child, | 
|  | const Segment &Parent) { | 
|  |  | 
|  | return Parent.OriginalOffset <= Child.OriginalOffset && | 
|  | Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset; | 
|  | } | 
|  |  | 
|  | static bool compareSegmentsByOffset(const Segment *A, const Segment *B) { | 
|  | // Any segment without a parent segment should come before a segment | 
|  | // that has a parent segment. | 
|  | if (A->OriginalOffset < B->OriginalOffset) | 
|  | return true; | 
|  | if (A->OriginalOffset > B->OriginalOffset) | 
|  | return false; | 
|  | return A->Index < B->Index; | 
|  | } | 
|  |  | 
|  | static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) { | 
|  | if (A->PAddr < B->PAddr) | 
|  | return true; | 
|  | if (A->PAddr > B->PAddr) | 
|  | return false; | 
|  | return A->Index < B->Index; | 
|  | } | 
|  |  | 
|  | void BinaryELFBuilder::initFileHeader() { | 
|  | Obj->Flags = 0x0; | 
|  | Obj->Type = ET_REL; | 
|  | Obj->OSABI = ELFOSABI_NONE; | 
|  | Obj->ABIVersion = 0; | 
|  | Obj->Entry = 0x0; | 
|  | Obj->Machine = EMachine; | 
|  | Obj->Version = 1; | 
|  | } | 
|  |  | 
|  | void BinaryELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; } | 
|  |  | 
|  | StringTableSection *BinaryELFBuilder::addStrTab() { | 
|  | auto &StrTab = Obj->addSection<StringTableSection>(); | 
|  | StrTab.Name = ".strtab"; | 
|  |  | 
|  | Obj->SectionNames = &StrTab; | 
|  | return &StrTab; | 
|  | } | 
|  |  | 
|  | SymbolTableSection *BinaryELFBuilder::addSymTab(StringTableSection *StrTab) { | 
|  | auto &SymTab = Obj->addSection<SymbolTableSection>(); | 
|  |  | 
|  | SymTab.Name = ".symtab"; | 
|  | SymTab.Link = StrTab->Index; | 
|  |  | 
|  | // The symbol table always needs a null symbol | 
|  | SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0); | 
|  |  | 
|  | Obj->SymbolTable = &SymTab; | 
|  | return &SymTab; | 
|  | } | 
|  |  | 
|  | void BinaryELFBuilder::addData(SymbolTableSection *SymTab) { | 
|  | auto Data = ArrayRef<uint8_t>( | 
|  | reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()), | 
|  | MemBuf->getBufferSize()); | 
|  | auto &DataSection = Obj->addSection<Section>(Data); | 
|  | DataSection.Name = ".data"; | 
|  | DataSection.Type = ELF::SHT_PROGBITS; | 
|  | DataSection.Size = Data.size(); | 
|  | DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; | 
|  |  | 
|  | std::string SanitizedFilename = MemBuf->getBufferIdentifier().str(); | 
|  | std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename), | 
|  | [](char C) { return !isalnum(C); }, '_'); | 
|  | Twine Prefix = Twine("_binary_") + SanitizedFilename; | 
|  |  | 
|  | SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection, | 
|  | /*Value=*/0, STV_DEFAULT, 0, 0); | 
|  | SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection, | 
|  | /*Value=*/DataSection.Size, STV_DEFAULT, 0, 0); | 
|  | SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr, | 
|  | /*Value=*/DataSection.Size, STV_DEFAULT, SHN_ABS, 0); | 
|  | } | 
|  |  | 
|  | void BinaryELFBuilder::initSections() { | 
|  | for (auto &Section : Obj->sections()) { | 
|  | Section.initialize(Obj->sections()); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Object> BinaryELFBuilder::build() { | 
|  | initFileHeader(); | 
|  | initHeaderSegment(); | 
|  | StringTableSection *StrTab = addStrTab(); | 
|  | SymbolTableSection *SymTab = addSymTab(StrTab); | 
|  | initSections(); | 
|  | addData(SymTab); | 
|  |  | 
|  | return std::move(Obj); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) { | 
|  | for (auto &Parent : Obj.segments()) { | 
|  | // Every segment will overlap with itself but we don't want a segment to | 
|  | // be it's own parent so we avoid that situation. | 
|  | if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) { | 
|  | // We want a canonical "most parental" segment but this requires | 
|  | // inspecting the ParentSegment. | 
|  | if (compareSegmentsByOffset(&Parent, &Child)) | 
|  | if (Child.ParentSegment == nullptr || | 
|  | compareSegmentsByOffset(&Parent, Child.ParentSegment)) { | 
|  | Child.ParentSegment = &Parent; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() { | 
|  | uint32_t Index = 0; | 
|  | for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) { | 
|  | ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset, | 
|  | (size_t)Phdr.p_filesz}; | 
|  | Segment &Seg = Obj.addSegment(Data); | 
|  | Seg.Type = Phdr.p_type; | 
|  | Seg.Flags = Phdr.p_flags; | 
|  | Seg.OriginalOffset = Phdr.p_offset; | 
|  | Seg.Offset = Phdr.p_offset; | 
|  | Seg.VAddr = Phdr.p_vaddr; | 
|  | Seg.PAddr = Phdr.p_paddr; | 
|  | Seg.FileSize = Phdr.p_filesz; | 
|  | Seg.MemSize = Phdr.p_memsz; | 
|  | Seg.Align = Phdr.p_align; | 
|  | Seg.Index = Index++; | 
|  | for (auto &Section : Obj.sections()) { | 
|  | if (sectionWithinSegment(Section, Seg)) { | 
|  | Seg.addSection(&Section); | 
|  | if (!Section.ParentSegment || | 
|  | Section.ParentSegment->Offset > Seg.Offset) { | 
|  | Section.ParentSegment = &Seg; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | auto &ElfHdr = Obj.ElfHdrSegment; | 
|  | ElfHdr.Index = Index++; | 
|  |  | 
|  | const auto &Ehdr = *ElfFile.getHeader(); | 
|  | auto &PrHdr = Obj.ProgramHdrSegment; | 
|  | PrHdr.Type = PT_PHDR; | 
|  | PrHdr.Flags = 0; | 
|  | // The spec requires us to have p_vaddr % p_align == p_offset % p_align. | 
|  | // Whereas this works automatically for ElfHdr, here OriginalOffset is | 
|  | // always non-zero and to ensure the equation we assign the same value to | 
|  | // VAddr as well. | 
|  | PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff; | 
|  | PrHdr.PAddr = 0; | 
|  | PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum; | 
|  | // The spec requires us to naturally align all the fields. | 
|  | PrHdr.Align = sizeof(Elf_Addr); | 
|  | PrHdr.Index = Index++; | 
|  |  | 
|  | // Now we do an O(n^2) loop through the segments in order to match up | 
|  | // segments. | 
|  | for (auto &Child : Obj.segments()) | 
|  | setParentSegment(Child); | 
|  | setParentSegment(ElfHdr); | 
|  | setParentSegment(PrHdr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) { | 
|  | auto SecTable = Obj.sections(); | 
|  | auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>( | 
|  | GroupSec->Link, | 
|  | "Link field value " + Twine(GroupSec->Link) + " in section " + | 
|  | GroupSec->Name + " is invalid", | 
|  | "Link field value " + Twine(GroupSec->Link) + " in section " + | 
|  | GroupSec->Name + " is not a symbol table"); | 
|  | auto Sym = SymTab->getSymbolByIndex(GroupSec->Info); | 
|  | if (!Sym) | 
|  | error("Info field value " + Twine(GroupSec->Info) + " in section " + | 
|  | GroupSec->Name + " is not a valid symbol index"); | 
|  | GroupSec->setSymTab(SymTab); | 
|  | GroupSec->setSymbol(Sym); | 
|  | if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) || | 
|  | GroupSec->Contents.empty()) | 
|  | error("The content of the section " + GroupSec->Name + " is malformed"); | 
|  | const ELF::Elf32_Word *Word = | 
|  | reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data()); | 
|  | const ELF::Elf32_Word *End = | 
|  | Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word); | 
|  | GroupSec->setFlagWord(*Word++); | 
|  | for (; Word != End; ++Word) { | 
|  | uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word); | 
|  | GroupSec->addMember(SecTable.getSection( | 
|  | Index, "Group member index " + Twine(Index) + " in section " + | 
|  | GroupSec->Name + " is invalid")); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) { | 
|  | const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index)); | 
|  | StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr)); | 
|  | ArrayRef<Elf_Word> ShndxData; | 
|  |  | 
|  | auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr)); | 
|  | for (const auto &Sym : Symbols) { | 
|  | SectionBase *DefSection = nullptr; | 
|  | StringRef Name = unwrapOrError(Sym.getName(StrTabData)); | 
|  |  | 
|  | if (Sym.st_shndx == SHN_XINDEX) { | 
|  | if (SymTab->getShndxTable() == nullptr) | 
|  | error("Symbol '" + Name + | 
|  | "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists."); | 
|  | if (ShndxData.data() == nullptr) { | 
|  | const Elf_Shdr &ShndxSec = | 
|  | *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index)); | 
|  | ShndxData = unwrapOrError( | 
|  | ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec)); | 
|  | if (ShndxData.size() != Symbols.size()) | 
|  | error("Symbol section index table does not have the same number of " | 
|  | "entries as the symbol table."); | 
|  | } | 
|  | Elf_Word Index = ShndxData[&Sym - Symbols.begin()]; | 
|  | DefSection = Obj.sections().getSection( | 
|  | Index, | 
|  | "Symbol '" + Name + "' has invalid section index " + Twine(Index)); | 
|  | } else if (Sym.st_shndx >= SHN_LORESERVE) { | 
|  | if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) { | 
|  | error( | 
|  | "Symbol '" + Name + | 
|  | "' has unsupported value greater than or equal to SHN_LORESERVE: " + | 
|  | Twine(Sym.st_shndx)); | 
|  | } | 
|  | } else if (Sym.st_shndx != SHN_UNDEF) { | 
|  | DefSection = Obj.sections().getSection( | 
|  | Sym.st_shndx, "Symbol '" + Name + | 
|  | "' is defined has invalid section index " + | 
|  | Twine(Sym.st_shndx)); | 
|  | } | 
|  |  | 
|  | SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection, | 
|  | Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) { | 
|  | ToSet = Rela.r_addend; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static void initRelocations(RelocationSection *Relocs, | 
|  | SymbolTableSection *SymbolTable, T RelRange) { | 
|  | for (const auto &Rel : RelRange) { | 
|  | Relocation ToAdd; | 
|  | ToAdd.Offset = Rel.r_offset; | 
|  | getAddend(ToAdd.Addend, Rel); | 
|  | ToAdd.Type = Rel.getType(false); | 
|  | ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false)); | 
|  | Relocs->addRelocation(ToAdd); | 
|  | } | 
|  | } | 
|  |  | 
|  | SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) { | 
|  | if (Index == SHN_UNDEF || Index > Sections.size()) | 
|  | error(ErrMsg); | 
|  | return Sections[Index - 1].get(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg, | 
|  | Twine TypeErrMsg) { | 
|  | if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg))) | 
|  | return Sec; | 
|  | error(TypeErrMsg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) { | 
|  | ArrayRef<uint8_t> Data; | 
|  | switch (Shdr.sh_type) { | 
|  | case SHT_REL: | 
|  | case SHT_RELA: | 
|  | if (Shdr.sh_flags & SHF_ALLOC) { | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<DynamicRelocationSection>(Data); | 
|  | } | 
|  | return Obj.addSection<RelocationSection>(); | 
|  | case SHT_STRTAB: | 
|  | // If a string table is allocated we don't want to mess with it. That would | 
|  | // mean altering the memory image. There are no special link types or | 
|  | // anything so we can just use a Section. | 
|  | if (Shdr.sh_flags & SHF_ALLOC) { | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<Section>(Data); | 
|  | } | 
|  | return Obj.addSection<StringTableSection>(); | 
|  | case SHT_HASH: | 
|  | case SHT_GNU_HASH: | 
|  | // Hash tables should refer to SHT_DYNSYM which we're not going to change. | 
|  | // Because of this we don't need to mess with the hash tables either. | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<Section>(Data); | 
|  | case SHT_GROUP: | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<GroupSection>(Data); | 
|  | case SHT_DYNSYM: | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<DynamicSymbolTableSection>(Data); | 
|  | case SHT_DYNAMIC: | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  | return Obj.addSection<DynamicSection>(Data); | 
|  | case SHT_SYMTAB: { | 
|  | auto &SymTab = Obj.addSection<SymbolTableSection>(); | 
|  | Obj.SymbolTable = &SymTab; | 
|  | return SymTab; | 
|  | } | 
|  | case SHT_SYMTAB_SHNDX: { | 
|  | auto &ShndxSection = Obj.addSection<SectionIndexSection>(); | 
|  | Obj.SectionIndexTable = &ShndxSection; | 
|  | return ShndxSection; | 
|  | } | 
|  | case SHT_NOBITS: | 
|  | return Obj.addSection<Section>(Data); | 
|  | default: { | 
|  | Data = unwrapOrError(ElfFile.getSectionContents(&Shdr)); | 
|  |  | 
|  | if (isDataGnuCompressed(Data) || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) { | 
|  | uint64_t DecompressedSize, DecompressedAlign; | 
|  | std::tie(DecompressedSize, DecompressedAlign) = | 
|  | getDecompressedSizeAndAlignment<ELFT>(Data); | 
|  | return Obj.addSection<CompressedSection>(Data, DecompressedSize, | 
|  | DecompressedAlign); | 
|  | } | 
|  |  | 
|  | return Obj.addSection<Section>(Data); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() { | 
|  | uint32_t Index = 0; | 
|  | for (const auto &Shdr : unwrapOrError(ElfFile.sections())) { | 
|  | if (Index == 0) { | 
|  | ++Index; | 
|  | continue; | 
|  | } | 
|  | auto &Sec = makeSection(Shdr); | 
|  | Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr)); | 
|  | Sec.Type = Shdr.sh_type; | 
|  | Sec.Flags = Shdr.sh_flags; | 
|  | Sec.Addr = Shdr.sh_addr; | 
|  | Sec.Offset = Shdr.sh_offset; | 
|  | Sec.OriginalOffset = Shdr.sh_offset; | 
|  | Sec.Size = Shdr.sh_size; | 
|  | Sec.Link = Shdr.sh_link; | 
|  | Sec.Info = Shdr.sh_info; | 
|  | Sec.Align = Shdr.sh_addralign; | 
|  | Sec.EntrySize = Shdr.sh_entsize; | 
|  | Sec.Index = Index++; | 
|  | Sec.OriginalData = | 
|  | ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset, | 
|  | (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size); | 
|  | } | 
|  |  | 
|  | // If a section index table exists we'll need to initialize it before we | 
|  | // initialize the symbol table because the symbol table might need to | 
|  | // reference it. | 
|  | if (Obj.SectionIndexTable) | 
|  | Obj.SectionIndexTable->initialize(Obj.sections()); | 
|  |  | 
|  | // Now that all of the sections have been added we can fill out some extra | 
|  | // details about symbol tables. We need the symbol table filled out before | 
|  | // any relocations. | 
|  | if (Obj.SymbolTable) { | 
|  | Obj.SymbolTable->initialize(Obj.sections()); | 
|  | initSymbolTable(Obj.SymbolTable); | 
|  | } | 
|  |  | 
|  | // Now that all sections and symbols have been added we can add | 
|  | // relocations that reference symbols and set the link and info fields for | 
|  | // relocation sections. | 
|  | for (auto &Section : Obj.sections()) { | 
|  | if (&Section == Obj.SymbolTable) | 
|  | continue; | 
|  | Section.initialize(Obj.sections()); | 
|  | if (auto RelSec = dyn_cast<RelocationSection>(&Section)) { | 
|  | auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index; | 
|  | if (RelSec->Type == SHT_REL) | 
|  | initRelocations(RelSec, Obj.SymbolTable, | 
|  | unwrapOrError(ElfFile.rels(Shdr))); | 
|  | else | 
|  | initRelocations(RelSec, Obj.SymbolTable, | 
|  | unwrapOrError(ElfFile.relas(Shdr))); | 
|  | } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) { | 
|  | initGroupSection(GroupSec); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFBuilder<ELFT>::build() { | 
|  | const auto &Ehdr = *ElfFile.getHeader(); | 
|  |  | 
|  | Obj.OSABI = Ehdr.e_ident[EI_OSABI]; | 
|  | Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION]; | 
|  | Obj.Type = Ehdr.e_type; | 
|  | Obj.Machine = Ehdr.e_machine; | 
|  | Obj.Version = Ehdr.e_version; | 
|  | Obj.Entry = Ehdr.e_entry; | 
|  | Obj.Flags = Ehdr.e_flags; | 
|  |  | 
|  | readSectionHeaders(); | 
|  | readProgramHeaders(); | 
|  |  | 
|  | uint32_t ShstrIndex = Ehdr.e_shstrndx; | 
|  | if (ShstrIndex == SHN_XINDEX) | 
|  | ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link; | 
|  |  | 
|  | Obj.SectionNames = | 
|  | Obj.sections().template getSectionOfType<StringTableSection>( | 
|  | ShstrIndex, | 
|  | "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + | 
|  | " in elf header " + " is invalid", | 
|  | "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + | 
|  | " in elf header " + " is not a string table"); | 
|  | } | 
|  |  | 
|  | // A generic size function which computes sizes of any random access range. | 
|  | template <class R> size_t size(R &&Range) { | 
|  | return static_cast<size_t>(std::end(Range) - std::begin(Range)); | 
|  | } | 
|  |  | 
|  | Writer::~Writer() {} | 
|  |  | 
|  | Reader::~Reader() {} | 
|  |  | 
|  | std::unique_ptr<Object> BinaryReader::create() const { | 
|  | return BinaryELFBuilder(MInfo.EMachine, MemBuf).build(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Object> ELFReader::create() const { | 
|  | auto Obj = llvm::make_unique<Object>(); | 
|  | if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) { | 
|  | ELFBuilder<ELF32LE> Builder(*O, *Obj); | 
|  | Builder.build(); | 
|  | return Obj; | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) { | 
|  | ELFBuilder<ELF64LE> Builder(*O, *Obj); | 
|  | Builder.build(); | 
|  | return Obj; | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) { | 
|  | ELFBuilder<ELF32BE> Builder(*O, *Obj); | 
|  | Builder.build(); | 
|  | return Obj; | 
|  | } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) { | 
|  | ELFBuilder<ELF64BE> Builder(*O, *Obj); | 
|  | Builder.build(); | 
|  | return Obj; | 
|  | } | 
|  | error("Invalid file type"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeEhdr() { | 
|  | uint8_t *B = Buf.getBufferStart(); | 
|  | Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B); | 
|  | std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0); | 
|  | Ehdr.e_ident[EI_MAG0] = 0x7f; | 
|  | Ehdr.e_ident[EI_MAG1] = 'E'; | 
|  | Ehdr.e_ident[EI_MAG2] = 'L'; | 
|  | Ehdr.e_ident[EI_MAG3] = 'F'; | 
|  | Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | Ehdr.e_ident[EI_DATA] = | 
|  | ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB; | 
|  | Ehdr.e_ident[EI_VERSION] = EV_CURRENT; | 
|  | Ehdr.e_ident[EI_OSABI] = Obj.OSABI; | 
|  | Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion; | 
|  |  | 
|  | Ehdr.e_type = Obj.Type; | 
|  | Ehdr.e_machine = Obj.Machine; | 
|  | Ehdr.e_version = Obj.Version; | 
|  | Ehdr.e_entry = Obj.Entry; | 
|  | // We have to use the fully-qualified name llvm::size | 
|  | // since some compilers complain on ambiguous resolution. | 
|  | Ehdr.e_phnum = llvm::size(Obj.segments()); | 
|  | Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0; | 
|  | Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0; | 
|  | Ehdr.e_flags = Obj.Flags; | 
|  | Ehdr.e_ehsize = sizeof(Elf_Ehdr); | 
|  | if (WriteSectionHeaders && size(Obj.sections()) != 0) { | 
|  | Ehdr.e_shentsize = sizeof(Elf_Shdr); | 
|  | Ehdr.e_shoff = Obj.SHOffset; | 
|  | // """ | 
|  | // If the number of sections is greater than or equal to | 
|  | // SHN_LORESERVE (0xff00), this member has the value zero and the actual | 
|  | // number of section header table entries is contained in the sh_size field | 
|  | // of the section header at index 0. | 
|  | // """ | 
|  | auto Shnum = size(Obj.sections()) + 1; | 
|  | if (Shnum >= SHN_LORESERVE) | 
|  | Ehdr.e_shnum = 0; | 
|  | else | 
|  | Ehdr.e_shnum = Shnum; | 
|  | // """ | 
|  | // If the section name string table section index is greater than or equal | 
|  | // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff) | 
|  | // and the actual index of the section name string table section is | 
|  | // contained in the sh_link field of the section header at index 0. | 
|  | // """ | 
|  | if (Obj.SectionNames->Index >= SHN_LORESERVE) | 
|  | Ehdr.e_shstrndx = SHN_XINDEX; | 
|  | else | 
|  | Ehdr.e_shstrndx = Obj.SectionNames->Index; | 
|  | } else { | 
|  | Ehdr.e_shentsize = 0; | 
|  | Ehdr.e_shoff = 0; | 
|  | Ehdr.e_shnum = 0; | 
|  | Ehdr.e_shstrndx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writePhdrs() { | 
|  | for (auto &Seg : Obj.segments()) | 
|  | writePhdr(Seg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeShdrs() { | 
|  | uint8_t *B = Buf.getBufferStart() + Obj.SHOffset; | 
|  | // This reference serves to write the dummy section header at the begining | 
|  | // of the file. It is not used for anything else | 
|  | Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B); | 
|  | Shdr.sh_name = 0; | 
|  | Shdr.sh_type = SHT_NULL; | 
|  | Shdr.sh_flags = 0; | 
|  | Shdr.sh_addr = 0; | 
|  | Shdr.sh_offset = 0; | 
|  | // See writeEhdr for why we do this. | 
|  | uint64_t Shnum = size(Obj.sections()) + 1; | 
|  | if (Shnum >= SHN_LORESERVE) | 
|  | Shdr.sh_size = Shnum; | 
|  | else | 
|  | Shdr.sh_size = 0; | 
|  | // See writeEhdr for why we do this. | 
|  | if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE) | 
|  | Shdr.sh_link = Obj.SectionNames->Index; | 
|  | else | 
|  | Shdr.sh_link = 0; | 
|  | Shdr.sh_info = 0; | 
|  | Shdr.sh_addralign = 0; | 
|  | Shdr.sh_entsize = 0; | 
|  |  | 
|  | for (auto &Sec : Obj.sections()) | 
|  | writeShdr(Sec); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::writeSectionData() { | 
|  | for (auto &Sec : Obj.sections()) | 
|  | Sec.accept(*SecWriter); | 
|  | } | 
|  |  | 
|  | void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) { | 
|  |  | 
|  | auto Iter = std::stable_partition( | 
|  | std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) { | 
|  | if (ToRemove(*Sec)) | 
|  | return false; | 
|  | if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) { | 
|  | if (auto ToRelSec = RelSec->getSection()) | 
|  | return !ToRemove(*ToRelSec); | 
|  | } | 
|  | return true; | 
|  | }); | 
|  | if (SymbolTable != nullptr && ToRemove(*SymbolTable)) | 
|  | SymbolTable = nullptr; | 
|  | if (SectionNames != nullptr && ToRemove(*SectionNames)) | 
|  | SectionNames = nullptr; | 
|  | if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable)) | 
|  | SectionIndexTable = nullptr; | 
|  | // Now make sure there are no remaining references to the sections that will | 
|  | // be removed. Sometimes it is impossible to remove a reference so we emit | 
|  | // an error here instead. | 
|  | for (auto &RemoveSec : make_range(Iter, std::end(Sections))) { | 
|  | for (auto &Segment : Segments) | 
|  | Segment->removeSection(RemoveSec.get()); | 
|  | for (auto &KeepSec : make_range(std::begin(Sections), Iter)) | 
|  | KeepSec->removeSectionReferences(RemoveSec.get()); | 
|  | } | 
|  | // Now finally get rid of them all togethor. | 
|  | Sections.erase(Iter, std::end(Sections)); | 
|  | } | 
|  |  | 
|  | void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) { | 
|  | if (!SymbolTable) | 
|  | return; | 
|  |  | 
|  | for (const SecPtr &Sec : Sections) | 
|  | Sec->removeSymbols(ToRemove); | 
|  | } | 
|  |  | 
|  | void Object::sortSections() { | 
|  | // Put all sections in offset order. Maintain the ordering as closely as | 
|  | // possible while meeting that demand however. | 
|  | auto CompareSections = [](const SecPtr &A, const SecPtr &B) { | 
|  | return A->OriginalOffset < B->OriginalOffset; | 
|  | }; | 
|  | std::stable_sort(std::begin(this->Sections), std::end(this->Sections), | 
|  | CompareSections); | 
|  | } | 
|  |  | 
|  | static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) { | 
|  | // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align. | 
|  | if (Align == 0) | 
|  | Align = 1; | 
|  | auto Diff = | 
|  | static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align); | 
|  | // We only want to add to Offset, however, so if Diff < 0 we can add Align and | 
|  | // (Offset + Diff) & -Align == Addr & -Align will still hold. | 
|  | if (Diff < 0) | 
|  | Diff += Align; | 
|  | return Offset + Diff; | 
|  | } | 
|  |  | 
|  | // Orders segments such that if x = y->ParentSegment then y comes before x. | 
|  | static void orderSegments(std::vector<Segment *> &Segments) { | 
|  | std::stable_sort(std::begin(Segments), std::end(Segments), | 
|  | compareSegmentsByOffset); | 
|  | } | 
|  |  | 
|  | // This function finds a consistent layout for a list of segments starting from | 
|  | // an Offset. It assumes that Segments have been sorted by OrderSegments and | 
|  | // returns an Offset one past the end of the last segment. | 
|  | static uint64_t LayoutSegments(std::vector<Segment *> &Segments, | 
|  | uint64_t Offset) { | 
|  | assert(std::is_sorted(std::begin(Segments), std::end(Segments), | 
|  | compareSegmentsByOffset)); | 
|  | // The only way a segment should move is if a section was between two | 
|  | // segments and that section was removed. If that section isn't in a segment | 
|  | // then it's acceptable, but not ideal, to simply move it to after the | 
|  | // segments. So we can simply layout segments one after the other accounting | 
|  | // for alignment. | 
|  | for (auto &Segment : Segments) { | 
|  | // We assume that segments have been ordered by OriginalOffset and Index | 
|  | // such that a parent segment will always come before a child segment in | 
|  | // OrderedSegments. This means that the Offset of the ParentSegment should | 
|  | // already be set and we can set our offset relative to it. | 
|  | if (Segment->ParentSegment != nullptr) { | 
|  | auto Parent = Segment->ParentSegment; | 
|  | Segment->Offset = | 
|  | Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset; | 
|  | } else { | 
|  | Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align); | 
|  | Segment->Offset = Offset; | 
|  | } | 
|  | Offset = std::max(Offset, Segment->Offset + Segment->FileSize); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | // This function finds a consistent layout for a list of sections. It assumes | 
|  | // that the ->ParentSegment of each section has already been laid out. The | 
|  | // supplied starting Offset is used for the starting offset of any section that | 
|  | // does not have a ParentSegment. It returns either the offset given if all | 
|  | // sections had a ParentSegment or an offset one past the last section if there | 
|  | // was a section that didn't have a ParentSegment. | 
|  | template <class Range> | 
|  | static uint64_t layoutSections(Range Sections, uint64_t Offset) { | 
|  | // Now the offset of every segment has been set we can assign the offsets | 
|  | // of each section. For sections that are covered by a segment we should use | 
|  | // the segment's original offset and the section's original offset to compute | 
|  | // the offset from the start of the segment. Using the offset from the start | 
|  | // of the segment we can assign a new offset to the section. For sections not | 
|  | // covered by segments we can just bump Offset to the next valid location. | 
|  | uint32_t Index = 1; | 
|  | for (auto &Section : Sections) { | 
|  | Section.Index = Index++; | 
|  | if (Section.ParentSegment != nullptr) { | 
|  | auto Segment = *Section.ParentSegment; | 
|  | Section.Offset = | 
|  | Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset); | 
|  | } else { | 
|  | Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align); | 
|  | Section.Offset = Offset; | 
|  | if (Section.Type != SHT_NOBITS) | 
|  | Offset += Section.Size; | 
|  | } | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() { | 
|  | auto &ElfHdr = Obj.ElfHdrSegment; | 
|  | ElfHdr.Type = PT_PHDR; | 
|  | ElfHdr.Flags = 0; | 
|  | ElfHdr.OriginalOffset = ElfHdr.Offset = 0; | 
|  | ElfHdr.VAddr = 0; | 
|  | ElfHdr.PAddr = 0; | 
|  | ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr); | 
|  | ElfHdr.Align = 0; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::assignOffsets() { | 
|  | // We need a temporary list of segments that has a special order to it | 
|  | // so that we know that anytime ->ParentSegment is set that segment has | 
|  | // already had its offset properly set. | 
|  | std::vector<Segment *> OrderedSegments; | 
|  | for (auto &Segment : Obj.segments()) | 
|  | OrderedSegments.push_back(&Segment); | 
|  | OrderedSegments.push_back(&Obj.ElfHdrSegment); | 
|  | OrderedSegments.push_back(&Obj.ProgramHdrSegment); | 
|  | orderSegments(OrderedSegments); | 
|  | // Offset is used as the start offset of the first segment to be laid out. | 
|  | // Since the ELF Header (ElfHdrSegment) must be at the start of the file, | 
|  | // we start at offset 0. | 
|  | uint64_t Offset = 0; | 
|  | Offset = LayoutSegments(OrderedSegments, Offset); | 
|  | Offset = layoutSections(Obj.sections(), Offset); | 
|  | // If we need to write the section header table out then we need to align the | 
|  | // Offset so that SHOffset is valid. | 
|  | if (WriteSectionHeaders) | 
|  | Offset = alignTo(Offset, sizeof(Elf_Addr)); | 
|  | Obj.SHOffset = Offset; | 
|  | } | 
|  |  | 
|  | template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const { | 
|  | // We already have the section header offset so we can calculate the total | 
|  | // size by just adding up the size of each section header. | 
|  | auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0; | 
|  | return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) + | 
|  | NullSectionSize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::write() { | 
|  | writeEhdr(); | 
|  | writePhdrs(); | 
|  | writeSectionData(); | 
|  | if (WriteSectionHeaders) | 
|  | writeShdrs(); | 
|  | if (auto E = Buf.commit()) | 
|  | reportError(Buf.getName(), errorToErrorCode(std::move(E))); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ELFWriter<ELFT>::finalize() { | 
|  | // It could happen that SectionNames has been removed and yet the user wants | 
|  | // a section header table output. We need to throw an error if a user tries | 
|  | // to do that. | 
|  | if (Obj.SectionNames == nullptr && WriteSectionHeaders) | 
|  | error("Cannot write section header table because section header string " | 
|  | "table was removed."); | 
|  |  | 
|  | Obj.sortSections(); | 
|  |  | 
|  | // We need to assign indexes before we perform layout because we need to know | 
|  | // if we need large indexes or not. We can assign indexes first and check as | 
|  | // we go to see if we will actully need large indexes. | 
|  | bool NeedsLargeIndexes = false; | 
|  | if (size(Obj.sections()) >= SHN_LORESERVE) { | 
|  | auto Sections = Obj.sections(); | 
|  | NeedsLargeIndexes = | 
|  | std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(), | 
|  | [](const SectionBase &Sec) { return Sec.HasSymbol; }); | 
|  | // TODO: handle case where only one section needs the large index table but | 
|  | // only needs it because the large index table hasn't been removed yet. | 
|  | } | 
|  |  | 
|  | if (NeedsLargeIndexes) { | 
|  | // This means we definitely need to have a section index table but if we | 
|  | // already have one then we should use it instead of making a new one. | 
|  | if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) { | 
|  | // Addition of a section to the end does not invalidate the indexes of | 
|  | // other sections and assigns the correct index to the new section. | 
|  | auto &Shndx = Obj.addSection<SectionIndexSection>(); | 
|  | Obj.SymbolTable->setShndxTable(&Shndx); | 
|  | Shndx.setSymTab(Obj.SymbolTable); | 
|  | } | 
|  | } else { | 
|  | // Since we don't need SectionIndexTable we should remove it and all | 
|  | // references to it. | 
|  | if (Obj.SectionIndexTable != nullptr) { | 
|  | Obj.removeSections([this](const SectionBase &Sec) { | 
|  | return &Sec == Obj.SectionIndexTable; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we add the names of all the sections. Importantly this must be | 
|  | // done after we decide to add or remove SectionIndexes. | 
|  | if (Obj.SectionNames != nullptr) | 
|  | for (const auto &Section : Obj.sections()) { | 
|  | Obj.SectionNames->addString(Section.Name); | 
|  | } | 
|  |  | 
|  | initEhdrSegment(); | 
|  |  | 
|  | // Before we can prepare for layout the indexes need to be finalized. | 
|  | // Also, the output arch may not be the same as the input arch, so fix up | 
|  | // size-related fields before doing layout calculations. | 
|  | uint64_t Index = 0; | 
|  | auto SecSizer = llvm::make_unique<ELFSectionSizer<ELFT>>(); | 
|  | for (auto &Sec : Obj.sections()) { | 
|  | Sec.Index = Index++; | 
|  | Sec.accept(*SecSizer); | 
|  | } | 
|  |  | 
|  | // The symbol table does not update all other sections on update. For | 
|  | // instance, symbol names are not added as new symbols are added. This means | 
|  | // that some sections, like .strtab, don't yet have their final size. | 
|  | if (Obj.SymbolTable != nullptr) | 
|  | Obj.SymbolTable->prepareForLayout(); | 
|  |  | 
|  | assignOffsets(); | 
|  |  | 
|  | // Finalize SectionNames first so that we can assign name indexes. | 
|  | if (Obj.SectionNames != nullptr) | 
|  | Obj.SectionNames->finalize(); | 
|  | // Finally now that all offsets and indexes have been set we can finalize any | 
|  | // remaining issues. | 
|  | uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr); | 
|  | for (auto &Section : Obj.sections()) { | 
|  | Section.HeaderOffset = Offset; | 
|  | Offset += sizeof(Elf_Shdr); | 
|  | if (WriteSectionHeaders) | 
|  | Section.NameIndex = Obj.SectionNames->findIndex(Section.Name); | 
|  | Section.finalize(); | 
|  | } | 
|  |  | 
|  | Buf.allocate(totalSize()); | 
|  | SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf); | 
|  | } | 
|  |  | 
|  | void BinaryWriter::write() { | 
|  | for (auto &Section : Obj.sections()) { | 
|  | if ((Section.Flags & SHF_ALLOC) == 0) | 
|  | continue; | 
|  | Section.accept(*SecWriter); | 
|  | } | 
|  | if (auto E = Buf.commit()) | 
|  | reportError(Buf.getName(), errorToErrorCode(std::move(E))); | 
|  | } | 
|  |  | 
|  | void BinaryWriter::finalize() { | 
|  | // TODO: Create a filter range to construct OrderedSegments from so that this | 
|  | // code can be deduped with assignOffsets above. This should also solve the | 
|  | // todo below for LayoutSections. | 
|  | // We need a temporary list of segments that has a special order to it | 
|  | // so that we know that anytime ->ParentSegment is set that segment has | 
|  | // already had it's offset properly set. We only want to consider the segments | 
|  | // that will affect layout of allocated sections so we only add those. | 
|  | std::vector<Segment *> OrderedSegments; | 
|  | for (auto &Section : Obj.sections()) { | 
|  | if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) { | 
|  | OrderedSegments.push_back(Section.ParentSegment); | 
|  | } | 
|  | } | 
|  |  | 
|  | // For binary output, we're going to use physical addresses instead of | 
|  | // virtual addresses, since a binary output is used for cases like ROM | 
|  | // loading and physical addresses are intended for ROM loading. | 
|  | // However, if no segment has a physical address, we'll fallback to using | 
|  | // virtual addresses for all. | 
|  | if (all_of(OrderedSegments, | 
|  | [](const Segment *Seg) { return Seg->PAddr == 0; })) | 
|  | for (Segment *Seg : OrderedSegments) | 
|  | Seg->PAddr = Seg->VAddr; | 
|  |  | 
|  | std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments), | 
|  | compareSegmentsByPAddr); | 
|  |  | 
|  | // Because we add a ParentSegment for each section we might have duplicate | 
|  | // segments in OrderedSegments. If there were duplicates then LayoutSegments | 
|  | // would do very strange things. | 
|  | auto End = | 
|  | std::unique(std::begin(OrderedSegments), std::end(OrderedSegments)); | 
|  | OrderedSegments.erase(End, std::end(OrderedSegments)); | 
|  |  | 
|  | uint64_t Offset = 0; | 
|  |  | 
|  | // Modify the first segment so that there is no gap at the start. This allows | 
|  | // our layout algorithm to proceed as expected while not writing out the gap | 
|  | // at the start. | 
|  | if (!OrderedSegments.empty()) { | 
|  | auto Seg = OrderedSegments[0]; | 
|  | auto Sec = Seg->firstSection(); | 
|  | auto Diff = Sec->OriginalOffset - Seg->OriginalOffset; | 
|  | Seg->OriginalOffset += Diff; | 
|  | // The size needs to be shrunk as well. | 
|  | Seg->FileSize -= Diff; | 
|  | // The PAddr needs to be increased to remove the gap before the first | 
|  | // section. | 
|  | Seg->PAddr += Diff; | 
|  | uint64_t LowestPAddr = Seg->PAddr; | 
|  | for (auto &Segment : OrderedSegments) { | 
|  | Segment->Offset = Segment->PAddr - LowestPAddr; | 
|  | Offset = std::max(Offset, Segment->Offset + Segment->FileSize); | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO: generalize LayoutSections to take a range. Pass a special range | 
|  | // constructed from an iterator that skips values for which a predicate does | 
|  | // not hold. Then pass such a range to LayoutSections instead of constructing | 
|  | // AllocatedSections here. | 
|  | std::vector<SectionBase *> AllocatedSections; | 
|  | for (auto &Section : Obj.sections()) { | 
|  | if ((Section.Flags & SHF_ALLOC) == 0) | 
|  | continue; | 
|  | AllocatedSections.push_back(&Section); | 
|  | } | 
|  | layoutSections(make_pointee_range(AllocatedSections), Offset); | 
|  |  | 
|  | // Now that every section has been laid out we just need to compute the total | 
|  | // file size. This might not be the same as the offset returned by | 
|  | // LayoutSections, because we want to truncate the last segment to the end of | 
|  | // its last section, to match GNU objcopy's behaviour. | 
|  | TotalSize = 0; | 
|  | for (const auto &Section : AllocatedSections) { | 
|  | if (Section->Type != SHT_NOBITS) | 
|  | TotalSize = std::max(TotalSize, Section->Offset + Section->Size); | 
|  | } | 
|  |  | 
|  | Buf.allocate(TotalSize); | 
|  | SecWriter = llvm::make_unique<BinarySectionWriter>(Buf); | 
|  | } | 
|  |  | 
|  | template class ELFBuilder<ELF64LE>; | 
|  | template class ELFBuilder<ELF64BE>; | 
|  | template class ELFBuilder<ELF32LE>; | 
|  | template class ELFBuilder<ELF32BE>; | 
|  |  | 
|  | template class ELFWriter<ELF64LE>; | 
|  | template class ELFWriter<ELF64BE>; | 
|  | template class ELFWriter<ELF32LE>; | 
|  | template class ELFWriter<ELF32BE>; | 
|  |  | 
|  | } // end namespace elf | 
|  | } // end namespace objcopy | 
|  | } // end namespace llvm |