|  | ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py | 
|  | ; RUN: opt -S -instcombine < %s | FileCheck %s | 
|  |  | 
|  | ; If we have a umin feeding an unsigned or equality icmp that shares an | 
|  | ; operand with the umin, the compare should always be folded. | 
|  | ; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation | 
|  | ; possibilities for each predicate. Note that folds to true/false | 
|  | ; (predicate is ule/ugt) or folds to an existing instruction should be | 
|  | ; handled by InstSimplify. | 
|  |  | 
|  | ; umin(X, Y) == X --> X <= Y | 
|  |  | 
|  | define i1 @eq_umin1(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @eq_umin1( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp eq i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @eq_umin2(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @eq_umin2( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp eq i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Disguise the icmp predicate by commuting the min op to the RHS. | 
|  |  | 
|  | define i1 @eq_umin3(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @eq_umin3( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp eq i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @eq_umin4(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @eq_umin4( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp eq i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; umin(X, Y) >= X --> X <= Y | 
|  |  | 
|  | define i1 @uge_umin1(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @uge_umin1( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp uge i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @uge_umin2(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @uge_umin2( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp uge i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Disguise the icmp predicate by commuting the min op to the RHS. | 
|  |  | 
|  | define i1 @uge_umin3(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @uge_umin3( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp ule i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @uge_umin4(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @uge_umin4( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ule i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp ule i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; umin(X, Y) != X --> X > Y | 
|  |  | 
|  | define i1 @ne_umin1(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @ne_umin1( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp ne i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @ne_umin2(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @ne_umin2( | 
|  | ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ult i32 %y, %x | 
|  | ; CHECK-NEXT:    ret i1 [[CMP1]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp ne i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Disguise the icmp predicate by commuting the min op to the RHS. | 
|  |  | 
|  | define i1 @ne_umin3(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @ne_umin3( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp ne i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @ne_umin4(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @ne_umin4( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ugt i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP1]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp ne i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; umin(X, Y) < X --> X > Y | 
|  |  | 
|  | define i1 @ult_umin1(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @ult_umin1( | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 %x, %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp ult i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @ult_umin2(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @ult_umin2( | 
|  | ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ult i32 %y, %x | 
|  | ; CHECK-NEXT:    ret i1 [[CMP1]] | 
|  | ; | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp ult i32 %sel, %x | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Disguise the icmp predicate by commuting the min op to the RHS. | 
|  |  | 
|  | define i1 @ult_umin3(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @ult_umin3( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP2:%.*]] = icmp ugt i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP2]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %x, %y | 
|  | %sel = select i1 %cmp1, i32 %x, i32 %y | 
|  | %cmp2 = icmp ugt i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  | 
|  | ; Commute min operands. | 
|  |  | 
|  | define i1 @ult_umin4(i32 %a, i32 %y) { | 
|  | ; CHECK-LABEL: @ult_umin4( | 
|  | ; CHECK-NEXT:    [[X:%.*]] = add i32 %a, 3 | 
|  | ; CHECK-NEXT:    [[CMP1:%.*]] = icmp ugt i32 [[X]], %y | 
|  | ; CHECK-NEXT:    ret i1 [[CMP1]] | 
|  | ; | 
|  | %x = add i32 %a, 3 ; thwart complexity-based canonicalization | 
|  | %cmp1 = icmp ult i32 %y, %x | 
|  | %sel = select i1 %cmp1, i32 %y, i32 %x | 
|  | %cmp2 = icmp ugt i32 %x, %sel | 
|  | ret i1 %cmp2 | 
|  | } | 
|  |  |