|  | //===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "mlir/Transforms/DialectConversion.h" | 
|  | #include "mlir/Config/mlir-config.h" | 
|  | #include "mlir/IR/Block.h" | 
|  | #include "mlir/IR/Builders.h" | 
|  | #include "mlir/IR/BuiltinOps.h" | 
|  | #include "mlir/IR/IRMapping.h" | 
|  | #include "mlir/IR/Iterators.h" | 
|  | #include "mlir/Interfaces/FunctionInterfaces.h" | 
|  | #include "mlir/Rewrite/PatternApplicator.h" | 
|  | #include "llvm/ADT/ScopeExit.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FormatVariadic.h" | 
|  | #include "llvm/Support/SaveAndRestore.h" | 
|  | #include "llvm/Support/ScopedPrinter.h" | 
|  | #include <optional> | 
|  |  | 
|  | using namespace mlir; | 
|  | using namespace mlir::detail; | 
|  |  | 
|  | #define DEBUG_TYPE "dialect-conversion" | 
|  |  | 
|  | /// A utility function to log a successful result for the given reason. | 
|  | template <typename... Args> | 
|  | static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { | 
|  | LLVM_DEBUG({ | 
|  | os.unindent(); | 
|  | os.startLine() << "} -> SUCCESS"; | 
|  | if (!fmt.empty()) | 
|  | os.getOStream() << " : " | 
|  | << llvm::formatv(fmt.data(), std::forward<Args>(args)...); | 
|  | os.getOStream() << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// A utility function to log a failure result for the given reason. | 
|  | template <typename... Args> | 
|  | static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) { | 
|  | LLVM_DEBUG({ | 
|  | os.unindent(); | 
|  | os.startLine() << "} -> FAILURE : " | 
|  | << llvm::formatv(fmt.data(), std::forward<Args>(args)...) | 
|  | << "\n"; | 
|  | }); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ConversionValueMapping | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// This class wraps a IRMapping to provide recursive lookup | 
|  | /// functionality, i.e. we will traverse if the mapped value also has a mapping. | 
|  | struct ConversionValueMapping { | 
|  | /// Lookup a mapped value within the map. If a mapping for the provided value | 
|  | /// does not exist then return the provided value. If `desiredType` is | 
|  | /// non-null, returns the most recently mapped value with that type. If an | 
|  | /// operand of that type does not exist, defaults to normal behavior. | 
|  | Value lookupOrDefault(Value from, Type desiredType = nullptr) const; | 
|  |  | 
|  | /// Lookup a mapped value within the map, or return null if a mapping does not | 
|  | /// exist. If a mapping exists, this follows the same behavior of | 
|  | /// `lookupOrDefault`. | 
|  | Value lookupOrNull(Value from, Type desiredType = nullptr) const; | 
|  |  | 
|  | /// Map a value to the one provided. | 
|  | void map(Value oldVal, Value newVal) { | 
|  | LLVM_DEBUG({ | 
|  | for (Value it = newVal; it; it = mapping.lookupOrNull(it)) | 
|  | assert(it != oldVal && "inserting cyclic mapping"); | 
|  | }); | 
|  | mapping.map(oldVal, newVal); | 
|  | } | 
|  |  | 
|  | /// Try to map a value to the one provided. Returns false if a transitive | 
|  | /// mapping from the new value to the old value already exists, true if the | 
|  | /// map was updated. | 
|  | bool tryMap(Value oldVal, Value newVal); | 
|  |  | 
|  | /// Drop the last mapping for the given value. | 
|  | void erase(Value value) { mapping.erase(value); } | 
|  |  | 
|  | /// Returns the inverse raw value mapping (without recursive query support). | 
|  | DenseMap<Value, SmallVector<Value>> getInverse() const { | 
|  | DenseMap<Value, SmallVector<Value>> inverse; | 
|  | for (auto &it : mapping.getValueMap()) | 
|  | inverse[it.second].push_back(it.first); | 
|  | return inverse; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Current value mappings. | 
|  | IRMapping mapping; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | Value ConversionValueMapping::lookupOrDefault(Value from, | 
|  | Type desiredType) const { | 
|  | // If there was no desired type, simply find the leaf value. | 
|  | if (!desiredType) { | 
|  | // If this value had a valid mapping, unmap that value as well in the case | 
|  | // that it was also replaced. | 
|  | while (auto mappedValue = mapping.lookupOrNull(from)) | 
|  | from = mappedValue; | 
|  | return from; | 
|  | } | 
|  |  | 
|  | // Otherwise, try to find the deepest value that has the desired type. | 
|  | Value desiredValue; | 
|  | do { | 
|  | if (from.getType() == desiredType) | 
|  | desiredValue = from; | 
|  |  | 
|  | Value mappedValue = mapping.lookupOrNull(from); | 
|  | if (!mappedValue) | 
|  | break; | 
|  | from = mappedValue; | 
|  | } while (true); | 
|  |  | 
|  | // If the desired value was found use it, otherwise default to the leaf value. | 
|  | return desiredValue ? desiredValue : from; | 
|  | } | 
|  |  | 
|  | Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const { | 
|  | Value result = lookupOrDefault(from, desiredType); | 
|  | if (result == from || (desiredType && result.getType() != desiredType)) | 
|  | return nullptr; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) { | 
|  | for (Value it = newVal; it; it = mapping.lookupOrNull(it)) | 
|  | if (it == oldVal) | 
|  | return false; | 
|  | map(oldVal, newVal); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Rewriter and Translation State | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | /// This class contains a snapshot of the current conversion rewriter state. | 
|  | /// This is useful when saving and undoing a set of rewrites. | 
|  | struct RewriterState { | 
|  | RewriterState(unsigned numCreatedOps, unsigned numUnresolvedMaterializations, | 
|  | unsigned numReplacements, unsigned numArgReplacements, | 
|  | unsigned numBlockActions, unsigned numIgnoredOperations, | 
|  | unsigned numRootUpdates) | 
|  | : numCreatedOps(numCreatedOps), | 
|  | numUnresolvedMaterializations(numUnresolvedMaterializations), | 
|  | numReplacements(numReplacements), | 
|  | numArgReplacements(numArgReplacements), | 
|  | numBlockActions(numBlockActions), | 
|  | numIgnoredOperations(numIgnoredOperations), | 
|  | numRootUpdates(numRootUpdates) {} | 
|  |  | 
|  | /// The current number of created operations. | 
|  | unsigned numCreatedOps; | 
|  |  | 
|  | /// The current number of unresolved materializations. | 
|  | unsigned numUnresolvedMaterializations; | 
|  |  | 
|  | /// The current number of replacements queued. | 
|  | unsigned numReplacements; | 
|  |  | 
|  | /// The current number of argument replacements queued. | 
|  | unsigned numArgReplacements; | 
|  |  | 
|  | /// The current number of block actions performed. | 
|  | unsigned numBlockActions; | 
|  |  | 
|  | /// The current number of ignored operations. | 
|  | unsigned numIgnoredOperations; | 
|  |  | 
|  | /// The current number of operations that were updated in place. | 
|  | unsigned numRootUpdates; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // OperationTransactionState | 
|  |  | 
|  | /// The state of an operation that was updated by a pattern in-place. This | 
|  | /// contains all of the necessary information to reconstruct an operation that | 
|  | /// was updated in place. | 
|  | class OperationTransactionState { | 
|  | public: | 
|  | OperationTransactionState() = default; | 
|  | OperationTransactionState(Operation *op) | 
|  | : op(op), loc(op->getLoc()), attrs(op->getAttrDictionary()), | 
|  | operands(op->operand_begin(), op->operand_end()), | 
|  | successors(op->successor_begin(), op->successor_end()) {} | 
|  |  | 
|  | /// Discard the transaction state and reset the state of the original | 
|  | /// operation. | 
|  | void resetOperation() const { | 
|  | op->setLoc(loc); | 
|  | op->setAttrs(attrs); | 
|  | op->setOperands(operands); | 
|  | for (const auto &it : llvm::enumerate(successors)) | 
|  | op->setSuccessor(it.value(), it.index()); | 
|  | } | 
|  |  | 
|  | /// Return the original operation of this state. | 
|  | Operation *getOperation() const { return op; } | 
|  |  | 
|  | private: | 
|  | Operation *op; | 
|  | LocationAttr loc; | 
|  | DictionaryAttr attrs; | 
|  | SmallVector<Value, 8> operands; | 
|  | SmallVector<Block *, 2> successors; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // OpReplacement | 
|  |  | 
|  | /// This class represents one requested operation replacement via 'replaceOp' or | 
|  | /// 'eraseOp`. | 
|  | struct OpReplacement { | 
|  | OpReplacement(const TypeConverter *converter = nullptr) | 
|  | : converter(converter) {} | 
|  |  | 
|  | /// An optional type converter that can be used to materialize conversions | 
|  | /// between the new and old values if necessary. | 
|  | const TypeConverter *converter; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // BlockAction | 
|  |  | 
|  | /// The kind of the block action performed during the rewrite.  Actions can be | 
|  | /// undone if the conversion fails. | 
|  | enum class BlockActionKind { | 
|  | Create, | 
|  | Erase, | 
|  | Inline, | 
|  | Move, | 
|  | Split, | 
|  | TypeConversion | 
|  | }; | 
|  |  | 
|  | /// Original position of the given block in its parent region. During undo | 
|  | /// actions, the block needs to be placed after `insertAfterBlock`. | 
|  | struct BlockPosition { | 
|  | Region *region; | 
|  | Block *insertAfterBlock; | 
|  | }; | 
|  |  | 
|  | /// Information needed to undo inlining actions. | 
|  | /// - the source block | 
|  | /// - the first inlined operation (could be null if the source block was empty) | 
|  | /// - the last inlined operation (could be null if the source block was empty) | 
|  | struct InlineInfo { | 
|  | Block *sourceBlock; | 
|  | Operation *firstInlinedInst; | 
|  | Operation *lastInlinedInst; | 
|  | }; | 
|  |  | 
|  | /// The storage class for an undoable block action (one of BlockActionKind), | 
|  | /// contains the information necessary to undo this action. | 
|  | struct BlockAction { | 
|  | static BlockAction getCreate(Block *block) { | 
|  | return {BlockActionKind::Create, block, {}}; | 
|  | } | 
|  | static BlockAction getErase(Block *block, BlockPosition originalPosition) { | 
|  | return {BlockActionKind::Erase, block, {originalPosition}}; | 
|  | } | 
|  | static BlockAction getInline(Block *block, Block *srcBlock, | 
|  | Block::iterator before) { | 
|  | BlockAction action{BlockActionKind::Inline, block, {}}; | 
|  | action.inlineInfo = {srcBlock, | 
|  | srcBlock->empty() ? nullptr : &srcBlock->front(), | 
|  | srcBlock->empty() ? nullptr : &srcBlock->back()}; | 
|  | return action; | 
|  | } | 
|  | static BlockAction getMove(Block *block, BlockPosition originalPosition) { | 
|  | return {BlockActionKind::Move, block, {originalPosition}}; | 
|  | } | 
|  | static BlockAction getSplit(Block *block, Block *originalBlock) { | 
|  | BlockAction action{BlockActionKind::Split, block, {}}; | 
|  | action.originalBlock = originalBlock; | 
|  | return action; | 
|  | } | 
|  | static BlockAction getTypeConversion(Block *block) { | 
|  | return BlockAction{BlockActionKind::TypeConversion, block, {}}; | 
|  | } | 
|  |  | 
|  | // The action kind. | 
|  | BlockActionKind kind; | 
|  |  | 
|  | // A pointer to the block that was created by the action. | 
|  | Block *block; | 
|  |  | 
|  | union { | 
|  | // In use if kind == BlockActionKind::Inline or BlockActionKind::Erase, and | 
|  | // contains a pointer to the region that originally contained the block as | 
|  | // well as the position of the block in that region. | 
|  | BlockPosition originalPosition; | 
|  | // In use if kind == BlockActionKind::Split and contains a pointer to the | 
|  | // block that was split into two parts. | 
|  | Block *originalBlock; | 
|  | // In use if kind == BlockActionKind::Inline, and contains the information | 
|  | // needed to undo the inlining. | 
|  | InlineInfo inlineInfo; | 
|  | }; | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // UnresolvedMaterialization | 
|  |  | 
|  | /// This class represents an unresolved materialization, i.e. a materialization | 
|  | /// that was inserted during conversion that needs to be legalized at the end of | 
|  | /// the conversion process. | 
|  | class UnresolvedMaterialization { | 
|  | public: | 
|  | /// The type of materialization. | 
|  | enum Kind { | 
|  | /// This materialization materializes a conversion for an illegal block | 
|  | /// argument type, to a legal one. | 
|  | Argument, | 
|  |  | 
|  | /// This materialization materializes a conversion from an illegal type to a | 
|  | /// legal one. | 
|  | Target | 
|  | }; | 
|  |  | 
|  | UnresolvedMaterialization(UnrealizedConversionCastOp op = nullptr, | 
|  | const TypeConverter *converter = nullptr, | 
|  | Kind kind = Target, Type origOutputType = nullptr) | 
|  | : op(op), converterAndKind(converter, kind), | 
|  | origOutputType(origOutputType) {} | 
|  |  | 
|  | /// Return the temporary conversion operation inserted for this | 
|  | /// materialization. | 
|  | UnrealizedConversionCastOp getOp() const { return op; } | 
|  |  | 
|  | /// Return the type converter of this materialization (which may be null). | 
|  | const TypeConverter *getConverter() const { | 
|  | return converterAndKind.getPointer(); | 
|  | } | 
|  |  | 
|  | /// Return the kind of this materialization. | 
|  | Kind getKind() const { return converterAndKind.getInt(); } | 
|  |  | 
|  | /// Set the kind of this materialization. | 
|  | void setKind(Kind kind) { converterAndKind.setInt(kind); } | 
|  |  | 
|  | /// Return the original illegal output type of the input values. | 
|  | Type getOrigOutputType() const { return origOutputType; } | 
|  |  | 
|  | private: | 
|  | /// The unresolved materialization operation created during conversion. | 
|  | UnrealizedConversionCastOp op; | 
|  |  | 
|  | /// The corresponding type converter to use when resolving this | 
|  | /// materialization, and the kind of this materialization. | 
|  | llvm::PointerIntPair<const TypeConverter *, 1, Kind> converterAndKind; | 
|  |  | 
|  | /// The original output type. This is only used for argument conversions. | 
|  | Type origOutputType; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// Build an unresolved materialization operation given an output type and set | 
|  | /// of input operands. | 
|  | static Value buildUnresolvedMaterialization( | 
|  | UnresolvedMaterialization::Kind kind, Block *insertBlock, | 
|  | Block::iterator insertPt, Location loc, ValueRange inputs, Type outputType, | 
|  | Type origOutputType, const TypeConverter *converter, | 
|  | SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { | 
|  | // Avoid materializing an unnecessary cast. | 
|  | if (inputs.size() == 1 && inputs.front().getType() == outputType) | 
|  | return inputs.front(); | 
|  |  | 
|  | // Create an unresolved materialization. We use a new OpBuilder to avoid | 
|  | // tracking the materialization like we do for other operations. | 
|  | OpBuilder builder(insertBlock, insertPt); | 
|  | auto convertOp = | 
|  | builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs); | 
|  | unresolvedMaterializations.emplace_back(convertOp, converter, kind, | 
|  | origOutputType); | 
|  | return convertOp.getResult(0); | 
|  | } | 
|  | static Value buildUnresolvedArgumentMaterialization( | 
|  | PatternRewriter &rewriter, Location loc, ValueRange inputs, | 
|  | Type origOutputType, Type outputType, const TypeConverter *converter, | 
|  | SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { | 
|  | return buildUnresolvedMaterialization( | 
|  | UnresolvedMaterialization::Argument, rewriter.getInsertionBlock(), | 
|  | rewriter.getInsertionPoint(), loc, inputs, outputType, origOutputType, | 
|  | converter, unresolvedMaterializations); | 
|  | } | 
|  | static Value buildUnresolvedTargetMaterialization( | 
|  | Location loc, Value input, Type outputType, const TypeConverter *converter, | 
|  | SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) { | 
|  | Block *insertBlock = input.getParentBlock(); | 
|  | Block::iterator insertPt = insertBlock->begin(); | 
|  | if (OpResult inputRes = dyn_cast<OpResult>(input)) | 
|  | insertPt = ++inputRes.getOwner()->getIterator(); | 
|  |  | 
|  | return buildUnresolvedMaterialization( | 
|  | UnresolvedMaterialization::Target, insertBlock, insertPt, loc, input, | 
|  | outputType, outputType, converter, unresolvedMaterializations); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ArgConverter | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | /// This class provides a simple interface for converting the types of block | 
|  | /// arguments. This is done by creating a new block that contains the new legal | 
|  | /// types and extracting the block that contains the old illegal types to allow | 
|  | /// for undoing pending rewrites in the case of failure. | 
|  | struct ArgConverter { | 
|  | ArgConverter( | 
|  | PatternRewriter &rewriter, | 
|  | SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations) | 
|  | : rewriter(rewriter), | 
|  | unresolvedMaterializations(unresolvedMaterializations) {} | 
|  |  | 
|  | /// This structure contains the information pertaining to an argument that has | 
|  | /// been converted. | 
|  | struct ConvertedArgInfo { | 
|  | ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize, | 
|  | Value castValue = nullptr) | 
|  | : newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {} | 
|  |  | 
|  | /// The start index of in the new argument list that contains arguments that | 
|  | /// replace the original. | 
|  | unsigned newArgIdx; | 
|  |  | 
|  | /// The number of arguments that replaced the original argument. | 
|  | unsigned newArgSize; | 
|  |  | 
|  | /// The cast value that was created to cast from the new arguments to the | 
|  | /// old. This only used if 'newArgSize' > 1. | 
|  | Value castValue; | 
|  | }; | 
|  |  | 
|  | /// This structure contains information pertaining to a block that has had its | 
|  | /// signature converted. | 
|  | struct ConvertedBlockInfo { | 
|  | ConvertedBlockInfo(Block *origBlock, const TypeConverter *converter) | 
|  | : origBlock(origBlock), converter(converter) {} | 
|  |  | 
|  | /// The original block that was requested to have its signature converted. | 
|  | Block *origBlock; | 
|  |  | 
|  | /// The conversion information for each of the arguments. The information is | 
|  | /// std::nullopt if the argument was dropped during conversion. | 
|  | SmallVector<std::optional<ConvertedArgInfo>, 1> argInfo; | 
|  |  | 
|  | /// The type converter used to convert the arguments. | 
|  | const TypeConverter *converter; | 
|  | }; | 
|  |  | 
|  | /// Return if the signature of the given block has already been converted. | 
|  | bool hasBeenConverted(Block *block) const { | 
|  | return conversionInfo.count(block) || convertedBlocks.count(block); | 
|  | } | 
|  |  | 
|  | /// Set the type converter to use for the given region. | 
|  | void setConverter(Region *region, const TypeConverter *typeConverter) { | 
|  | assert(typeConverter && "expected valid type converter"); | 
|  | regionToConverter[region] = typeConverter; | 
|  | } | 
|  |  | 
|  | /// Return the type converter to use for the given region, or null if there | 
|  | /// isn't one. | 
|  | const TypeConverter *getConverter(Region *region) { | 
|  | return regionToConverter.lookup(region); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Rewrite Application | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Erase any rewrites registered for the blocks within the given operation | 
|  | /// which is about to be removed. This merely drops the rewrites without | 
|  | /// undoing them. | 
|  | void notifyOpRemoved(Operation *op); | 
|  |  | 
|  | /// Cleanup and undo any generated conversions for the arguments of block. | 
|  | /// This method replaces the new block with the original, reverting the IR to | 
|  | /// its original state. | 
|  | void discardRewrites(Block *block); | 
|  |  | 
|  | /// Fully replace uses of the old arguments with the new. | 
|  | void applyRewrites(ConversionValueMapping &mapping); | 
|  |  | 
|  | /// Materialize any necessary conversions for converted arguments that have | 
|  | /// live users, using the provided `findLiveUser` to search for a user that | 
|  | /// survives the conversion process. | 
|  | LogicalResult | 
|  | materializeLiveConversions(ConversionValueMapping &mapping, | 
|  | OpBuilder &builder, | 
|  | function_ref<Operation *(Value)> findLiveUser); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Conversion | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Attempt to convert the signature of the given block, if successful a new | 
|  | /// block is returned containing the new arguments. Returns `block` if it did | 
|  | /// not require conversion. | 
|  | FailureOr<Block *> | 
|  | convertSignature(Block *block, const TypeConverter *converter, | 
|  | ConversionValueMapping &mapping, | 
|  | SmallVectorImpl<BlockArgument> &argReplacements); | 
|  |  | 
|  | /// Apply the given signature conversion on the given block. The new block | 
|  | /// containing the updated signature is returned. If no conversions were | 
|  | /// necessary, e.g. if the block has no arguments, `block` is returned. | 
|  | /// `converter` is used to generate any necessary cast operations that | 
|  | /// translate between the origin argument types and those specified in the | 
|  | /// signature conversion. | 
|  | Block *applySignatureConversion( | 
|  | Block *block, const TypeConverter *converter, | 
|  | TypeConverter::SignatureConversion &signatureConversion, | 
|  | ConversionValueMapping &mapping, | 
|  | SmallVectorImpl<BlockArgument> &argReplacements); | 
|  |  | 
|  | /// Insert a new conversion into the cache. | 
|  | void insertConversion(Block *newBlock, ConvertedBlockInfo &&info); | 
|  |  | 
|  | /// A collection of blocks that have had their arguments converted. This is a | 
|  | /// map from the new replacement block, back to the original block. | 
|  | llvm::MapVector<Block *, ConvertedBlockInfo> conversionInfo; | 
|  |  | 
|  | /// The set of original blocks that were converted. | 
|  | DenseSet<Block *> convertedBlocks; | 
|  |  | 
|  | /// A mapping from valid regions, to those containing the original blocks of a | 
|  | /// conversion. | 
|  | DenseMap<Region *, std::unique_ptr<Region>> regionMapping; | 
|  |  | 
|  | /// A mapping of regions to type converters that should be used when | 
|  | /// converting the arguments of blocks within that region. | 
|  | DenseMap<Region *, const TypeConverter *> regionToConverter; | 
|  |  | 
|  | /// The pattern rewriter to use when materializing conversions. | 
|  | PatternRewriter &rewriter; | 
|  |  | 
|  | /// An ordered set of unresolved materializations during conversion. | 
|  | SmallVectorImpl<UnresolvedMaterialization> &unresolvedMaterializations; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Rewrite Application | 
|  |  | 
|  | void ArgConverter::notifyOpRemoved(Operation *op) { | 
|  | if (conversionInfo.empty()) | 
|  | return; | 
|  |  | 
|  | for (Region ®ion : op->getRegions()) { | 
|  | for (Block &block : region) { | 
|  | // Drop any rewrites from within. | 
|  | for (Operation &nestedOp : block) | 
|  | if (nestedOp.getNumRegions()) | 
|  | notifyOpRemoved(&nestedOp); | 
|  |  | 
|  | // Check if this block was converted. | 
|  | auto it = conversionInfo.find(&block); | 
|  | if (it == conversionInfo.end()) | 
|  | continue; | 
|  |  | 
|  | // Drop all uses of the original arguments and delete the original block. | 
|  | Block *origBlock = it->second.origBlock; | 
|  | for (BlockArgument arg : origBlock->getArguments()) | 
|  | arg.dropAllUses(); | 
|  | conversionInfo.erase(it); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ArgConverter::discardRewrites(Block *block) { | 
|  | auto it = conversionInfo.find(block); | 
|  | if (it == conversionInfo.end()) | 
|  | return; | 
|  | Block *origBlock = it->second.origBlock; | 
|  |  | 
|  | // Drop all uses of the new block arguments and replace uses of the new block. | 
|  | for (int i = block->getNumArguments() - 1; i >= 0; --i) | 
|  | block->getArgument(i).dropAllUses(); | 
|  | block->replaceAllUsesWith(origBlock); | 
|  |  | 
|  | // Move the operations back the original block and the delete the new block. | 
|  | origBlock->getOperations().splice(origBlock->end(), block->getOperations()); | 
|  | origBlock->moveBefore(block); | 
|  | block->erase(); | 
|  |  | 
|  | convertedBlocks.erase(origBlock); | 
|  | conversionInfo.erase(it); | 
|  | } | 
|  |  | 
|  | void ArgConverter::applyRewrites(ConversionValueMapping &mapping) { | 
|  | for (auto &info : conversionInfo) { | 
|  | ConvertedBlockInfo &blockInfo = info.second; | 
|  | Block *origBlock = blockInfo.origBlock; | 
|  |  | 
|  | // Process the remapping for each of the original arguments. | 
|  | for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { | 
|  | std::optional<ConvertedArgInfo> &argInfo = blockInfo.argInfo[i]; | 
|  | BlockArgument origArg = origBlock->getArgument(i); | 
|  |  | 
|  | // Handle the case of a 1->0 value mapping. | 
|  | if (!argInfo) { | 
|  | if (Value newArg = mapping.lookupOrNull(origArg, origArg.getType())) | 
|  | origArg.replaceAllUsesWith(newArg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise this is a 1->1+ value mapping. | 
|  | Value castValue = argInfo->castValue; | 
|  | assert(argInfo->newArgSize >= 1 && castValue && "expected 1->1+ mapping"); | 
|  |  | 
|  | // If the argument is still used, replace it with the generated cast. | 
|  | if (!origArg.use_empty()) { | 
|  | origArg.replaceAllUsesWith( | 
|  | mapping.lookupOrDefault(castValue, origArg.getType())); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LogicalResult ArgConverter::materializeLiveConversions( | 
|  | ConversionValueMapping &mapping, OpBuilder &builder, | 
|  | function_ref<Operation *(Value)> findLiveUser) { | 
|  | for (auto &info : conversionInfo) { | 
|  | Block *newBlock = info.first; | 
|  | ConvertedBlockInfo &blockInfo = info.second; | 
|  | Block *origBlock = blockInfo.origBlock; | 
|  |  | 
|  | // Process the remapping for each of the original arguments. | 
|  | for (unsigned i = 0, e = origBlock->getNumArguments(); i != e; ++i) { | 
|  | // If the type of this argument changed and the argument is still live, we | 
|  | // need to materialize a conversion. | 
|  | BlockArgument origArg = origBlock->getArgument(i); | 
|  | if (mapping.lookupOrNull(origArg, origArg.getType())) | 
|  | continue; | 
|  | Operation *liveUser = findLiveUser(origArg); | 
|  | if (!liveUser) | 
|  | continue; | 
|  |  | 
|  | Value replacementValue = mapping.lookupOrDefault(origArg); | 
|  | bool isDroppedArg = replacementValue == origArg; | 
|  | if (isDroppedArg) | 
|  | rewriter.setInsertionPointToStart(newBlock); | 
|  | else | 
|  | rewriter.setInsertionPointAfterValue(replacementValue); | 
|  | Value newArg; | 
|  | if (blockInfo.converter) { | 
|  | newArg = blockInfo.converter->materializeSourceConversion( | 
|  | rewriter, origArg.getLoc(), origArg.getType(), | 
|  | isDroppedArg ? ValueRange() : ValueRange(replacementValue)); | 
|  | assert((!newArg || newArg.getType() == origArg.getType()) && | 
|  | "materialization hook did not provide a value of the expected " | 
|  | "type"); | 
|  | } | 
|  | if (!newArg) { | 
|  | InFlightDiagnostic diag = | 
|  | emitError(origArg.getLoc()) | 
|  | << "failed to materialize conversion for block argument #" << i | 
|  | << " that remained live after conversion, type was " | 
|  | << origArg.getType(); | 
|  | if (!isDroppedArg) | 
|  | diag << ", with target type " << replacementValue.getType(); | 
|  | diag.attachNote(liveUser->getLoc()) | 
|  | << "see existing live user here: " << *liveUser; | 
|  | return failure(); | 
|  | } | 
|  | mapping.map(origArg, newArg); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Conversion | 
|  |  | 
|  | FailureOr<Block *> ArgConverter::convertSignature( | 
|  | Block *block, const TypeConverter *converter, | 
|  | ConversionValueMapping &mapping, | 
|  | SmallVectorImpl<BlockArgument> &argReplacements) { | 
|  | // Check if the block was already converted. If the block is detached, | 
|  | // conservatively assume it is going to be deleted. | 
|  | if (hasBeenConverted(block) || !block->getParent()) | 
|  | return block; | 
|  | // If a converter wasn't provided, and the block wasn't already converted, | 
|  | // there is nothing we can do. | 
|  | if (!converter) | 
|  | return failure(); | 
|  |  | 
|  | // Try to convert the signature for the block with the provided converter. | 
|  | if (auto conversion = converter->convertBlockSignature(block)) | 
|  | return applySignatureConversion(block, converter, *conversion, mapping, | 
|  | argReplacements); | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | Block *ArgConverter::applySignatureConversion( | 
|  | Block *block, const TypeConverter *converter, | 
|  | TypeConverter::SignatureConversion &signatureConversion, | 
|  | ConversionValueMapping &mapping, | 
|  | SmallVectorImpl<BlockArgument> &argReplacements) { | 
|  | // If no arguments are being changed or added, there is nothing to do. | 
|  | unsigned origArgCount = block->getNumArguments(); | 
|  | auto convertedTypes = signatureConversion.getConvertedTypes(); | 
|  | if (origArgCount == 0 && convertedTypes.empty()) | 
|  | return block; | 
|  |  | 
|  | // Split the block at the beginning to get a new block to use for the updated | 
|  | // signature. | 
|  | Block *newBlock = block->splitBlock(block->begin()); | 
|  | block->replaceAllUsesWith(newBlock); | 
|  |  | 
|  | // Map all new arguments to the location of the argument they originate from. | 
|  | SmallVector<Location> newLocs(convertedTypes.size(), | 
|  | rewriter.getUnknownLoc()); | 
|  | for (unsigned i = 0; i < origArgCount; ++i) { | 
|  | auto inputMap = signatureConversion.getInputMapping(i); | 
|  | if (!inputMap || inputMap->replacementValue) | 
|  | continue; | 
|  | Location origLoc = block->getArgument(i).getLoc(); | 
|  | for (unsigned j = 0; j < inputMap->size; ++j) | 
|  | newLocs[inputMap->inputNo + j] = origLoc; | 
|  | } | 
|  |  | 
|  | SmallVector<Value, 4> newArgRange( | 
|  | newBlock->addArguments(convertedTypes, newLocs)); | 
|  | ArrayRef<Value> newArgs(newArgRange); | 
|  |  | 
|  | // Remap each of the original arguments as determined by the signature | 
|  | // conversion. | 
|  | ConvertedBlockInfo info(block, converter); | 
|  | info.argInfo.resize(origArgCount); | 
|  |  | 
|  | OpBuilder::InsertionGuard guard(rewriter); | 
|  | rewriter.setInsertionPointToStart(newBlock); | 
|  | for (unsigned i = 0; i != origArgCount; ++i) { | 
|  | auto inputMap = signatureConversion.getInputMapping(i); | 
|  | if (!inputMap) | 
|  | continue; | 
|  | BlockArgument origArg = block->getArgument(i); | 
|  |  | 
|  | // If inputMap->replacementValue is not nullptr, then the argument is | 
|  | // dropped and a replacement value is provided to be the remappedValue. | 
|  | if (inputMap->replacementValue) { | 
|  | assert(inputMap->size == 0 && | 
|  | "invalid to provide a replacement value when the argument isn't " | 
|  | "dropped"); | 
|  | mapping.map(origArg, inputMap->replacementValue); | 
|  | argReplacements.push_back(origArg); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a 1->1+ mapping. | 
|  | auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size); | 
|  | Value newArg; | 
|  |  | 
|  | // If this is a 1->1 mapping and the types of new and replacement arguments | 
|  | // match (i.e. it's an identity map), then the argument is mapped to its | 
|  | // original type. | 
|  | // FIXME: We simply pass through the replacement argument if there wasn't a | 
|  | // converter, which isn't great as it allows implicit type conversions to | 
|  | // appear. We should properly restructure this code to handle cases where a | 
|  | // converter isn't provided and also to properly handle the case where an | 
|  | // argument materialization is actually a temporary source materialization | 
|  | // (e.g. in the case of 1->N). | 
|  | if (replArgs.size() == 1 && | 
|  | (!converter || replArgs[0].getType() == origArg.getType())) { | 
|  | newArg = replArgs.front(); | 
|  | } else { | 
|  | Type origOutputType = origArg.getType(); | 
|  |  | 
|  | // Legalize the argument output type. | 
|  | Type outputType = origOutputType; | 
|  | if (Type legalOutputType = converter->convertType(outputType)) | 
|  | outputType = legalOutputType; | 
|  |  | 
|  | newArg = buildUnresolvedArgumentMaterialization( | 
|  | rewriter, origArg.getLoc(), replArgs, origOutputType, outputType, | 
|  | converter, unresolvedMaterializations); | 
|  | } | 
|  |  | 
|  | mapping.map(origArg, newArg); | 
|  | argReplacements.push_back(origArg); | 
|  | info.argInfo[i] = | 
|  | ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg); | 
|  | } | 
|  |  | 
|  | // Remove the original block from the region and return the new one. | 
|  | insertConversion(newBlock, std::move(info)); | 
|  | return newBlock; | 
|  | } | 
|  |  | 
|  | void ArgConverter::insertConversion(Block *newBlock, | 
|  | ConvertedBlockInfo &&info) { | 
|  | // Get a region to insert the old block. | 
|  | Region *region = newBlock->getParent(); | 
|  | std::unique_ptr<Region> &mappedRegion = regionMapping[region]; | 
|  | if (!mappedRegion) | 
|  | mappedRegion = std::make_unique<Region>(region->getParentOp()); | 
|  |  | 
|  | // Move the original block to the mapped region and emplace the conversion. | 
|  | mappedRegion->getBlocks().splice(mappedRegion->end(), region->getBlocks(), | 
|  | info.origBlock->getIterator()); | 
|  | convertedBlocks.insert(info.origBlock); | 
|  | conversionInfo.insert({newBlock, std::move(info)}); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ConversionPatternRewriterImpl | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace mlir { | 
|  | namespace detail { | 
|  | struct ConversionPatternRewriterImpl { | 
|  | explicit ConversionPatternRewriterImpl(PatternRewriter &rewriter) | 
|  | : argConverter(rewriter, unresolvedMaterializations), | 
|  | notifyCallback(nullptr) {} | 
|  |  | 
|  | /// Cleanup and destroy any generated rewrite operations. This method is | 
|  | /// invoked when the conversion process fails. | 
|  | void discardRewrites(); | 
|  |  | 
|  | /// Apply all requested operation rewrites. This method is invoked when the | 
|  | /// conversion process succeeds. | 
|  | void applyRewrites(); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // State Management | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Return the current state of the rewriter. | 
|  | RewriterState getCurrentState(); | 
|  |  | 
|  | /// Reset the state of the rewriter to a previously saved point. | 
|  | void resetState(RewriterState state); | 
|  |  | 
|  | /// Erase any blocks that were unlinked from their regions and stored in block | 
|  | /// actions. | 
|  | void eraseDanglingBlocks(); | 
|  |  | 
|  | /// Undo the block actions (motions, splits) one by one in reverse order until | 
|  | /// "numActionsToKeep" actions remains. | 
|  | void undoBlockActions(unsigned numActionsToKeep = 0); | 
|  |  | 
|  | /// Remap the given values to those with potentially different types. Returns | 
|  | /// success if the values could be remapped, failure otherwise. `valueDiagTag` | 
|  | /// is the tag used when describing a value within a diagnostic, e.g. | 
|  | /// "operand". | 
|  | LogicalResult remapValues(StringRef valueDiagTag, | 
|  | std::optional<Location> inputLoc, | 
|  | PatternRewriter &rewriter, ValueRange values, | 
|  | SmallVectorImpl<Value> &remapped); | 
|  |  | 
|  | /// Returns true if the given operation is ignored, and does not need to be | 
|  | /// converted. | 
|  | bool isOpIgnored(Operation *op) const; | 
|  |  | 
|  | /// Recursively marks the nested operations under 'op' as ignored. This | 
|  | /// removes them from being considered for legalization. | 
|  | void markNestedOpsIgnored(Operation *op); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Type Conversion | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Convert the signature of the given block. | 
|  | FailureOr<Block *> convertBlockSignature( | 
|  | Block *block, const TypeConverter *converter, | 
|  | TypeConverter::SignatureConversion *conversion = nullptr); | 
|  |  | 
|  | /// Apply a signature conversion on the given region, using `converter` for | 
|  | /// materializations if not null. | 
|  | Block * | 
|  | applySignatureConversion(Region *region, | 
|  | TypeConverter::SignatureConversion &conversion, | 
|  | const TypeConverter *converter); | 
|  |  | 
|  | /// Convert the types of block arguments within the given region. | 
|  | FailureOr<Block *> | 
|  | convertRegionTypes(Region *region, const TypeConverter &converter, | 
|  | TypeConverter::SignatureConversion *entryConversion); | 
|  |  | 
|  | /// Convert the types of non-entry block arguments within the given region. | 
|  | LogicalResult convertNonEntryRegionTypes( | 
|  | Region *region, const TypeConverter &converter, | 
|  | ArrayRef<TypeConverter::SignatureConversion> blockConversions = {}); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Rewriter Notification Hooks | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// PatternRewriter hook for replacing the results of an operation. | 
|  | void notifyOpReplaced(Operation *op, ValueRange newValues); | 
|  |  | 
|  | /// Notifies that a block is about to be erased. | 
|  | void notifyBlockIsBeingErased(Block *block); | 
|  |  | 
|  | /// Notifies that a block was created. | 
|  | void notifyCreatedBlock(Block *block); | 
|  |  | 
|  | /// Notifies that a block was split. | 
|  | void notifySplitBlock(Block *block, Block *continuation); | 
|  |  | 
|  | /// Notifies that a block is being inlined into another block. | 
|  | void notifyBlockBeingInlined(Block *block, Block *srcBlock, | 
|  | Block::iterator before); | 
|  |  | 
|  | /// Notifies that the blocks of a region are about to be moved. | 
|  | void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent, | 
|  | Region::iterator before); | 
|  |  | 
|  | /// Notifies that a pattern match failed for the given reason. | 
|  | LogicalResult | 
|  | notifyMatchFailure(Location loc, | 
|  | function_ref<void(Diagnostic &)> reasonCallback); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // State | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | // Mapping between replaced values that differ in type. This happens when | 
|  | // replacing a value with one of a different type. | 
|  | ConversionValueMapping mapping; | 
|  |  | 
|  | /// Utility used to convert block arguments. | 
|  | ArgConverter argConverter; | 
|  |  | 
|  | /// Ordered vector of all of the newly created operations during conversion. | 
|  | SmallVector<Operation *> createdOps; | 
|  |  | 
|  | /// Ordered vector of all unresolved type conversion materializations during | 
|  | /// conversion. | 
|  | SmallVector<UnresolvedMaterialization> unresolvedMaterializations; | 
|  |  | 
|  | /// Ordered map of requested operation replacements. | 
|  | llvm::MapVector<Operation *, OpReplacement> replacements; | 
|  |  | 
|  | /// Ordered vector of any requested block argument replacements. | 
|  | SmallVector<BlockArgument, 4> argReplacements; | 
|  |  | 
|  | /// Ordered list of block operations (creations, splits, motions). | 
|  | SmallVector<BlockAction, 4> blockActions; | 
|  |  | 
|  | /// A set of operations that should no longer be considered for legalization, | 
|  | /// but were not directly replace/erased/etc. by a pattern. These are | 
|  | /// generally child operations of other operations who were | 
|  | /// replaced/erased/etc. This is not meant to be an exhaustive list of all | 
|  | /// operations, but the minimal set that can be used to detect if a given | 
|  | /// operation should be `ignored`. For example, we may add the operations that | 
|  | /// define non-empty regions to the set, but not any of the others. This | 
|  | /// simplifies the amount of memory needed as we can query if the parent | 
|  | /// operation was ignored. | 
|  | SetVector<Operation *> ignoredOps; | 
|  |  | 
|  | /// A transaction state for each of operations that were updated in-place. | 
|  | SmallVector<OperationTransactionState, 4> rootUpdates; | 
|  |  | 
|  | /// A vector of indices into `replacements` of operations that were replaced | 
|  | /// with values with different result types than the original operation, e.g. | 
|  | /// 1->N conversion of some kind. | 
|  | SmallVector<unsigned, 4> operationsWithChangedResults; | 
|  |  | 
|  | /// The current type converter, or nullptr if no type converter is currently | 
|  | /// active. | 
|  | const TypeConverter *currentTypeConverter = nullptr; | 
|  |  | 
|  | /// This allows the user to collect the match failure message. | 
|  | function_ref<void(Diagnostic &)> notifyCallback; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// A set of operations that have pending updates. This tracking isn't | 
|  | /// strictly necessary, and is thus only active during debug builds for extra | 
|  | /// verification. | 
|  | SmallPtrSet<Operation *, 1> pendingRootUpdates; | 
|  |  | 
|  | /// A logger used to emit diagnostics during the conversion process. | 
|  | llvm::ScopedPrinter logger{llvm::dbgs()}; | 
|  | #endif | 
|  | }; | 
|  | } // namespace detail | 
|  | } // namespace mlir | 
|  |  | 
|  | /// Detach any operations nested in the given operation from their parent | 
|  | /// blocks, and erase the given operation. This can be used when the nested | 
|  | /// operations are scheduled for erasure themselves, so deleting the regions of | 
|  | /// the given operation together with their content would result in double-free. | 
|  | /// This happens, for example, when rolling back op creation in the reverse | 
|  | /// order and if the nested ops were created before the parent op. This function | 
|  | /// does not need to collect nested ops recursively because it is expected to | 
|  | /// also be called for each nested op when it is about to be deleted. | 
|  | static void detachNestedAndErase(Operation *op) { | 
|  | for (Region ®ion : op->getRegions()) { | 
|  | for (Block &block : region.getBlocks()) { | 
|  | while (!block.getOperations().empty()) | 
|  | block.getOperations().remove(block.getOperations().begin()); | 
|  | block.dropAllDefinedValueUses(); | 
|  | } | 
|  | } | 
|  | op->dropAllUses(); | 
|  | op->erase(); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::discardRewrites() { | 
|  | // Reset any operations that were updated in place. | 
|  | for (auto &state : rootUpdates) | 
|  | state.resetOperation(); | 
|  |  | 
|  | undoBlockActions(); | 
|  |  | 
|  | // Remove any newly created ops. | 
|  | for (UnresolvedMaterialization &materialization : unresolvedMaterializations) | 
|  | detachNestedAndErase(materialization.getOp()); | 
|  | for (auto *op : llvm::reverse(createdOps)) | 
|  | detachNestedAndErase(op); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::applyRewrites() { | 
|  | // Apply all of the rewrites replacements requested during conversion. | 
|  | for (auto &repl : replacements) { | 
|  | for (OpResult result : repl.first->getResults()) | 
|  | if (Value newValue = mapping.lookupOrNull(result, result.getType())) | 
|  | result.replaceAllUsesWith(newValue); | 
|  |  | 
|  | // If this operation defines any regions, drop any pending argument | 
|  | // rewrites. | 
|  | if (repl.first->getNumRegions()) | 
|  | argConverter.notifyOpRemoved(repl.first); | 
|  | } | 
|  |  | 
|  | // Apply all of the requested argument replacements. | 
|  | for (BlockArgument arg : argReplacements) { | 
|  | Value repl = mapping.lookupOrNull(arg, arg.getType()); | 
|  | if (!repl) | 
|  | continue; | 
|  |  | 
|  | if (isa<BlockArgument>(repl)) { | 
|  | arg.replaceAllUsesWith(repl); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If the replacement value is an operation, we check to make sure that we | 
|  | // don't replace uses that are within the parent operation of the | 
|  | // replacement value. | 
|  | Operation *replOp = cast<OpResult>(repl).getOwner(); | 
|  | Block *replBlock = replOp->getBlock(); | 
|  | arg.replaceUsesWithIf(repl, [&](OpOperand &operand) { | 
|  | Operation *user = operand.getOwner(); | 
|  | return user->getBlock() != replBlock || replOp->isBeforeInBlock(user); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Drop all of the unresolved materialization operations created during | 
|  | // conversion. | 
|  | for (auto &mat : unresolvedMaterializations) { | 
|  | mat.getOp()->dropAllUses(); | 
|  | mat.getOp()->erase(); | 
|  | } | 
|  |  | 
|  | // In a second pass, erase all of the replaced operations in reverse. This | 
|  | // allows processing nested operations before their parent region is | 
|  | // destroyed. Because we process in reverse order, producers may be deleted | 
|  | // before their users (a pattern deleting a producer and then the consumer) | 
|  | // so we first drop all uses explicitly. | 
|  | for (auto &repl : llvm::reverse(replacements)) { | 
|  | repl.first->dropAllUses(); | 
|  | repl.first->erase(); | 
|  | } | 
|  |  | 
|  | argConverter.applyRewrites(mapping); | 
|  |  | 
|  | // Now that the ops have been erased, also erase dangling blocks. | 
|  | eraseDanglingBlocks(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // State Management | 
|  |  | 
|  | RewriterState ConversionPatternRewriterImpl::getCurrentState() { | 
|  | return RewriterState(createdOps.size(), unresolvedMaterializations.size(), | 
|  | replacements.size(), argReplacements.size(), | 
|  | blockActions.size(), ignoredOps.size(), | 
|  | rootUpdates.size()); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::resetState(RewriterState state) { | 
|  | // Reset any operations that were updated in place. | 
|  | for (unsigned i = state.numRootUpdates, e = rootUpdates.size(); i != e; ++i) | 
|  | rootUpdates[i].resetOperation(); | 
|  | rootUpdates.resize(state.numRootUpdates); | 
|  |  | 
|  | // Reset any replaced arguments. | 
|  | for (BlockArgument replacedArg : | 
|  | llvm::drop_begin(argReplacements, state.numArgReplacements)) | 
|  | mapping.erase(replacedArg); | 
|  | argReplacements.resize(state.numArgReplacements); | 
|  |  | 
|  | // Undo any block actions. | 
|  | undoBlockActions(state.numBlockActions); | 
|  |  | 
|  | // Reset any replaced operations and undo any saved mappings. | 
|  | for (auto &repl : llvm::drop_begin(replacements, state.numReplacements)) | 
|  | for (auto result : repl.first->getResults()) | 
|  | mapping.erase(result); | 
|  | while (replacements.size() != state.numReplacements) | 
|  | replacements.pop_back(); | 
|  |  | 
|  | // Pop all of the newly inserted materializations. | 
|  | while (unresolvedMaterializations.size() != | 
|  | state.numUnresolvedMaterializations) { | 
|  | UnresolvedMaterialization mat = unresolvedMaterializations.pop_back_val(); | 
|  | UnrealizedConversionCastOp op = mat.getOp(); | 
|  |  | 
|  | // If this was a target materialization, drop the mapping that was inserted. | 
|  | if (mat.getKind() == UnresolvedMaterialization::Target) { | 
|  | for (Value input : op->getOperands()) | 
|  | mapping.erase(input); | 
|  | } | 
|  | detachNestedAndErase(op); | 
|  | } | 
|  |  | 
|  | // Pop all of the newly created operations. | 
|  | while (createdOps.size() != state.numCreatedOps) { | 
|  | detachNestedAndErase(createdOps.back()); | 
|  | createdOps.pop_back(); | 
|  | } | 
|  |  | 
|  | // Pop all of the recorded ignored operations that are no longer valid. | 
|  | while (ignoredOps.size() != state.numIgnoredOperations) | 
|  | ignoredOps.pop_back(); | 
|  |  | 
|  | // Reset operations with changed results. | 
|  | while (!operationsWithChangedResults.empty() && | 
|  | operationsWithChangedResults.back() >= state.numReplacements) | 
|  | operationsWithChangedResults.pop_back(); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::eraseDanglingBlocks() { | 
|  | for (auto &action : blockActions) | 
|  | if (action.kind == BlockActionKind::Erase) | 
|  | delete action.block; | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::undoBlockActions( | 
|  | unsigned numActionsToKeep) { | 
|  | for (auto &action : | 
|  | llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) { | 
|  | switch (action.kind) { | 
|  | // Delete the created block. | 
|  | case BlockActionKind::Create: { | 
|  | // Unlink all of the operations within this block, they will be deleted | 
|  | // separately. | 
|  | auto &blockOps = action.block->getOperations(); | 
|  | while (!blockOps.empty()) | 
|  | blockOps.remove(blockOps.begin()); | 
|  | action.block->dropAllDefinedValueUses(); | 
|  | action.block->erase(); | 
|  | break; | 
|  | } | 
|  | // Put the block (owned by action) back into its original position. | 
|  | case BlockActionKind::Erase: { | 
|  | auto &blockList = action.originalPosition.region->getBlocks(); | 
|  | Block *insertAfterBlock = action.originalPosition.insertAfterBlock; | 
|  | blockList.insert((insertAfterBlock | 
|  | ? std::next(Region::iterator(insertAfterBlock)) | 
|  | : blockList.begin()), | 
|  | action.block); | 
|  | break; | 
|  | } | 
|  | // Put the instructions from the destination block (owned by the action) | 
|  | // back into the source block. | 
|  | case BlockActionKind::Inline: { | 
|  | Block *sourceBlock = action.inlineInfo.sourceBlock; | 
|  | if (action.inlineInfo.firstInlinedInst) { | 
|  | assert(action.inlineInfo.lastInlinedInst && "expected operation"); | 
|  | sourceBlock->getOperations().splice( | 
|  | sourceBlock->begin(), action.block->getOperations(), | 
|  | Block::iterator(action.inlineInfo.firstInlinedInst), | 
|  | ++Block::iterator(action.inlineInfo.lastInlinedInst)); | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Move the block back to its original position. | 
|  | case BlockActionKind::Move: { | 
|  | Region *originalRegion = action.originalPosition.region; | 
|  | Block *insertAfterBlock = action.originalPosition.insertAfterBlock; | 
|  | originalRegion->getBlocks().splice( | 
|  | (insertAfterBlock ? std::next(Region::iterator(insertAfterBlock)) | 
|  | : originalRegion->end()), | 
|  | action.block->getParent()->getBlocks(), action.block); | 
|  | break; | 
|  | } | 
|  | // Merge back the block that was split out. | 
|  | case BlockActionKind::Split: { | 
|  | action.originalBlock->getOperations().splice( | 
|  | action.originalBlock->end(), action.block->getOperations()); | 
|  | action.block->dropAllDefinedValueUses(); | 
|  | action.block->erase(); | 
|  | break; | 
|  | } | 
|  | // Undo the type conversion. | 
|  | case BlockActionKind::TypeConversion: { | 
|  | argConverter.discardRewrites(action.block); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | blockActions.resize(numActionsToKeep); | 
|  | } | 
|  |  | 
|  | LogicalResult ConversionPatternRewriterImpl::remapValues( | 
|  | StringRef valueDiagTag, std::optional<Location> inputLoc, | 
|  | PatternRewriter &rewriter, ValueRange values, | 
|  | SmallVectorImpl<Value> &remapped) { | 
|  | remapped.reserve(llvm::size(values)); | 
|  |  | 
|  | SmallVector<Type, 1> legalTypes; | 
|  | for (const auto &it : llvm::enumerate(values)) { | 
|  | Value operand = it.value(); | 
|  | Type origType = operand.getType(); | 
|  |  | 
|  | // If a converter was provided, get the desired legal types for this | 
|  | // operand. | 
|  | Type desiredType; | 
|  | if (currentTypeConverter) { | 
|  | // If there is no legal conversion, fail to match this pattern. | 
|  | legalTypes.clear(); | 
|  | if (failed(currentTypeConverter->convertType(origType, legalTypes))) { | 
|  | Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); | 
|  | return notifyMatchFailure(operandLoc, [=](Diagnostic &diag) { | 
|  | diag << "unable to convert type for " << valueDiagTag << " #" | 
|  | << it.index() << ", type was " << origType; | 
|  | }); | 
|  | } | 
|  | // TODO: There currently isn't any mechanism to do 1->N type conversion | 
|  | // via the PatternRewriter replacement API, so for now we just ignore it. | 
|  | if (legalTypes.size() == 1) | 
|  | desiredType = legalTypes.front(); | 
|  | } else { | 
|  | // TODO: What we should do here is just set `desiredType` to `origType` | 
|  | // and then handle the necessary type conversions after the conversion | 
|  | // process has finished. Unfortunately a lot of patterns currently rely on | 
|  | // receiving the new operands even if the types change, so we keep the | 
|  | // original behavior here for now until all of the patterns relying on | 
|  | // this get updated. | 
|  | } | 
|  | Value newOperand = mapping.lookupOrDefault(operand, desiredType); | 
|  |  | 
|  | // Handle the case where the conversion was 1->1 and the new operand type | 
|  | // isn't legal. | 
|  | Type newOperandType = newOperand.getType(); | 
|  | if (currentTypeConverter && desiredType && newOperandType != desiredType) { | 
|  | Location operandLoc = inputLoc ? *inputLoc : operand.getLoc(); | 
|  | Value castValue = buildUnresolvedTargetMaterialization( | 
|  | operandLoc, newOperand, desiredType, currentTypeConverter, | 
|  | unresolvedMaterializations); | 
|  | mapping.map(mapping.lookupOrDefault(newOperand), castValue); | 
|  | newOperand = castValue; | 
|  | } | 
|  | remapped.push_back(newOperand); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const { | 
|  | // Check to see if this operation was replaced or its parent ignored. | 
|  | return replacements.count(op) || ignoredOps.count(op->getParentOp()); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::markNestedOpsIgnored(Operation *op) { | 
|  | // Walk this operation and collect nested operations that define non-empty | 
|  | // regions. We mark such operations as 'ignored' so that we know we don't have | 
|  | // to convert them, or their nested ops. | 
|  | if (op->getNumRegions() == 0) | 
|  | return; | 
|  | op->walk([&](Operation *op) { | 
|  | if (llvm::any_of(op->getRegions(), | 
|  | [](Region ®ion) { return !region.empty(); })) | 
|  | ignoredOps.insert(op); | 
|  | }); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Type Conversion | 
|  |  | 
|  | FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature( | 
|  | Block *block, const TypeConverter *converter, | 
|  | TypeConverter::SignatureConversion *conversion) { | 
|  | FailureOr<Block *> result = | 
|  | conversion ? argConverter.applySignatureConversion( | 
|  | block, converter, *conversion, mapping, argReplacements) | 
|  | : argConverter.convertSignature(block, converter, mapping, | 
|  | argReplacements); | 
|  | if (failed(result)) | 
|  | return failure(); | 
|  | if (Block *newBlock = *result) { | 
|  | if (newBlock != block) | 
|  | blockActions.push_back(BlockAction::getTypeConversion(newBlock)); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | Block *ConversionPatternRewriterImpl::applySignatureConversion( | 
|  | Region *region, TypeConverter::SignatureConversion &conversion, | 
|  | const TypeConverter *converter) { | 
|  | if (!region->empty()) | 
|  | return *convertBlockSignature(®ion->front(), converter, &conversion); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes( | 
|  | Region *region, const TypeConverter &converter, | 
|  | TypeConverter::SignatureConversion *entryConversion) { | 
|  | argConverter.setConverter(region, &converter); | 
|  | if (region->empty()) | 
|  | return nullptr; | 
|  |  | 
|  | if (failed(convertNonEntryRegionTypes(region, converter))) | 
|  | return failure(); | 
|  |  | 
|  | FailureOr<Block *> newEntry = | 
|  | convertBlockSignature(®ion->front(), &converter, entryConversion); | 
|  | return newEntry; | 
|  | } | 
|  |  | 
|  | LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes( | 
|  | Region *region, const TypeConverter &converter, | 
|  | ArrayRef<TypeConverter::SignatureConversion> blockConversions) { | 
|  | argConverter.setConverter(region, &converter); | 
|  | if (region->empty()) | 
|  | return success(); | 
|  |  | 
|  | // Convert the arguments of each block within the region. | 
|  | int blockIdx = 0; | 
|  | assert((blockConversions.empty() || | 
|  | blockConversions.size() == region->getBlocks().size() - 1) && | 
|  | "expected either to provide no SignatureConversions at all or to " | 
|  | "provide a SignatureConversion for each non-entry block"); | 
|  |  | 
|  | for (Block &block : | 
|  | llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) { | 
|  | TypeConverter::SignatureConversion *blockConversion = | 
|  | blockConversions.empty() | 
|  | ? nullptr | 
|  | : const_cast<TypeConverter::SignatureConversion *>( | 
|  | &blockConversions[blockIdx++]); | 
|  |  | 
|  | if (failed(convertBlockSignature(&block, &converter, blockConversion))) | 
|  | return failure(); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Rewriter Notification Hooks | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op, | 
|  | ValueRange newValues) { | 
|  | assert(newValues.size() == op->getNumResults()); | 
|  | assert(!replacements.count(op) && "operation was already replaced"); | 
|  |  | 
|  | // Track if any of the results changed, e.g. erased and replaced with null. | 
|  | bool resultChanged = false; | 
|  |  | 
|  | // Create mappings for each of the new result values. | 
|  | for (auto [newValue, result] : llvm::zip(newValues, op->getResults())) { | 
|  | if (!newValue) { | 
|  | resultChanged = true; | 
|  | continue; | 
|  | } | 
|  | // Remap, and check for any result type changes. | 
|  | mapping.map(result, newValue); | 
|  | resultChanged |= (newValue.getType() != result.getType()); | 
|  | } | 
|  | if (resultChanged) | 
|  | operationsWithChangedResults.push_back(replacements.size()); | 
|  |  | 
|  | // Record the requested operation replacement. | 
|  | replacements.insert(std::make_pair(op, OpReplacement(currentTypeConverter))); | 
|  |  | 
|  | // Mark this operation as recursively ignored so that we don't need to | 
|  | // convert any nested operations. | 
|  | markNestedOpsIgnored(op); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) { | 
|  | Region *region = block->getParent(); | 
|  | Block *origPrevBlock = block->getPrevNode(); | 
|  | blockActions.push_back(BlockAction::getErase(block, {region, origPrevBlock})); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifyCreatedBlock(Block *block) { | 
|  | blockActions.push_back(BlockAction::getCreate(block)); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifySplitBlock(Block *block, | 
|  | Block *continuation) { | 
|  | blockActions.push_back(BlockAction::getSplit(continuation, block)); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifyBlockBeingInlined( | 
|  | Block *block, Block *srcBlock, Block::iterator before) { | 
|  | blockActions.push_back(BlockAction::getInline(block, srcBlock, before)); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore( | 
|  | Region ®ion, Region &parent, Region::iterator before) { | 
|  | if (region.empty()) | 
|  | return; | 
|  | Block *laterBlock = ®ion.back(); | 
|  | for (auto &earlierBlock : llvm::drop_begin(llvm::reverse(region), 1)) { | 
|  | blockActions.push_back( | 
|  | BlockAction::getMove(laterBlock, {®ion, &earlierBlock})); | 
|  | laterBlock = &earlierBlock; | 
|  | } | 
|  | blockActions.push_back(BlockAction::getMove(laterBlock, {®ion, nullptr})); | 
|  | } | 
|  |  | 
|  | LogicalResult ConversionPatternRewriterImpl::notifyMatchFailure( | 
|  | Location loc, function_ref<void(Diagnostic &)> reasonCallback) { | 
|  | LLVM_DEBUG({ | 
|  | Diagnostic diag(loc, DiagnosticSeverity::Remark); | 
|  | reasonCallback(diag); | 
|  | logger.startLine() << "** Failure : " << diag.str() << "\n"; | 
|  | if (notifyCallback) | 
|  | notifyCallback(diag); | 
|  | }); | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ConversionPatternRewriter | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx) | 
|  | : PatternRewriter(ctx), | 
|  | impl(new detail::ConversionPatternRewriterImpl(*this)) { | 
|  | setListener(this); | 
|  | } | 
|  |  | 
|  | ConversionPatternRewriter::~ConversionPatternRewriter() = default; | 
|  |  | 
|  | void ConversionPatternRewriter::replaceOpWithIf( | 
|  | Operation *op, ValueRange newValues, bool *allUsesReplaced, | 
|  | llvm::unique_function<bool(OpOperand &) const> functor) { | 
|  | // TODO: To support this we will need to rework a bit of how replacements are | 
|  | // tracked, given that this isn't guranteed to replace all of the uses of an | 
|  | // operation. The main change is that now an operation can be replaced | 
|  | // multiple times, in parts. The current "set" based tracking is mainly useful | 
|  | // for tracking if a replaced operation should be ignored, i.e. if all of the | 
|  | // uses will be replaced. | 
|  | llvm_unreachable( | 
|  | "replaceOpWithIf is currently not supported by DialectConversion"); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) { | 
|  | assert(op && newOp && "expected non-null op"); | 
|  | replaceOp(op, newOp->getResults()); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) { | 
|  | assert(op->getNumResults() == newValues.size() && | 
|  | "incorrect # of replacement values"); | 
|  | LLVM_DEBUG({ | 
|  | impl->logger.startLine() | 
|  | << "** Replace : '" << op->getName() << "'(" << op << ")\n"; | 
|  | }); | 
|  | impl->notifyOpReplaced(op, newValues); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::eraseOp(Operation *op) { | 
|  | LLVM_DEBUG({ | 
|  | impl->logger.startLine() | 
|  | << "** Erase   : '" << op->getName() << "'(" << op << ")\n"; | 
|  | }); | 
|  | SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr); | 
|  | impl->notifyOpReplaced(op, nullRepls); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::eraseBlock(Block *block) { | 
|  | impl->notifyBlockIsBeingErased(block); | 
|  |  | 
|  | // Mark all ops for erasure. | 
|  | for (Operation &op : *block) | 
|  | eraseOp(&op); | 
|  |  | 
|  | // Unlink the block from its parent region. The block is kept in the block | 
|  | // action and will be actually destroyed when rewrites are applied. This | 
|  | // allows us to keep the operations in the block live and undo the removal by | 
|  | // re-inserting the block. | 
|  | block->getParent()->getBlocks().remove(block); | 
|  | } | 
|  |  | 
|  | Block *ConversionPatternRewriter::applySignatureConversion( | 
|  | Region *region, TypeConverter::SignatureConversion &conversion, | 
|  | const TypeConverter *converter) { | 
|  | return impl->applySignatureConversion(region, conversion, converter); | 
|  | } | 
|  |  | 
|  | FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes( | 
|  | Region *region, const TypeConverter &converter, | 
|  | TypeConverter::SignatureConversion *entryConversion) { | 
|  | return impl->convertRegionTypes(region, converter, entryConversion); | 
|  | } | 
|  |  | 
|  | LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes( | 
|  | Region *region, const TypeConverter &converter, | 
|  | ArrayRef<TypeConverter::SignatureConversion> blockConversions) { | 
|  | return impl->convertNonEntryRegionTypes(region, converter, blockConversions); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from, | 
|  | Value to) { | 
|  | LLVM_DEBUG({ | 
|  | Operation *parentOp = from.getOwner()->getParentOp(); | 
|  | impl->logger.startLine() << "** Replace Argument : '" << from | 
|  | << "'(in region of '" << parentOp->getName() | 
|  | << "'(" << from.getOwner()->getParentOp() << ")\n"; | 
|  | }); | 
|  | impl->argReplacements.push_back(from); | 
|  | impl->mapping.map(impl->mapping.lookupOrDefault(from), to); | 
|  | } | 
|  |  | 
|  | Value ConversionPatternRewriter::getRemappedValue(Value key) { | 
|  | SmallVector<Value> remappedValues; | 
|  | if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key, | 
|  | remappedValues))) | 
|  | return nullptr; | 
|  | return remappedValues.front(); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | ConversionPatternRewriter::getRemappedValues(ValueRange keys, | 
|  | SmallVectorImpl<Value> &results) { | 
|  | if (keys.empty()) | 
|  | return success(); | 
|  | return impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys, | 
|  | results); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::notifyBlockCreated(Block *block) { | 
|  | impl->notifyCreatedBlock(block); | 
|  | } | 
|  |  | 
|  | Block *ConversionPatternRewriter::splitBlock(Block *block, | 
|  | Block::iterator before) { | 
|  | auto *continuation = PatternRewriter::splitBlock(block, before); | 
|  | impl->notifySplitBlock(block, continuation); | 
|  | return continuation; | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest, | 
|  | Block::iterator before, | 
|  | ValueRange argValues) { | 
|  | assert(argValues.size() == source->getNumArguments() && | 
|  | "incorrect # of argument replacement values"); | 
|  | #ifndef NDEBUG | 
|  | auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); }; | 
|  | #endif // NDEBUG | 
|  | // The source block will be deleted, so it should not have any users (i.e., | 
|  | // there should be no predecessors). | 
|  | assert(llvm::all_of(source->getUsers(), opIgnored) && | 
|  | "expected 'source' to have no predecessors"); | 
|  |  | 
|  | impl->notifyBlockBeingInlined(dest, source, before); | 
|  | for (auto it : llvm::zip(source->getArguments(), argValues)) | 
|  | replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it)); | 
|  | dest->getOperations().splice(before, source->getOperations()); | 
|  | eraseBlock(source); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::inlineRegionBefore(Region ®ion, | 
|  | Region &parent, | 
|  | Region::iterator before) { | 
|  | impl->notifyRegionIsBeingInlinedBefore(region, parent, before); | 
|  | PatternRewriter::inlineRegionBefore(region, parent, before); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::cloneRegionBefore(Region ®ion, | 
|  | Region &parent, | 
|  | Region::iterator before, | 
|  | IRMapping &mapping) { | 
|  | if (region.empty()) | 
|  | return; | 
|  |  | 
|  | PatternRewriter::cloneRegionBefore(region, parent, before, mapping); | 
|  |  | 
|  | for (Block &b : ForwardDominanceIterator<>::makeIterable(region)) { | 
|  | Block *cloned = mapping.lookup(&b); | 
|  | impl->notifyCreatedBlock(cloned); | 
|  | cloned->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>( | 
|  | [&](Operation *op) { notifyOperationInserted(op); }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::notifyOperationInserted(Operation *op) { | 
|  | LLVM_DEBUG({ | 
|  | impl->logger.startLine() | 
|  | << "** Insert  : '" << op->getName() << "'(" << op << ")\n"; | 
|  | }); | 
|  | impl->createdOps.push_back(op); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::startOpModification(Operation *op) { | 
|  | #ifndef NDEBUG | 
|  | impl->pendingRootUpdates.insert(op); | 
|  | #endif | 
|  | impl->rootUpdates.emplace_back(op); | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::finalizeOpModification(Operation *op) { | 
|  | PatternRewriter::finalizeOpModification(op); | 
|  | // There is nothing to do here, we only need to track the operation at the | 
|  | // start of the update. | 
|  | #ifndef NDEBUG | 
|  | assert(impl->pendingRootUpdates.erase(op) && | 
|  | "operation did not have a pending in-place update"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ConversionPatternRewriter::cancelOpModification(Operation *op) { | 
|  | #ifndef NDEBUG | 
|  | assert(impl->pendingRootUpdates.erase(op) && | 
|  | "operation did not have a pending in-place update"); | 
|  | #endif | 
|  | // Erase the last update for this operation. | 
|  | auto stateHasOp = [op](const auto &it) { return it.getOperation() == op; }; | 
|  | auto &rootUpdates = impl->rootUpdates; | 
|  | auto it = llvm::find_if(llvm::reverse(rootUpdates), stateHasOp); | 
|  | assert(it != rootUpdates.rend() && "no root update started on op"); | 
|  | (*it).resetOperation(); | 
|  | int updateIdx = std::prev(rootUpdates.rend()) - it; | 
|  | rootUpdates.erase(rootUpdates.begin() + updateIdx); | 
|  | } | 
|  |  | 
|  | LogicalResult ConversionPatternRewriter::notifyMatchFailure( | 
|  | Location loc, function_ref<void(Diagnostic &)> reasonCallback) { | 
|  | return impl->notifyMatchFailure(loc, reasonCallback); | 
|  | } | 
|  |  | 
|  | detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() { | 
|  | return *impl; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ConversionPattern | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LogicalResult | 
|  | ConversionPattern::matchAndRewrite(Operation *op, | 
|  | PatternRewriter &rewriter) const { | 
|  | auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter); | 
|  | auto &rewriterImpl = dialectRewriter.getImpl(); | 
|  |  | 
|  | // Track the current conversion pattern type converter in the rewriter. | 
|  | llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter, | 
|  | getTypeConverter()); | 
|  |  | 
|  | // Remap the operands of the operation. | 
|  | SmallVector<Value, 4> operands; | 
|  | if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter, | 
|  | op->getOperands(), operands))) { | 
|  | return failure(); | 
|  | } | 
|  | return matchAndRewrite(op, operands, dialectRewriter); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // OperationLegalizer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// A set of rewrite patterns that can be used to legalize a given operation. | 
|  | using LegalizationPatterns = SmallVector<const Pattern *, 1>; | 
|  |  | 
|  | /// This class defines a recursive operation legalizer. | 
|  | class OperationLegalizer { | 
|  | public: | 
|  | using LegalizationAction = ConversionTarget::LegalizationAction; | 
|  |  | 
|  | OperationLegalizer(const ConversionTarget &targetInfo, | 
|  | const FrozenRewritePatternSet &patterns); | 
|  |  | 
|  | /// Returns true if the given operation is known to be illegal on the target. | 
|  | bool isIllegal(Operation *op) const; | 
|  |  | 
|  | /// Attempt to legalize the given operation. Returns success if the operation | 
|  | /// was legalized, failure otherwise. | 
|  | LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter); | 
|  |  | 
|  | /// Returns the conversion target in use by the legalizer. | 
|  | const ConversionTarget &getTarget() { return target; } | 
|  |  | 
|  | private: | 
|  | /// Attempt to legalize the given operation by folding it. | 
|  | LogicalResult legalizeWithFold(Operation *op, | 
|  | ConversionPatternRewriter &rewriter); | 
|  |  | 
|  | /// Attempt to legalize the given operation by applying a pattern. Returns | 
|  | /// success if the operation was legalized, failure otherwise. | 
|  | LogicalResult legalizeWithPattern(Operation *op, | 
|  | ConversionPatternRewriter &rewriter); | 
|  |  | 
|  | /// Return true if the given pattern may be applied to the given operation, | 
|  | /// false otherwise. | 
|  | bool canApplyPattern(Operation *op, const Pattern &pattern, | 
|  | ConversionPatternRewriter &rewriter); | 
|  |  | 
|  | /// Legalize the resultant IR after successfully applying the given pattern. | 
|  | LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern, | 
|  | ConversionPatternRewriter &rewriter, | 
|  | RewriterState &curState); | 
|  |  | 
|  | /// Legalizes the actions registered during the execution of a pattern. | 
|  | LogicalResult legalizePatternBlockActions(Operation *op, | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &impl, | 
|  | RewriterState &state, | 
|  | RewriterState &newState); | 
|  | LogicalResult legalizePatternCreatedOperations( | 
|  | ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, | 
|  | RewriterState &state, RewriterState &newState); | 
|  | LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &impl, | 
|  | RewriterState &state, | 
|  | RewriterState &newState); | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | // Cost Model | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | /// Build an optimistic legalization graph given the provided patterns. This | 
|  | /// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with | 
|  | /// patterns for operations that are not directly legal, but may be | 
|  | /// transitively legal for the current target given the provided patterns. | 
|  | void buildLegalizationGraph( | 
|  | LegalizationPatterns &anyOpLegalizerPatterns, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); | 
|  |  | 
|  | /// Compute the benefit of each node within the computed legalization graph. | 
|  | /// This orders the patterns within 'legalizerPatterns' based upon two | 
|  | /// criteria: | 
|  | ///  1) Prefer patterns that have the lowest legalization depth, i.e. | 
|  | ///     represent the more direct mapping to the target. | 
|  | ///  2) When comparing patterns with the same legalization depth, prefer the | 
|  | ///     pattern with the highest PatternBenefit. This allows for users to | 
|  | ///     prefer specific legalizations over others. | 
|  | void computeLegalizationGraphBenefit( | 
|  | LegalizationPatterns &anyOpLegalizerPatterns, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); | 
|  |  | 
|  | /// Compute the legalization depth when legalizing an operation of the given | 
|  | /// type. | 
|  | unsigned computeOpLegalizationDepth( | 
|  | OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); | 
|  |  | 
|  | /// Apply the conversion cost model to the given set of patterns, and return | 
|  | /// the smallest legalization depth of any of the patterns. See | 
|  | /// `computeLegalizationGraphBenefit` for the breakdown of the cost model. | 
|  | unsigned applyCostModelToPatterns( | 
|  | LegalizationPatterns &patterns, | 
|  | DenseMap<OperationName, unsigned> &minOpPatternDepth, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns); | 
|  |  | 
|  | /// The current set of patterns that have been applied. | 
|  | SmallPtrSet<const Pattern *, 8> appliedPatterns; | 
|  |  | 
|  | /// The legalization information provided by the target. | 
|  | const ConversionTarget ⌖ | 
|  |  | 
|  | /// The pattern applicator to use for conversions. | 
|  | PatternApplicator applicator; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo, | 
|  | const FrozenRewritePatternSet &patterns) | 
|  | : target(targetInfo), applicator(patterns) { | 
|  | // The set of patterns that can be applied to illegal operations to transform | 
|  | // them into legal ones. | 
|  | DenseMap<OperationName, LegalizationPatterns> legalizerPatterns; | 
|  | LegalizationPatterns anyOpLegalizerPatterns; | 
|  |  | 
|  | buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns); | 
|  | computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns); | 
|  | } | 
|  |  | 
|  | bool OperationLegalizer::isIllegal(Operation *op) const { | 
|  | return target.isIllegal(op); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | OperationLegalizer::legalize(Operation *op, | 
|  | ConversionPatternRewriter &rewriter) { | 
|  | #ifndef NDEBUG | 
|  | const char *logLineComment = | 
|  | "//===-------------------------------------------===//\n"; | 
|  |  | 
|  | auto &logger = rewriter.getImpl().logger; | 
|  | #endif | 
|  | LLVM_DEBUG({ | 
|  | logger.getOStream() << "\n"; | 
|  | logger.startLine() << logLineComment; | 
|  | logger.startLine() << "Legalizing operation : '" << op->getName() << "'(" | 
|  | << op << ") {\n"; | 
|  | logger.indent(); | 
|  |  | 
|  | // If the operation has no regions, just print it here. | 
|  | if (op->getNumRegions() == 0) { | 
|  | op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm()); | 
|  | logger.getOStream() << "\n\n"; | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Check if this operation is legal on the target. | 
|  | if (auto legalityInfo = target.isLegal(op)) { | 
|  | LLVM_DEBUG({ | 
|  | logSuccess( | 
|  | logger, "operation marked legal by the target{0}", | 
|  | legalityInfo->isRecursivelyLegal | 
|  | ? "; NOTE: operation is recursively legal; skipping internals" | 
|  | : ""); | 
|  | logger.startLine() << logLineComment; | 
|  | }); | 
|  |  | 
|  | // If this operation is recursively legal, mark its children as ignored so | 
|  | // that we don't consider them for legalization. | 
|  | if (legalityInfo->isRecursivelyLegal) | 
|  | rewriter.getImpl().markNestedOpsIgnored(op); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | // Check to see if the operation is ignored and doesn't need to be converted. | 
|  | if (rewriter.getImpl().isOpIgnored(op)) { | 
|  | LLVM_DEBUG({ | 
|  | logSuccess(logger, "operation marked 'ignored' during conversion"); | 
|  | logger.startLine() << logLineComment; | 
|  | }); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | // If the operation isn't legal, try to fold it in-place. | 
|  | // TODO: Should we always try to do this, even if the op is | 
|  | // already legal? | 
|  | if (succeeded(legalizeWithFold(op, rewriter))) { | 
|  | LLVM_DEBUG({ | 
|  | logSuccess(logger, "operation was folded"); | 
|  | logger.startLine() << logLineComment; | 
|  | }); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | // Otherwise, we need to apply a legalization pattern to this operation. | 
|  | if (succeeded(legalizeWithPattern(op, rewriter))) { | 
|  | LLVM_DEBUG({ | 
|  | logSuccess(logger, ""); | 
|  | logger.startLine() << logLineComment; | 
|  | }); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | logFailure(logger, "no matched legalization pattern"); | 
|  | logger.startLine() << logLineComment; | 
|  | }); | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | OperationLegalizer::legalizeWithFold(Operation *op, | 
|  | ConversionPatternRewriter &rewriter) { | 
|  | auto &rewriterImpl = rewriter.getImpl(); | 
|  | RewriterState curState = rewriterImpl.getCurrentState(); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | rewriterImpl.logger.startLine() << "* Fold {\n"; | 
|  | rewriterImpl.logger.indent(); | 
|  | }); | 
|  |  | 
|  | // Try to fold the operation. | 
|  | SmallVector<Value, 2> replacementValues; | 
|  | rewriter.setInsertionPoint(op); | 
|  | if (failed(rewriter.tryFold(op, replacementValues))) { | 
|  | LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold")); | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | // Insert a replacement for 'op' with the folded replacement values. | 
|  | rewriter.replaceOp(op, replacementValues); | 
|  |  | 
|  | // Recursively legalize any new constant operations. | 
|  | for (unsigned i = curState.numCreatedOps, e = rewriterImpl.createdOps.size(); | 
|  | i != e; ++i) { | 
|  | Operation *cstOp = rewriterImpl.createdOps[i]; | 
|  | if (failed(legalize(cstOp, rewriter))) { | 
|  | LLVM_DEBUG(logFailure(rewriterImpl.logger, | 
|  | "failed to legalize generated constant '{0}'", | 
|  | cstOp->getName())); | 
|  | rewriterImpl.resetState(curState); | 
|  | return failure(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(logSuccess(rewriterImpl.logger, "")); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | OperationLegalizer::legalizeWithPattern(Operation *op, | 
|  | ConversionPatternRewriter &rewriter) { | 
|  | auto &rewriterImpl = rewriter.getImpl(); | 
|  |  | 
|  | // Functor that returns if the given pattern may be applied. | 
|  | auto canApply = [&](const Pattern &pattern) { | 
|  | return canApplyPattern(op, pattern, rewriter); | 
|  | }; | 
|  |  | 
|  | // Functor that cleans up the rewriter state after a pattern failed to match. | 
|  | RewriterState curState = rewriterImpl.getCurrentState(); | 
|  | auto onFailure = [&](const Pattern &pattern) { | 
|  | LLVM_DEBUG({ | 
|  | logFailure(rewriterImpl.logger, "pattern failed to match"); | 
|  | if (rewriterImpl.notifyCallback) { | 
|  | Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark); | 
|  | diag << "Failed to apply pattern \"" << pattern.getDebugName() | 
|  | << "\" on op:\n" | 
|  | << *op; | 
|  | rewriterImpl.notifyCallback(diag); | 
|  | } | 
|  | }); | 
|  | rewriterImpl.resetState(curState); | 
|  | appliedPatterns.erase(&pattern); | 
|  | }; | 
|  |  | 
|  | // Functor that performs additional legalization when a pattern is | 
|  | // successfully applied. | 
|  | auto onSuccess = [&](const Pattern &pattern) { | 
|  | auto result = legalizePatternResult(op, pattern, rewriter, curState); | 
|  | appliedPatterns.erase(&pattern); | 
|  | if (failed(result)) | 
|  | rewriterImpl.resetState(curState); | 
|  | return result; | 
|  | }; | 
|  |  | 
|  | // Try to match and rewrite a pattern on this operation. | 
|  | return applicator.matchAndRewrite(op, rewriter, canApply, onFailure, | 
|  | onSuccess); | 
|  | } | 
|  |  | 
|  | bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern, | 
|  | ConversionPatternRewriter &rewriter) { | 
|  | LLVM_DEBUG({ | 
|  | auto &os = rewriter.getImpl().logger; | 
|  | os.getOStream() << "\n"; | 
|  | os.startLine() << "* Pattern : '" << op->getName() << " -> ("; | 
|  | llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream()); | 
|  | os.getOStream() << ")' {\n"; | 
|  | os.indent(); | 
|  | }); | 
|  |  | 
|  | // Ensure that we don't cycle by not allowing the same pattern to be | 
|  | // applied twice in the same recursion stack if it is not known to be safe. | 
|  | if (!pattern.hasBoundedRewriteRecursion() && | 
|  | !appliedPatterns.insert(&pattern).second) { | 
|  | LLVM_DEBUG( | 
|  | logFailure(rewriter.getImpl().logger, "pattern was already applied")); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern, | 
|  | ConversionPatternRewriter &rewriter, | 
|  | RewriterState &curState) { | 
|  | auto &impl = rewriter.getImpl(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert(impl.pendingRootUpdates.empty() && "dangling root updates"); | 
|  | #endif | 
|  |  | 
|  | // Check that the root was either replaced or updated in place. | 
|  | auto replacedRoot = [&] { | 
|  | return llvm::any_of( | 
|  | llvm::drop_begin(impl.replacements, curState.numReplacements), | 
|  | [op](auto &it) { return it.first == op; }); | 
|  | }; | 
|  | auto updatedRootInPlace = [&] { | 
|  | return llvm::any_of( | 
|  | llvm::drop_begin(impl.rootUpdates, curState.numRootUpdates), | 
|  | [op](auto &state) { return state.getOperation() == op; }); | 
|  | }; | 
|  | (void)replacedRoot; | 
|  | (void)updatedRootInPlace; | 
|  | assert((replacedRoot() || updatedRootInPlace()) && | 
|  | "expected pattern to replace the root operation"); | 
|  |  | 
|  | // Legalize each of the actions registered during application. | 
|  | RewriterState newState = impl.getCurrentState(); | 
|  | if (failed(legalizePatternBlockActions(op, rewriter, impl, curState, | 
|  | newState)) || | 
|  | failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) || | 
|  | failed(legalizePatternCreatedOperations(rewriter, impl, curState, | 
|  | newState))) { | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully")); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationLegalizer::legalizePatternBlockActions( | 
|  | Operation *op, ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &impl, RewriterState &state, | 
|  | RewriterState &newState) { | 
|  | SmallPtrSet<Operation *, 16> operationsToIgnore; | 
|  |  | 
|  | // If the pattern moved or created any blocks, make sure the types of block | 
|  | // arguments get legalized. | 
|  | for (int i = state.numBlockActions, e = newState.numBlockActions; i != e; | 
|  | ++i) { | 
|  | auto &action = impl.blockActions[i]; | 
|  | if (action.kind == BlockActionKind::TypeConversion || | 
|  | action.kind == BlockActionKind::Erase) | 
|  | continue; | 
|  | // Only check blocks outside of the current operation. | 
|  | Operation *parentOp = action.block->getParentOp(); | 
|  | if (!parentOp || parentOp == op || action.block->getNumArguments() == 0) | 
|  | continue; | 
|  |  | 
|  | // If the region of the block has a type converter, try to convert the block | 
|  | // directly. | 
|  | if (auto *converter = | 
|  | impl.argConverter.getConverter(action.block->getParent())) { | 
|  | if (failed(impl.convertBlockSignature(action.block, converter))) { | 
|  | LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved " | 
|  | "block")); | 
|  | return failure(); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, check that this operation isn't one generated by this pattern. | 
|  | // This is because we will attempt to legalize the parent operation, and | 
|  | // blocks in regions created by this pattern will already be legalized later | 
|  | // on. If we haven't built the set yet, build it now. | 
|  | if (operationsToIgnore.empty()) { | 
|  | auto createdOps = ArrayRef<Operation *>(impl.createdOps) | 
|  | .drop_front(state.numCreatedOps); | 
|  | operationsToIgnore.insert(createdOps.begin(), createdOps.end()); | 
|  | } | 
|  |  | 
|  | // If this operation should be considered for re-legalization, try it. | 
|  | if (operationsToIgnore.insert(parentOp).second && | 
|  | failed(legalize(parentOp, rewriter))) { | 
|  | LLVM_DEBUG(logFailure( | 
|  | impl.logger, "operation '{0}'({1}) became illegal after block action", | 
|  | parentOp->getName(), parentOp)); | 
|  | return failure(); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationLegalizer::legalizePatternCreatedOperations( | 
|  | ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, | 
|  | RewriterState &state, RewriterState &newState) { | 
|  | for (int i = state.numCreatedOps, e = newState.numCreatedOps; i != e; ++i) { | 
|  | Operation *op = impl.createdOps[i]; | 
|  | if (failed(legalize(op, rewriter))) { | 
|  | LLVM_DEBUG(logFailure(impl.logger, | 
|  | "failed to legalize generated operation '{0}'({1})", | 
|  | op->getName(), op)); | 
|  | return failure(); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationLegalizer::legalizePatternRootUpdates( | 
|  | ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl, | 
|  | RewriterState &state, RewriterState &newState) { | 
|  | for (int i = state.numRootUpdates, e = newState.numRootUpdates; i != e; ++i) { | 
|  | Operation *op = impl.rootUpdates[i].getOperation(); | 
|  | if (failed(legalize(op, rewriter))) { | 
|  | LLVM_DEBUG(logFailure( | 
|  | impl.logger, "failed to legalize operation updated in-place '{0}'", | 
|  | op->getName())); | 
|  | return failure(); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Cost Model | 
|  |  | 
|  | void OperationLegalizer::buildLegalizationGraph( | 
|  | LegalizationPatterns &anyOpLegalizerPatterns, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { | 
|  | // A mapping between an operation and a set of operations that can be used to | 
|  | // generate it. | 
|  | DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps; | 
|  | // A mapping between an operation and any currently invalid patterns it has. | 
|  | DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns; | 
|  | // A worklist of patterns to consider for legality. | 
|  | SetVector<const Pattern *> patternWorklist; | 
|  |  | 
|  | // Build the mapping from operations to the parent ops that may generate them. | 
|  | applicator.walkAllPatterns([&](const Pattern &pattern) { | 
|  | std::optional<OperationName> root = pattern.getRootKind(); | 
|  |  | 
|  | // If the pattern has no specific root, we can't analyze the relationship | 
|  | // between the root op and generated operations. Given that, add all such | 
|  | // patterns to the legalization set. | 
|  | if (!root) { | 
|  | anyOpLegalizerPatterns.push_back(&pattern); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Skip operations that are always known to be legal. | 
|  | if (target.getOpAction(*root) == LegalizationAction::Legal) | 
|  | return; | 
|  |  | 
|  | // Add this pattern to the invalid set for the root op and record this root | 
|  | // as a parent for any generated operations. | 
|  | invalidPatterns[*root].insert(&pattern); | 
|  | for (auto op : pattern.getGeneratedOps()) | 
|  | parentOps[op].insert(*root); | 
|  |  | 
|  | // Add this pattern to the worklist. | 
|  | patternWorklist.insert(&pattern); | 
|  | }); | 
|  |  | 
|  | // If there are any patterns that don't have a specific root kind, we can't | 
|  | // make direct assumptions about what operations will never be legalized. | 
|  | // Note: Technically we could, but it would require an analysis that may | 
|  | // recurse into itself. It would be better to perform this kind of filtering | 
|  | // at a higher level than here anyways. | 
|  | if (!anyOpLegalizerPatterns.empty()) { | 
|  | for (const Pattern *pattern : patternWorklist) | 
|  | legalizerPatterns[*pattern->getRootKind()].push_back(pattern); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while (!patternWorklist.empty()) { | 
|  | auto *pattern = patternWorklist.pop_back_val(); | 
|  |  | 
|  | // Check to see if any of the generated operations are invalid. | 
|  | if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) { | 
|  | std::optional<LegalizationAction> action = target.getOpAction(op); | 
|  | return !legalizerPatterns.count(op) && | 
|  | (!action || action == LegalizationAction::Illegal); | 
|  | })) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, if all of the generated operation are valid, this op is now | 
|  | // legal so add all of the child patterns to the worklist. | 
|  | legalizerPatterns[*pattern->getRootKind()].push_back(pattern); | 
|  | invalidPatterns[*pattern->getRootKind()].erase(pattern); | 
|  |  | 
|  | // Add any invalid patterns of the parent operations to see if they have now | 
|  | // become legal. | 
|  | for (auto op : parentOps[*pattern->getRootKind()]) | 
|  | patternWorklist.set_union(invalidPatterns[op]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void OperationLegalizer::computeLegalizationGraphBenefit( | 
|  | LegalizationPatterns &anyOpLegalizerPatterns, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { | 
|  | // The smallest pattern depth, when legalizing an operation. | 
|  | DenseMap<OperationName, unsigned> minOpPatternDepth; | 
|  |  | 
|  | // For each operation that is transitively legal, compute a cost for it. | 
|  | for (auto &opIt : legalizerPatterns) | 
|  | if (!minOpPatternDepth.count(opIt.first)) | 
|  | computeOpLegalizationDepth(opIt.first, minOpPatternDepth, | 
|  | legalizerPatterns); | 
|  |  | 
|  | // Apply the cost model to the patterns that can match any operation. Those | 
|  | // with a specific operation type are already resolved when computing the op | 
|  | // legalization depth. | 
|  | if (!anyOpLegalizerPatterns.empty()) | 
|  | applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth, | 
|  | legalizerPatterns); | 
|  |  | 
|  | // Apply a cost model to the pattern applicator. We order patterns first by | 
|  | // depth then benefit. `legalizerPatterns` contains per-op patterns by | 
|  | // decreasing benefit. | 
|  | applicator.applyCostModel([&](const Pattern &pattern) { | 
|  | ArrayRef<const Pattern *> orderedPatternList; | 
|  | if (std::optional<OperationName> rootName = pattern.getRootKind()) | 
|  | orderedPatternList = legalizerPatterns[*rootName]; | 
|  | else | 
|  | orderedPatternList = anyOpLegalizerPatterns; | 
|  |  | 
|  | // If the pattern is not found, then it was removed and cannot be matched. | 
|  | auto *it = llvm::find(orderedPatternList, &pattern); | 
|  | if (it == orderedPatternList.end()) | 
|  | return PatternBenefit::impossibleToMatch(); | 
|  |  | 
|  | // Patterns found earlier in the list have higher benefit. | 
|  | return PatternBenefit(std::distance(it, orderedPatternList.end())); | 
|  | }); | 
|  | } | 
|  |  | 
|  | unsigned OperationLegalizer::computeOpLegalizationDepth( | 
|  | OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { | 
|  | // Check for existing depth. | 
|  | auto depthIt = minOpPatternDepth.find(op); | 
|  | if (depthIt != minOpPatternDepth.end()) | 
|  | return depthIt->second; | 
|  |  | 
|  | // If a mapping for this operation does not exist, then this operation | 
|  | // is always legal. Return 0 as the depth for a directly legal operation. | 
|  | auto opPatternsIt = legalizerPatterns.find(op); | 
|  | if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty()) | 
|  | return 0u; | 
|  |  | 
|  | // Record this initial depth in case we encounter this op again when | 
|  | // recursively computing the depth. | 
|  | minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max()); | 
|  |  | 
|  | // Apply the cost model to the operation patterns, and update the minimum | 
|  | // depth. | 
|  | unsigned minDepth = applyCostModelToPatterns( | 
|  | opPatternsIt->second, minOpPatternDepth, legalizerPatterns); | 
|  | minOpPatternDepth[op] = minDepth; | 
|  | return minDepth; | 
|  | } | 
|  |  | 
|  | unsigned OperationLegalizer::applyCostModelToPatterns( | 
|  | LegalizationPatterns &patterns, | 
|  | DenseMap<OperationName, unsigned> &minOpPatternDepth, | 
|  | DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) { | 
|  | unsigned minDepth = std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | // Compute the depth for each pattern within the set. | 
|  | SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth; | 
|  | patternsByDepth.reserve(patterns.size()); | 
|  | for (const Pattern *pattern : patterns) { | 
|  | unsigned depth = 1; | 
|  | for (auto generatedOp : pattern->getGeneratedOps()) { | 
|  | unsigned generatedOpDepth = computeOpLegalizationDepth( | 
|  | generatedOp, minOpPatternDepth, legalizerPatterns); | 
|  | depth = std::max(depth, generatedOpDepth + 1); | 
|  | } | 
|  | patternsByDepth.emplace_back(pattern, depth); | 
|  |  | 
|  | // Update the minimum depth of the pattern list. | 
|  | minDepth = std::min(minDepth, depth); | 
|  | } | 
|  |  | 
|  | // If the operation only has one legalization pattern, there is no need to | 
|  | // sort them. | 
|  | if (patternsByDepth.size() == 1) | 
|  | return minDepth; | 
|  |  | 
|  | // Sort the patterns by those likely to be the most beneficial. | 
|  | std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(), | 
|  | [](const std::pair<const Pattern *, unsigned> &lhs, | 
|  | const std::pair<const Pattern *, unsigned> &rhs) { | 
|  | // First sort by the smaller pattern legalization | 
|  | // depth. | 
|  | if (lhs.second != rhs.second) | 
|  | return lhs.second < rhs.second; | 
|  |  | 
|  | // Then sort by the larger pattern benefit. | 
|  | auto lhsBenefit = lhs.first->getBenefit(); | 
|  | auto rhsBenefit = rhs.first->getBenefit(); | 
|  | return lhsBenefit > rhsBenefit; | 
|  | }); | 
|  |  | 
|  | // Update the legalization pattern to use the new sorted list. | 
|  | patterns.clear(); | 
|  | for (auto &patternIt : patternsByDepth) | 
|  | patterns.push_back(patternIt.first); | 
|  | return minDepth; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // OperationConverter | 
|  | //===----------------------------------------------------------------------===// | 
|  | namespace { | 
|  | enum OpConversionMode { | 
|  | /// In this mode, the conversion will ignore failed conversions to allow | 
|  | /// illegal operations to co-exist in the IR. | 
|  | Partial, | 
|  |  | 
|  | /// In this mode, all operations must be legal for the given target for the | 
|  | /// conversion to succeed. | 
|  | Full, | 
|  |  | 
|  | /// In this mode, operations are analyzed for legality. No actual rewrites are | 
|  | /// applied to the operations on success. | 
|  | Analysis, | 
|  | }; | 
|  |  | 
|  | // This class converts operations to a given conversion target via a set of | 
|  | // rewrite patterns. The conversion behaves differently depending on the | 
|  | // conversion mode. | 
|  | struct OperationConverter { | 
|  | explicit OperationConverter(const ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns, | 
|  | OpConversionMode mode, | 
|  | DenseSet<Operation *> *trackedOps = nullptr) | 
|  | : opLegalizer(target, patterns), mode(mode), trackedOps(trackedOps) {} | 
|  |  | 
|  | /// Converts the given operations to the conversion target. | 
|  | LogicalResult | 
|  | convertOperations(ArrayRef<Operation *> ops, | 
|  | function_ref<void(Diagnostic &)> notifyCallback = nullptr); | 
|  |  | 
|  | private: | 
|  | /// Converts an operation with the given rewriter. | 
|  | LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op); | 
|  |  | 
|  | /// This method is called after the conversion process to legalize any | 
|  | /// remaining artifacts and complete the conversion. | 
|  | LogicalResult finalize(ConversionPatternRewriter &rewriter); | 
|  |  | 
|  | /// Legalize the types of converted block arguments. | 
|  | LogicalResult | 
|  | legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl); | 
|  |  | 
|  | /// Legalize any unresolved type materializations. | 
|  | LogicalResult legalizeUnresolvedMaterializations( | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping); | 
|  |  | 
|  | /// Legalize an operation result that was marked as "erased". | 
|  | LogicalResult | 
|  | legalizeErasedResult(Operation *op, OpResult result, | 
|  | ConversionPatternRewriterImpl &rewriterImpl); | 
|  |  | 
|  | /// Legalize an operation result that was replaced with a value of a different | 
|  | /// type. | 
|  | LogicalResult legalizeChangedResultType( | 
|  | Operation *op, OpResult result, Value newValue, | 
|  | const TypeConverter *replConverter, ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | const DenseMap<Value, SmallVector<Value>> &inverseMapping); | 
|  |  | 
|  | /// The legalizer to use when converting operations. | 
|  | OperationLegalizer opLegalizer; | 
|  |  | 
|  | /// The conversion mode to use when legalizing operations. | 
|  | OpConversionMode mode; | 
|  |  | 
|  | /// A set of pre-existing operations. When mode == OpConversionMode::Analysis, | 
|  | /// this is populated with ops found to be legalizable to the target. | 
|  | /// When mode == OpConversionMode::Partial, this is populated with ops found | 
|  | /// *not* to be legalizable to the target. | 
|  | DenseSet<Operation *> *trackedOps; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter, | 
|  | Operation *op) { | 
|  | // Legalize the given operation. | 
|  | if (failed(opLegalizer.legalize(op, rewriter))) { | 
|  | // Handle the case of a failed conversion for each of the different modes. | 
|  | // Full conversions expect all operations to be converted. | 
|  | if (mode == OpConversionMode::Full) | 
|  | return op->emitError() | 
|  | << "failed to legalize operation '" << op->getName() << "'"; | 
|  | // Partial conversions allow conversions to fail iff the operation was not | 
|  | // explicitly marked as illegal. If the user provided a nonlegalizableOps | 
|  | // set, non-legalizable ops are included. | 
|  | if (mode == OpConversionMode::Partial) { | 
|  | if (opLegalizer.isIllegal(op)) | 
|  | return op->emitError() | 
|  | << "failed to legalize operation '" << op->getName() | 
|  | << "' that was explicitly marked illegal"; | 
|  | if (trackedOps) | 
|  | trackedOps->insert(op); | 
|  | } | 
|  | } else if (mode == OpConversionMode::Analysis) { | 
|  | // Analysis conversions don't fail if any operations fail to legalize, | 
|  | // they are only interested in the operations that were successfully | 
|  | // legalized. | 
|  | trackedOps->insert(op); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationConverter::convertOperations( | 
|  | ArrayRef<Operation *> ops, | 
|  | function_ref<void(Diagnostic &)> notifyCallback) { | 
|  | if (ops.empty()) | 
|  | return success(); | 
|  | const ConversionTarget &target = opLegalizer.getTarget(); | 
|  |  | 
|  | // Compute the set of operations and blocks to convert. | 
|  | SmallVector<Operation *> toConvert; | 
|  | for (auto *op : ops) { | 
|  | op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>( | 
|  | [&](Operation *op) { | 
|  | toConvert.push_back(op); | 
|  | // Don't check this operation's children for conversion if the | 
|  | // operation is recursively legal. | 
|  | auto legalityInfo = target.isLegal(op); | 
|  | if (legalityInfo && legalityInfo->isRecursivelyLegal) | 
|  | return WalkResult::skip(); | 
|  | return WalkResult::advance(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Convert each operation and discard rewrites on failure. | 
|  | ConversionPatternRewriter rewriter(ops.front()->getContext()); | 
|  | ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); | 
|  | rewriterImpl.notifyCallback = notifyCallback; | 
|  |  | 
|  | for (auto *op : toConvert) | 
|  | if (failed(convert(rewriter, op))) | 
|  | return rewriterImpl.discardRewrites(), failure(); | 
|  |  | 
|  | // Now that all of the operations have been converted, finalize the conversion | 
|  | // process to ensure any lingering conversion artifacts are cleaned up and | 
|  | // legalized. | 
|  | if (failed(finalize(rewriter))) | 
|  | return rewriterImpl.discardRewrites(), failure(); | 
|  |  | 
|  | // After a successful conversion, apply rewrites if this is not an analysis | 
|  | // conversion. | 
|  | if (mode == OpConversionMode::Analysis) { | 
|  | rewriterImpl.discardRewrites(); | 
|  | } else { | 
|  | rewriterImpl.applyRewrites(); | 
|  |  | 
|  | // It is possible for a later pattern to erase an op that was originally | 
|  | // identified as illegal and added to the trackedOps, remove it now after | 
|  | // replacements have been computed. | 
|  | if (trackedOps) | 
|  | for (auto &repl : rewriterImpl.replacements) | 
|  | trackedOps->erase(repl.first); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | OperationConverter::finalize(ConversionPatternRewriter &rewriter) { | 
|  | std::optional<DenseMap<Value, SmallVector<Value>>> inverseMapping; | 
|  | ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl(); | 
|  | if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl, | 
|  | inverseMapping)) || | 
|  | failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl))) | 
|  | return failure(); | 
|  |  | 
|  | if (rewriterImpl.operationsWithChangedResults.empty()) | 
|  | return success(); | 
|  |  | 
|  | // Process requested operation replacements. | 
|  | for (unsigned i = 0, e = rewriterImpl.operationsWithChangedResults.size(); | 
|  | i != e; ++i) { | 
|  | unsigned replIdx = rewriterImpl.operationsWithChangedResults[i]; | 
|  | auto &repl = *(rewriterImpl.replacements.begin() + replIdx); | 
|  | for (OpResult result : repl.first->getResults()) { | 
|  | Value newValue = rewriterImpl.mapping.lookupOrNull(result); | 
|  |  | 
|  | // If the operation result was replaced with null, all of the uses of this | 
|  | // value should be replaced. | 
|  | if (!newValue) { | 
|  | if (failed(legalizeErasedResult(repl.first, result, rewriterImpl))) | 
|  | return failure(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if the type of the result changed. | 
|  | if (result.getType() == newValue.getType()) | 
|  | continue; | 
|  |  | 
|  | // Compute the inverse mapping only if it is really needed. | 
|  | if (!inverseMapping) | 
|  | inverseMapping = rewriterImpl.mapping.getInverse(); | 
|  |  | 
|  | // Legalize this result. | 
|  | rewriter.setInsertionPoint(repl.first); | 
|  | if (failed(legalizeChangedResultType(repl.first, result, newValue, | 
|  | repl.second.converter, rewriter, | 
|  | rewriterImpl, *inverseMapping))) | 
|  | return failure(); | 
|  |  | 
|  | // Update the end iterator for this loop in the case it was updated | 
|  | // when legalizing generated conversion operations. | 
|  | e = rewriterImpl.operationsWithChangedResults.size(); | 
|  | } | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationConverter::legalizeConvertedArgumentTypes( | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl) { | 
|  | // Functor used to check if all users of a value will be dead after | 
|  | // conversion. | 
|  | auto findLiveUser = [&](Value val) { | 
|  | auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) { | 
|  | return rewriterImpl.isOpIgnored(user); | 
|  | }); | 
|  | return liveUserIt == val.user_end() ? nullptr : *liveUserIt; | 
|  | }; | 
|  | return rewriterImpl.argConverter.materializeLiveConversions( | 
|  | rewriterImpl.mapping, rewriter, findLiveUser); | 
|  | } | 
|  |  | 
|  | /// Replace the results of a materialization operation with the given values. | 
|  | static void | 
|  | replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl, | 
|  | ResultRange matResults, ValueRange values, | 
|  | DenseMap<Value, SmallVector<Value>> &inverseMapping) { | 
|  | matResults.replaceAllUsesWith(values); | 
|  |  | 
|  | // For each of the materialization results, update the inverse mappings to | 
|  | // point to the replacement values. | 
|  | for (auto [matResult, newValue] : llvm::zip(matResults, values)) { | 
|  | auto inverseMapIt = inverseMapping.find(matResult); | 
|  | if (inverseMapIt == inverseMapping.end()) | 
|  | continue; | 
|  |  | 
|  | // Update the reverse mapping, or remove the mapping if we couldn't update | 
|  | // it. Not being able to update signals that the mapping would have become | 
|  | // circular (i.e. %foo -> newValue -> %foo), which may occur as values are | 
|  | // propagated through temporary materializations. We simply drop the | 
|  | // mapping, and let the post-conversion replacement logic handle updating | 
|  | // uses. | 
|  | for (Value inverseMapVal : inverseMapIt->second) | 
|  | if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue)) | 
|  | rewriterImpl.mapping.erase(inverseMapVal); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compute all of the unresolved materializations that will persist beyond the | 
|  | /// conversion process, and require inserting a proper user materialization for. | 
|  | static void computeNecessaryMaterializations( | 
|  | DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | DenseMap<Value, SmallVector<Value>> &inverseMapping, | 
|  | SetVector<UnresolvedMaterialization *> &necessaryMaterializations) { | 
|  | auto isLive = [&](Value value) { | 
|  | auto findFn = [&](Operation *user) { | 
|  | auto matIt = materializationOps.find(user); | 
|  | if (matIt != materializationOps.end()) | 
|  | return !necessaryMaterializations.count(matIt->second); | 
|  | return rewriterImpl.isOpIgnored(user); | 
|  | }; | 
|  | // This value may be replacing another value that has a live user. | 
|  | for (Value inv : inverseMapping.lookup(value)) | 
|  | if (llvm::find_if_not(inv.getUsers(), findFn) != inv.user_end()) | 
|  | return true; | 
|  | // Or have live users itself. | 
|  | return llvm::find_if_not(value.getUsers(), findFn) != value.user_end(); | 
|  | }; | 
|  |  | 
|  | llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue = | 
|  | [&](Value invalidRoot, Value value, Type type) { | 
|  | // Check to see if the input operation was remapped to a variant of the | 
|  | // output. | 
|  | Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); | 
|  | if (remappedValue.getType() == type && remappedValue != invalidRoot) | 
|  | return remappedValue; | 
|  |  | 
|  | // Check to see if the input is a materialization operation that | 
|  | // provides an inverse conversion. We just check blindly for | 
|  | // UnrealizedConversionCastOp here, but it has no effect on correctness. | 
|  | auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>(); | 
|  | if (inputCastOp && inputCastOp->getNumOperands() == 1) | 
|  | return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0), | 
|  | type); | 
|  |  | 
|  | return Value(); | 
|  | }; | 
|  |  | 
|  | SetVector<UnresolvedMaterialization *> worklist; | 
|  | for (auto &mat : rewriterImpl.unresolvedMaterializations) { | 
|  | materializationOps.try_emplace(mat.getOp(), &mat); | 
|  | worklist.insert(&mat); | 
|  | } | 
|  | while (!worklist.empty()) { | 
|  | UnresolvedMaterialization *mat = worklist.pop_back_val(); | 
|  | UnrealizedConversionCastOp op = mat->getOp(); | 
|  |  | 
|  | // We currently only handle target materializations here. | 
|  | assert(op->getNumResults() == 1 && "unexpected materialization type"); | 
|  | OpResult opResult = op->getOpResult(0); | 
|  | Type outputType = opResult.getType(); | 
|  | Operation::operand_range inputOperands = op.getOperands(); | 
|  |  | 
|  | // Try to forward propagate operands for user conversion casts that result | 
|  | // in the input types of the current cast. | 
|  | for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) { | 
|  | auto castOp = dyn_cast<UnrealizedConversionCastOp>(user); | 
|  | if (!castOp) | 
|  | continue; | 
|  | if (castOp->getResultTypes() == inputOperands.getTypes()) { | 
|  | replaceMaterialization(rewriterImpl, opResult, inputOperands, | 
|  | inverseMapping); | 
|  | necessaryMaterializations.remove(materializationOps.lookup(user)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to avoid materializing a resolved materialization if possible. | 
|  | // Handle the case of a 1-1 materialization. | 
|  | if (inputOperands.size() == 1) { | 
|  | // Check to see if the input operation was remapped to a variant of the | 
|  | // output. | 
|  | Value remappedValue = | 
|  | lookupRemappedValue(opResult, inputOperands[0], outputType); | 
|  | if (remappedValue && remappedValue != opResult) { | 
|  | replaceMaterialization(rewriterImpl, opResult, remappedValue, | 
|  | inverseMapping); | 
|  | necessaryMaterializations.remove(mat); | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | // TODO: Avoid materializing other types of conversions here. | 
|  | } | 
|  |  | 
|  | // Check to see if this is an argument materialization. | 
|  | auto isBlockArg = [](Value v) { return isa<BlockArgument>(v); }; | 
|  | if (llvm::any_of(op->getOperands(), isBlockArg) || | 
|  | llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) { | 
|  | mat->setKind(UnresolvedMaterialization::Argument); | 
|  | } | 
|  |  | 
|  | // If the materialization does not have any live users, we don't need to | 
|  | // generate a user materialization for it. | 
|  | // FIXME: For argument materializations, we currently need to check if any | 
|  | // of the inverse mapped values are used because some patterns expect blind | 
|  | // value replacement even if the types differ in some cases. When those | 
|  | // patterns are fixed, we can drop the argument special case here. | 
|  | bool isMaterializationLive = isLive(opResult); | 
|  | if (mat->getKind() == UnresolvedMaterialization::Argument) | 
|  | isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive); | 
|  | if (!isMaterializationLive) | 
|  | continue; | 
|  | if (!necessaryMaterializations.insert(mat)) | 
|  | continue; | 
|  |  | 
|  | // Reprocess input materializations to see if they have an updated status. | 
|  | for (Value input : inputOperands) { | 
|  | if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) { | 
|  | if (auto *mat = materializationOps.lookup(parentOp)) | 
|  | worklist.insert(mat); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Legalize the given unresolved materialization. Returns success if the | 
|  | /// materialization was legalized, failure otherise. | 
|  | static LogicalResult legalizeUnresolvedMaterialization( | 
|  | UnresolvedMaterialization &mat, | 
|  | DenseMap<Operation *, UnresolvedMaterialization *> &materializationOps, | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | DenseMap<Value, SmallVector<Value>> &inverseMapping) { | 
|  | auto findLiveUser = [&](auto &&users) { | 
|  | auto liveUserIt = llvm::find_if_not( | 
|  | users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); }); | 
|  | return liveUserIt == users.end() ? nullptr : *liveUserIt; | 
|  | }; | 
|  |  | 
|  | llvm::unique_function<Value(Value, Type)> lookupRemappedValue = | 
|  | [&](Value value, Type type) { | 
|  | // Check to see if the input operation was remapped to a variant of the | 
|  | // output. | 
|  | Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type); | 
|  | if (remappedValue.getType() == type) | 
|  | return remappedValue; | 
|  | return Value(); | 
|  | }; | 
|  |  | 
|  | UnrealizedConversionCastOp op = mat.getOp(); | 
|  | if (!rewriterImpl.ignoredOps.insert(op)) | 
|  | return success(); | 
|  |  | 
|  | // We currently only handle target materializations here. | 
|  | OpResult opResult = op->getOpResult(0); | 
|  | Operation::operand_range inputOperands = op.getOperands(); | 
|  | Type outputType = opResult.getType(); | 
|  |  | 
|  | // If any input to this materialization is another materialization, resolve | 
|  | // the input first. | 
|  | for (Value value : op->getOperands()) { | 
|  | auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>(); | 
|  | if (!valueCast) | 
|  | continue; | 
|  |  | 
|  | auto matIt = materializationOps.find(valueCast); | 
|  | if (matIt != materializationOps.end()) | 
|  | if (failed(legalizeUnresolvedMaterialization( | 
|  | *matIt->second, materializationOps, rewriter, rewriterImpl, | 
|  | inverseMapping))) | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | // Perform a last ditch attempt to avoid materializing a resolved | 
|  | // materialization if possible. | 
|  | // Handle the case of a 1-1 materialization. | 
|  | if (inputOperands.size() == 1) { | 
|  | // Check to see if the input operation was remapped to a variant of the | 
|  | // output. | 
|  | Value remappedValue = lookupRemappedValue(inputOperands[0], outputType); | 
|  | if (remappedValue && remappedValue != opResult) { | 
|  | replaceMaterialization(rewriterImpl, opResult, remappedValue, | 
|  | inverseMapping); | 
|  | return success(); | 
|  | } | 
|  | } else { | 
|  | // TODO: Avoid materializing other types of conversions here. | 
|  | } | 
|  |  | 
|  | // Try to materialize the conversion. | 
|  | if (const TypeConverter *converter = mat.getConverter()) { | 
|  | // FIXME: Determine a suitable insertion location when there are multiple | 
|  | // inputs. | 
|  | if (inputOperands.size() == 1) | 
|  | rewriter.setInsertionPointAfterValue(inputOperands.front()); | 
|  | else | 
|  | rewriter.setInsertionPoint(op); | 
|  |  | 
|  | Value newMaterialization; | 
|  | switch (mat.getKind()) { | 
|  | case UnresolvedMaterialization::Argument: | 
|  | // Try to materialize an argument conversion. | 
|  | // FIXME: The current argument materialization hook expects the original | 
|  | // output type, even though it doesn't use that as the actual output type | 
|  | // of the generated IR. The output type is just used as an indicator of | 
|  | // the type of materialization to do. This behavior is really awkward in | 
|  | // that it diverges from the behavior of the other hooks, and can be | 
|  | // easily misunderstood. We should clean up the argument hooks to better | 
|  | // represent the desired invariants we actually care about. | 
|  | newMaterialization = converter->materializeArgumentConversion( | 
|  | rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands); | 
|  | if (newMaterialization) | 
|  | break; | 
|  |  | 
|  | // If an argument materialization failed, fallback to trying a target | 
|  | // materialization. | 
|  | [[fallthrough]]; | 
|  | case UnresolvedMaterialization::Target: | 
|  | newMaterialization = converter->materializeTargetConversion( | 
|  | rewriter, op->getLoc(), outputType, inputOperands); | 
|  | break; | 
|  | } | 
|  | if (newMaterialization) { | 
|  | replaceMaterialization(rewriterImpl, opResult, newMaterialization, | 
|  | inverseMapping); | 
|  | return success(); | 
|  | } | 
|  | } | 
|  |  | 
|  | InFlightDiagnostic diag = op->emitError() | 
|  | << "failed to legalize unresolved materialization " | 
|  | "from " | 
|  | << inputOperands.getTypes() << " to " << outputType | 
|  | << " that remained live after conversion"; | 
|  | if (Operation *liveUser = findLiveUser(op->getUsers())) { | 
|  | diag.attachNote(liveUser->getLoc()) | 
|  | << "see existing live user here: " << *liveUser; | 
|  | } | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationConverter::legalizeUnresolvedMaterializations( | 
|  | ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) { | 
|  | if (rewriterImpl.unresolvedMaterializations.empty()) | 
|  | return success(); | 
|  | inverseMapping = rewriterImpl.mapping.getInverse(); | 
|  |  | 
|  | // As an initial step, compute all of the inserted materializations that we | 
|  | // expect to persist beyond the conversion process. | 
|  | DenseMap<Operation *, UnresolvedMaterialization *> materializationOps; | 
|  | SetVector<UnresolvedMaterialization *> necessaryMaterializations; | 
|  | computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl, | 
|  | *inverseMapping, necessaryMaterializations); | 
|  |  | 
|  | // Once computed, legalize any necessary materializations. | 
|  | for (auto *mat : necessaryMaterializations) { | 
|  | if (failed(legalizeUnresolvedMaterialization( | 
|  | *mat, materializationOps, rewriter, rewriterImpl, *inverseMapping))) | 
|  | return failure(); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | LogicalResult OperationConverter::legalizeErasedResult( | 
|  | Operation *op, OpResult result, | 
|  | ConversionPatternRewriterImpl &rewriterImpl) { | 
|  | // If the operation result was replaced with null, all of the uses of this | 
|  | // value should be replaced. | 
|  | auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) { | 
|  | return rewriterImpl.isOpIgnored(user); | 
|  | }); | 
|  | if (liveUserIt != result.user_end()) { | 
|  | InFlightDiagnostic diag = op->emitError("failed to legalize operation '") | 
|  | << op->getName() << "' marked as erased"; | 
|  | diag.attachNote(liveUserIt->getLoc()) | 
|  | << "found live user of result #" << result.getResultNumber() << ": " | 
|  | << *liveUserIt; | 
|  | return failure(); | 
|  | } | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | /// Finds a user of the given value, or of any other value that the given value | 
|  | /// replaced, that was not replaced in the conversion process. | 
|  | static Operation *findLiveUserOfReplaced( | 
|  | Value initialValue, ConversionPatternRewriterImpl &rewriterImpl, | 
|  | const DenseMap<Value, SmallVector<Value>> &inverseMapping) { | 
|  | SmallVector<Value> worklist(1, initialValue); | 
|  | while (!worklist.empty()) { | 
|  | Value value = worklist.pop_back_val(); | 
|  |  | 
|  | // Walk the users of this value to see if there are any live users that | 
|  | // weren't replaced during conversion. | 
|  | auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) { | 
|  | return rewriterImpl.isOpIgnored(user); | 
|  | }); | 
|  | if (liveUserIt != value.user_end()) | 
|  | return *liveUserIt; | 
|  | auto mapIt = inverseMapping.find(value); | 
|  | if (mapIt != inverseMapping.end()) | 
|  | worklist.append(mapIt->second); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LogicalResult OperationConverter::legalizeChangedResultType( | 
|  | Operation *op, OpResult result, Value newValue, | 
|  | const TypeConverter *replConverter, ConversionPatternRewriter &rewriter, | 
|  | ConversionPatternRewriterImpl &rewriterImpl, | 
|  | const DenseMap<Value, SmallVector<Value>> &inverseMapping) { | 
|  | Operation *liveUser = | 
|  | findLiveUserOfReplaced(result, rewriterImpl, inverseMapping); | 
|  | if (!liveUser) | 
|  | return success(); | 
|  |  | 
|  | // Functor used to emit a conversion error for a failed materialization. | 
|  | auto emitConversionError = [&] { | 
|  | InFlightDiagnostic diag = op->emitError() | 
|  | << "failed to materialize conversion for result #" | 
|  | << result.getResultNumber() << " of operation '" | 
|  | << op->getName() | 
|  | << "' that remained live after conversion"; | 
|  | diag.attachNote(liveUser->getLoc()) | 
|  | << "see existing live user here: " << *liveUser; | 
|  | return failure(); | 
|  | }; | 
|  |  | 
|  | // If the replacement has a type converter, attempt to materialize a | 
|  | // conversion back to the original type. | 
|  | if (!replConverter) | 
|  | return emitConversionError(); | 
|  |  | 
|  | // Materialize a conversion for this live result value. | 
|  | Type resultType = result.getType(); | 
|  | Value convertedValue = replConverter->materializeSourceConversion( | 
|  | rewriter, op->getLoc(), resultType, newValue); | 
|  | if (!convertedValue) | 
|  | return emitConversionError(); | 
|  |  | 
|  | rewriterImpl.mapping.map(result, convertedValue); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Type Conversion | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo, | 
|  | ArrayRef<Type> types) { | 
|  | assert(!types.empty() && "expected valid types"); | 
|  | remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size()); | 
|  | addInputs(types); | 
|  | } | 
|  |  | 
|  | void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) { | 
|  | assert(!types.empty() && | 
|  | "1->0 type remappings don't need to be added explicitly"); | 
|  | argTypes.append(types.begin(), types.end()); | 
|  | } | 
|  |  | 
|  | void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, | 
|  | unsigned newInputNo, | 
|  | unsigned newInputCount) { | 
|  | assert(!remappedInputs[origInputNo] && "input has already been remapped"); | 
|  | assert(newInputCount != 0 && "expected valid input count"); | 
|  | remappedInputs[origInputNo] = | 
|  | InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr}; | 
|  | } | 
|  |  | 
|  | void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo, | 
|  | Value replacementValue) { | 
|  | assert(!remappedInputs[origInputNo] && "input has already been remapped"); | 
|  | remappedInputs[origInputNo] = | 
|  | InputMapping{origInputNo, /*size=*/0, replacementValue}; | 
|  | } | 
|  |  | 
|  | LogicalResult TypeConverter::convertType(Type t, | 
|  | SmallVectorImpl<Type> &results) const { | 
|  | { | 
|  | std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex, | 
|  | std::defer_lock); | 
|  | if (t.getContext()->isMultithreadingEnabled()) | 
|  | cacheReadLock.lock(); | 
|  | auto existingIt = cachedDirectConversions.find(t); | 
|  | if (existingIt != cachedDirectConversions.end()) { | 
|  | if (existingIt->second) | 
|  | results.push_back(existingIt->second); | 
|  | return success(existingIt->second != nullptr); | 
|  | } | 
|  | auto multiIt = cachedMultiConversions.find(t); | 
|  | if (multiIt != cachedMultiConversions.end()) { | 
|  | results.append(multiIt->second.begin(), multiIt->second.end()); | 
|  | return success(); | 
|  | } | 
|  | } | 
|  | // Walk the added converters in reverse order to apply the most recently | 
|  | // registered first. | 
|  | size_t currentCount = results.size(); | 
|  |  | 
|  | std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex, | 
|  | std::defer_lock); | 
|  |  | 
|  | for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) { | 
|  | if (std::optional<LogicalResult> result = converter(t, results)) { | 
|  | if (t.getContext()->isMultithreadingEnabled()) | 
|  | cacheWriteLock.lock(); | 
|  | if (!succeeded(*result)) { | 
|  | cachedDirectConversions.try_emplace(t, nullptr); | 
|  | return failure(); | 
|  | } | 
|  | auto newTypes = ArrayRef<Type>(results).drop_front(currentCount); | 
|  | if (newTypes.size() == 1) | 
|  | cachedDirectConversions.try_emplace(t, newTypes.front()); | 
|  | else | 
|  | cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes)); | 
|  | return success(); | 
|  | } | 
|  | } | 
|  | return failure(); | 
|  | } | 
|  |  | 
|  | Type TypeConverter::convertType(Type t) const { | 
|  | // Use the multi-type result version to convert the type. | 
|  | SmallVector<Type, 1> results; | 
|  | if (failed(convertType(t, results))) | 
|  | return nullptr; | 
|  |  | 
|  | // Check to ensure that only one type was produced. | 
|  | return results.size() == 1 ? results.front() : nullptr; | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | TypeConverter::convertTypes(TypeRange types, | 
|  | SmallVectorImpl<Type> &results) const { | 
|  | for (Type type : types) | 
|  | if (failed(convertType(type, results))) | 
|  | return failure(); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | bool TypeConverter::isLegal(Type type) const { | 
|  | return convertType(type) == type; | 
|  | } | 
|  | bool TypeConverter::isLegal(Operation *op) const { | 
|  | return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes()); | 
|  | } | 
|  |  | 
|  | bool TypeConverter::isLegal(Region *region) const { | 
|  | return llvm::all_of(*region, [this](Block &block) { | 
|  | return isLegal(block.getArgumentTypes()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool TypeConverter::isSignatureLegal(FunctionType ty) const { | 
|  | return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults())); | 
|  | } | 
|  |  | 
|  | LogicalResult | 
|  | TypeConverter::convertSignatureArg(unsigned inputNo, Type type, | 
|  | SignatureConversion &result) const { | 
|  | // Try to convert the given input type. | 
|  | SmallVector<Type, 1> convertedTypes; | 
|  | if (failed(convertType(type, convertedTypes))) | 
|  | return failure(); | 
|  |  | 
|  | // If this argument is being dropped, there is nothing left to do. | 
|  | if (convertedTypes.empty()) | 
|  | return success(); | 
|  |  | 
|  | // Otherwise, add the new inputs. | 
|  | result.addInputs(inputNo, convertedTypes); | 
|  | return success(); | 
|  | } | 
|  | LogicalResult | 
|  | TypeConverter::convertSignatureArgs(TypeRange types, | 
|  | SignatureConversion &result, | 
|  | unsigned origInputOffset) const { | 
|  | for (unsigned i = 0, e = types.size(); i != e; ++i) | 
|  | if (failed(convertSignatureArg(origInputOffset + i, types[i], result))) | 
|  | return failure(); | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | Value TypeConverter::materializeConversion( | 
|  | ArrayRef<MaterializationCallbackFn> materializations, OpBuilder &builder, | 
|  | Location loc, Type resultType, ValueRange inputs) const { | 
|  | for (const MaterializationCallbackFn &fn : llvm::reverse(materializations)) | 
|  | if (std::optional<Value> result = fn(builder, resultType, inputs, loc)) | 
|  | return *result; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::optional<TypeConverter::SignatureConversion> | 
|  | TypeConverter::convertBlockSignature(Block *block) const { | 
|  | SignatureConversion conversion(block->getNumArguments()); | 
|  | if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion))) | 
|  | return std::nullopt; | 
|  | return conversion; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Type attribute conversion | 
|  | //===----------------------------------------------------------------------===// | 
|  | TypeConverter::AttributeConversionResult | 
|  | TypeConverter::AttributeConversionResult::result(Attribute attr) { | 
|  | return AttributeConversionResult(attr, resultTag); | 
|  | } | 
|  |  | 
|  | TypeConverter::AttributeConversionResult | 
|  | TypeConverter::AttributeConversionResult::na() { | 
|  | return AttributeConversionResult(nullptr, naTag); | 
|  | } | 
|  |  | 
|  | TypeConverter::AttributeConversionResult | 
|  | TypeConverter::AttributeConversionResult::abort() { | 
|  | return AttributeConversionResult(nullptr, abortTag); | 
|  | } | 
|  |  | 
|  | bool TypeConverter::AttributeConversionResult::hasResult() const { | 
|  | return impl.getInt() == resultTag; | 
|  | } | 
|  |  | 
|  | bool TypeConverter::AttributeConversionResult::isNa() const { | 
|  | return impl.getInt() == naTag; | 
|  | } | 
|  |  | 
|  | bool TypeConverter::AttributeConversionResult::isAbort() const { | 
|  | return impl.getInt() == abortTag; | 
|  | } | 
|  |  | 
|  | Attribute TypeConverter::AttributeConversionResult::getResult() const { | 
|  | assert(hasResult() && "Cannot get result from N/A or abort"); | 
|  | return impl.getPointer(); | 
|  | } | 
|  |  | 
|  | std::optional<Attribute> | 
|  | TypeConverter::convertTypeAttribute(Type type, Attribute attr) const { | 
|  | for (const TypeAttributeConversionCallbackFn &fn : | 
|  | llvm::reverse(typeAttributeConversions)) { | 
|  | AttributeConversionResult res = fn(type, attr); | 
|  | if (res.hasResult()) | 
|  | return res.getResult(); | 
|  | if (res.isAbort()) | 
|  | return std::nullopt; | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FunctionOpInterfaceSignatureConversion | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp, | 
|  | const TypeConverter &typeConverter, | 
|  | ConversionPatternRewriter &rewriter) { | 
|  | FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType()); | 
|  | if (!type) | 
|  | return failure(); | 
|  |  | 
|  | // Convert the original function types. | 
|  | TypeConverter::SignatureConversion result(type.getNumInputs()); | 
|  | SmallVector<Type, 1> newResults; | 
|  | if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) || | 
|  | failed(typeConverter.convertTypes(type.getResults(), newResults)) || | 
|  | failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(), | 
|  | typeConverter, &result))) | 
|  | return failure(); | 
|  |  | 
|  | // Update the function signature in-place. | 
|  | auto newType = FunctionType::get(rewriter.getContext(), | 
|  | result.getConvertedTypes(), newResults); | 
|  |  | 
|  | rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); }); | 
|  |  | 
|  | return success(); | 
|  | } | 
|  |  | 
|  | /// Create a default conversion pattern that rewrites the type signature of a | 
|  | /// FunctionOpInterface op. This only supports ops which use FunctionType to | 
|  | /// represent their type. | 
|  | namespace { | 
|  | struct FunctionOpInterfaceSignatureConversion : public ConversionPattern { | 
|  | FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName, | 
|  | MLIRContext *ctx, | 
|  | const TypeConverter &converter) | 
|  | : ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {} | 
|  |  | 
|  | LogicalResult | 
|  | matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/, | 
|  | ConversionPatternRewriter &rewriter) const override { | 
|  | FunctionOpInterface funcOp = cast<FunctionOpInterface>(op); | 
|  | return convertFuncOpTypes(funcOp, *typeConverter, rewriter); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AnyFunctionOpInterfaceSignatureConversion | 
|  | : public OpInterfaceConversionPattern<FunctionOpInterface> { | 
|  | using OpInterfaceConversionPattern::OpInterfaceConversionPattern; | 
|  |  | 
|  | LogicalResult | 
|  | matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/, | 
|  | ConversionPatternRewriter &rewriter) const override { | 
|  | return convertFuncOpTypes(funcOp, *typeConverter, rewriter); | 
|  | } | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | void mlir::populateFunctionOpInterfaceTypeConversionPattern( | 
|  | StringRef functionLikeOpName, RewritePatternSet &patterns, | 
|  | const TypeConverter &converter) { | 
|  | patterns.add<FunctionOpInterfaceSignatureConversion>( | 
|  | functionLikeOpName, patterns.getContext(), converter); | 
|  | } | 
|  |  | 
|  | void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern( | 
|  | RewritePatternSet &patterns, const TypeConverter &converter) { | 
|  | patterns.add<AnyFunctionOpInterfaceSignatureConversion>( | 
|  | converter, patterns.getContext()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ConversionTarget | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ConversionTarget::setOpAction(OperationName op, | 
|  | LegalizationAction action) { | 
|  | legalOperations[op].action = action; | 
|  | } | 
|  |  | 
|  | void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames, | 
|  | LegalizationAction action) { | 
|  | for (StringRef dialect : dialectNames) | 
|  | legalDialects[dialect] = action; | 
|  | } | 
|  |  | 
|  | auto ConversionTarget::getOpAction(OperationName op) const | 
|  | -> std::optional<LegalizationAction> { | 
|  | std::optional<LegalizationInfo> info = getOpInfo(op); | 
|  | return info ? info->action : std::optional<LegalizationAction>(); | 
|  | } | 
|  |  | 
|  | auto ConversionTarget::isLegal(Operation *op) const | 
|  | -> std::optional<LegalOpDetails> { | 
|  | std::optional<LegalizationInfo> info = getOpInfo(op->getName()); | 
|  | if (!info) | 
|  | return std::nullopt; | 
|  |  | 
|  | // Returns true if this operation instance is known to be legal. | 
|  | auto isOpLegal = [&] { | 
|  | // Handle dynamic legality either with the provided legality function. | 
|  | if (info->action == LegalizationAction::Dynamic) { | 
|  | std::optional<bool> result = info->legalityFn(op); | 
|  | if (result) | 
|  | return *result; | 
|  | } | 
|  |  | 
|  | // Otherwise, the operation is only legal if it was marked 'Legal'. | 
|  | return info->action == LegalizationAction::Legal; | 
|  | }; | 
|  | if (!isOpLegal()) | 
|  | return std::nullopt; | 
|  |  | 
|  | // This operation is legal, compute any additional legality information. | 
|  | LegalOpDetails legalityDetails; | 
|  | if (info->isRecursivelyLegal) { | 
|  | auto legalityFnIt = opRecursiveLegalityFns.find(op->getName()); | 
|  | if (legalityFnIt != opRecursiveLegalityFns.end()) { | 
|  | legalityDetails.isRecursivelyLegal = | 
|  | legalityFnIt->second(op).value_or(true); | 
|  | } else { | 
|  | legalityDetails.isRecursivelyLegal = true; | 
|  | } | 
|  | } | 
|  | return legalityDetails; | 
|  | } | 
|  |  | 
|  | bool ConversionTarget::isIllegal(Operation *op) const { | 
|  | std::optional<LegalizationInfo> info = getOpInfo(op->getName()); | 
|  | if (!info) | 
|  | return false; | 
|  |  | 
|  | if (info->action == LegalizationAction::Dynamic) { | 
|  | std::optional<bool> result = info->legalityFn(op); | 
|  | if (!result) | 
|  | return false; | 
|  |  | 
|  | return !(*result); | 
|  | } | 
|  |  | 
|  | return info->action == LegalizationAction::Illegal; | 
|  | } | 
|  |  | 
|  | static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks( | 
|  | ConversionTarget::DynamicLegalityCallbackFn oldCallback, | 
|  | ConversionTarget::DynamicLegalityCallbackFn newCallback) { | 
|  | if (!oldCallback) | 
|  | return newCallback; | 
|  |  | 
|  | auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)]( | 
|  | Operation *op) -> std::optional<bool> { | 
|  | if (std::optional<bool> result = newCl(op)) | 
|  | return *result; | 
|  |  | 
|  | return oldCl(op); | 
|  | }; | 
|  | return chain; | 
|  | } | 
|  |  | 
|  | void ConversionTarget::setLegalityCallback( | 
|  | OperationName name, const DynamicLegalityCallbackFn &callback) { | 
|  | assert(callback && "expected valid legality callback"); | 
|  | auto infoIt = legalOperations.find(name); | 
|  | assert(infoIt != legalOperations.end() && | 
|  | infoIt->second.action == LegalizationAction::Dynamic && | 
|  | "expected operation to already be marked as dynamically legal"); | 
|  | infoIt->second.legalityFn = | 
|  | composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback); | 
|  | } | 
|  |  | 
|  | void ConversionTarget::markOpRecursivelyLegal( | 
|  | OperationName name, const DynamicLegalityCallbackFn &callback) { | 
|  | auto infoIt = legalOperations.find(name); | 
|  | assert(infoIt != legalOperations.end() && | 
|  | infoIt->second.action != LegalizationAction::Illegal && | 
|  | "expected operation to already be marked as legal"); | 
|  | infoIt->second.isRecursivelyLegal = true; | 
|  | if (callback) | 
|  | opRecursiveLegalityFns[name] = composeLegalityCallbacks( | 
|  | std::move(opRecursiveLegalityFns[name]), callback); | 
|  | else | 
|  | opRecursiveLegalityFns.erase(name); | 
|  | } | 
|  |  | 
|  | void ConversionTarget::setLegalityCallback( | 
|  | ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) { | 
|  | assert(callback && "expected valid legality callback"); | 
|  | for (StringRef dialect : dialects) | 
|  | dialectLegalityFns[dialect] = composeLegalityCallbacks( | 
|  | std::move(dialectLegalityFns[dialect]), callback); | 
|  | } | 
|  |  | 
|  | void ConversionTarget::setLegalityCallback( | 
|  | const DynamicLegalityCallbackFn &callback) { | 
|  | assert(callback && "expected valid legality callback"); | 
|  | unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback); | 
|  | } | 
|  |  | 
|  | auto ConversionTarget::getOpInfo(OperationName op) const | 
|  | -> std::optional<LegalizationInfo> { | 
|  | // Check for info for this specific operation. | 
|  | auto it = legalOperations.find(op); | 
|  | if (it != legalOperations.end()) | 
|  | return it->second; | 
|  | // Check for info for the parent dialect. | 
|  | auto dialectIt = legalDialects.find(op.getDialectNamespace()); | 
|  | if (dialectIt != legalDialects.end()) { | 
|  | DynamicLegalityCallbackFn callback; | 
|  | auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace()); | 
|  | if (dialectFn != dialectLegalityFns.end()) | 
|  | callback = dialectFn->second; | 
|  | return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false, | 
|  | callback}; | 
|  | } | 
|  | // Otherwise, check if we mark unknown operations as dynamic. | 
|  | if (unknownLegalityFn) | 
|  | return LegalizationInfo{LegalizationAction::Dynamic, | 
|  | /*isRecursivelyLegal=*/false, unknownLegalityFn}; | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | #if MLIR_ENABLE_PDL_IN_PATTERNMATCH | 
|  | //===----------------------------------------------------------------------===// | 
|  | // PDL Configuration | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) { | 
|  | auto &rewriterImpl = | 
|  | static_cast<ConversionPatternRewriter &>(rewriter).getImpl(); | 
|  | rewriterImpl.currentTypeConverter = getTypeConverter(); | 
|  | } | 
|  |  | 
|  | void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) { | 
|  | auto &rewriterImpl = | 
|  | static_cast<ConversionPatternRewriter &>(rewriter).getImpl(); | 
|  | rewriterImpl.currentTypeConverter = nullptr; | 
|  | } | 
|  |  | 
|  | /// Remap the given value using the rewriter and the type converter in the | 
|  | /// provided config. | 
|  | static FailureOr<SmallVector<Value>> | 
|  | pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) { | 
|  | SmallVector<Value> mappedValues; | 
|  | if (failed(rewriter.getRemappedValues(values, mappedValues))) | 
|  | return failure(); | 
|  | return std::move(mappedValues); | 
|  | } | 
|  |  | 
|  | void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) { | 
|  | patterns.getPDLPatterns().registerRewriteFunction( | 
|  | "convertValue", | 
|  | [](PatternRewriter &rewriter, Value value) -> FailureOr<Value> { | 
|  | auto results = pdllConvertValues( | 
|  | static_cast<ConversionPatternRewriter &>(rewriter), value); | 
|  | if (failed(results)) | 
|  | return failure(); | 
|  | return results->front(); | 
|  | }); | 
|  | patterns.getPDLPatterns().registerRewriteFunction( | 
|  | "convertValues", [](PatternRewriter &rewriter, ValueRange values) { | 
|  | return pdllConvertValues( | 
|  | static_cast<ConversionPatternRewriter &>(rewriter), values); | 
|  | }); | 
|  | patterns.getPDLPatterns().registerRewriteFunction( | 
|  | "convertType", | 
|  | [](PatternRewriter &rewriter, Type type) -> FailureOr<Type> { | 
|  | auto &rewriterImpl = | 
|  | static_cast<ConversionPatternRewriter &>(rewriter).getImpl(); | 
|  | if (const TypeConverter *converter = | 
|  | rewriterImpl.currentTypeConverter) { | 
|  | if (Type newType = converter->convertType(type)) | 
|  | return newType; | 
|  | return failure(); | 
|  | } | 
|  | return type; | 
|  | }); | 
|  | patterns.getPDLPatterns().registerRewriteFunction( | 
|  | "convertTypes", | 
|  | [](PatternRewriter &rewriter, | 
|  | TypeRange types) -> FailureOr<SmallVector<Type>> { | 
|  | auto &rewriterImpl = | 
|  | static_cast<ConversionPatternRewriter &>(rewriter).getImpl(); | 
|  | const TypeConverter *converter = rewriterImpl.currentTypeConverter; | 
|  | if (!converter) | 
|  | return SmallVector<Type>(types); | 
|  |  | 
|  | SmallVector<Type> remappedTypes; | 
|  | if (failed(converter->convertTypes(types, remappedTypes))) | 
|  | return failure(); | 
|  | return std::move(remappedTypes); | 
|  | }); | 
|  | } | 
|  | #endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Op Conversion Entry Points | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Partial Conversion | 
|  |  | 
|  | LogicalResult | 
|  | mlir::applyPartialConversion(ArrayRef<Operation *> ops, | 
|  | const ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns, | 
|  | DenseSet<Operation *> *unconvertedOps) { | 
|  | OperationConverter opConverter(target, patterns, OpConversionMode::Partial, | 
|  | unconvertedOps); | 
|  | return opConverter.convertOperations(ops); | 
|  | } | 
|  | LogicalResult | 
|  | mlir::applyPartialConversion(Operation *op, const ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns, | 
|  | DenseSet<Operation *> *unconvertedOps) { | 
|  | return applyPartialConversion(llvm::ArrayRef(op), target, patterns, | 
|  | unconvertedOps); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Full Conversion | 
|  |  | 
|  | LogicalResult | 
|  | mlir::applyFullConversion(ArrayRef<Operation *> ops, const ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns) { | 
|  | OperationConverter opConverter(target, patterns, OpConversionMode::Full); | 
|  | return opConverter.convertOperations(ops); | 
|  | } | 
|  | LogicalResult | 
|  | mlir::applyFullConversion(Operation *op, const ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns) { | 
|  | return applyFullConversion(llvm::ArrayRef(op), target, patterns); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Analysis Conversion | 
|  |  | 
|  | LogicalResult | 
|  | mlir::applyAnalysisConversion(ArrayRef<Operation *> ops, | 
|  | ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns, | 
|  | DenseSet<Operation *> &convertedOps, | 
|  | function_ref<void(Diagnostic &)> notifyCallback) { | 
|  | OperationConverter opConverter(target, patterns, OpConversionMode::Analysis, | 
|  | &convertedOps); | 
|  | return opConverter.convertOperations(ops, notifyCallback); | 
|  | } | 
|  | LogicalResult | 
|  | mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target, | 
|  | const FrozenRewritePatternSet &patterns, | 
|  | DenseSet<Operation *> &convertedOps, | 
|  | function_ref<void(Diagnostic &)> notifyCallback) { | 
|  | return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, | 
|  | convertedOps, notifyCallback); | 
|  | } |