|  | //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This program is a utility that generates random .ll files to stress-test | 
|  | // different components in LLVM. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/InitLLVM.h" | 
|  | #include "llvm/Support/ToolOutputFile.h" | 
|  | #include "llvm/Support/WithColor.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <system_error> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | static cl::OptionCategory StressCategory("Stress Options"); | 
|  |  | 
|  | static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"), | 
|  | cl::init(0), cl::cat(StressCategory)); | 
|  |  | 
|  | static cl::opt<unsigned> SizeCL( | 
|  | "size", | 
|  | cl::desc("The estimated size of the generated function (# of instrs)"), | 
|  | cl::init(100), cl::cat(StressCategory)); | 
|  |  | 
|  | static cl::opt<std::string> OutputFilename("o", | 
|  | cl::desc("Override output filename"), | 
|  | cl::value_desc("filename"), | 
|  | cl::cat(StressCategory)); | 
|  |  | 
|  | static cl::list<StringRef> AdditionalScalarTypes( | 
|  | "types", cl::CommaSeparated, | 
|  | cl::desc("Additional IR scalar types " | 
|  | "(always includes i1, i8, i16, i32, i64, float and double)")); | 
|  |  | 
|  | static cl::opt<bool> EnableScalableVectors( | 
|  | "enable-scalable-vectors", | 
|  | cl::desc("Generate IR involving scalable vector types"), | 
|  | cl::init(false), cl::cat(StressCategory)); | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// A utility class to provide a pseudo-random number generator which is | 
|  | /// the same across all platforms. This is somewhat close to the libc | 
|  | /// implementation. Note: This is not a cryptographically secure pseudorandom | 
|  | /// number generator. | 
|  | class Random { | 
|  | public: | 
|  | /// C'tor | 
|  | Random(unsigned _seed):Seed(_seed) {} | 
|  |  | 
|  | /// Return a random integer, up to a | 
|  | /// maximum of 2**19 - 1. | 
|  | uint32_t Rand() { | 
|  | uint32_t Val = Seed + 0x000b07a1; | 
|  | Seed = (Val * 0x3c7c0ac1); | 
|  | // Only lowest 19 bits are random-ish. | 
|  | return Seed & 0x7ffff; | 
|  | } | 
|  |  | 
|  | /// Return a random 64 bit integer. | 
|  | uint64_t Rand64() { | 
|  | uint64_t Val = Rand() & 0xffff; | 
|  | Val |= uint64_t(Rand() & 0xffff) << 16; | 
|  | Val |= uint64_t(Rand() & 0xffff) << 32; | 
|  | Val |= uint64_t(Rand() & 0xffff) << 48; | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// Rand operator for STL algorithms. | 
|  | ptrdiff_t operator()(ptrdiff_t y) { | 
|  | return  Rand64() % y; | 
|  | } | 
|  |  | 
|  | /// Make this like a C++11 random device | 
|  | using result_type = uint32_t ; | 
|  |  | 
|  | static constexpr result_type min() { return 0; } | 
|  | static constexpr result_type max() { return 0x7ffff; } | 
|  |  | 
|  | uint32_t operator()() { | 
|  | uint32_t Val = Rand(); | 
|  | assert(Val <= max() && "Random value out of range"); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | private: | 
|  | unsigned Seed; | 
|  | }; | 
|  |  | 
|  | /// Generate an empty function with a default argument list. | 
|  | Function *GenEmptyFunction(Module *M) { | 
|  | // Define a few arguments | 
|  | LLVMContext &Context = M->getContext(); | 
|  | Type* ArgsTy[] = { | 
|  | PointerType::get(Context, 0), | 
|  | PointerType::get(Context, 0), | 
|  | PointerType::get(Context, 0), | 
|  | Type::getInt32Ty(Context), | 
|  | Type::getInt64Ty(Context), | 
|  | Type::getInt8Ty(Context) | 
|  | }; | 
|  |  | 
|  | auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false); | 
|  | // Pick a unique name to describe the input parameters | 
|  | Twine Name = "autogen_SD" + Twine{SeedCL}; | 
|  | auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M); | 
|  | Func->setCallingConv(CallingConv::C); | 
|  | return Func; | 
|  | } | 
|  |  | 
|  | /// A base class, implementing utilities needed for | 
|  | /// modifying and adding new random instructions. | 
|  | struct Modifier { | 
|  | /// Used to store the randomly generated values. | 
|  | using PieceTable = std::vector<Value *>; | 
|  |  | 
|  | public: | 
|  | /// C'tor | 
|  | Modifier(BasicBlock *Block, PieceTable *PT, Random *R) | 
|  | : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) { | 
|  | ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context), | 
|  | Type::getInt16Ty(Context), Type::getInt32Ty(Context), | 
|  | Type::getInt64Ty(Context), Type::getFloatTy(Context), | 
|  | Type::getDoubleTy(Context)}); | 
|  |  | 
|  | for (auto &Arg : AdditionalScalarTypes) { | 
|  | Type *Ty = nullptr; | 
|  | if (Arg == "half") | 
|  | Ty = Type::getHalfTy(Context); | 
|  | else if (Arg == "fp128") | 
|  | Ty = Type::getFP128Ty(Context); | 
|  | else if (Arg == "x86_fp80") | 
|  | Ty = Type::getX86_FP80Ty(Context); | 
|  | else if (Arg == "ppc_fp128") | 
|  | Ty = Type::getPPC_FP128Ty(Context); | 
|  | else if (Arg == "x86_mmx") | 
|  | Ty = Type::getX86_MMXTy(Context); | 
|  | else if (Arg.starts_with("i")) { | 
|  | unsigned N = 0; | 
|  | Arg.drop_front().getAsInteger(10, N); | 
|  | if (N > 0) | 
|  | Ty = Type::getIntNTy(Context, N); | 
|  | } | 
|  | if (!Ty) { | 
|  | errs() << "Invalid IR scalar type: '" << Arg << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | ScalarTypes.push_back(Ty); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// virtual D'tor to silence warnings. | 
|  | virtual ~Modifier() = default; | 
|  |  | 
|  | /// Add a new instruction. | 
|  | virtual void Act() = 0; | 
|  |  | 
|  | /// Add N new instructions, | 
|  | virtual void ActN(unsigned n) { | 
|  | for (unsigned i=0; i<n; ++i) | 
|  | Act(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | /// Return a random integer. | 
|  | uint32_t getRandom() { | 
|  | return Ran->Rand(); | 
|  | } | 
|  |  | 
|  | /// Return a random value from the list of known values. | 
|  | Value *getRandomVal() { | 
|  | assert(PT->size()); | 
|  | return PT->at(getRandom() % PT->size()); | 
|  | } | 
|  |  | 
|  | Constant *getRandomConstant(Type *Tp) { | 
|  | if (Tp->isIntegerTy()) { | 
|  | if (getRandom() & 1) | 
|  | return ConstantInt::getAllOnesValue(Tp); | 
|  | return ConstantInt::getNullValue(Tp); | 
|  | } else if (Tp->isFloatingPointTy()) { | 
|  | if (getRandom() & 1) | 
|  | return ConstantFP::getAllOnesValue(Tp); | 
|  | return ConstantFP::getZero(Tp); | 
|  | } | 
|  | return UndefValue::get(Tp); | 
|  | } | 
|  |  | 
|  | /// Return a random value with a known type. | 
|  | Value *getRandomValue(Type *Tp) { | 
|  | unsigned index = getRandom(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType() == Tp) | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // If the requested type was not found, generate a constant value. | 
|  | if (Tp->isIntegerTy()) { | 
|  | if (getRandom() & 1) | 
|  | return ConstantInt::getAllOnesValue(Tp); | 
|  | return ConstantInt::getNullValue(Tp); | 
|  | } else if (Tp->isFloatingPointTy()) { | 
|  | if (getRandom() & 1) | 
|  | return ConstantFP::getAllOnesValue(Tp); | 
|  | return ConstantFP::getZero(Tp); | 
|  | } else if (auto *VTp = dyn_cast<FixedVectorType>(Tp)) { | 
|  | std::vector<Constant*> TempValues; | 
|  | TempValues.reserve(VTp->getNumElements()); | 
|  | for (unsigned i = 0; i < VTp->getNumElements(); ++i) | 
|  | TempValues.push_back(getRandomConstant(VTp->getScalarType())); | 
|  |  | 
|  | ArrayRef<Constant*> VectorValue(TempValues); | 
|  | return ConstantVector::get(VectorValue); | 
|  | } | 
|  |  | 
|  | return UndefValue::get(Tp); | 
|  | } | 
|  |  | 
|  | /// Return a random value of any pointer type. | 
|  | Value *getRandomPointerValue() { | 
|  | unsigned index = getRandom(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType()->isPointerTy()) | 
|  | return V; | 
|  | } | 
|  | return UndefValue::get(pickPointerType()); | 
|  | } | 
|  |  | 
|  | /// Return a random value of any vector type. | 
|  | Value *getRandomVectorValue() { | 
|  | unsigned index = getRandom(); | 
|  | for (unsigned i=0; i<PT->size(); ++i) { | 
|  | Value *V = PT->at((index + i) % PT->size()); | 
|  | if (V->getType()->isVectorTy()) | 
|  | return V; | 
|  | } | 
|  | return UndefValue::get(pickVectorType()); | 
|  | } | 
|  |  | 
|  | /// Pick a random type. | 
|  | Type *pickType() { | 
|  | return (getRandom() & 1) ? pickVectorType() : pickScalarType(); | 
|  | } | 
|  |  | 
|  | /// Pick a random pointer type. | 
|  | Type *pickPointerType() { | 
|  | Type *Ty = pickType(); | 
|  | return PointerType::get(Ty, 0); | 
|  | } | 
|  |  | 
|  | /// Pick a random vector type. | 
|  | Type *pickVectorType(VectorType *VTy = nullptr) { | 
|  |  | 
|  | // Vectors of x86mmx are illegal; keep trying till we get something else. | 
|  | Type *Ty; | 
|  | do { | 
|  | Ty = pickScalarType(); | 
|  | } while (Ty->isX86_MMXTy()); | 
|  |  | 
|  | if (VTy) | 
|  | return VectorType::get(Ty, VTy->getElementCount()); | 
|  |  | 
|  | // Select either fixed length or scalable vectors with 50% probability | 
|  | // (only if scalable vectors are enabled) | 
|  | bool Scalable = EnableScalableVectors && getRandom() & 1; | 
|  |  | 
|  | // Pick a random vector width in the range 2**0 to 2**4. | 
|  | // by adding two randoms we are generating a normal-like distribution | 
|  | // around 2**3. | 
|  | unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3)); | 
|  | return VectorType::get(Ty, width, Scalable); | 
|  | } | 
|  |  | 
|  | /// Pick a random scalar type. | 
|  | Type *pickScalarType() { | 
|  | return ScalarTypes[getRandom() % ScalarTypes.size()]; | 
|  | } | 
|  |  | 
|  | /// Basic block to populate | 
|  | BasicBlock *BB; | 
|  |  | 
|  | /// Value table | 
|  | PieceTable *PT; | 
|  |  | 
|  | /// Random number generator | 
|  | Random *Ran; | 
|  |  | 
|  | /// Context | 
|  | LLVMContext &Context; | 
|  |  | 
|  | std::vector<Type *> ScalarTypes; | 
|  | }; | 
|  |  | 
|  | struct LoadModifier: public Modifier { | 
|  | LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | // Try to use predefined pointers. If non-exist, use undef pointer value; | 
|  | Value *Ptr = getRandomPointerValue(); | 
|  | Type *Ty = pickType(); | 
|  | Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator()); | 
|  | PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct StoreModifier: public Modifier { | 
|  | StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | // Try to use predefined pointers. If non-exist, use undef pointer value; | 
|  | Value *Ptr = getRandomPointerValue(); | 
|  | Type *ValTy = pickType(); | 
|  |  | 
|  | // Do not store vectors of i1s because they are unsupported | 
|  | // by the codegen. | 
|  | if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1) | 
|  | return; | 
|  |  | 
|  | Value *Val = getRandomValue(ValTy); | 
|  | new StoreInst(Val, Ptr, BB->getTerminator()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct BinModifier: public Modifier { | 
|  | BinModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | // Don't handle pointer types. | 
|  | if (Val0->getType()->isPointerTy() || | 
|  | Val1->getType()->isPointerTy()) | 
|  | return; | 
|  |  | 
|  | // Don't handle i1 types. | 
|  | if (Val0->getType()->getScalarSizeInBits() == 1) | 
|  | return; | 
|  |  | 
|  | bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy(); | 
|  | Instruction* Term = BB->getTerminator(); | 
|  | unsigned R = getRandom() % (isFloat ? 7 : 13); | 
|  | Instruction::BinaryOps Op; | 
|  |  | 
|  | switch (R) { | 
|  | default: llvm_unreachable("Invalid BinOp"); | 
|  | case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; } | 
|  | case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; } | 
|  | case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; } | 
|  | case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; } | 
|  | case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; } | 
|  | case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; } | 
|  | case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; } | 
|  | case 7: {Op = Instruction::Shl;  break; } | 
|  | case 8: {Op = Instruction::LShr; break; } | 
|  | case 9: {Op = Instruction::AShr; break; } | 
|  | case 10:{Op = Instruction::And;  break; } | 
|  | case 11:{Op = Instruction::Or;   break; } | 
|  | case 12:{Op = Instruction::Xor;  break; } | 
|  | } | 
|  |  | 
|  | PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Generate constant values. | 
|  | struct ConstModifier: public Modifier { | 
|  | ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Type *Ty = pickType(); | 
|  |  | 
|  | if (Ty->isVectorTy()) { | 
|  | switch (getRandom() % 2) { | 
|  | case 0: if (Ty->isIntOrIntVectorTy()) | 
|  | return PT->push_back(ConstantVector::getAllOnesValue(Ty)); | 
|  | break; | 
|  | case 1: if (Ty->isIntOrIntVectorTy()) | 
|  | return PT->push_back(ConstantVector::getNullValue(Ty)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ty->isFloatingPointTy()) { | 
|  | // Generate 128 random bits, the size of the (currently) | 
|  | // largest floating-point types. | 
|  | uint64_t RandomBits[2]; | 
|  | for (unsigned i = 0; i < 2; ++i) | 
|  | RandomBits[i] = Ran->Rand64(); | 
|  |  | 
|  | APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits)); | 
|  | APFloat RandomFloat(Ty->getFltSemantics(), RandomInt); | 
|  |  | 
|  | if (getRandom() & 1) | 
|  | return PT->push_back(ConstantFP::getZero(Ty)); | 
|  | return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat)); | 
|  | } | 
|  |  | 
|  | if (Ty->isIntegerTy()) { | 
|  | switch (getRandom() % 7) { | 
|  | case 0: | 
|  | return PT->push_back(ConstantInt::get( | 
|  | Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits()))); | 
|  | case 1: | 
|  | return PT->push_back( | 
|  | ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits()))); | 
|  | case 2: | 
|  | case 3: | 
|  | case 4: | 
|  | case 5: | 
|  | case 6: | 
|  | PT->push_back(ConstantInt::get(Ty, getRandom())); | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct AllocaModifier: public Modifier { | 
|  | AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Type *Tp = pickType(); | 
|  | const DataLayout &DL = BB->getModule()->getDataLayout(); | 
|  | PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(), | 
|  | "A", BB->getFirstNonPHI())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ExtractElementModifier: public Modifier { | 
|  | ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *V = ExtractElementInst::Create( | 
|  | Val0, | 
|  | getRandomValue(Type::getInt32Ty(BB->getContext())), | 
|  | "E", BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct ShuffModifier: public Modifier { | 
|  | ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | // Can't express arbitrary shufflevectors for scalable vectors | 
|  | if (isa<ScalableVectorType>(Val0->getType())) | 
|  | return; | 
|  |  | 
|  | unsigned Width = cast<FixedVectorType>(Val0->getType())->getNumElements(); | 
|  | std::vector<Constant*> Idxs; | 
|  |  | 
|  | Type *I32 = Type::getInt32Ty(BB->getContext()); | 
|  | for (unsigned i=0; i<Width; ++i) { | 
|  | Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2)); | 
|  | // Pick some undef values. | 
|  | if (!(getRandom() % 5)) | 
|  | CI = UndefValue::get(I32); | 
|  | Idxs.push_back(CI); | 
|  | } | 
|  |  | 
|  | Constant *Mask = ConstantVector::get(Idxs); | 
|  |  | 
|  | Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff", | 
|  | BB->getTerminator()); | 
|  | PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct InsertElementModifier: public Modifier { | 
|  | InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVectorValue(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()->getScalarType()); | 
|  |  | 
|  | Value *V = InsertElementInst::Create( | 
|  | Val0, Val1, | 
|  | getRandomValue(Type::getInt32Ty(BB->getContext())), | 
|  | "I", BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CastModifier: public Modifier { | 
|  | CastModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *V = getRandomVal(); | 
|  | Type *VTy = V->getType(); | 
|  | Type *DestTy = pickScalarType(); | 
|  |  | 
|  | // Handle vector casts vectors. | 
|  | if (VTy->isVectorTy()) | 
|  | DestTy = pickVectorType(cast<VectorType>(VTy)); | 
|  |  | 
|  | // no need to cast. | 
|  | if (VTy == DestTy) return; | 
|  |  | 
|  | // Pointers: | 
|  | if (VTy->isPointerTy()) { | 
|  | if (!DestTy->isPointerTy()) | 
|  | DestTy = PointerType::get(DestTy, 0); | 
|  | return PT->push_back( | 
|  | new BitCastInst(V, DestTy, "PC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits(); | 
|  | unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits(); | 
|  |  | 
|  | // Generate lots of bitcasts. | 
|  | if ((getRandom() & 1) && VSize == DestSize) { | 
|  | return PT->push_back( | 
|  | new BitCastInst(V, DestTy, "BC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | // Both types are integers: | 
|  | if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) { | 
|  | if (VSize > DestSize) { | 
|  | return PT->push_back( | 
|  | new TruncInst(V, DestTy, "Tr", BB->getTerminator())); | 
|  | } else { | 
|  | assert(VSize < DestSize && "Different int types with the same size?"); | 
|  | if (getRandom() & 1) | 
|  | return PT->push_back( | 
|  | new ZExtInst(V, DestTy, "ZE", BB->getTerminator())); | 
|  | return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fp to int. | 
|  | if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) { | 
|  | if (getRandom() & 1) | 
|  | return PT->push_back( | 
|  | new FPToSIInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | // Int to fp. | 
|  | if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) { | 
|  | if (getRandom() & 1) | 
|  | return PT->push_back( | 
|  | new SIToFPInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator())); | 
|  | } | 
|  |  | 
|  | // Both floats. | 
|  | if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) { | 
|  | if (VSize > DestSize) { | 
|  | return PT->push_back( | 
|  | new FPTruncInst(V, DestTy, "Tr", BB->getTerminator())); | 
|  | } else if (VSize < DestSize) { | 
|  | return PT->push_back( | 
|  | new FPExtInst(V, DestTy, "ZE", BB->getTerminator())); | 
|  | } | 
|  | // If VSize == DestSize, then the two types must be fp128 and ppc_fp128, | 
|  | // for which there is no defined conversion. So do nothing. | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct SelectModifier: public Modifier { | 
|  | SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | // Try a bunch of different select configuration until a valid one is found. | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | Type *CondTy = Type::getInt1Ty(Context); | 
|  |  | 
|  | // If the value type is a vector, and we allow vector select, then in 50% | 
|  | // of the cases generate a vector select. | 
|  | if (auto *VTy = dyn_cast<VectorType>(Val0->getType())) | 
|  | if (getRandom() & 1) | 
|  | CondTy = VectorType::get(CondTy, VTy->getElementCount()); | 
|  |  | 
|  | Value *Cond = getRandomValue(CondTy); | 
|  | Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CmpModifier: public Modifier { | 
|  | CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R) | 
|  | : Modifier(BB, PT, R) {} | 
|  |  | 
|  | void Act() override { | 
|  | Value *Val0 = getRandomVal(); | 
|  | Value *Val1 = getRandomValue(Val0->getType()); | 
|  |  | 
|  | if (Val0->getType()->isPointerTy()) return; | 
|  | bool fp = Val0->getType()->getScalarType()->isFloatingPointTy(); | 
|  |  | 
|  | int op; | 
|  | if (fp) { | 
|  | op = getRandom() % | 
|  | (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) + | 
|  | CmpInst::FIRST_FCMP_PREDICATE; | 
|  | } else { | 
|  | op = getRandom() % | 
|  | (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) + | 
|  | CmpInst::FIRST_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp, | 
|  | (CmpInst::Predicate)op, Val0, Val1, "Cmp", | 
|  | BB->getTerminator()); | 
|  | return PT->push_back(V); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static void FillFunction(Function *F, Random &R) { | 
|  | // Create a legal entry block. | 
|  | BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F); | 
|  | ReturnInst::Create(F->getContext(), BB); | 
|  |  | 
|  | // Create the value table. | 
|  | Modifier::PieceTable PT; | 
|  |  | 
|  | // Consider arguments as legal values. | 
|  | for (auto &arg : F->args()) | 
|  | PT.push_back(&arg); | 
|  |  | 
|  | // List of modifiers which add new random instructions. | 
|  | std::vector<std::unique_ptr<Modifier>> Modifiers; | 
|  | Modifiers.emplace_back(new LoadModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new StoreModifier(BB, &PT, &R)); | 
|  | auto SM = Modifiers.back().get(); | 
|  | Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new BinModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new CastModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new SelectModifier(BB, &PT, &R)); | 
|  | Modifiers.emplace_back(new CmpModifier(BB, &PT, &R)); | 
|  |  | 
|  | // Generate the random instructions | 
|  | AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas | 
|  | ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants | 
|  |  | 
|  | for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i) | 
|  | for (auto &Mod : Modifiers) | 
|  | Mod->Act(); | 
|  |  | 
|  | SM->ActN(5); // Throw in a few stores. | 
|  | } | 
|  |  | 
|  | static void IntroduceControlFlow(Function *F, Random &R) { | 
|  | std::vector<Instruction*> BoolInst; | 
|  | for (auto &Instr : F->front()) { | 
|  | if (Instr.getType() == IntegerType::getInt1Ty(F->getContext())) | 
|  | BoolInst.push_back(&Instr); | 
|  | } | 
|  |  | 
|  | llvm::shuffle(BoolInst.begin(), BoolInst.end(), R); | 
|  |  | 
|  | for (auto *Instr : BoolInst) { | 
|  | BasicBlock *Curr = Instr->getParent(); | 
|  | BasicBlock::iterator Loc = Instr->getIterator(); | 
|  | BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF"); | 
|  | Instr->moveBefore(Curr->getTerminator()); | 
|  | if (Curr != &F->getEntryBlock()) { | 
|  | BranchInst::Create(Curr, Next, Instr, Curr->getTerminator()); | 
|  | Curr->getTerminator()->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | int main(int argc, char **argv) { | 
|  | using namespace llvm; | 
|  |  | 
|  | InitLLVM X(argc, argv); | 
|  | cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()}); | 
|  | cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n"); | 
|  |  | 
|  | LLVMContext Context; | 
|  | auto M = std::make_unique<Module>("/tmp/autogen.bc", Context); | 
|  | Function *F = GenEmptyFunction(M.get()); | 
|  |  | 
|  | // Pick an initial seed value | 
|  | Random R(SeedCL); | 
|  | // Generate lots of random instructions inside a single basic block. | 
|  | FillFunction(F, R); | 
|  | // Break the basic block into many loops. | 
|  | IntroduceControlFlow(F, R); | 
|  |  | 
|  | // Figure out what stream we are supposed to write to... | 
|  | std::unique_ptr<ToolOutputFile> Out; | 
|  | // Default to standard output. | 
|  | if (OutputFilename.empty()) | 
|  | OutputFilename = "-"; | 
|  |  | 
|  | std::error_code EC; | 
|  | Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None)); | 
|  | if (EC) { | 
|  | errs() << EC.message() << '\n'; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Check that the generated module is accepted by the verifier. | 
|  | if (verifyModule(*M.get(), &Out->os())) | 
|  | report_fatal_error("Broken module found, compilation aborted!"); | 
|  |  | 
|  | // Output textual IR. | 
|  | M->print(Out->os(), nullptr); | 
|  |  | 
|  | Out->keep(); | 
|  |  | 
|  | return 0; | 
|  | } |