|  | //===-- Utility class to test different flavors of ldexp --------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H | 
|  | #define LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H | 
|  |  | 
|  | #include "src/__support/FPUtil/FPBits.h" | 
|  | #include "src/__support/FPUtil/NormalFloat.h" | 
|  | #include "test/UnitTest/FPMatcher.h" | 
|  | #include "test/UnitTest/Test.h" | 
|  |  | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | template <typename T> | 
|  | class LdExpTestTemplate : public LIBC_NAMESPACE::testing::Test { | 
|  | using FPBits = LIBC_NAMESPACE::fputil::FPBits<T>; | 
|  | using NormalFloat = LIBC_NAMESPACE::fputil::NormalFloat<T>; | 
|  | using StorageType = typename FPBits::StorageType; | 
|  | using Sign = LIBC_NAMESPACE::fputil::Sign; | 
|  |  | 
|  | const T inf = FPBits::inf(Sign::POS).get_val(); | 
|  | const T neg_inf = FPBits::inf(Sign::NEG).get_val(); | 
|  | const T zero = FPBits::zero(Sign::POS).get_val(); | 
|  | const T neg_zero = FPBits::zero(Sign::NEG).get_val(); | 
|  | const T nan = FPBits::build_quiet_nan().get_val(); | 
|  |  | 
|  | // A normalized mantissa to be used with tests. | 
|  | static constexpr StorageType MANTISSA = NormalFloat::ONE + 0x1234; | 
|  |  | 
|  | public: | 
|  | typedef T (*LdExpFunc)(T, int); | 
|  |  | 
|  | void testSpecialNumbers(LdExpFunc func) { | 
|  | int exp_array[5] = {-INT_MAX - 1, -10, 0, 10, INT_MAX}; | 
|  | for (int exp : exp_array) { | 
|  | ASSERT_FP_EQ(zero, func(zero, exp)); | 
|  | ASSERT_FP_EQ(neg_zero, func(neg_zero, exp)); | 
|  | ASSERT_FP_EQ(inf, func(inf, exp)); | 
|  | ASSERT_FP_EQ(neg_inf, func(neg_inf, exp)); | 
|  | ASSERT_FP_EQ(nan, func(nan, exp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void testPowersOfTwo(LdExpFunc func) { | 
|  | int32_t exp_array[5] = {1, 2, 3, 4, 5}; | 
|  | int32_t val_array[6] = {1, 2, 4, 8, 16, 32}; | 
|  | for (int32_t exp : exp_array) { | 
|  | for (int32_t val : val_array) { | 
|  | ASSERT_FP_EQ(T(val << exp), func(T(val), exp)); | 
|  | ASSERT_FP_EQ(T(-1 * (val << exp)), func(T(-val), exp)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void testOverflow(LdExpFunc func) { | 
|  | NormalFloat x(Sign::POS, FPBits::MAX_BIASED_EXPONENT - 10, | 
|  | NormalFloat::ONE + 0xF00BA); | 
|  | for (int32_t exp = 10; exp < 100; ++exp) { | 
|  | ASSERT_FP_EQ(inf, func(T(x), exp)); | 
|  | ASSERT_FP_EQ(neg_inf, func(-T(x), exp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void testUnderflowToZeroOnNormal(LdExpFunc func) { | 
|  | // In this test, we pass a normal nubmer to func and expect zero | 
|  | // to be returned due to underflow. | 
|  | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; | 
|  | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, | 
|  | base_exponent + 3, base_exponent + 2, | 
|  | base_exponent + 1}; | 
|  | T x = NormalFloat(Sign::POS, 0, MANTISSA); | 
|  | for (int32_t exp : exp_array) { | 
|  | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); | 
|  | } | 
|  | } | 
|  |  | 
|  | void testUnderflowToZeroOnSubnormal(LdExpFunc func) { | 
|  | // In this test, we pass a normal nubmer to func and expect zero | 
|  | // to be returned due to underflow. | 
|  | int32_t base_exponent = FPBits::EXP_BIAS + FPBits::FRACTION_LEN; | 
|  | int32_t exp_array[] = {base_exponent + 5, base_exponent + 4, | 
|  | base_exponent + 3, base_exponent + 2, | 
|  | base_exponent + 1}; | 
|  | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA); | 
|  | for (int32_t exp : exp_array) { | 
|  | ASSERT_FP_EQ(func(x, -exp), x > 0 ? zero : neg_zero); | 
|  | } | 
|  | } | 
|  |  | 
|  | void testNormalOperation(LdExpFunc func) { | 
|  | T val_array[] = {// Normal numbers | 
|  | NormalFloat(Sign::POS, 100, MANTISSA), | 
|  | NormalFloat(Sign::POS, -100, MANTISSA), | 
|  | NormalFloat(Sign::NEG, 100, MANTISSA), | 
|  | NormalFloat(Sign::NEG, -100, MANTISSA), | 
|  | // Subnormal numbers | 
|  | NormalFloat(Sign::POS, -FPBits::EXP_BIAS, MANTISSA), | 
|  | NormalFloat(Sign::NEG, -FPBits::EXP_BIAS, MANTISSA)}; | 
|  | for (int32_t exp = 0; exp <= FPBits::FRACTION_LEN; ++exp) { | 
|  | for (T x : val_array) { | 
|  | // We compare the result of ldexp with the result | 
|  | // of the native multiplication/division instruction. | 
|  |  | 
|  | // We need to use a NormalFloat here (instead of 1 << exp), because | 
|  | // there are 32 bit systems that don't support 128bit long ints but | 
|  | // support long doubles. This test can do 1 << 64, which would fail | 
|  | // in these systems. | 
|  | NormalFloat two_to_exp = NormalFloat(static_cast<T>(1.L)); | 
|  | two_to_exp = two_to_exp.mul2(exp); | 
|  |  | 
|  | ASSERT_FP_EQ(func(x, exp), x * two_to_exp); | 
|  | ASSERT_FP_EQ(func(x, -exp), x / two_to_exp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Normal which trigger mantissa overflow. | 
|  | T x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, | 
|  | StorageType(2) * NormalFloat::ONE - StorageType(1)); | 
|  | ASSERT_FP_EQ(func(x, -1), x / 2); | 
|  | ASSERT_FP_EQ(func(-x, -1), -x / 2); | 
|  |  | 
|  | // Start with a normal number high exponent but pass a very low number for | 
|  | // exp. The result should be a subnormal number. | 
|  | x = NormalFloat(Sign::POS, FPBits::EXP_BIAS, NormalFloat::ONE); | 
|  | int exp = -FPBits::MAX_BIASED_EXPONENT - 5; | 
|  | T result = func(x, exp); | 
|  | FPBits result_bits(result); | 
|  | ASSERT_FALSE(result_bits.is_zero()); | 
|  | // Verify that the result is indeed subnormal. | 
|  | ASSERT_EQ(result_bits.get_biased_exponent(), uint16_t(0)); | 
|  | // But if the exp is so less that normalization leads to zero, then | 
|  | // the result should be zero. | 
|  | result = func(x, -FPBits::MAX_BIASED_EXPONENT - FPBits::FRACTION_LEN - 5); | 
|  | ASSERT_TRUE(FPBits(result).is_zero()); | 
|  |  | 
|  | // Start with a subnormal number but pass a very high number for exponent. | 
|  | // The result should not be infinity. | 
|  | x = NormalFloat(Sign::POS, -FPBits::EXP_BIAS + 1, NormalFloat::ONE >> 10); | 
|  | exp = FPBits::MAX_BIASED_EXPONENT + 5; | 
|  | ASSERT_FALSE(FPBits(func(x, exp)).is_inf()); | 
|  | // But if the exp is large enough to oversome than the normalization shift, | 
|  | // then it should result in infinity. | 
|  | exp = FPBits::MAX_BIASED_EXPONENT + 15; | 
|  | ASSERT_FP_EQ(func(x, exp), inf); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #define LIST_LDEXP_TESTS(T, func)                                              \ | 
|  | using LlvmLibcLdExpTest = LdExpTestTemplate<T>;                              \ | 
|  | TEST_F(LlvmLibcLdExpTest, SpecialNumbers) { testSpecialNumbers(&func); }     \ | 
|  | TEST_F(LlvmLibcLdExpTest, PowersOfTwo) { testPowersOfTwo(&func); }           \ | 
|  | TEST_F(LlvmLibcLdExpTest, OverFlow) { testOverflow(&func); }                 \ | 
|  | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnNormal) {                         \ | 
|  | testUnderflowToZeroOnNormal(&func);                                        \ | 
|  | }                                                                            \ | 
|  | TEST_F(LlvmLibcLdExpTest, UnderflowToZeroOnSubnormal) {                      \ | 
|  | testUnderflowToZeroOnSubnormal(&func);                                     \ | 
|  | }                                                                            \ | 
|  | TEST_F(LlvmLibcLdExpTest, NormalOperation) { testNormalOperation(&func); } | 
|  |  | 
|  | #endif // LLVM_LIBC_TEST_SRC_MATH_LDEXPTEST_H |