|  | //===-- Implementation of mktime function ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "src/time/time_utils.h" | 
|  | #include "src/__support/common.h" | 
|  |  | 
|  | #include <limits.h> | 
|  |  | 
|  | namespace LIBC_NAMESPACE { | 
|  | namespace time_utils { | 
|  |  | 
|  | using LIBC_NAMESPACE::time_utils::TimeConstants; | 
|  |  | 
|  | static int64_t computeRemainingYears(int64_t daysPerYears, | 
|  | int64_t quotientYears, | 
|  | int64_t *remainingDays) { | 
|  | int64_t years = *remainingDays / daysPerYears; | 
|  | if (years == quotientYears) | 
|  | years--; | 
|  | *remainingDays -= years * daysPerYears; | 
|  | return years; | 
|  | } | 
|  |  | 
|  | // First, divide "total_seconds" by the number of seconds in a day to get the | 
|  | // number of days since Jan 1 1970. The remainder will be used to calculate the | 
|  | // number of Hours, Minutes and Seconds. | 
|  | // | 
|  | // Then, adjust that number of days by a constant to be the number of days | 
|  | // since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This | 
|  | // makes it easier to count how many leap years have passed using division. | 
|  | // | 
|  | // While calculating numbers of years in the days, the following algorithm | 
|  | // subdivides the days into the number of 400 years, the number of 100 years and | 
|  | // the number of 4 years. These numbers of cycle years are used in calculating | 
|  | // leap day. This is similar to the algorithm used in  getNumOfLeapYearsBefore() | 
|  | // and isLeapYear(). Then compute the total number of years in days from these | 
|  | // subdivided units. | 
|  | // | 
|  | // Compute the number of months from the remaining days. Finally, adjust years | 
|  | // to be 1900 and months to be from January. | 
|  | int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) { | 
|  | // Days in month starting from March in the year 2000. | 
|  | static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31, | 
|  | 30,           31, 30, 31, 31, 29}; | 
|  |  | 
|  | constexpr time_t time_min = | 
|  | (sizeof(time_t) == 4) | 
|  | ? INT_MIN | 
|  | : INT_MIN * static_cast<int64_t>( | 
|  | TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); | 
|  | constexpr time_t time_max = | 
|  | (sizeof(time_t) == 4) | 
|  | ? INT_MAX | 
|  | : INT_MAX * static_cast<int64_t>( | 
|  | TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); | 
|  |  | 
|  | time_t ts = static_cast<time_t>(total_seconds); | 
|  | if (ts < time_min || ts > time_max) | 
|  | return time_utils::out_of_range(); | 
|  |  | 
|  | int64_t seconds = | 
|  | total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST; | 
|  | int64_t days = seconds / TimeConstants::SECONDS_PER_DAY; | 
|  | int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY; | 
|  | if (remainingSeconds < 0) { | 
|  | remainingSeconds += TimeConstants::SECONDS_PER_DAY; | 
|  | days--; | 
|  | } | 
|  |  | 
|  | int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) % | 
|  | TimeConstants::DAYS_PER_WEEK; | 
|  | if (wday < 0) | 
|  | wday += TimeConstants::DAYS_PER_WEEK; | 
|  |  | 
|  | // Compute the number of 400 year cycles. | 
|  | int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS; | 
|  | int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS; | 
|  | if (remainingDays < 0) { | 
|  | remainingDays += TimeConstants::DAYS_PER400_YEARS; | 
|  | numOfFourHundredYearCycles--; | 
|  | } | 
|  |  | 
|  | // The remaining number of years after computing the number of | 
|  | // "four hundred year cycles" will be 4 hundred year cycles or less in 400 | 
|  | // years. | 
|  | int64_t numOfHundredYearCycles = computeRemainingYears( | 
|  | TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays); | 
|  |  | 
|  | // The remaining number of years after computing the number of | 
|  | // "hundred year cycles" will be 25 four year cycles or less in 100 years. | 
|  | int64_t numOfFourYearCycles = | 
|  | computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays); | 
|  |  | 
|  | // The remaining number of years after computing the number of | 
|  | // "four year cycles" will be 4 one year cycles or less in 4 years. | 
|  | int64_t remainingYears = computeRemainingYears( | 
|  | TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays); | 
|  |  | 
|  | // Calculate number of years from year 2000. | 
|  | int64_t years = remainingYears + 4 * numOfFourYearCycles + | 
|  | 100 * numOfHundredYearCycles + | 
|  | 400LL * numOfFourHundredYearCycles; | 
|  |  | 
|  | int leapDay = | 
|  | !remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles); | 
|  |  | 
|  | // We add 31 and 28 for the number of days in January and February, since our | 
|  | // starting point was March 1st. | 
|  | int64_t yday = remainingDays + 31 + 28 + leapDay; | 
|  | if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay) | 
|  | yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay; | 
|  |  | 
|  | int64_t months = 0; | 
|  | while (daysInMonth[months] <= remainingDays) { | 
|  | remainingDays -= daysInMonth[months]; | 
|  | months++; | 
|  | } | 
|  |  | 
|  | if (months >= TimeConstants::MONTHS_PER_YEAR - 2) { | 
|  | months -= TimeConstants::MONTHS_PER_YEAR; | 
|  | years++; | 
|  | } | 
|  |  | 
|  | if (years > INT_MAX || years < INT_MIN) | 
|  | return time_utils::out_of_range(); | 
|  |  | 
|  | // All the data (years, month and remaining days) was calculated from | 
|  | // March, 2000. Thus adjust the data to be from January, 1900. | 
|  | tm->tm_year = static_cast<int>(years + 2000 - TimeConstants::TIME_YEAR_BASE); | 
|  | tm->tm_mon = static_cast<int>(months + 2); | 
|  | tm->tm_mday = static_cast<int>(remainingDays + 1); | 
|  | tm->tm_wday = static_cast<int>(wday); | 
|  | tm->tm_yday = static_cast<int>(yday); | 
|  |  | 
|  | tm->tm_hour = | 
|  | static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_HOUR); | 
|  | tm->tm_min = | 
|  | static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_MIN % | 
|  | TimeConstants::SECONDS_PER_MIN); | 
|  | tm->tm_sec = | 
|  | static_cast<int>(remainingSeconds % TimeConstants::SECONDS_PER_MIN); | 
|  | // TODO(rtenneti): Need to handle timezone and update of tm_isdst. | 
|  | tm->tm_isdst = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | } // namespace time_utils | 
|  | } // namespace LIBC_NAMESPACE |