|  | //===-- Double-precision e^x - 1 function ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "src/math/expm1.h" | 
|  | #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. | 
|  | #include "explogxf.h"         // ziv_test_denorm. | 
|  | #include "src/__support/CPP/bit.h" | 
|  | #include "src/__support/CPP/optional.h" | 
|  | #include "src/__support/FPUtil/FEnvImpl.h" | 
|  | #include "src/__support/FPUtil/FPBits.h" | 
|  | #include "src/__support/FPUtil/PolyEval.h" | 
|  | #include "src/__support/FPUtil/double_double.h" | 
|  | #include "src/__support/FPUtil/dyadic_float.h" | 
|  | #include "src/__support/FPUtil/except_value_utils.h" | 
|  | #include "src/__support/FPUtil/multiply_add.h" | 
|  | #include "src/__support/FPUtil/nearest_integer.h" | 
|  | #include "src/__support/FPUtil/rounding_mode.h" | 
|  | #include "src/__support/FPUtil/triple_double.h" | 
|  | #include "src/__support/common.h" | 
|  | #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY | 
|  |  | 
|  | #include <errno.h> | 
|  |  | 
|  | // #define DEBUGDEBUG | 
|  |  | 
|  | #ifdef DEBUGDEBUG | 
|  | #include <iomanip> | 
|  | #include <iostream> | 
|  | #endif | 
|  |  | 
|  | namespace LIBC_NAMESPACE { | 
|  |  | 
|  | using fputil::DoubleDouble; | 
|  | using fputil::TripleDouble; | 
|  | using Float128 = typename fputil::DyadicFloat<128>; | 
|  | using Sign = fputil::Sign; | 
|  |  | 
|  | // log2(e) | 
|  | constexpr double LOG2_E = 0x1.71547652b82fep+0; | 
|  |  | 
|  | // Error bounds: | 
|  | // Errors when using double precision. | 
|  | // 0x1.8p-63; | 
|  | constexpr uint64_t ERR_D = 0x3c08000000000000; | 
|  | // Errors when using double-double precision. | 
|  | // 0x1.0p-99 | 
|  | constexpr uint64_t ERR_DD = 0x39c0000000000000; | 
|  |  | 
|  | // -2^-12 * log(2) | 
|  | // > a = -2^-12 * log(2); | 
|  | // > b = round(a, 30, RN); | 
|  | // > c = round(a - b, 30, RN); | 
|  | // > d = round(a - b - c, D, RN); | 
|  | // Errors < 1.5 * 2^-133 | 
|  | constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; | 
|  | constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; | 
|  | constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; | 
|  | constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Polynomial approximations with double precision: | 
|  | // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. | 
|  | // For |dx| < 2^-13 + 2^-30: | 
|  | //   | output - expm1(dx) / dx | < 2^-51. | 
|  | LIBC_INLINE double poly_approx_d(double dx) { | 
|  | // dx^2 | 
|  | double dx2 = dx * dx; | 
|  | // c0 = 1 + dx / 2 | 
|  | double c0 = fputil::multiply_add(dx, 0.5, 1.0); | 
|  | // c1 = 1/6 + dx / 24 | 
|  | double c1 = | 
|  | fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); | 
|  | // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 | 
|  | double p = fputil::multiply_add(dx2, c1, c0); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | // Polynomial approximation with double-double precision: | 
|  | // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 | 
|  | // For |dx| < 2^-13 + 2^-30: | 
|  | //   | output - expm1(dx) | < 2^-101 | 
|  | DoubleDouble poly_approx_dd(const DoubleDouble &dx) { | 
|  | // Taylor polynomial. | 
|  | constexpr DoubleDouble COEFFS[] = { | 
|  | {0, 0x1p0},                                      // 1 | 
|  | {0, 0x1p-1},                                     // 1/2 | 
|  | {0x1.5555555555555p-57, 0x1.5555555555555p-3},   // 1/6 | 
|  | {0x1.5555555555555p-59, 0x1.5555555555555p-5},   // 1/24 | 
|  | {0x1.1111111111111p-63, 0x1.1111111111111p-7},   // 1/120 | 
|  | {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 | 
|  | {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13},  // 1/5040 | 
|  | }; | 
|  |  | 
|  | DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], | 
|  | COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | // Polynomial approximation with 128-bit precision: | 
|  | // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 | 
|  | // For |dx| < 2^-13 + 2^-30: | 
|  | //   | output - exp(dx) | < 2^-126. | 
|  | Float128 poly_approx_f128(const Float128 &dx) { | 
|  | using MType = typename Float128::MantissaType; | 
|  |  | 
|  | constexpr Float128 COEFFS_128[]{ | 
|  | {Sign::POS, -127, MType({0, 0x8000000000000000})},                  // 1.0 | 
|  | {Sign::POS, -128, MType({0, 0x8000000000000000})},                  // 0.5 | 
|  | {Sign::POS, -130, MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/6 | 
|  | {Sign::POS, -132, | 
|  | MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/24 | 
|  | {Sign::POS, -134, | 
|  | MType({0x8888888888888889, 0x8888888888888888})}, // 1/120 | 
|  | {Sign::POS, -137, | 
|  | MType({0x60b60b60b60b60b6, 0xb60b60b60b60b60b})}, // 1/720 | 
|  | {Sign::POS, -140, | 
|  | MType({0x00d00d00d00d00d0, 0xd00d00d00d00d00d})}, // 1/5040 | 
|  | }; | 
|  |  | 
|  | Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], | 
|  | COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], | 
|  | COEFFS_128[6]); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUGDEBUG | 
|  | std::ostream &operator<<(std::ostream &OS, const Float128 &r) { | 
|  | OS << (r.sign ? "-(" : "(") << r.mantissa.val[0] << " + " << r.mantissa.val[1] | 
|  | << " * 2^64) * 2^" << r.exponent << "\n"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) { | 
|  | OS << std::hexfloat << r.hi << " + " << r.lo << std::defaultfloat << "\n"; | 
|  | return OS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Compute exp(x) - 1 using 128-bit precision. | 
|  | // TODO(lntue): investigate triple-double precision implementation for this | 
|  | // step. | 
|  | Float128 expm1_f128(double x, double kd, int idx1, int idx2) { | 
|  | using MType = typename Float128::MantissaType; | 
|  | // Recalculate dx: | 
|  |  | 
|  | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact | 
|  | double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact | 
|  | double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-133 | 
|  |  | 
|  | Float128 dx = fputil::quick_add( | 
|  | Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); | 
|  |  | 
|  | // TODO: Skip recalculating exp_mid1 and exp_mid2. | 
|  | Float128 exp_mid1 = | 
|  | fputil::quick_add(Float128(EXP2_MID1[idx1].hi), | 
|  | fputil::quick_add(Float128(EXP2_MID1[idx1].mid), | 
|  | Float128(EXP2_MID1[idx1].lo))); | 
|  |  | 
|  | Float128 exp_mid2 = | 
|  | fputil::quick_add(Float128(EXP2_MID2[idx2].hi), | 
|  | fputil::quick_add(Float128(EXP2_MID2[idx2].mid), | 
|  | Float128(EXP2_MID2[idx2].lo))); | 
|  |  | 
|  | Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); | 
|  |  | 
|  | int hi = static_cast<int>(kd) >> 12; | 
|  | Float128 minus_one{Sign::NEG, -127 - hi, MType({0, 0x8000000000000000})}; | 
|  |  | 
|  | Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one); | 
|  |  | 
|  | Float128 p = poly_approx_f128(dx); | 
|  |  | 
|  | // r = exp_mid * (1 + dx * P) - 1 | 
|  | //   = (exp_mid - 1) + (dx * exp_mid) * P | 
|  | Float128 r = | 
|  | fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1); | 
|  |  | 
|  | r.exponent += hi; | 
|  |  | 
|  | #ifdef DEBUGDEBUG | 
|  | std::cout << "=== VERY SLOW PASS ===\n" | 
|  | << "        kd: " << kd << "\n" | 
|  | << "        dx: " << dx << "exp_mid_m1: " << exp_mid_m1 | 
|  | << "   exp_mid: " << exp_mid << "         p: " << p | 
|  | << "         r: " << r << std::endl; | 
|  | #endif | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // Compute exp(x) - 1 with double-double precision. | 
|  | DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid, | 
|  | const DoubleDouble &hi_part) { | 
|  | // Recalculate dx: | 
|  | //   dx = x - k * 2^-12 * log(2) | 
|  | double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact | 
|  | double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact | 
|  | double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-130 | 
|  |  | 
|  | DoubleDouble dx = fputil::exact_add(t1, t2); | 
|  | dx.lo += t3; | 
|  |  | 
|  | // Degree-6 Taylor polynomial approximation in double-double precision. | 
|  | // | p - exp(x) | < 2^-100. | 
|  | DoubleDouble p = poly_approx_dd(dx); | 
|  |  | 
|  | // Error bounds: 2^-99. | 
|  | DoubleDouble r = | 
|  | fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part); | 
|  |  | 
|  | #ifdef DEBUGDEBUG | 
|  | std::cout << "=== SLOW PASS ===\n" | 
|  | << "   dx: " << dx << "    p: " << p << "    r: " << r << std::endl; | 
|  | #endif | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // Check for exceptional cases when | 
|  | // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 | 
|  | double set_exceptional(double x) { | 
|  | using FPBits = typename fputil::FPBits<double>; | 
|  | FPBits xbits(x); | 
|  |  | 
|  | uint64_t x_u = xbits.uintval(); | 
|  | uint64_t x_abs = xbits.abs().uintval(); | 
|  |  | 
|  | // |x| <= 2^-53. | 
|  | if (x_abs <= 0x3ca0'0000'0000'0000ULL) { | 
|  | // expm1(x) ~ x. | 
|  |  | 
|  | if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) { | 
|  | if (LIBC_UNLIKELY(x_abs == 0)) | 
|  | return x; | 
|  | // |x| <= 2^-968, need to scale up a bit before rounding, then scale it | 
|  | // back down. | 
|  | return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022); | 
|  | } | 
|  |  | 
|  | // 2^-968 < |x| <= 2^-53. | 
|  | return fputil::round_result_slightly_up(x); | 
|  | } | 
|  |  | 
|  | // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. | 
|  |  | 
|  | // x < log(2^-54) or -inf/nan | 
|  | if (x_u >= 0xc042'b708'8723'20e2ULL) { | 
|  | // expm1(-Inf) = -1 | 
|  | if (xbits.is_inf()) | 
|  | return -1.0; | 
|  |  | 
|  | // exp(nan) = nan | 
|  | if (xbits.is_nan()) | 
|  | return x; | 
|  |  | 
|  | return fputil::round_result_slightly_up(-1.0); | 
|  | } | 
|  |  | 
|  | // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan | 
|  | // x is finite | 
|  | if (x_u < 0x7ff0'0000'0000'0000ULL) { | 
|  | int rounding = fputil::quick_get_round(); | 
|  | if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) | 
|  | return FPBits::max_normal().get_val(); | 
|  |  | 
|  | fputil::set_errno_if_required(ERANGE); | 
|  | fputil::raise_except_if_required(FE_OVERFLOW); | 
|  | } | 
|  | // x is +inf or nan | 
|  | return x + FPBits::inf().get_val(); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | LLVM_LIBC_FUNCTION(double, expm1, (double x)) { | 
|  | using FPBits = typename fputil::FPBits<double>; | 
|  | using Sign = fputil::Sign; | 
|  | FPBits xbits(x); | 
|  |  | 
|  | bool x_is_neg = xbits.is_neg(); | 
|  | uint64_t x_u = xbits.uintval(); | 
|  |  | 
|  | // Upper bound: max normal number = 2^1023 * (2 - 2^-52) | 
|  | // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 | 
|  | // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 | 
|  | // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 | 
|  | // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty | 
|  |  | 
|  | // Lower bound: log(2^-54) = -0x1.2b708872320e2p5 | 
|  | // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5 | 
|  |  | 
|  | // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53. | 
|  |  | 
|  | if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 || | 
|  | (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || | 
|  | x_u <= 0x3ca0000000000000)) { | 
|  | return set_exceptional(x); | 
|  | } | 
|  |  | 
|  | // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) | 
|  |  | 
|  | // Range reduction: | 
|  | // Let x = log(2) * (hi + mid1 + mid2) + lo | 
|  | // in which: | 
|  | //   hi is an integer | 
|  | //   mid1 * 2^6 is an integer | 
|  | //   mid2 * 2^12 is an integer | 
|  | // then: | 
|  | //   exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). | 
|  | // With this formula: | 
|  | //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent | 
|  | //     field. | 
|  | //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. | 
|  | //   - exp(lo) ~ 1 + lo + a0 * lo^2 + ... | 
|  | // | 
|  | // They can be defined by: | 
|  | //   hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) | 
|  | // If we store L2E = round(log2(e), D, RN), then: | 
|  | //   log2(e) - L2E ~ 1.5 * 2^(-56) | 
|  | // So the errors when computing in double precision is: | 
|  | //   | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= | 
|  | //  <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + | 
|  | //     + | x * 2^12 * L2E - D(x * 2^12 * L2E) | | 
|  | //  <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x))  for RN | 
|  | //     2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. | 
|  | // So if: | 
|  | //   hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely | 
|  | // in double precision, the reduced argument: | 
|  | //   lo = x - log(2) * (hi + mid1 + mid2) is bounded by: | 
|  | //   |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) | 
|  | //         < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) | 
|  | //         < 2^-13 + 2^-41 | 
|  | // | 
|  |  | 
|  | // The following trick computes the round(x * L2E) more efficiently | 
|  | // than using the rounding instructions, with the tradeoff for less accuracy, | 
|  | // and hence a slightly larger range for the reduced argument `lo`. | 
|  | // | 
|  | // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, | 
|  | //   |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, | 
|  | // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. | 
|  | // Thus, the goal is to be able to use an additional addition and fixed width | 
|  | // shift to get an int32_t representing round(x * 2^12 * L2E). | 
|  | // | 
|  | // Assuming int32_t using 2-complement representation, since the mantissa part | 
|  | // of a double precision is unsigned with the leading bit hidden, if we add an | 
|  | // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the | 
|  | // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be | 
|  | // considered as a proper 2-complement representations of x*2^12*L2E. | 
|  | // | 
|  | // One small problem with this approach is that the sum (x*2^12*L2E + C) in | 
|  | // double precision is rounded to the least significant bit of the dorminant | 
|  | // factor C.  In order to minimize the rounding errors from this addition, we | 
|  | // want to minimize e1.  Another constraint that we want is that after | 
|  | // shifting the mantissa so that the least significant bit of int32_t | 
|  | // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without | 
|  | // any adjustment.  So combining these 2 requirements, we can choose | 
|  | //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence | 
|  | // after right shifting the mantissa, the resulting int32_t has correct sign. | 
|  | // With this choice of C, the number of mantissa bits we need to shift to the | 
|  | // right is: 52 - 33 = 19. | 
|  | // | 
|  | // Moreover, since the integer right shifts are equivalent to rounding down, | 
|  | // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- | 
|  | // +infinity.  So in particular, we can compute: | 
|  | //   hmm = x * 2^12 * L2E + C, | 
|  | // where C = 2^33 + 2^32 + 2^-1, then if | 
|  | //   k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), | 
|  | // the reduced argument: | 
|  | //   lo = x - log(2) * 2^-12 * k is bounded by: | 
|  | //   |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 | 
|  | //         = 2^-13 + 2^-31 + 2^-41. | 
|  | // | 
|  | // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the | 
|  | // exponent 2^12 is not needed.  So we can simply define | 
|  | //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and | 
|  | //   k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). | 
|  |  | 
|  | // Rounding errors <= 2^-31 + 2^-41. | 
|  | double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); | 
|  | int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); | 
|  | double kd = static_cast<double>(k); | 
|  |  | 
|  | uint32_t idx1 = (k >> 6) & 0x3f; | 
|  | uint32_t idx2 = k & 0x3f; | 
|  | int hi = k >> 12; | 
|  |  | 
|  | DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; | 
|  | DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; | 
|  |  | 
|  | DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); | 
|  |  | 
|  | // -2^(-hi) | 
|  | double one_scaled = | 
|  | FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val(); | 
|  |  | 
|  | // 2^(mid1 + mid2) - 2^(-hi) | 
|  | DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi) | 
|  | : fputil::exact_add(exp_mid.hi, one_scaled); | 
|  |  | 
|  | hi_part.lo += exp_mid.lo; | 
|  |  | 
|  | // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) | 
|  | //                                        = 2^11 * 2^-13 * 2^-52 | 
|  | //                                        = 2^-54. | 
|  | // |dx| < 2^-13 + 2^-30. | 
|  | double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact | 
|  | double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); | 
|  |  | 
|  | // We use the degree-4 Taylor polynomial to approximate exp(lo): | 
|  | //   exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) | 
|  | // So that the errors are bounded by: | 
|  | //   |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 | 
|  | // Let P_ be an evaluation of P where all intermediate computations are in | 
|  | // double precision.  Using either Horner's or Estrin's schemes, the evaluated | 
|  | // errors can be bounded by: | 
|  | //      |P_(dx) - P(dx)| < 2^-51 | 
|  | //   => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 | 
|  | //   => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. | 
|  | // Since we approximate | 
|  | //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, | 
|  | // We use the expression: | 
|  | //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ | 
|  | //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) | 
|  | // with errors bounded by 1.5 * 2^-63. | 
|  |  | 
|  | // Finally, we have the following approximation formula: | 
|  | //   expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1 | 
|  | //            = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) ) | 
|  | //            ~ 2^hi * ( (exp_mid.hi - 2^-hi) + | 
|  | //                       + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)) | 
|  |  | 
|  | double mid_lo = dx * exp_mid.hi; | 
|  |  | 
|  | // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. | 
|  | double p = poly_approx_d(dx); | 
|  |  | 
|  | double lo = fputil::multiply_add(p, mid_lo, hi_part.lo); | 
|  |  | 
|  | // TODO: The following line leaks encoding abstraction. Use FPBits methods | 
|  | // instead. | 
|  | uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0; | 
|  |  | 
|  | double err_d = cpp::bit_cast<double>(ERR_D + err); | 
|  |  | 
|  | double upper = hi_part.hi + (lo + err_d); | 
|  | double lower = hi_part.hi + (lo - err_d); | 
|  |  | 
|  | #ifdef DEBUGDEBUG | 
|  | std::cout << "=== FAST PASS ===\n" | 
|  | << "      x: " << std::hexfloat << x << std::defaultfloat << "\n" | 
|  | << "      k: " << k << "\n" | 
|  | << "   idx1: " << idx1 << "\n" | 
|  | << "   idx2: " << idx2 << "\n" | 
|  | << "     hi: " << hi << "\n" | 
|  | << "     dx: " << std::hexfloat << dx << std::defaultfloat << "\n" | 
|  | << "exp_mid: " << exp_mid << "hi_part: " << hi_part | 
|  | << " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat | 
|  | << "\n" | 
|  | << "      p: " << std::hexfloat << p << std::defaultfloat << "\n" | 
|  | << "     lo: " << std::hexfloat << lo << std::defaultfloat << "\n" | 
|  | << "  upper: " << std::hexfloat << upper << std::defaultfloat | 
|  | << "\n" | 
|  | << "  lower: " << std::hexfloat << lower << std::defaultfloat | 
|  | << "\n" | 
|  | << std::endl; | 
|  | #endif | 
|  |  | 
|  | if (LIBC_LIKELY(upper == lower)) { | 
|  | // to multiply by 2^hi, a fast way is to simply add hi to the exponent | 
|  | // field. | 
|  | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; | 
|  | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // Use double-double | 
|  | DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part); | 
|  |  | 
|  | double err_dd = cpp::bit_cast<double>(ERR_DD + err); | 
|  |  | 
|  | double upper_dd = r_dd.hi + (r_dd.lo + err_dd); | 
|  | double lower_dd = r_dd.hi + (r_dd.lo - err_dd); | 
|  |  | 
|  | if (LIBC_LIKELY(upper_dd == lower_dd)) { | 
|  | int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; | 
|  | double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | // Use 128-bit precision | 
|  | Float128 r_f128 = expm1_f128(x, kd, idx1, idx2); | 
|  |  | 
|  | return static_cast<double>(r_f128); | 
|  | } | 
|  |  | 
|  | } // namespace LIBC_NAMESPACE |