| // RUN: %clang_builtins %s %librt -o %t && %run %t |
| // REQUIRES: librt_has_divtf3 |
| |
| #include "int_lib.h" |
| #include <stdio.h> |
| |
| // The testcase currently assumes IEEE TF format, once that has been |
| // fixed the defined(CRT_HAS_IEEE_TF) guard can be removed to enable it for |
| // IBM 128 floats as well. |
| #if defined(CRT_HAS_IEEE_TF) |
| |
| # include "fp_test.h" |
| |
| // Returns: a / b |
| COMPILER_RT_ABI tf_float __divtf3(tf_float a, tf_float b); |
| |
| int test__divtf3(tf_float a, tf_float b, uint64_t expectedHi, |
| uint64_t expectedLo) { |
| tf_float x = __divtf3(a, b); |
| int ret = compareResultF128(x, expectedHi, expectedLo); |
| |
| if (ret) { |
| printf("error in test__divtf3(%.20Le, %.20Le) = %.20Le, " |
| "expected %.20Le\n", |
| a, b, x, fromRep128(expectedHi, expectedLo)); |
| } |
| return ret; |
| } |
| |
| char assumption_1[sizeof(tf_float) * CHAR_BIT == 128] = {0}; |
| |
| #endif |
| |
| int main() { |
| #if defined(CRT_HAS_IEEE_TF) |
| // Returned NaNs are assumed to be qNaN by default |
| |
| // qNaN / any = qNaN |
| if (test__divtf3(makeQNaN128(), TF_C(0x1.23456789abcdefp+5), |
| UINT64_C(0x7fff800000000000), UINT64_C(0x0))) |
| return 1; |
| // NaN / any = NaN |
| if (test__divtf3(makeNaN128(UINT64_C(0x30000000)), |
| TF_C(0x1.23456789abcdefp+5), UINT64_C(0x7fff800000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // any / qNaN = qNaN |
| if (test__divtf3(TF_C(0x1.23456789abcdefp+5), makeQNaN128(), |
| UINT64_C(0x7fff800000000000), UINT64_C(0x0))) |
| return 1; |
| // any / NaN = NaN |
| if (test__divtf3(TF_C(0x1.23456789abcdefp+5), |
| makeNaN128(UINT64_C(0x30000000)), |
| UINT64_C(0x7fff800000000000), UINT64_C(0x0))) |
| return 1; |
| |
| // +Inf / positive = +Inf |
| if (test__divtf3(makeInf128(), TF_C(3.), UINT64_C(0x7fff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // +Inf / negative = -Inf |
| if (test__divtf3(makeInf128(), -TF_C(3.), UINT64_C(0xffff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // -Inf / positive = -Inf |
| if (test__divtf3(makeNegativeInf128(), TF_C(3.), UINT64_C(0xffff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // -Inf / negative = +Inf |
| if (test__divtf3(makeNegativeInf128(), -TF_C(3.), |
| UINT64_C(0x7fff000000000000), UINT64_C(0x0))) |
| return 1; |
| |
| // Inf / Inf = NaN |
| if (test__divtf3(makeInf128(), makeInf128(), UINT64_C(0x7fff800000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // 0.0 / 0.0 = NaN |
| if (test__divtf3(+TF_C(0x0.0p+0), +TF_C(0x0.0p+0), |
| UINT64_C(0x7fff800000000000), UINT64_C(0x0))) |
| return 1; |
| // +0.0 / +Inf = +0.0 |
| if (test__divtf3(+TF_C(0x0.0p+0), makeInf128(), UINT64_C(0x0), UINT64_C(0x0))) |
| return 1; |
| // +Inf / +0.0 = +Inf |
| if (test__divtf3(makeInf128(), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| |
| // positive / +0.0 = +Inf |
| if (test__divtf3(+TF_C(1.0), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // positive / -0.0 = -Inf |
| if (test__divtf3(+1.0L, -TF_C(0x0.0p+0), UINT64_C(0xffff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // negative / +0.0 = -Inf |
| if (test__divtf3(-1.0L, +TF_C(0x0.0p+0), UINT64_C(0xffff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // negative / -0.0 = +Inf |
| if (test__divtf3(TF_C(-1.0), -TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| |
| // 1/3 |
| if (test__divtf3(TF_C(1.), TF_C(3.), UINT64_C(0x3ffd555555555555), |
| UINT64_C(0x5555555555555555))) |
| return 1; |
| // smallest normal result |
| if (test__divtf3(TF_C(0x1.0p-16381), TF_C(2.), UINT64_C(0x0001000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| |
| // divisor is exactly 1.0 |
| if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0p+0), UINT64_C(0x3fff000000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // divisor is truncated to exactly 1.0 in UQ1.63 |
| if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0000000000000001p+0), |
| UINT64_C(0x3ffeffffffffffff), UINT64_C(0xfffe000000000000))) |
| return 1; |
| |
| // smallest normal value divided by 2.0 |
| if (test__divtf3(TF_C(0x1.0p-16382), 2.L, UINT64_C(0x0000800000000000), |
| UINT64_C(0x0))) |
| return 1; |
| // smallest subnormal result |
| if (test__divtf3(TF_C(0x1.0p-16382), TF_C(0x1p+112), UINT64_C(0x0), |
| UINT64_C(0x1))) |
| return 1; |
| |
| // any / any |
| if (test__divtf3(TF_C(0x1.a23b45362464523375893ab4cdefp+5), |
| TF_C(0x1.eedcbaba3a94546558237654321fp-1), |
| UINT64_C(0x4004b0b72924d407), UINT64_C(0x0717e84356c6eba2))) |
| return 1; |
| if (test__divtf3(TF_C(0x1.a2b34c56d745382f9abf2c3dfeffp-50), |
| TF_C(0x1.ed2c3ba15935332532287654321fp-9), |
| UINT64_C(0x3fd5b2af3f828c9b), UINT64_C(0x40e51f64cde8b1f2))) |
| return 15; |
| if (test__divtf3(TF_C(0x1.2345f6aaaa786555f42432abcdefp+456), |
| TF_C(0x1.edacbba9874f765463544dd3621fp+6400), |
| UINT64_C(0x28c62e15dc464466), UINT64_C(0xb5a07586348557ac))) |
| return 1; |
| if (test__divtf3(TF_C(0x1.2d3456f789ba6322bc665544edefp-234), |
| TF_C(0x1.eddcdba39f3c8b7a36564354321fp-4455), |
| UINT64_C(0x507b38442b539266), UINT64_C(0x22ce0f1d024e1252))) |
| return 1; |
| if (test__divtf3(TF_C(0x1.2345f6b77b7a8953365433abcdefp+234), |
| TF_C(0x1.edcba987d6bb3aa467754354321fp-4055), |
| UINT64_C(0x50bf2e02f0798d36), UINT64_C(0x5e6fcb6b60044078))) |
| return 1; |
| if (test__divtf3(TF_C(6.72420628622418701252535563464350521E-4932), TF_C(2.), |
| UINT64_C(0x0001000000000000), UINT64_C(0))) |
| return 1; |
| |
| #else |
| printf("skipped\n"); |
| |
| #endif |
| return 0; |
| } |