|  | // RUN: %clang_cc1 -std=c++98 -fsyntax-only -verify -fcxx-exceptions %s | 
|  |  | 
|  | // | 
|  | // Tests for "expression traits" intrinsics such as __is_lvalue_expr. | 
|  | // | 
|  | // For the time being, these tests are written against the 2003 C++ | 
|  | // standard (ISO/IEC 14882:2003 -- see draft at | 
|  | // http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2001/n1316/). | 
|  | // | 
|  | // C++0x has its own, more-refined, idea of lvalues and rvalues. | 
|  | // If/when we need to support those, we'll need to track both | 
|  | // standard documents. | 
|  |  | 
|  | #if !__has_feature(cxx_static_assert) | 
|  | # define CONCAT_(X_, Y_) CONCAT1_(X_, Y_) | 
|  | # define CONCAT1_(X_, Y_) X_ ## Y_ | 
|  |  | 
|  | // This emulation can be used multiple times on one line (and thus in | 
|  | // a macro), except at class scope | 
|  | # define static_assert(b_, m_) \ | 
|  | typedef int CONCAT_(sa_, __LINE__)[b_ ? 1 : -1] | 
|  | #endif | 
|  |  | 
|  | // Tests are broken down according to section of the C++03 standard | 
|  | // (ISO/IEC 14882:2003(E)) | 
|  |  | 
|  | // Assertion macros encoding the following two paragraphs | 
|  | // | 
|  | // basic.lval/1 Every expression is either an lvalue or an rvalue. | 
|  | // | 
|  | // expr.prim/5 A parenthesized expression is a primary expression whose type | 
|  | // and value are identical to those of the enclosed expression. The | 
|  | // presence of parentheses does not affect whether the expression is | 
|  | // an lvalue. | 
|  | // | 
|  | // Note: these asserts cannot be made at class scope in C++03.  Put | 
|  | // them in a member function instead. | 
|  | #define ASSERT_LVALUE(expr)                                             \ | 
|  | static_assert(__is_lvalue_expr(expr), "should be an lvalue");       \ | 
|  | static_assert(__is_lvalue_expr((expr)),                             \ | 
|  | "the presence of parentheses should have"             \ | 
|  | " no effect on lvalueness (expr.prim/5)");            \ | 
|  | static_assert(!__is_rvalue_expr(expr), "should be an lvalue");      \ | 
|  | static_assert(!__is_rvalue_expr((expr)),                            \ | 
|  | "the presence of parentheses should have"             \ | 
|  | " no effect on lvalueness (expr.prim/5)") | 
|  |  | 
|  | #define ASSERT_RVALUE(expr);                                            \ | 
|  | static_assert(__is_rvalue_expr(expr), "should be an rvalue");       \ | 
|  | static_assert(__is_rvalue_expr((expr)),                             \ | 
|  | "the presence of parentheses should have"             \ | 
|  | " no effect on lvalueness (expr.prim/5)");            \ | 
|  | static_assert(!__is_lvalue_expr(expr), "should be an rvalue");      \ | 
|  | static_assert(!__is_lvalue_expr((expr)),                            \ | 
|  | "the presence of parentheses should have"             \ | 
|  | " no effect on lvalueness (expr.prim/5)") | 
|  |  | 
|  | enum Enum { Enumerator }; | 
|  |  | 
|  | int ReturnInt(); | 
|  | void ReturnVoid(); | 
|  | Enum ReturnEnum(); | 
|  |  | 
|  | void basic_lval_5() | 
|  | { | 
|  | // basic.lval/5: The result of calling a function that does not return | 
|  | // a reference is an rvalue. | 
|  | ASSERT_RVALUE(ReturnInt()); | 
|  | ASSERT_RVALUE(ReturnVoid()); | 
|  | ASSERT_RVALUE(ReturnEnum()); | 
|  | } | 
|  |  | 
|  | int& ReturnIntReference(); | 
|  | extern Enum& ReturnEnumReference(); | 
|  |  | 
|  | void basic_lval_6() | 
|  | { | 
|  | // basic.lval/6: An expression which holds a temporary object resulting | 
|  | // from a cast to a nonreference type is an rvalue (this includes | 
|  | // the explicit creation of an object using functional notation | 
|  | struct IntClass | 
|  | { | 
|  | explicit IntClass(int = 0); | 
|  | IntClass(char const*); | 
|  | operator int() const; | 
|  | }; | 
|  |  | 
|  | struct ConvertibleToIntClass | 
|  | { | 
|  | operator IntClass() const; | 
|  | }; | 
|  |  | 
|  | ConvertibleToIntClass b; | 
|  |  | 
|  | // Make sure even trivial conversions are not detected as lvalues | 
|  | int intLvalue = 0; | 
|  | ASSERT_RVALUE((int)intLvalue); | 
|  | ASSERT_RVALUE((short)intLvalue); | 
|  | ASSERT_RVALUE((long)intLvalue); | 
|  |  | 
|  | // Same tests with function-call notation | 
|  | ASSERT_RVALUE(int(intLvalue)); | 
|  | ASSERT_RVALUE(short(intLvalue)); | 
|  | ASSERT_RVALUE(long(intLvalue)); | 
|  |  | 
|  | char charLValue = 'x'; | 
|  | ASSERT_RVALUE((signed char)charLValue); | 
|  | ASSERT_RVALUE((unsigned char)charLValue); | 
|  |  | 
|  | ASSERT_RVALUE(static_cast<int>(IntClass())); | 
|  | IntClass intClassLValue; | 
|  | ASSERT_RVALUE(static_cast<int>(intClassLValue)); | 
|  | ASSERT_RVALUE(static_cast<IntClass>(ConvertibleToIntClass())); | 
|  | ConvertibleToIntClass convertibleToIntClassLValue; | 
|  | ASSERT_RVALUE(static_cast<IntClass>(convertibleToIntClassLValue)); | 
|  |  | 
|  |  | 
|  | typedef signed char signed_char; | 
|  | typedef unsigned char unsigned_char; | 
|  | ASSERT_RVALUE(signed_char(charLValue)); | 
|  | ASSERT_RVALUE(unsigned_char(charLValue)); | 
|  |  | 
|  | ASSERT_RVALUE(int(IntClass())); | 
|  | ASSERT_RVALUE(int(intClassLValue)); | 
|  | ASSERT_RVALUE(IntClass(ConvertibleToIntClass())); | 
|  | ASSERT_RVALUE(IntClass(convertibleToIntClassLValue)); | 
|  | } | 
|  |  | 
|  | void conv_ptr_1() | 
|  | { | 
|  | // conv.ptr/1: A null pointer constant is an integral constant | 
|  | // expression (5.19) rvalue of integer type that evaluates to | 
|  | // zero. | 
|  | ASSERT_RVALUE(0); | 
|  | } | 
|  |  | 
|  | void expr_6() | 
|  | { | 
|  | // expr/6: If an expression initially has the type "reference to T" | 
|  | // (8.3.2, 8.5.3), ... the expression is an lvalue. | 
|  | int x = 0; | 
|  | int& referenceToInt = x; | 
|  | ASSERT_LVALUE(referenceToInt); | 
|  | ASSERT_LVALUE(ReturnIntReference()); | 
|  | } | 
|  |  | 
|  | void expr_prim_2() | 
|  | { | 
|  | // 5.1/2 A string literal is an lvalue; all other | 
|  | // literals are rvalues. | 
|  | ASSERT_LVALUE("foo"); | 
|  | ASSERT_RVALUE(1); | 
|  | ASSERT_RVALUE(1.2); | 
|  | ASSERT_RVALUE(10UL); | 
|  | } | 
|  |  | 
|  | void expr_prim_3() | 
|  | { | 
|  | // 5.1/3: The keyword "this" names a pointer to the object for | 
|  | // which a nonstatic member function (9.3.2) is invoked. ...The | 
|  | // expression is an rvalue. | 
|  | struct ThisTest | 
|  | { | 
|  | void f() { ASSERT_RVALUE(this); } | 
|  | }; | 
|  | } | 
|  |  | 
|  | extern int variable; | 
|  | void Function(); | 
|  |  | 
|  | struct BaseClass | 
|  | { | 
|  | virtual ~BaseClass(); | 
|  |  | 
|  | int BaseNonstaticMemberFunction(); | 
|  | static int BaseStaticMemberFunction(); | 
|  | int baseDataMember; | 
|  | }; | 
|  |  | 
|  | struct Class : BaseClass | 
|  | { | 
|  | static void function(); | 
|  | static int variable; | 
|  |  | 
|  | template <class T> | 
|  | struct NestedClassTemplate {}; | 
|  |  | 
|  | template <class T> | 
|  | static int& NestedFuncTemplate() { return variable; }  // expected-note{{possible target for call}} | 
|  |  | 
|  | template <class T> | 
|  | int& NestedMemfunTemplate() { return variable; } // expected-note{{possible target for call}} | 
|  |  | 
|  | int operator*() const; | 
|  |  | 
|  | template <class T> | 
|  | int operator+(T) const; // expected-note{{possible target for call}} | 
|  |  | 
|  | int NonstaticMemberFunction(); | 
|  | static int StaticMemberFunction(); | 
|  | int dataMember; | 
|  |  | 
|  | int& referenceDataMember; | 
|  | static int& staticReferenceDataMember; | 
|  | static int staticNonreferenceDataMember; | 
|  |  | 
|  | enum Enum { Enumerator }; | 
|  |  | 
|  | operator long() const; | 
|  |  | 
|  | Class(); | 
|  | Class(int,int); | 
|  |  | 
|  | void expr_prim_4() | 
|  | { | 
|  | // 5.1/4: The operator :: followed by an identifier, a | 
|  | // qualified-id, or an operator-function-id is a primary- | 
|  | // expression. ...The result is an lvalue if the entity is | 
|  | // a function or variable. | 
|  | ASSERT_LVALUE(::Function);         // identifier: function | 
|  | ASSERT_LVALUE(::variable);         // identifier: variable | 
|  |  | 
|  | // the only qualified-id form that can start without "::" (and thus | 
|  | // be legal after "::" ) is | 
|  | // | 
|  | // ::<sub>opt</sub> nested-name-specifier template<sub>opt</sub> unqualified-id | 
|  | ASSERT_LVALUE(::Class::function);  // qualified-id: function | 
|  | ASSERT_LVALUE(::Class::variable);  // qualified-id: variable | 
|  |  | 
|  | // The standard doesn't give a clear answer about whether these | 
|  | // should really be lvalues or rvalues without some surrounding | 
|  | // context that forces them to be interpreted as naming a | 
|  | // particular function template specialization (that situation | 
|  | // doesn't come up in legal pure C++ programs). This language | 
|  | // extension simply rejects them as requiring additional context | 
|  | __is_lvalue_expr(::Class::NestedFuncTemplate);    // qualified-id: template \ | 
|  | // expected-error{{reference to overloaded function could not be resolved; did you mean to call it?}} | 
|  |  | 
|  | __is_lvalue_expr(::Class::NestedMemfunTemplate);  // qualified-id: template \ | 
|  | // expected-error{{reference to non-static member function must be called}} | 
|  |  | 
|  | __is_lvalue_expr(::Class::operator+);             // operator-function-id: template \ | 
|  | // expected-error{{reference to non-static member function must be called}} | 
|  |  | 
|  | //ASSERT_RVALUE(::Class::operator*);         // operator-function-id: member function | 
|  | } | 
|  |  | 
|  | void expr_prim_7() | 
|  | { | 
|  | // expr.prim/7 An identifier is an id-expression provided it has been | 
|  | // suitably declared (clause 7). [Note: ... ] The type of the | 
|  | // expression is the type of the identifier. The result is the | 
|  | // entity denoted by the identifier. The result is an lvalue if | 
|  | // the entity is a function, variable, or data member... (cont'd) | 
|  | ASSERT_LVALUE(Function);        // identifier: function | 
|  | ASSERT_LVALUE(StaticMemberFunction);        // identifier: function | 
|  | ASSERT_LVALUE(variable);        // identifier: variable | 
|  | ASSERT_LVALUE(dataMember);      // identifier: data member | 
|  | //ASSERT_RVALUE(NonstaticMemberFunction); // identifier: member function | 
|  |  | 
|  | // (cont'd)...A nested-name-specifier that names a class, | 
|  | // optionally followed by the keyword template (14.2), and then | 
|  | // followed by the name of a member of either that class (9.2) or | 
|  | // one of its base classes... is a qualified-id... The result is | 
|  | // the member. The type of the result is the type of the | 
|  | // member. The result is an lvalue if the member is a static | 
|  | // member function or a data member. | 
|  | ASSERT_LVALUE(Class::dataMember); | 
|  | ASSERT_LVALUE(Class::StaticMemberFunction); | 
|  | //ASSERT_RVALUE(Class::NonstaticMemberFunction); // identifier: member function | 
|  |  | 
|  | ASSERT_LVALUE(Class::baseDataMember); | 
|  | ASSERT_LVALUE(Class::BaseStaticMemberFunction); | 
|  | //ASSERT_RVALUE(Class::BaseNonstaticMemberFunction); // identifier: member function | 
|  | } | 
|  | }; | 
|  |  | 
|  | void expr_call_10() | 
|  | { | 
|  | // expr.call/10: A function call is an lvalue if and only if the | 
|  | // result type is a reference.  This statement is partially | 
|  | // redundant with basic.lval/5 | 
|  | basic_lval_5(); | 
|  |  | 
|  | ASSERT_LVALUE(ReturnIntReference()); | 
|  | ASSERT_LVALUE(ReturnEnumReference()); | 
|  | } | 
|  |  | 
|  | namespace Namespace | 
|  | { | 
|  | int x; | 
|  | void function(); | 
|  | } | 
|  |  | 
|  | void expr_prim_8() | 
|  | { | 
|  | // expr.prim/8 A nested-name-specifier that names a namespace | 
|  | // (7.3), followed by the name of a member of that namespace (or | 
|  | // the name of a member of a namespace made visible by a | 
|  | // using-directive ) is a qualified-id; 3.4.3.2 describes name | 
|  | // lookup for namespace members that appear in qualified-ids. The | 
|  | // result is the member. The type of the result is the type of the | 
|  | // member. The result is an lvalue if the member is a function or | 
|  | // a variable. | 
|  | ASSERT_LVALUE(Namespace::x); | 
|  | ASSERT_LVALUE(Namespace::function); | 
|  | } | 
|  |  | 
|  | void expr_sub_1(int* pointer) | 
|  | { | 
|  | // expr.sub/1 A postfix expression followed by an expression in | 
|  | // square brackets is a postfix expression. One of the expressions | 
|  | // shall have the type "pointer to T" and the other shall have | 
|  | // enumeration or integral type. The result is an lvalue of type | 
|  | // "T." | 
|  | ASSERT_LVALUE(pointer[1]); | 
|  |  | 
|  | // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). | 
|  | ASSERT_LVALUE(*(pointer+1)); | 
|  | } | 
|  |  | 
|  | void expr_type_conv_1() | 
|  | { | 
|  | // expr.type.conv/1 A simple-type-specifier (7.1.5) followed by a | 
|  | // parenthesized expression-list constructs a value of the specified | 
|  | // type given the expression list. ... If the expression list | 
|  | // specifies more than a single value, the type shall be a class with | 
|  | // a suitably declared constructor (8.5, 12.1), and the expression | 
|  | // T(x1, x2, ...) is equivalent in effect to the declaration T t(x1, | 
|  | // x2, ...); for some invented temporary variable t, with the result | 
|  | // being the value of t as an rvalue. | 
|  | ASSERT_RVALUE(Class(2,2)); | 
|  | } | 
|  |  | 
|  | void expr_type_conv_2() | 
|  | { | 
|  | // expr.type.conv/2 The expression T(), where T is a | 
|  | // simple-type-specifier (7.1.5.2) for a non-array complete object | 
|  | // type or the (possibly cv-qualified) void type, creates an | 
|  | // rvalue of the specified type, | 
|  | ASSERT_RVALUE(int()); | 
|  | ASSERT_RVALUE(Class()); | 
|  | ASSERT_RVALUE(void()); | 
|  | } | 
|  |  | 
|  |  | 
|  | void expr_ref_4() | 
|  | { | 
|  | // Applies to expressions of the form E1.E2 | 
|  |  | 
|  | // If E2 is declared to have type "reference to T", then E1.E2 is | 
|  | // an lvalue;.... Otherwise, one of the following rules applies. | 
|  | ASSERT_LVALUE(Class().staticReferenceDataMember); | 
|  | ASSERT_LVALUE(Class().referenceDataMember); | 
|  |  | 
|  | // - If E2 is a static data member, and the type of E2 is T, then | 
|  | // E1.E2 is an lvalue; ... | 
|  | ASSERT_LVALUE(Class().staticNonreferenceDataMember); | 
|  | ASSERT_LVALUE(Class().staticReferenceDataMember); | 
|  |  | 
|  |  | 
|  | // - If E2 is a non-static data member, ... If E1 is an lvalue, | 
|  | // then E1.E2 is an lvalue... | 
|  | Class lvalue; | 
|  | ASSERT_LVALUE(lvalue.dataMember); | 
|  | ASSERT_RVALUE(Class().dataMember); | 
|  |  | 
|  | // - If E1.E2 refers to a static member function, ... then E1.E2 | 
|  | // is an lvalue | 
|  | ASSERT_LVALUE(Class().StaticMemberFunction); | 
|  |  | 
|  | // - Otherwise, if E1.E2 refers to a non-static member function, | 
|  | // then E1.E2 is not an lvalue. | 
|  | //ASSERT_RVALUE(Class().NonstaticMemberFunction); | 
|  |  | 
|  | // - If E2 is a member enumerator, and the type of E2 is T, the | 
|  | // expression E1.E2 is not an lvalue. The type of E1.E2 is T. | 
|  | ASSERT_RVALUE(Class().Enumerator); | 
|  | ASSERT_RVALUE(lvalue.Enumerator); | 
|  | } | 
|  |  | 
|  |  | 
|  | void expr_post_incr_1(int x) | 
|  | { | 
|  | // expr.post.incr/1 The value obtained by applying a postfix ++ is | 
|  | // the value that the operand had before applying the | 
|  | // operator... The result is an rvalue. | 
|  | ASSERT_RVALUE(x++); | 
|  | } | 
|  |  | 
|  | void expr_dynamic_cast_2() | 
|  | { | 
|  | // expr.dynamic.cast/2: If T is a pointer type, v shall be an | 
|  | // rvalue of a pointer to complete class type, and the result is | 
|  | // an rvalue of type T. | 
|  | Class instance; | 
|  | ASSERT_RVALUE(dynamic_cast<Class*>(&instance)); | 
|  |  | 
|  | // If T is a reference type, v shall be an | 
|  | // lvalue of a complete class type, and the result is an lvalue of | 
|  | // the type referred to by T. | 
|  | ASSERT_LVALUE(dynamic_cast<Class&>(instance)); | 
|  | } | 
|  |  | 
|  | void expr_dynamic_cast_5() | 
|  | { | 
|  | // expr.dynamic.cast/5: If T is "reference to cv1 B" and v has type | 
|  | // "cv2 D" such that B is a base class of D, the result is an | 
|  | // lvalue for the unique B sub-object of the D object referred | 
|  | // to by v. | 
|  | typedef BaseClass B; | 
|  | typedef Class D; | 
|  | D object; | 
|  | ASSERT_LVALUE(dynamic_cast<B&>(object)); | 
|  | } | 
|  |  | 
|  | // expr.dynamic.cast/8: The run-time check logically executes as follows: | 
|  | // | 
|  | // - If, in the most derived object pointed (referred) to by v, v | 
|  | // points (refers) to a public base class subobject of a T object, and | 
|  | // if only one object of type T is derived from the sub-object pointed | 
|  | // (referred) to by v, the result is a pointer (an lvalue referring) | 
|  | // to that T object. | 
|  | // | 
|  | // - Otherwise, if v points (refers) to a public base class sub-object | 
|  | // of the most derived object, and the type of the most derived object | 
|  | // has a base class, of type T, that is unambiguous and public, the | 
|  | // result is a pointer (an lvalue referring) to the T sub-object of | 
|  | // the most derived object. | 
|  | // | 
|  | // The mention of "lvalue" in the text above appears to be a | 
|  | // defect that is being corrected by the response to UK65 (see | 
|  | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2841.html). | 
|  |  | 
|  | #if 0 | 
|  | void expr_typeid_1() | 
|  | { | 
|  | // expr.typeid/1: The result of a typeid expression is an lvalue... | 
|  | ASSERT_LVALUE(typeid(1)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void expr_static_cast_1(int x) | 
|  | { | 
|  | // expr.static.cast/1: The result of the expression | 
|  | // static_cast<T>(v) is the result of converting the expression v | 
|  | // to type T. If T is a reference type, the result is an lvalue; | 
|  | // otherwise, the result is an rvalue. | 
|  | ASSERT_LVALUE(static_cast<int&>(x)); | 
|  | ASSERT_RVALUE(static_cast<int>(x)); | 
|  | } | 
|  |  | 
|  | void expr_reinterpret_cast_1() | 
|  | { | 
|  | // expr.reinterpret.cast/1: The result of the expression | 
|  | // reinterpret_cast<T>(v) is the result of converting the | 
|  | // expression v to type T. If T is a reference type, the result is | 
|  | // an lvalue; otherwise, the result is an rvalue | 
|  | ASSERT_RVALUE(reinterpret_cast<int*>(0)); | 
|  | char const v = 0; | 
|  | ASSERT_LVALUE(reinterpret_cast<char const&>(v)); | 
|  | } | 
|  |  | 
|  | void expr_unary_op_1(int* pointer, struct incomplete* pointerToIncompleteType) | 
|  | { | 
|  | // expr.unary.op/1: The unary * operator performs indirection: the | 
|  | // expression to which it is applied shall be a pointer to an | 
|  | // object type, or a pointer to a function type and the result is | 
|  | // an lvalue referring to the object or function to which the | 
|  | // expression points. | 
|  | ASSERT_LVALUE(*pointer); | 
|  | ASSERT_LVALUE(*Function); | 
|  |  | 
|  | // [Note: a pointer to an incomplete type | 
|  | // (other than cv void ) can be dereferenced. ] | 
|  | ASSERT_LVALUE(*pointerToIncompleteType); | 
|  | } | 
|  |  | 
|  | void expr_pre_incr_1(int operand) | 
|  | { | 
|  | // expr.pre.incr/1: The operand of prefix ++ ... shall be a | 
|  | // modifiable lvalue.... The value is the new value of the | 
|  | // operand; it is an lvalue. | 
|  | ASSERT_LVALUE(++operand); | 
|  | } | 
|  |  | 
|  | void expr_cast_1(int x) | 
|  | { | 
|  | // expr.cast/1: The result of the expression (T) cast-expression | 
|  | // is of type T. The result is an lvalue if T is a reference type, | 
|  | // otherwise the result is an rvalue. | 
|  | ASSERT_LVALUE((void(&)())expr_cast_1); | 
|  | ASSERT_LVALUE((int&)x); | 
|  | ASSERT_RVALUE((void(*)())expr_cast_1); | 
|  | ASSERT_RVALUE((int)x); | 
|  | } | 
|  |  | 
|  | void expr_mptr_oper() | 
|  | { | 
|  | // expr.mptr.oper/6: The result of a .* expression is an lvalue | 
|  | // only if its first operand is an lvalue and its second operand | 
|  | // is a pointer to data member... (cont'd) | 
|  | typedef Class MakeRValue; | 
|  | ASSERT_RVALUE(MakeRValue().*(&Class::dataMember)); | 
|  | //ASSERT_RVALUE(MakeRValue().*(&Class::NonstaticMemberFunction)); | 
|  | Class lvalue; | 
|  | ASSERT_LVALUE(lvalue.*(&Class::dataMember)); | 
|  | //ASSERT_RVALUE(lvalue.*(&Class::NonstaticMemberFunction)); | 
|  |  | 
|  | // (cont'd)...The result of an ->* expression is an lvalue only | 
|  | // if its second operand is a pointer to data member. If the | 
|  | // second operand is the null pointer to member value (4.11), the | 
|  | // behavior is undefined. | 
|  | ASSERT_LVALUE((&lvalue)->*(&Class::dataMember)); | 
|  | //ASSERT_RVALUE((&lvalue)->*(&Class::NonstaticMemberFunction)); | 
|  | } | 
|  |  | 
|  | void expr_cond(bool cond) | 
|  | { | 
|  | // 5.16 Conditional operator [expr.cond] | 
|  | // | 
|  | // 2 If either the second or the third operand has type (possibly | 
|  | // cv-qualified) void, one of the following shall hold: | 
|  | // | 
|  | // - The second or the third operand (but not both) is a | 
|  | // (possibly parenthesized) throw-expression (15.1); the result | 
|  | // is of the type and value category of the other. | 
|  |  | 
|  | Class classLvalue; | 
|  | ASSERT_RVALUE(cond ? throw 1 : (void)0); | 
|  | ASSERT_RVALUE(cond ? (void)0 : throw 1); | 
|  | ASSERT_RVALUE(cond ? throw 1 : 0); | 
|  | ASSERT_RVALUE(cond ? 0 : throw 1); | 
|  | ASSERT_LVALUE(cond ? throw 1 : classLvalue); | 
|  | ASSERT_LVALUE(cond ? classLvalue : throw 1); | 
|  |  | 
|  | // - Both the second and the third operands have type void; the result | 
|  | // is of type void and is an rvalue. [Note: this includes the case | 
|  | // where both operands are throw-expressions. ] | 
|  | ASSERT_RVALUE(cond ? (void)1 : (void)0); | 
|  | ASSERT_RVALUE(cond ? throw 1 : throw 0); | 
|  |  | 
|  | // expr.cond/4: If the second and third operands are lvalues and | 
|  | // have the same type, the result is of that type and is an | 
|  | // lvalue. | 
|  | ASSERT_LVALUE(cond ? classLvalue : classLvalue); | 
|  | int intLvalue = 0; | 
|  | ASSERT_LVALUE(cond ? intLvalue : intLvalue); | 
|  |  | 
|  | // expr.cond/5:Otherwise, the result is an rvalue. | 
|  | typedef Class MakeRValue; | 
|  | ASSERT_RVALUE(cond ? MakeRValue() : classLvalue); | 
|  | ASSERT_RVALUE(cond ? classLvalue : MakeRValue()); | 
|  | ASSERT_RVALUE(cond ? MakeRValue() : MakeRValue()); | 
|  | ASSERT_RVALUE(cond ? classLvalue : intLvalue); | 
|  | ASSERT_RVALUE(cond ? intLvalue : int()); | 
|  | } | 
|  |  | 
|  | void expr_ass_1(int x) | 
|  | { | 
|  | // expr.ass/1: There are several assignment operators, all of | 
|  | // which group right-to-left. All require a modifiable lvalue as | 
|  | // their left operand, and the type of an assignment expression is | 
|  | // that of its left operand. The result of the assignment | 
|  | // operation is the value stored in the left operand after the | 
|  | // assignment has taken place; the result is an lvalue. | 
|  | ASSERT_LVALUE(x = 1); | 
|  | ASSERT_LVALUE(x += 1); | 
|  | ASSERT_LVALUE(x -= 1); | 
|  | ASSERT_LVALUE(x *= 1); | 
|  | ASSERT_LVALUE(x /= 1); | 
|  | ASSERT_LVALUE(x %= 1); | 
|  | ASSERT_LVALUE(x ^= 1); | 
|  | ASSERT_LVALUE(x &= 1); | 
|  | ASSERT_LVALUE(x |= 1); | 
|  | } | 
|  |  | 
|  | void expr_comma(int x) | 
|  | { | 
|  | // expr.comma: A pair of expressions separated by a comma is | 
|  | // evaluated left-to-right and the value of the left expression is | 
|  | // discarded... result is an lvalue if its right operand is. | 
|  |  | 
|  | // Can't use the ASSERT_XXXX macros without adding parens around | 
|  | // the comma expression. | 
|  | static_assert(__is_lvalue_expr((void)x,x), "expected an lvalue"); | 
|  | static_assert(__is_rvalue_expr((void)x,1), "expected an rvalue"); | 
|  | static_assert(__is_lvalue_expr((void)1,x), "expected an lvalue"); | 
|  | static_assert(__is_rvalue_expr((void)1,1), "expected an rvalue"); | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | template<typename T> void f(); | 
|  |  | 
|  | // FIXME These currently fail | 
|  | void expr_fun_lvalue() | 
|  | { | 
|  | ASSERT_LVALUE(&f<int>); | 
|  | } | 
|  |  | 
|  | void expr_fun_rvalue() | 
|  | { | 
|  | ASSERT_RVALUE(f<int>); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | template <int NonTypeNonReferenceParameter, int& NonTypeReferenceParameter> | 
|  | void check_temp_param_6() | 
|  | { | 
|  | ASSERT_RVALUE(NonTypeNonReferenceParameter); | 
|  | ASSERT_LVALUE(NonTypeReferenceParameter); | 
|  | } | 
|  |  | 
|  | int AnInt = 0; | 
|  |  | 
|  | void temp_param_6() | 
|  | { | 
|  | check_temp_param_6<3,AnInt>(); | 
|  | } |