| //===-- VEInstrInfo.td - Target Description for VE Target -----------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file describes the VE instructions in TableGen format. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instruction format superclass | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | include "VEInstrFormats.td" | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Helper functions to retrieve target constants. | 
 | // | 
 | // VE instructions have a space to hold following immediates | 
 | //   $sy has 7 bits to represent simm7, uimm7, simm7fp, or uimm7fp. | 
 | //   $sz also has 7 bits to represent mimm or mimmfp. | 
 | //   $disp has 32 bits to represent simm32. | 
 | // | 
 | // The mimm is a special immediate value of sequential bit stream of 0 or 1. | 
 | //     `(m)0`: Represents 0 sequence then 1 sequence like 0b00...0011...11, | 
 | //             where `m` is equal to the number of leading zeros. | 
 | //     `(m)1`: Represents 1 sequence then 0 sequence like 0b11...1100...00, | 
 | //             where `m` is equal to the number of leading ones. | 
 | // Each bit of mimm's 7 bits is used like below: | 
 | //     bit 6  : If `(m)0`, this bit is 1.  Otherwise, this bit is 0. | 
 | //     bit 5-0: Represents the m (0-63). | 
 | // Use `!add(m, 64)` to generates an immediate value in pattern matchings. | 
 | // | 
 | // The floating point immediate value is not something like compacted value. | 
 | // It is simple integer representation, so it works rarely. | 
 | //     e.g. 0.0 (0x00000000) or -2.0 (0xC0000000=(2)1). | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | def ULO7 : SDNodeXForm<imm, [{ | 
 |   return CurDAG->getTargetConstant(N->getZExtValue() & 0x7f, | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def LO7 : SDNodeXForm<imm, [{ | 
 |   return CurDAG->getTargetConstant(SignExtend32(N->getSExtValue(), 7), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def MIMM : SDNodeXForm<imm, [{ | 
 |   return CurDAG->getTargetConstant(val2MImm(getImmVal(N)), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def LO32 : SDNodeXForm<imm, [{ | 
 |   return CurDAG->getTargetConstant(Lo_32(N->getZExtValue()), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def HI32 : SDNodeXForm<imm, [{ | 
 |   // Transformation function: shift the immediate value down into the low bits. | 
 |   return CurDAG->getTargetConstant(Hi_32(N->getZExtValue()), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def LO7FP : SDNodeXForm<fpimm, [{ | 
 |   uint64_t Val = getFpImmVal(N); | 
 |   return CurDAG->getTargetConstant(SignExtend32(Val, 7), SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def MIMMFP : SDNodeXForm<fpimm, [{ | 
 |   return CurDAG->getTargetConstant(val2MImm(getFpImmVal(N)), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def LOFP32 : SDNodeXForm<fpimm, [{ | 
 |   return CurDAG->getTargetConstant(Lo_32(getFpImmVal(N) & 0xffffffff), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 | def HIFP32 : SDNodeXForm<fpimm, [{ | 
 |   return CurDAG->getTargetConstant(Hi_32(getFpImmVal(N)), SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def icond2cc : SDNodeXForm<cond, [{ | 
 |   VECC::CondCode VECC = intCondCode2Icc(N->get()); | 
 |   return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def icond2ccSwap : SDNodeXForm<cond, [{ | 
 |   ISD::CondCode CC = getSetCCSwappedOperands(N->get()); | 
 |   VECC::CondCode VECC = intCondCode2Icc(CC); | 
 |   return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def fcond2cc : SDNodeXForm<cond, [{ | 
 |   VECC::CondCode VECC = fpCondCode2Fcc(N->get()); | 
 |   return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def fcond2ccSwap : SDNodeXForm<cond, [{ | 
 |   ISD::CondCode CC = getSetCCSwappedOperands(N->get()); | 
 |   VECC::CondCode VECC = fpCondCode2Fcc(CC); | 
 |   return CurDAG->getTargetConstant(VECC, SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | def CCOP : SDNodeXForm<imm, [{ | 
 |   return CurDAG->getTargetConstant(N->getZExtValue(), | 
 |                                    SDLoc(N), MVT::i32); | 
 | }]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Feature predicates. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instruction Pattern Stuff | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // zero | 
 | def ZeroAsmOperand : AsmOperandClass { | 
 |   let Name = "Zero"; | 
 | } | 
 | def zero : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return N->getSExtValue() == 0; }]> { | 
 |   let ParserMatchClass = ZeroAsmOperand; | 
 | } | 
 |  | 
 | // uimm0to2 - Special immediate value represents 0, 1, and 2. | 
 | def UImm0to2AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm0to2"; | 
 | } | 
 | def uimm0to2 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return N->getZExtValue() < 3; }], ULO7> { | 
 |   let ParserMatchClass = UImm0to2AsmOperand; | 
 | } | 
 |  | 
 | // uimm1 - Generic immediate value. | 
 | def UImm1AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm1"; | 
 | } | 
 | def uimm1 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<1>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm1AsmOperand; | 
 | } | 
 |  | 
 | // uimm2 - Generic immediate value. | 
 | def UImm2AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm2"; | 
 | } | 
 | def uimm2 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<2>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm2AsmOperand; | 
 | } | 
 |  | 
 | // uimm3 - Generic immediate value. | 
 | def UImm3AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm3"; | 
 | } | 
 | def uimm3 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<3>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm3AsmOperand; | 
 | } | 
 |  | 
 | // uimm4 - Generic immediate value. | 
 | def UImm4AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm4"; | 
 | } | 
 | def uimm4 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<4>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm4AsmOperand; | 
 | } | 
 |  | 
 | // uimm6 - Generic immediate value. | 
 | def UImm6AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm6"; | 
 | } | 
 | def uimm6 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<6>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm6AsmOperand; | 
 | } | 
 |  | 
 | // uimm7 - Generic immediate value. | 
 | def UImm7AsmOperand : AsmOperandClass { | 
 |   let Name = "UImm7"; | 
 | } | 
 | def uimm7 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isUInt<7>(N->getZExtValue()); }], ULO7> { | 
 |   let ParserMatchClass = UImm7AsmOperand; | 
 | } | 
 |  | 
 | // simm7 - Generic immediate value. | 
 | def SImm7AsmOperand : AsmOperandClass { | 
 |   let Name = "SImm7"; | 
 | } | 
 | def simm7 : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isInt<7>(N->getSExtValue()); }], LO7> { | 
 |   let ParserMatchClass = SImm7AsmOperand; | 
 |   let DecoderMethod = "DecodeSIMM7"; | 
 | } | 
 |  | 
 | // mimm - Special immediate value of sequential bit stream of 0 or 1. | 
 | def MImmAsmOperand : AsmOperandClass { | 
 |   let Name = "MImm"; | 
 |   let ParserMethod = "parseMImmOperand"; | 
 | } | 
 | def mimm : Operand<i32>, PatLeaf<(imm), [{ | 
 |     return isMImmVal(getImmVal(N)); }], MIMM> { | 
 |   let ParserMatchClass = MImmAsmOperand; | 
 |   let PrintMethod = "printMImmOperand"; | 
 | } | 
 |  | 
 | // zerofp - Generic fp immediate zero value. | 
 | def zerofp : Operand<i32>, PatLeaf<(fpimm), [{ | 
 |     return getFpImmVal(N) == 0; }]> { | 
 |   let ParserMatchClass = ZeroAsmOperand; | 
 | } | 
 |  | 
 | // simm7fp - Generic fp immediate value. | 
 | def simm7fp : Operand<i32>, PatLeaf<(fpimm), [{ | 
 |     return isInt<7>(getFpImmVal(N)); | 
 |   }], LO7FP> { | 
 |   let ParserMatchClass = SImm7AsmOperand; | 
 |   let DecoderMethod = "DecodeSIMM7"; | 
 | } | 
 |  | 
 | // mimmfp - Special fp immediate value of sequential bit stream of 0 or 1. | 
 | def mimmfp : Operand<i32>, PatLeaf<(fpimm), [{ | 
 |     return isMImmVal(getFpImmVal(N)); }], MIMMFP> { | 
 |   let ParserMatchClass = MImmAsmOperand; | 
 |   let PrintMethod = "printMImmOperand"; | 
 | } | 
 |  | 
 | // mimmfp32 - 32 bit width mimmfp | 
 | //   Float value places at higher bits, so ignore lower 32 bits. | 
 | def mimmfp32 : Operand<i32>, PatLeaf<(fpimm), [{ | 
 |     return isMImm32Val(getFpImmVal(N) >> 32); }], MIMMFP> { | 
 |   let ParserMatchClass = MImmAsmOperand; | 
 |   let PrintMethod = "printMImmOperand"; | 
 | } | 
 |  | 
 | // other generic patterns to use in pattern matchings | 
 | def simm32      : PatLeaf<(imm), [{ return isInt<32>(N->getSExtValue()); }]>; | 
 | def uimm32      : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; | 
 | def lomsbzero   : PatLeaf<(imm), [{ return (N->getZExtValue() & 0x80000000) | 
 |                                       == 0; }]>; | 
 | def lozero      : PatLeaf<(imm), [{ return (N->getZExtValue() & 0xffffffff) | 
 |                                       == 0; }]>; | 
 | def fplomsbzero : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0x80000000) | 
 |                                         == 0; }]>; | 
 | def fplozero    : PatLeaf<(fpimm), [{ return (getFpImmVal(N) & 0xffffffff) | 
 |                                         == 0; }]>; | 
 | def nonzero     : PatLeaf<(imm), [{ return N->getSExtValue() !=0 ; }]>; | 
 |  | 
 | def CCSIOp : PatLeaf<(cond), [{ | 
 |   switch (N->get()) { | 
 |   default:          return true; | 
 |   case ISD::SETULT: | 
 |   case ISD::SETULE: | 
 |   case ISD::SETUGT: | 
 |   case ISD::SETUGE: return false; | 
 |   } | 
 | }]>; | 
 |  | 
 | def CCUIOp : PatLeaf<(cond), [{ | 
 |   switch (N->get()) { | 
 |   default:         return true; | 
 |   case ISD::SETLT: | 
 |   case ISD::SETLE: | 
 |   case ISD::SETGT: | 
 |   case ISD::SETGE: return false; | 
 |   } | 
 | }]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Addressing modes. | 
 | // SX-Aurora has following fields. | 
 | //    sz: register or 0 | 
 | //    sy: register or immediate (-64 to 63) | 
 | //    disp: immediate (-2147483648 to 2147483647) | 
 | // | 
 | // There are two kinds of instruction. | 
 | //    ASX format uses sz + sy + disp. | 
 | //    AS format uses sz + disp. | 
 | // | 
 | // Moreover, there are four kinds of assembly instruction format. | 
 | //    ASX format uses "disp", "disp(, sz)", "disp(sy)", "disp(sy, sz)", | 
 | //    "(, sz)", "(sy)", or "(sy, sz)". | 
 | //    AS format uses "disp", "disp(, sz)", or "(, sz)" in general. | 
 | //    AS format in RRM format uses "disp", "disp(sz)", or "(sz)". | 
 | //    AS format in RRM format for host memory access uses "sz", "(sz)", | 
 | //    or "disp(sz)". | 
 | // | 
 | // We defined them below. | 
 | // | 
 | // ASX format: | 
 | //    MEMrri, MEMrii, MEMzri, MEMzii | 
 | // AS format: | 
 | //    MEMriASX, MEMziASX    : simple AS format | 
 | //    MEMriRRM, MEMziRRM    : AS format in RRM format | 
 | //    MEMriHM, MEMziHM      : AS format in RRM format for host memory access | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // DAG selections for both ASX and AS formats. | 
 | def ADDRrri : ComplexPattern<iPTR, 3, "selectADDRrri", [frameindex], []>; | 
 | def ADDRrii : ComplexPattern<iPTR, 3, "selectADDRrii", [frameindex], []>; | 
 | def ADDRzri : ComplexPattern<iPTR, 3, "selectADDRzri", [], []>; | 
 | def ADDRzii : ComplexPattern<iPTR, 3, "selectADDRzii", [], []>; | 
 | def ADDRri : ComplexPattern<iPTR, 2, "selectADDRri", [frameindex], []>; | 
 | def ADDRzi : ComplexPattern<iPTR, 2, "selectADDRzi", [], []>; | 
 |  | 
 | // ASX format. | 
 | def VEMEMrriAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMrri"; | 
 |   let ParserMethod = "parseMEMOperand"; | 
 | } | 
 | def VEMEMriiAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMrii"; | 
 |   let ParserMethod = "parseMEMOperand"; | 
 | } | 
 | def VEMEMzriAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMzri"; | 
 |   let ParserMethod = "parseMEMOperand"; | 
 | } | 
 | def VEMEMziiAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMzii"; | 
 |   let ParserMethod = "parseMEMOperand"; | 
 | } | 
 |  | 
 | // ASX format uses single assembly instruction format. | 
 | def MEMrri : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASXOperand"; | 
 |   let MIOperandInfo = (ops ptr_rc, ptr_rc, i64imm); | 
 |   let ParserMatchClass = VEMEMrriAsmOperand; | 
 | } | 
 | def MEMrii : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASXOperand"; | 
 |   let MIOperandInfo = (ops ptr_rc, i32imm, i64imm); | 
 |   let ParserMatchClass = VEMEMriiAsmOperand; | 
 | } | 
 | def MEMzri : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASXOperand"; | 
 |   let MIOperandInfo = (ops i32imm /* = 0 */, ptr_rc, i64imm); | 
 |   let ParserMatchClass = VEMEMzriAsmOperand; | 
 | } | 
 | def MEMzii : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASXOperand"; | 
 |   let MIOperandInfo = (ops i32imm /* = 0 */, i32imm, i64imm); | 
 |   let ParserMatchClass = VEMEMziiAsmOperand; | 
 | } | 
 |  | 
 | // AS format. | 
 | def VEMEMriAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMri"; | 
 |   let ParserMethod = "parseMEMAsOperand"; | 
 | } | 
 | def VEMEMziAsmOperand : AsmOperandClass { | 
 |   let Name = "MEMzi"; | 
 |   let ParserMethod = "parseMEMAsOperand"; | 
 | } | 
 |  | 
 | // AS format uses multiple assembly instruction formats | 
 | //   1. AS generic assembly instruction format: | 
 | def MEMriASX : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandASX"; | 
 |   let MIOperandInfo = (ops ptr_rc, i32imm); | 
 |   let ParserMatchClass = VEMEMriAsmOperand; | 
 | } | 
 | def MEMziASX : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandASX"; | 
 |   let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); | 
 |   let ParserMatchClass = VEMEMziAsmOperand; | 
 | } | 
 |  | 
 | //   2. AS RRM style assembly instruction format: | 
 | def MEMriRRM : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandRRM"; | 
 |   let MIOperandInfo = (ops ptr_rc, i32imm); | 
 |   let ParserMatchClass = VEMEMriAsmOperand; | 
 | } | 
 | def MEMziRRM : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandRRM"; | 
 |   let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); | 
 |   let ParserMatchClass = VEMEMziAsmOperand; | 
 | } | 
 |  | 
 | //   3. AS HM style assembly instruction format: | 
 | def MEMriHM : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandHM"; | 
 |   let MIOperandInfo = (ops ptr_rc, i32imm); | 
 |   let ParserMatchClass = VEMEMriAsmOperand; | 
 | } | 
 | def MEMziHM : Operand<iPTR> { | 
 |   let PrintMethod = "printMemASOperandHM"; | 
 |   let MIOperandInfo = (ops i32imm /* = 0 */, i32imm); | 
 |   let ParserMatchClass = VEMEMziAsmOperand; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Other operands. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Branch targets have OtherVT type. | 
 | def brtarget32 : Operand<OtherVT> { | 
 |   let EncoderMethod = "getBranchTargetOpValue"; | 
 |   let DecoderMethod = "DecodeSIMM32"; | 
 | } | 
 |  | 
 | // Operand for printing out a condition code. | 
 | def CCOpAsmOperand : AsmOperandClass { let Name = "CCOp"; } | 
 | def CCOp : Operand<i32>, ImmLeaf<i32, [{ | 
 |     return Imm >= 0 && Imm < 22; }], CCOP> { | 
 |   let PrintMethod = "printCCOperand"; | 
 |   let DecoderMethod = "DecodeCCOperand"; | 
 |   let EncoderMethod = "getCCOpValue"; | 
 |   let ParserMatchClass = CCOpAsmOperand; | 
 | } | 
 |  | 
 | // Operand for a rounding mode code. | 
 | def RDOpAsmOperand : AsmOperandClass { | 
 |   let Name = "RDOp"; | 
 | } | 
 | def RDOp : Operand<i32> { | 
 |   let PrintMethod = "printRDOperand"; | 
 |   let DecoderMethod = "DecodeRDOperand"; | 
 |   let EncoderMethod = "getRDOpValue"; | 
 |   let ParserMatchClass = RDOpAsmOperand; | 
 | } | 
 |  | 
 | def VEhi    : SDNode<"VEISD::Hi", SDTIntUnaryOp>; | 
 | def VElo    : SDNode<"VEISD::Lo", SDTIntUnaryOp>; | 
 |  | 
 | //  These are target-independent nodes, but have target-specific formats. | 
 | def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i64>, | 
 |                                           SDTCisVT<1, i64> ]>; | 
 | def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i64>, | 
 |                                         SDTCisVT<1, i64> ]>; | 
 |  | 
 | def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, | 
 |                            [SDNPHasChain, SDNPOutGlue]>; | 
 | def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd, | 
 |                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; | 
 |  | 
 | def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i64>]>; | 
 | def call          : SDNode<"VEISD::CALL", SDT_SPCall, | 
 |                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, | 
 |                             SDNPVariadic]>; | 
 |  | 
 | def retglue       : SDNode<"VEISD::RET_GLUE", SDTNone, | 
 |                            [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; | 
 |  | 
 | def getGOT        : Operand<iPTR>; | 
 |  | 
 | // Comparisons | 
 | def cmpi          : SDNode<"VEISD::CMPI", SDTIntBinOp>; | 
 | def cmpu          : SDNode<"VEISD::CMPU", SDTIntBinOp>; | 
 | def cmpf          : SDNode<"VEISD::CMPF", SDTFPBinOp>; | 
 | def SDT_Cmpq      : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>, SDTCisFP<0>, | 
 |                                   SDTCisFP<2>]>; | 
 | def cmpq          : SDNode<"VEISD::CMPQ", SDT_Cmpq>; | 
 |  | 
 | // res = cmov cmp, t, f, cond | 
 | def SDT_Cmov      : SDTypeProfile<1, 4, [SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, | 
 |                                   SDTCisVT<4, i32>]>; | 
 | def cmov          : SDNode<"VEISD::CMOV", SDT_Cmov>; | 
 |  | 
 | def VEeh_sjlj_setjmp: SDNode<"VEISD::EH_SJLJ_SETJMP", | 
 |                              SDTypeProfile<1, 1, [SDTCisInt<0>, | 
 |                                                   SDTCisPtrTy<1>]>, | 
 |                              [SDNPHasChain, SDNPSideEffect]>; | 
 | def VEeh_sjlj_longjmp: SDNode<"VEISD::EH_SJLJ_LONGJMP", | 
 |                               SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, | 
 |                               [SDNPHasChain, SDNPSideEffect]>; | 
 | def VEeh_sjlj_setup_dispatch: SDNode<"VEISD::EH_SJLJ_SETUP_DISPATCH", | 
 |                                      SDTypeProfile<0, 0, []>, | 
 |                                      [SDNPHasChain, SDNPSideEffect]>; | 
 |  | 
 | // GETFUNPLT for PIC | 
 | def GetFunPLT : SDNode<"VEISD::GETFUNPLT", SDTIntUnaryOp>; | 
 |  | 
 | // GETTLSADDR for TLS | 
 | def GetTLSAddr : SDNode<"VEISD::GETTLSADDR", SDT_SPCall, | 
 |                         [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, | 
 |                          SDNPVariadic]>; | 
 |  | 
 | // GETSTACKTOP | 
 | def GetStackTop : SDNode<"VEISD::GETSTACKTOP", SDTNone, | 
 |                         [SDNPHasChain, SDNPSideEffect]>; | 
 |  | 
 | // TS1AM | 
 | def SDT_TS1AM : SDTypeProfile<1, 3, [SDTCisSameAs<0, 3>, SDTCisPtrTy<1>, | 
 |                                      SDTCisVT<2, i32>, SDTCisInt<3>]>; | 
 | def ts1am     : SDNode<"VEISD::TS1AM", SDT_TS1AM, | 
 |                        [SDNPHasChain, SDNPMayStore, SDNPMayLoad, | 
 |                         SDNPMemOperand]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // VE Flag Conditions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Note that these values must be kept in sync with the CCOp::CondCode enum | 
 | // values. | 
 | class CC_VAL<int N> : PatLeaf<(i32 N)>; | 
 | def CC_IG    : CC_VAL< 0>;  // Greater | 
 | def CC_IL    : CC_VAL< 1>;  // Less | 
 | def CC_INE   : CC_VAL< 2>;  // Not Equal | 
 | def CC_IEQ   : CC_VAL< 3>;  // Equal | 
 | def CC_IGE   : CC_VAL< 4>;  // Greater or Equal | 
 | def CC_ILE   : CC_VAL< 5>;  // Less or Equal | 
 | def CC_AF    : CC_VAL< 6>;  // Always false | 
 | def CC_G     : CC_VAL< 7>;  // Greater | 
 | def CC_L     : CC_VAL< 8>;  // Less | 
 | def CC_NE    : CC_VAL< 9>;  // Not Equal | 
 | def CC_EQ    : CC_VAL<10>;  // Equal | 
 | def CC_GE    : CC_VAL<11>;  // Greater or Equal | 
 | def CC_LE    : CC_VAL<12>;  // Less or Equal | 
 | def CC_NUM   : CC_VAL<13>;  // Number | 
 | def CC_NAN   : CC_VAL<14>;  // NaN | 
 | def CC_GNAN  : CC_VAL<15>;  // Greater or NaN | 
 | def CC_LNAN  : CC_VAL<16>;  // Less or NaN | 
 | def CC_NENAN : CC_VAL<17>;  // Not Equal or NaN | 
 | def CC_EQNAN : CC_VAL<18>;  // Equal or NaN | 
 | def CC_GENAN : CC_VAL<19>;  // Greater or Equal or NaN | 
 | def CC_LENAN : CC_VAL<20>;  // Less or Equal or NaN | 
 | def CC_AT    : CC_VAL<21>;  // Always true | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // VE Rounding Mode | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Note that these values must be kept in sync with the VERD::RoundingMode enum | 
 | // values. | 
 | class RD_VAL<int N> : PatLeaf<(i32 N)>; | 
 | def RD_NONE  : RD_VAL< 0>;  // According to PSW | 
 | def RD_RZ    : RD_VAL< 8>;  // Round toward Zero | 
 | def RD_RP    : RD_VAL< 9>;  // Round toward Plus infinity | 
 | def RD_RM    : RD_VAL<10>;  // Round toward Minus infinity | 
 | def RD_RN    : RD_VAL<11>;  // Round to Nearest (ties to Even) | 
 | def RD_RA    : RD_VAL<12>;  // Round to Nearest (ties to Away) | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // VE Multiclasses for common instruction formats | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Multiclass for generic RR type instructions | 
 | let hasSideEffects = 0 in | 
 | multiclass RRbm<string opcStr, bits<8>opc, | 
 |                 RegisterClass RCo, ValueType Tyo, | 
 |                 RegisterClass RCi, ValueType Tyi, | 
 |                 SDPatternOperator OpNode = null_frag, | 
 |                 Operand immOp = simm7, Operand mOp = mimm, | 
 |                 bit MoveImm = 0> { | 
 |   def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>; | 
 |   // VE calculates (OpNode $sy, $sz), but llvm requires to have immediate | 
 |   // in RHS, so we use following definition. | 
 |   let cy = 0 in | 
 |   def ri : RR<opc, (outs RCo:$sx), (ins RCi:$sz, immOp:$sy), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode Tyi:$sz, (Tyi immOp:$sy)))]>; | 
 |   let cz = 0 in | 
 |   def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]> { | 
 |     // VE uses ORim as a move immediate instruction, so declare it here. | 
 |     // An instruction declared as MoveImm will be optimized in FoldImmediate | 
 |     // later. | 
 |     let isMoveImm = MoveImm; | 
 |   } | 
 | } | 
 |  | 
 | // Multiclass for non-commutative RR type instructions | 
 | let hasSideEffects = 0 in | 
 | multiclass RRNCbm<string opcStr, bits<8>opc, | 
 |                 RegisterClass RCo, ValueType Tyo, | 
 |                 RegisterClass RCi, ValueType Tyi, | 
 |                 SDPatternOperator OpNode = null_frag, | 
 |                 Operand immOp = simm7, Operand mOp = mimm> { | 
 |   def rr : RR<opc, (outs RCo:$sx), (ins RCi:$sy, RCi:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode Tyi:$sy, Tyi:$sz))]>; | 
 |   let cy = 0 in | 
 |   def ir : RR<opc, (outs RCo:$sx), (ins immOp:$sy, RCi:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), Tyi:$sz))]>; | 
 |   let cz = 0 in | 
 |   def rm : RR<opc, (outs RCo:$sx), (ins RCi:$sy, mOp:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode Tyi:$sy, (Tyi mOp:$sz)))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def im : RR<opc, (outs RCo:$sx), (ins immOp:$sy, mOp:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz"), | 
 |               [(set Tyo:$sx, (OpNode (Tyi immOp:$sy), (Tyi mOp:$sz)))]>; | 
 | } | 
 |  | 
 | // Generic RR multiclass with 2 arguments. | 
 | //   e.g. ADDUL, ADDSWSX, ADDSWZX, and etc. | 
 | multiclass RRm<string opcStr, bits<8>opc, | 
 |                RegisterClass RC, ValueType Ty, | 
 |                SDPatternOperator OpNode = null_frag, | 
 |                Operand immOp = simm7, Operand mOp = mimm, bit MoveImm = 0> : | 
 |   RRbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp, MoveImm>; | 
 |  | 
 | // Generic RR multiclass for non-commutative instructions with 2 arguments. | 
 | //   e.g. SUBUL, SUBUW, SUBSWSX, and etc. | 
 | multiclass RRNCm<string opcStr, bits<8>opc, | 
 |                  RegisterClass RC, ValueType Ty, | 
 |                  SDPatternOperator OpNode = null_frag, | 
 |                  Operand immOp = simm7, Operand mOp = mimm> : | 
 |   RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>; | 
 |  | 
 | // Generic RR multiclass for floating point instructions with 2 arguments. | 
 | //   e.g. FADDD, FADDS, FSUBD, and etc. | 
 | multiclass RRFm<string opcStr, bits<8>opc, | 
 |                 RegisterClass RC, ValueType Ty, | 
 |                 SDPatternOperator OpNode = null_frag, | 
 |                 Operand immOp = simm7fp, Operand mOp = mimmfp> : | 
 |   RRNCbm<opcStr, opc, RC, Ty, RC, Ty, OpNode, immOp, mOp>; | 
 |  | 
 | // Generic RR multiclass for shift instructions with 2 arguments. | 
 | //   e.g. SLL, SRL, SLAWSX, and etc. | 
 | let hasSideEffects = 0 in | 
 | multiclass RRIm<string opcStr, bits<8>opc, | 
 |                 RegisterClass RC, ValueType Ty, | 
 |                 SDPatternOperator OpNode = null_frag> { | 
 |   def rr : RR<opc, (outs RC:$sx), (ins RC:$sz, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode Ty:$sz, i32:$sy))]>; | 
 |   let cz = 0 in | 
 |   def mr : RR<opc, (outs RC:$sx), (ins mimm:$sz, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode (Ty mimm:$sz), i32:$sy))]>; | 
 |   let cy = 0 in | 
 |   def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm7:$sy)))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm7:$sy)))]>; | 
 | } | 
 |  | 
 | // Special RR multiclass for 128 bits shift left instruction. | 
 | //   e.g. SLD | 
 | let Constraints = "$hi = $sx", DisableEncoding = "$hi", hasSideEffects = 0 in | 
 | multiclass RRILDm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rrr : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cz = 0 in | 
 |   def rmr : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cy = 0 in | 
 |   def rri : RR<opc, (outs RC:$sx), (ins RC:$hi, RC:$sz, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def rmi : RR<opc, (outs RC:$sx), (ins RC:$hi, mimm:$sz, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 | } | 
 |  | 
 | // Special RR multiclass for 128 bits shift right instruction. | 
 | //   e.g. SRD | 
 | let Constraints = "$low = $sx", DisableEncoding = "$low", hasSideEffects = 0 in | 
 | multiclass RRIRDm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rrr : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cz = 0 in | 
 |   def mrr : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, I32:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cy = 0 in | 
 |   def rri : RR<opc, (outs RC:$sx), (ins RC:$sz, RC:$low, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def mri : RR<opc, (outs RC:$sx), (ins mimm:$sz, RC:$low, uimm7:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy")>; | 
 | } | 
 |  | 
 | // Generic RR multiclass with an argument. | 
 | //   e.g. LDZ, PCNT, and  BRV | 
 | let cy = 0, sy = 0, hasSideEffects = 0 in | 
 | multiclass RRI1m<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty, | 
 |                  SDPatternOperator OpNode = null_frag> { | 
 |   def r : RR<opc, (outs RC:$sx), (ins RC:$sz), !strconcat(opcStr, " $sx, $sz"), | 
 |              [(set Ty:$sx, (OpNode Ty:$sz))]>; | 
 |   let cz = 0 in | 
 |   def m : RR<opc, (outs RC:$sx), (ins mimm:$sz), | 
 |              !strconcat(opcStr, " $sx, $sz"), | 
 |              [(set Ty:$sx, (OpNode (Ty mimm:$sz)))]>; | 
 | } | 
 |  | 
 | // Special RR multiclass for MRG instruction. | 
 | //   e.g. MRG | 
 | let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0 in | 
 | multiclass RRMRGm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0 in | 
 |   def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cz = 0 in | 
 |   def rm : RR<opc, (outs RC:$sx), (ins RC:$sy, mimm:$sz, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def im : RR<opc, (outs RC:$sx), (ins simm7:$sy, mimm:$sz, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 | } | 
 |  | 
 | // Special RR multiclass for BSWP instruction. | 
 | //   e.g. BSWP | 
 | let hasSideEffects = 0 in | 
 | multiclass RRSWPm<string opcStr, bits<8>opc, | 
 |                   RegisterClass RC, ValueType Ty, | 
 |                   SDPatternOperator OpNode = null_frag> { | 
 |   let cy = 0 in | 
 |   def ri : RR<opc, (outs RC:$sx), (ins RC:$sz, uimm1:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode Ty:$sz, (i32 uimm1:$sy)))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def mi : RR<opc, (outs RC:$sx), (ins mimm:$sz, uimm1:$sy), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set Ty:$sx, (OpNode (Ty mimm:$sz), (i32 uimm1:$sy)))]>; | 
 | } | 
 |  | 
 | // Multiclass for CMOV instructions. | 
 | //   e.g. CMOVL, CMOVW, CMOVD, and etc. | 
 | let Constraints = "$sx = $sd", DisableEncoding = "$sd", hasSideEffects = 0, | 
 |     cfw = ? in | 
 | multiclass RRCMOVm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty, | 
 |                    SDPatternOperator OpNode = null_frag, | 
 |                    Operand immOp = simm7> { | 
 |   def rr : RR<opc, (outs I64:$sx), (ins CCOp:$cfw, RC:$sy, I64:$sz, I64:$sd), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set i64:$sx, (OpNode Ty:$sy, i64:$sz, i64:$sd, | 
 |                                      (i32 CCOp:$cfw)))]>; | 
 |   let cy = 0 in | 
 |   def ir : RR<opc, (outs I64:$sx), | 
 |               (ins CCOp:$cfw, immOp:$sy, I64:$sz, I64:$sd), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set i64:$sx, (OpNode (Ty immOp:$sy), i64:$sz, i64:$sd, | 
 |                                      (i32 CCOp:$cfw)))]>; | 
 |   let cz = 0 in | 
 |   def rm : RR<opc, (outs I64:$sx), | 
 |               (ins CCOp:$cfw, RC:$sy, mimm:$sz, I64:$sd), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set i64:$sx, (OpNode Ty:$sy, (i64 mimm:$sz), i64:$sd, | 
 |                                      (i32 CCOp:$cfw)))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def im : RR<opc, (outs I64:$sx), | 
 |               (ins CCOp:$cfw, immOp:$sy, mimm:$sz, I64:$sd), | 
 |               !strconcat(opcStr, " $sx, $sz, $sy"), | 
 |               [(set i64:$sx, (OpNode (Ty immOp:$sy), (i64 mimm:$sz), i64:$sd, | 
 |                                      (i32 CCOp:$cfw)))]>; | 
 | } | 
 |  | 
 | // Multiclass for floating point conversion instructions. | 
 | //   e.g. CVTWDSX, CVTWDZX, CVTWSSX, and etc. | 
 | // sz{3-0} = rounding mode | 
 | let cz = 0, hasSideEffects = 0 in | 
 | multiclass CVTRDm<string opcStr, bits<8> opc, RegisterClass RCo, | 
 |                   RegisterClass RCi> { | 
 |   def r : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, RCi:$sy), | 
 |              !strconcat(opcStr, "${rd} $sx, $sy")> { | 
 |     bits<4> rd; | 
 |     let sz{6-4} = 0; | 
 |     let sz{3-0} = rd; | 
 |   } | 
 |   let cy = 0 in | 
 |   def i : RR<opc, (outs RCo:$sx), (ins RDOp:$rd, simm7:$sy), | 
 |              !strconcat(opcStr, "${rd} $sx, $sy")> { | 
 |     bits<4> rd; | 
 |     let sz{6-4} = 0; | 
 |     let sz{3-0} = rd; | 
 |   } | 
 | } | 
 |  | 
 | // Multiclass for floating point conversion instructions. | 
 | //   e.g. CVTDW, CVTSW, CVTDL, and etc. | 
 | let cz = 0, sz = 0, hasSideEffects = 0 in | 
 | multiclass CVTm<string opcStr, bits<8> opc, RegisterClass RCo, ValueType Tyo, | 
 |                 RegisterClass RCi, ValueType Tyi, | 
 |                 SDPatternOperator OpNode = null_frag> { | 
 |   def r : RR<opc, (outs RCo:$sx), (ins RCi:$sy), | 
 |              !strconcat(opcStr, " $sx, $sy"), | 
 |              [(set Tyo:$sx, (OpNode Tyi:$sy))]>; | 
 |   let cy = 0 in | 
 |   def i : RR<opc, (outs RCo:$sx), (ins simm7:$sy), | 
 |              !strconcat(opcStr, " $sx, $sy")>; | 
 | } | 
 |  | 
 | // Multiclass for PFCH instructions. | 
 | //   e.g. PFCH | 
 | let sx = 0, hasSideEffects = 0 in | 
 | multiclass PFCHm<string opcStr, bits<8>opc> { | 
 |   def rri : RM<opc, (outs), (ins (MEMrri $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"), | 
 |                [(prefetch ADDRrri:$addr, imm, imm, (i32 1))]>; | 
 |   let cy = 0 in | 
 |   def rii : RM<opc, (outs), (ins (MEMrii $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"), | 
 |                [(prefetch ADDRrii:$addr, imm, imm, (i32 1))]>; | 
 |   let cz = 0 in | 
 |   def zri : RM<opc, (outs), (ins (MEMzri $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"), | 
 |                [(prefetch ADDRzri:$addr, imm, imm, (i32 1))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def zii : RM<opc, (outs), (ins (MEMzii $sz, $sy, $imm32):$addr), !strconcat(opcStr, " $addr"), | 
 |                [(prefetch ADDRzii:$addr, imm, imm, (i32 1))]>; | 
 | } | 
 |  | 
 | // Multiclass for CAS instructions. | 
 | //   e.g. TS1AML, TS1AMW, TS2AM, and etc. | 
 | let Constraints = "$sx = $sd", DisableEncoding = "$sd", | 
 |     mayStore=1, mayLoad = 1, hasSideEffects = 0 in | 
 | multiclass RRCAStgm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty, | 
 |                     Operand immOp, Operand MEM, ComplexPattern ADDR, | 
 |                     SDPatternOperator OpNode = null_frag> { | 
 |   def r : RRM<opc, (outs RC:$sx), (ins (MEM $sz, $imm32):$addr, RC:$sy, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $addr, $sy"), | 
 |               [(set Ty:$sx, (OpNode ADDR:$addr, Ty:$sy, Ty:$sd))]>; | 
 |   let cy = 0 in | 
 |   def i : RRM<opc, (outs RC:$sx), (ins (MEM $sz, $imm32):$addr, immOp:$sy, RC:$sd), | 
 |               !strconcat(opcStr, " $sx, $addr, $sy"), | 
 |               [(set Ty:$sx, (OpNode ADDR:$addr, (Ty immOp:$sy), Ty:$sd))]>; | 
 | } | 
 | multiclass RRCASm<string opcStr, bits<8>opc, RegisterClass RC, ValueType Ty, | 
 |                   Operand immOp, SDPatternOperator OpNode = null_frag> { | 
 |   defm ri : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMriRRM, ADDRri, OpNode>; | 
 |   let cz = 0 in | 
 |   defm zi : RRCAStgm<opcStr, opc, RC, Ty, immOp, MEMziRRM, ADDRzi, OpNode>; | 
 | } | 
 |  | 
 | // Multiclass for branch instructions | 
 | //   e.g. BCFL, BCFW, BCFD, and etc. | 
 | let isBranch = 1, isTerminator = 1, isIndirectBranch = 1, hasSideEffects = 0 in | 
 | multiclass BCbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond, | 
 |                   Operand ADDR> { | 
 |   let bpf = 0 /* NONE */ in | 
 |   def "" : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)), | 
 |               !strconcat(opcStr, " ", cmpStr, "$addr")>; | 
 |   let bpf = 2 /* NOT TAKEN */ in | 
 |   def _nt : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)), | 
 |                !strconcat(opcStr, ".nt ", cmpStr, "$addr")>; | 
 |   let bpf = 3 /* TAKEN */ in | 
 |   def _t : CF<opc, (outs), !con(cond, (ins (ADDR $sz, $imm32):$addr)), | 
 |               !strconcat(opcStr, ".t ", cmpStr, "$addr")>; | 
 | } | 
 | multiclass BCtgm<string opcStr, string cmpStr, bits<8> opc, dag cond> { | 
 |   defm ri : BCbpfm<opcStr, cmpStr, opc, cond, MEMriASX>; | 
 |   let cz = 0 in defm zi : BCbpfm<opcStr, cmpStr, opc, cond, MEMziASX>; | 
 | } | 
 | multiclass BCm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc, | 
 |                RegisterClass RC, Operand immOp> { | 
 |   let DecoderMethod = "DecodeBranchCondition" in | 
 |   defm r : BCtgm<opcStr, "$sy, ", opc, (ins CCOp:$cond, RC:$sy)>; | 
 |   let DecoderMethod = "DecodeBranchCondition", cy = 0 in | 
 |   defm i : BCtgm<opcStr, "$sy, ", opc, (ins CCOp:$cond, immOp:$sy)>; | 
 |   let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0, | 
 |       cond = 15 /* AT */, isBarrier = 1 in | 
 |   defm a : BCtgm<opcStrAt, "", opc, (ins)>; | 
 |   let DecoderMethod = "DecodeBranchConditionAlways", cy = 0, sy = 0, | 
 |       cond = 0 /* AF */ in | 
 |   defm na : BCtgm<opcStrAf, "", opc, (ins)>; | 
 | } | 
 |  | 
 | // Multiclass for relative branch instructions | 
 | //   e.g. BRCFL, BRCFW, BRCFD, and etc. | 
 | let isBranch = 1, isTerminator = 1, hasSideEffects = 0 in | 
 | multiclass BCRbpfm<string opcStr, string cmpStr, bits<8> opc, dag cond> { | 
 |   let bpf = 0 /* NONE */ in | 
 |   def "" : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)), | 
 |               !strconcat(opcStr, " ", cmpStr, "$imm32")>; | 
 |   let bpf = 2 /* NOT TAKEN */ in | 
 |   def _nt : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)), | 
 |                !strconcat(opcStr, ".nt ", cmpStr, "$imm32")>; | 
 |   let bpf = 3 /* TAKEN */ in | 
 |   def _t : CF<opc, (outs), !con(cond, (ins brtarget32:$imm32)), | 
 |               !strconcat(opcStr, ".t ", cmpStr, "$imm32")>; | 
 | } | 
 | multiclass BCRm<string opcStr, string opcStrAt, string opcStrAf, bits<8> opc, | 
 |                RegisterClass RC, Operand immOp, Operand zeroOp> { | 
 |   defm rr : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, RC:$sy, RC:$sz)>; | 
 |   let cy = 0 in | 
 |   defm ir : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, immOp:$sy, | 
 |                                                     RC:$sz)>; | 
 |   let cz = 0 in | 
 |   defm rz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, RC:$sy, | 
 |                                                     zeroOp:$sz)>; | 
 |   let cy = 0, cz = 0 in | 
 |   defm iz : BCRbpfm<opcStr, "$sy, $sz, ", opc, (ins CCOp:$cond, immOp:$sy, | 
 |                                                     zeroOp:$sz)>; | 
 |   let cy = 0, sy = 0, cz = 0, sz = 0, cond = 15 /* AT */, isBarrier = 1 in | 
 |   defm a : BCRbpfm<opcStrAt, "", opc, (ins)>; | 
 |   let cy = 0, sy = 0, cz = 0, sz = 0, cond = 0 /* AF */ in | 
 |   defm na : BCRbpfm<opcStrAf, "", opc, (ins)>; | 
 | } | 
 |  | 
 | // Multiclass for communication register instructions. | 
 | //   e.g. LCR | 
 | let hasSideEffects = 1 in | 
 | multiclass LOADCRm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0 in def ir : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz), | 
 |                             !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cz = 0 in def rz : RR<opc, (outs RC:$sx), (ins RC:$sy, zero:$sz), | 
 |                             !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def iz : RR<opc, (outs RC:$sx), (ins simm7:$sy, zero:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 | } | 
 |  | 
 | // Multiclass for communication register instructions. | 
 | //   e.g. SCR | 
 | let hasSideEffects = 1 in | 
 | multiclass STORECRm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rrr : RR<opc, (outs), (ins RC:$sy, RC:$sz, RC:$sx), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0 in def irr : RR<opc, (outs), (ins simm7:$sy, RC:$sz, RC:$sx), | 
 |                              !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cz = 0 in def rzr : RR<opc, (outs), (ins RC:$sy, zero:$sz, RC:$sx), | 
 |                              !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def izr : RR<opc, (outs), (ins simm7:$sy, zero:$sz, RC:$sx), | 
 |                !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 | } | 
 |  | 
 | let hasSideEffects = 1, Constraints = "$sx = $sx_in", DisableEncoding = "$sx_in" in | 
 | multiclass TSCRm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def rrr : RR<opc, (outs RC:$sx), (ins RC:$sy, RC:$sz, RC:$sx_in), | 
 |                !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0 in def irr : RR<opc, (outs RC:$sx), (ins simm7:$sy, RC:$sz, RC:$sx_in), | 
 |                              !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cz = 0 in def rzr : RR<opc, (outs RC:$sx), (ins RC:$sy, zero:$sz, RC:$sx_in), | 
 |                              !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0, cz = 0 in | 
 |   def izr : RR<opc, (outs RC:$sx), (ins simm7:$sy, zero:$sz, RC:$sx_in), | 
 |                !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 | } | 
 |  | 
 |  | 
 | // Multiclass for communication register instructions. | 
 | //   e.g. FIDCR | 
 | let cz = 0, hasSideEffects = 1 in | 
 | multiclass FIDCRm<string opcStr, bits<8>opc, RegisterClass RC> { | 
 |   def ri : RR<opc, (outs RC:$sx), (ins RC:$sy, uimm3:$sz), | 
 |               !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 |   let cy = 0 in def ii : RR<opc, (outs RC:$sx), (ins simm7:$sy, uimm3:$sz), | 
 |                             !strconcat(opcStr, " $sx, $sy, $sz")>; | 
 | } | 
 |  | 
 | // Multiclass for LHM instruction. | 
 | let mayLoad = 1, hasSideEffects = 0 in | 
 | multiclass LHMm<string opcStr, bits<8> opc, RegisterClass RC> { | 
 |   def ri : RRMHM<opc, (outs RC:$sx), (ins (MEMriHM $sz, $imm32):$addr), | 
 |                  !strconcat(opcStr, " $sx, $addr")>; | 
 |   let cz = 0 in | 
 |   def zi : RRMHM<opc, (outs RC:$sx), (ins (MEMziHM $sz, $imm32):$addr), | 
 |                  !strconcat(opcStr, " $sx, $addr")>; | 
 | } | 
 |  | 
 | // Multiclass for SHM instruction. | 
 | let mayStore = 1, hasSideEffects = 0 in | 
 | multiclass SHMm<string opcStr, bits<8> opc, RegisterClass RC> { | 
 |   def ri : RRMHM<opc, (outs), (ins (MEMriHM $sz, $imm32):$addr, RC:$sx), | 
 |                  !strconcat(opcStr, " $sx, $addr")>; | 
 |   let cz = 0 in | 
 |   def zi : RRMHM<opc, (outs), (ins (MEMziHM $sz, $imm32):$addr, RC:$sx), | 
 |                  !strconcat(opcStr, " $sx, $addr")>; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instructions | 
 | // | 
 | // Define all scalar instructions defined in SX-Aurora TSUBASA Architecture | 
 | // Guide here.  As those mnemonics, we use mnemonics defined in Vector Engine | 
 | // Assembly Language Reference Manual. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.2 - Load/Store instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Multiclass for generic RM instructions | 
 | multiclass RMm<string opcStr, bits<8>opc, RegisterClass RC, bit MoveImm = 0> { | 
 |   def rri : RM<opc, (outs RC:$sx), (ins (MEMrri $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), []>; | 
 |   let cy = 0 in | 
 |   def rii : RM<opc, (outs RC:$sx), (ins (MEMrii $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), []>; | 
 |   let cz = 0 in | 
 |   def zri : RM<opc, (outs RC:$sx), (ins (MEMzri $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), []>; | 
 |   let cy = 0, cz = 0 in | 
 |   def zii : RM<opc, (outs RC:$sx), (ins (MEMzii $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), []> { | 
 |     // VE uses LEAzii and LEASLzii as a move immediate instruction, so declare | 
 |     // it here.  An instruction declared as MoveImm will be optimized in | 
 |     // FoldImmediate later. | 
 |     let isMoveImm = MoveImm; | 
 |   } | 
 | } | 
 |  | 
 | // Section 8.2.1 - LEA | 
 | let isReMaterializable = 1, isAsCheapAsAMove = 1, | 
 |     DecoderMethod = "DecodeLoadI64" in { | 
 |   let cx = 0 in defm LEA : RMm<"lea", 0x06, I64, /* MoveImm */ 1>; | 
 |   let cx = 1 in defm LEASL : RMm<"lea.sl", 0x06, I64, /* MoveImm */ 1>; | 
 | } | 
 |  | 
 | // LEA basic patterns. | 
 | //   Need to be defined here to prioritize LEA over ADX. | 
 | def : Pat<(iPTR ADDRrri:$addr), (LEArri MEMrri:$addr)>; | 
 | def : Pat<(iPTR ADDRrii:$addr), (LEArii MEMrii:$addr)>; | 
 | def : Pat<(add I64:$base, simm32:$disp), (LEArii $base, 0, (LO32 $disp))>; | 
 | def : Pat<(add I64:$base, lozero:$disp), (LEASLrii $base, 0, (HI32 $disp))>; | 
 |  | 
 | // Multiclass for load instructions. | 
 | let mayLoad = 1, hasSideEffects = 0 in | 
 | multiclass LOADm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty, | 
 |                  SDPatternOperator OpNode = null_frag> { | 
 |   def rri : RM<opc, (outs RC:$sx), (ins (MEMrri $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(set Ty:$sx, (OpNode ADDRrri:$addr))]>; | 
 |   let cy = 0 in | 
 |   def rii : RM<opc, (outs RC:$sx), (ins (MEMrii $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(set Ty:$sx, (OpNode ADDRrii:$addr))]>; | 
 |   let cz = 0 in | 
 |   def zri : RM<opc, (outs RC:$sx), (ins (MEMzri $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(set Ty:$sx, (OpNode ADDRzri:$addr))]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def zii : RM<opc, (outs RC:$sx), (ins (MEMzii $sz, $sy, $imm32):$addr), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(set Ty:$sx, (OpNode ADDRzii:$addr))]>; | 
 | } | 
 |  | 
 | // Section 8.2.2 - LDS | 
 | let DecoderMethod = "DecodeLoadI64" in | 
 | defm LD : LOADm<"ld", 0x01, I64, i64, load>; | 
 | def : Pat<(f64 (load ADDRrri:$addr)), (LDrri MEMrri:$addr)>; | 
 | def : Pat<(f64 (load ADDRrii:$addr)), (LDrii MEMrii:$addr)>; | 
 | def : Pat<(f64 (load ADDRzri:$addr)), (LDzri MEMzri:$addr)>; | 
 | def : Pat<(f64 (load ADDRzii:$addr)), (LDzii MEMzii:$addr)>; | 
 |  | 
 | // Section 8.2.3 - LDU | 
 | let DecoderMethod = "DecodeLoadF32" in | 
 | defm LDU : LOADm<"ldu", 0x02, F32, f32, load>; | 
 |  | 
 | // Section 8.2.4 - LDL | 
 | let DecoderMethod = "DecodeLoadI32" in | 
 | defm LDLSX : LOADm<"ldl.sx", 0x03, I32, i32, load>; | 
 | let cx = 1, DecoderMethod = "DecodeLoadI32" in | 
 | defm LDLZX : LOADm<"ldl.zx", 0x03, I32, i32, load>; | 
 |  | 
 | // Section 8.2.5 - LD2B | 
 | let DecoderMethod = "DecodeLoadI32" in | 
 | defm LD2BSX : LOADm<"ld2b.sx", 0x04, I32, i32, sextloadi16>; | 
 | let cx = 1, DecoderMethod = "DecodeLoadI32" in | 
 | defm LD2BZX : LOADm<"ld2b.zx", 0x04, I32, i32, zextloadi16>; | 
 |  | 
 | // Section 8.2.6 - LD1B | 
 | let DecoderMethod = "DecodeLoadI32" in | 
 | defm LD1BSX : LOADm<"ld1b.sx", 0x05, I32, i32, sextloadi8>; | 
 | let cx = 1, DecoderMethod = "DecodeLoadI32" in | 
 | defm LD1BZX : LOADm<"ld1b.zx", 0x05, I32, i32, zextloadi8>; | 
 |  | 
 | // LDQ pseudo instructions | 
 | let mayLoad = 1, hasSideEffects = 0 in { | 
 |   def LDQrii : Pseudo<(outs F128:$dest), (ins MEMrii:$addr), | 
 |                       "# pseudo ldq $dest, $addr", | 
 |                       [(set f128:$dest, (load ADDRrii:$addr))]>; | 
 | } | 
 |  | 
 | // Multiclass for store instructions. | 
 | let mayStore = 1 in | 
 | multiclass STOREm<string opcStr, bits<8> opc, RegisterClass RC, ValueType Ty, | 
 |                   SDPatternOperator OpNode = null_frag> { | 
 |   def rri : RM<opc, (outs), (ins (MEMrri $sz, $sy, $imm32):$addr, RC:$sx), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(OpNode Ty:$sx, ADDRrri:$addr)]>; | 
 |   let cy = 0 in | 
 |   def rii : RM<opc, (outs), (ins (MEMrii $sz, $sy, $imm32):$addr, RC:$sx), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(OpNode Ty:$sx, ADDRrii:$addr)]>; | 
 |   let cz = 0 in | 
 |   def zri : RM<opc, (outs), (ins (MEMzri $sz, $sy, $imm32):$addr, RC:$sx), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(OpNode Ty:$sx, ADDRzri:$addr)]>; | 
 |   let cy = 0, cz = 0 in | 
 |   def zii : RM<opc, (outs), (ins (MEMzii $sz, $sy, $imm32):$addr, RC:$sx), | 
 |                !strconcat(opcStr, " $sx, $addr"), | 
 |                [(OpNode Ty:$sx, ADDRzii:$addr)]>; | 
 | } | 
 |  | 
 | // Section 8.2.7 - STS | 
 | let DecoderMethod = "DecodeStoreI64" in | 
 | defm ST : STOREm<"st", 0x11, I64, i64, store>; | 
 | def : Pat<(store f64:$src, ADDRrri:$addr), (STrri MEMrri:$addr, $src)>; | 
 | def : Pat<(store f64:$src, ADDRrii:$addr), (STrii MEMrii:$addr, $src)>; | 
 | def : Pat<(store f64:$src, ADDRzri:$addr), (STzri MEMzri:$addr, $src)>; | 
 | def : Pat<(store f64:$src, ADDRzii:$addr), (STzii MEMzii:$addr, $src)>; | 
 |  | 
 | // Section 8.2.8 - STU | 
 | let DecoderMethod = "DecodeStoreF32" in | 
 | defm STU : STOREm<"stu", 0x12, F32, f32, store>; | 
 |  | 
 | // Section 8.2.9 - STL | 
 | let DecoderMethod = "DecodeStoreI32" in | 
 | defm STL : STOREm<"stl", 0x13, I32, i32, store>; | 
 |  | 
 | // Section 8.2.10 - ST2B | 
 | let DecoderMethod = "DecodeStoreI32" in | 
 | defm ST2B : STOREm<"st2b", 0x14, I32, i32, truncstorei16>; | 
 |  | 
 | // Section 8.2.11 - ST1B | 
 | let DecoderMethod = "DecodeStoreI32" in | 
 | defm ST1B : STOREm<"st1b", 0x15, I32, i32, truncstorei8>; | 
 |  | 
 | // STQ pseudo instructions | 
 | let mayStore = 1, hasSideEffects = 0 in { | 
 |   def STQrii : Pseudo<(outs), (ins MEMrii:$addr, F128:$sx), | 
 |                       "# pseudo stq $sx, $addr", | 
 |                       [(store f128:$sx, ADDRrii:$addr)]>; | 
 | } | 
 |  | 
 | // Section 8.2.12 - DLDS | 
 | let DecoderMethod = "DecodeLoadI64" in | 
 | defm DLD : LOADm<"dld", 0x09, I64, i64, load>; | 
 |  | 
 | // Section 8.2.13 - DLDU | 
 | let DecoderMethod = "DecodeLoadF32" in | 
 | defm DLDU : LOADm<"dldu", 0x0a, F32, f32, load>; | 
 |  | 
 | // Section 8.2.14 - DLDL | 
 | let DecoderMethod = "DecodeLoadI32" in | 
 | defm DLDLSX : LOADm<"dldl.sx", 0x0b, I32, i32, load>; | 
 | let cx = 1, DecoderMethod = "DecodeLoadI32" in | 
 | defm DLDLZX : LOADm<"dldl.zx", 0x0b, I32, i32, load>; | 
 |  | 
 | // Section 8.2.15 - PFCH | 
 | let DecoderMethod = "DecodeASX" in | 
 | defm PFCH : PFCHm<"pfch", 0x0c>; | 
 |  | 
 | // Section 8.2.16 - TS1AM (Test and Set 1 AM) | 
 | let DecoderMethod = "DecodeTS1AMI64" in | 
 | defm TS1AML : RRCASm<"ts1am.l", 0x42, I64, i64, uimm7>; | 
 | let DecoderMethod = "DecodeTS1AMI32", cx = 1 in | 
 | defm TS1AMW : RRCASm<"ts1am.w", 0x42, I32, i32, uimm7>; | 
 |  | 
 | // Section 8.2.17 - TS2AM (Test and Set 2 AM) | 
 | let DecoderMethod = "DecodeTS1AMI64" in | 
 | defm TS2AM : RRCASm<"ts2am", 0x43, I64, i64, uimm7>; | 
 |  | 
 | // Section 8.2.18 - TS3AM (Test and Set 3 AM) | 
 | let DecoderMethod = "DecodeTS1AMI64" in | 
 | defm TS3AM : RRCASm<"ts3am", 0x52, I64, i64, uimm1>; | 
 |  | 
 | // Section 8.2.19 - ATMAM (Atomic AM) | 
 | let DecoderMethod = "DecodeTS1AMI64" in | 
 | defm ATMAM : RRCASm<"atmam", 0x53, I64, i64, uimm0to2>; | 
 |  | 
 | // Section 8.2.20 - CAS (Compare and Swap) | 
 | let DecoderMethod = "DecodeCASI64" in | 
 | defm CASL : RRCASm<"cas.l", 0x62, I64, i64, simm7, atomic_cmp_swap_64>; | 
 | let DecoderMethod = "DecodeCASI32", cx = 1 in | 
 | defm CASW : RRCASm<"cas.w", 0x62, I32, i32, simm7, atomic_cmp_swap_32>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.3 - Transfer Control Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.3.1 - FENCE (Fence) | 
 | let hasSideEffects = 1 in { | 
 |   let avo = 1 in def FENCEI : RRFENCE<0x20, (outs), (ins), "fencei">; | 
 |   def FENCEM : RRFENCE<0x20, (outs), (ins uimm2:$kind), "fencem $kind"> { | 
 |     bits<2> kind; | 
 |     let lf = kind{1}; | 
 |     let sf = kind{0}; | 
 |   } | 
 |   def FENCEC : RRFENCE<0x20, (outs), (ins uimm3:$kind), "fencec $kind"> { | 
 |     bits<3> kind; | 
 |     let c2 = kind{2}; | 
 |     let c1 = kind{1}; | 
 |     let c0 = kind{0}; | 
 |   } | 
 | } | 
 |  | 
 | // Section 8.3.2 - SVOB (Set Vector Out-of-order memory access Boundary) | 
 | let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in | 
 | def SVOB : RR<0x30, (outs), (ins), "svob">; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.4 - Fixed-point Operation Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.4.1 - ADD (Add) | 
 | defm ADDUL : RRm<"addu.l", 0x48, I64, i64>; | 
 | let cx = 1 in defm ADDUW : RRm<"addu.w", 0x48, I32, i32>; | 
 |  | 
 | // Section 8.4.2 - ADS (Add Single) | 
 | defm ADDSWSX : RRm<"adds.w.sx", 0x4A, I32, i32, add>; | 
 | let cx = 1 in defm ADDSWZX : RRm<"adds.w.zx", 0x4A, I32, i32>; | 
 |  | 
 | // Section 8.4.3 - ADX (Add) | 
 | defm ADDSL : RRm<"adds.l", 0x59, I64, i64, add>; | 
 |  | 
 | // Section 8.4.4 - SUB (Subtract) | 
 | defm SUBUL : RRNCm<"subu.l", 0x58, I64, i64>; | 
 | let cx = 1 in defm SUBUW : RRNCm<"subu.w", 0x58, I32, i32>; | 
 |  | 
 | // Section 8.4.5 - SBS (Subtract Single) | 
 | defm SUBSWSX : RRNCm<"subs.w.sx", 0x5A, I32, i32, sub>; | 
 | let cx = 1 in defm SUBSWZX : RRNCm<"subs.w.zx", 0x5A, I32, i32>; | 
 |  | 
 | // Section 8.4.6 - SBX (Subtract) | 
 | defm SUBSL : RRNCm<"subs.l", 0x5B, I64, i64, sub>; | 
 |  | 
 | // Section 8.4.7 - MPY (Multiply) | 
 | defm MULUL : RRm<"mulu.l", 0x49, I64, i64>; | 
 | let cx = 1 in defm MULUW : RRm<"mulu.w", 0x49, I32, i32>; | 
 |  | 
 | // Section 8.4.8 - MPS (Multiply Single) | 
 | defm MULSWSX : RRm<"muls.w.sx", 0x4B, I32, i32, mul>; | 
 | let cx = 1 in defm MULSWZX : RRm<"muls.w.zx", 0x4B, I32, i32>; | 
 |  | 
 | // Section 8.4.9 - MPX (Multiply) | 
 | defm MULSL : RRm<"muls.l", 0x6E, I64, i64, mul>; | 
 |  | 
 | // Section 8.4.10 - MPD (Multiply) | 
 | defm MULSLW : RRbm<"muls.l.w", 0x6B, I64, i64, I32, i32>; | 
 |  | 
 | // Section 8.4.11 - DIV (Divide) | 
 | defm DIVUL : RRNCm<"divu.l", 0x6F, I64, i64, udiv>; | 
 | let cx = 1 in defm DIVUW : RRNCm<"divu.w", 0x6F, I32, i32, udiv>; | 
 |  | 
 | // Section 8.4.12 - DVS (Divide Single) | 
 | defm DIVSWSX : RRNCm<"divs.w.sx", 0x7B, I32, i32, sdiv>; | 
 | let cx = 1 in defm DIVSWZX : RRNCm<"divs.w.zx", 0x7B, I32, i32>; | 
 |  | 
 | // Section 8.4.13 - DVX (Divide) | 
 | defm DIVSL : RRNCm<"divs.l", 0x7F, I64, i64, sdiv>; | 
 |  | 
 | // Section 8.4.14 - CMP (Compare) | 
 | defm CMPUL : RRNCm<"cmpu.l", 0x55, I64, i64, cmpu>; | 
 | let cx = 1 in defm CMPUW : RRNCm<"cmpu.w", 0x55, I32, i32, cmpu>; | 
 |  | 
 | // Section 8.4.15 - CPS (Compare Single) | 
 | defm CMPSWSX : RRNCm<"cmps.w.sx", 0x7A, I32, i32>; | 
 | let cx = 1 in defm CMPSWZX : RRNCm<"cmps.w.zx", 0x7A, I32, i32, cmpi>; | 
 |  | 
 | // Section 8.4.16 - CPX (Compare) | 
 | defm CMPSL : RRNCm<"cmps.l", 0x6A, I64, i64, cmpi>; | 
 |  | 
 | // Section 8.4.17 - CMS (Compare and Select Maximum/Minimum Single) | 
 | // cx: sx/zx, cw: max/min | 
 | defm MAXSWSX : RRm<"maxs.w.sx", 0x78, I32, i32, smax>; | 
 | let cx = 1 in defm MAXSWZX : RRm<"maxs.w.zx", 0x78, I32, i32>; | 
 | let cw = 1 in defm MINSWSX : RRm<"mins.w.sx", 0x78, I32, i32, smin>; | 
 | let cx = 1, cw = 1 in defm MINSWZX : RRm<"mins.w.zx", 0x78, I32, i32>; | 
 |  | 
 | // Section 8.4.18 - CMX (Compare and Select Maximum/Minimum) | 
 | defm MAXSL : RRm<"maxs.l", 0x68, I64, i64, smax>; | 
 | let cw = 1 in defm MINSL : RRm<"mins.l", 0x68, I64, i64, smin>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.5 - Logical Operation Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.5.1 - AND (AND) | 
 | defm AND : RRm<"and", 0x44, I64, i64, and>; | 
 |  | 
 | // Section 8.5.2 - OR (OR) | 
 | let isReMaterializable = 1, isAsCheapAsAMove = 1 in | 
 | defm OR : RRm<"or", 0x45, I64, i64, or, simm7, mimm, /* MoveImm */ 1>; | 
 |  | 
 | // Section 8.5.3 - XOR (Exclusive OR) | 
 | defm XOR : RRm<"xor", 0x46, I64, i64, xor>; | 
 |  | 
 | // Section 8.5.4 - EQV (Equivalence) | 
 | defm EQV : RRm<"eqv", 0x47, I64, i64>; | 
 |  | 
 | // Section 8.5.5 - NND (Negate AND) | 
 | def and_not : PatFrags<(ops node:$x, node:$y), | 
 |                        [(and (not node:$x), node:$y)]>; | 
 | defm NND : RRNCm<"nnd", 0x54, I64, i64, and_not>; | 
 |  | 
 | // Section 8.5.6 - MRG (Merge) | 
 | defm MRG : RRMRGm<"mrg", 0x56, I64>; | 
 |  | 
 | // Section 8.5.7 - LDZ (Leading Zero Count) | 
 | def ctlz_pat : PatFrags<(ops node:$src), | 
 |                         [(ctlz node:$src), | 
 |                          (ctlz_zero_undef node:$src)]>; | 
 | defm LDZ : RRI1m<"ldz", 0x67, I64, i64, ctlz_pat>; | 
 |  | 
 | // Section 8.5.8 - PCNT (Population Count) | 
 | defm PCNT : RRI1m<"pcnt", 0x38, I64, i64, ctpop>; | 
 |  | 
 | // Section 8.5.9 - BRV (Bit Reverse) | 
 | defm BRV : RRI1m<"brv", 0x39, I64, i64, bitreverse>; | 
 |  | 
 | // Section 8.5.10 - BSWP (Byte Swap) | 
 | defm BSWP : RRSWPm<"bswp", 0x2B, I64, i64>; | 
 |  | 
 | def : Pat<(i64 (bswap i64:$src)), | 
 |           (BSWPri $src, 0)>; | 
 | def : Pat<(i64 (bswap (i64 mimm:$src))), | 
 |           (BSWPmi (MIMM $src), 0)>; | 
 | def : Pat<(i32 (bswap i32:$src)), | 
 |           (EXTRACT_SUBREG | 
 |               (BSWPri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $src, sub_i32), 1), | 
 |               sub_i32)>; | 
 | def : Pat<(i32 (bswap (i32 mimm:$src))), | 
 |           (EXTRACT_SUBREG (BSWPmi (MIMM $src), 1), sub_i32)>; | 
 |  | 
 | // Section 8.5.11 - CMOV (Conditional Move) | 
 | let cw = 0, cw2 = 0 in | 
 | defm CMOVL : RRCMOVm<"cmov.l.${cfw}", 0x3B, I64, i64, cmov>; | 
 | let cw = 1, cw2 = 0 in | 
 | defm CMOVW : RRCMOVm<"cmov.w.${cfw}", 0x3B, I32, i32, cmov>; | 
 | let cw = 0, cw2 = 1 in | 
 | defm CMOVD : RRCMOVm<"cmov.d.${cfw}", 0x3B, I64, f64, cmov, simm7fp>; | 
 | let cw = 1, cw2 = 1 in | 
 | defm CMOVS : RRCMOVm<"cmov.s.${cfw}", 0x3B, F32, f32, cmov, simm7fp>; | 
 | def : MnemonicAlias<"cmov.l", "cmov.l.at">; | 
 | def : MnemonicAlias<"cmov.w", "cmov.w.at">; | 
 | def : MnemonicAlias<"cmov.d", "cmov.d.at">; | 
 | def : MnemonicAlias<"cmov.s", "cmov.s.at">; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.6 - Shift Operation Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.6.1 - SLL (Shift Left Logical) | 
 | defm SLL : RRIm<"sll", 0x65, I64, i64, shl>; | 
 |  | 
 | // Section 8.6.2 - SLD (Shift Left Double) | 
 | defm SLD : RRILDm<"sld", 0x64, I64>; | 
 |  | 
 | // Section 8.6.3 - SRL (Shift Right Logical) | 
 | defm SRL : RRIm<"srl", 0x75, I64, i64, srl>; | 
 |  | 
 | // Section 8.6.4 - SRD (Shift Right Double) | 
 | defm SRD : RRIRDm<"srd", 0x74, I64>; | 
 |  | 
 | // Section 8.6.5 - SLA (Shift Left Arithmetic) | 
 | defm SLAWSX : RRIm<"sla.w.sx", 0x66, I32, i32, shl>; | 
 | let cx = 1 in defm SLAWZX : RRIm<"sla.w.zx", 0x66, I32, i32>; | 
 |  | 
 | // Section 8.6.6 - SLAX (Shift Left Arithmetic) | 
 | defm SLAL : RRIm<"sla.l", 0x57, I64, i64>; | 
 |  | 
 | // Section 8.6.7 - SRA (Shift Right Arithmetic) | 
 | defm SRAWSX : RRIm<"sra.w.sx", 0x76, I32, i32, sra>; | 
 | let cx = 1 in defm SRAWZX : RRIm<"sra.w.zx", 0x76, I32, i32>; | 
 |  | 
 | // Section 8.6.8 - SRAX (Shift Right Arithmetic) | 
 | defm SRAL : RRIm<"sra.l", 0x77, I64, i64, sra>; | 
 |  | 
 | def : Pat<(i32 (srl i32:$src, (i32 simm7:$val))), | 
 |           (EXTRACT_SUBREG (SRLri (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)), | 
 |             $src, sub_i32), !add(32, 64)), imm:$val), sub_i32)>; | 
 | def : Pat<(i32 (srl i32:$src, i32:$val)), | 
 |           (EXTRACT_SUBREG (SRLrr (ANDrm (INSERT_SUBREG (i64 (IMPLICIT_DEF)), | 
 |             $src, sub_i32), !add(32, 64)), $val), sub_i32)>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.7 - Floating-point Arithmetic Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.7.1 - FAD (Floating Add) | 
 | defm FADDD : RRFm<"fadd.d", 0x4C, I64, f64, fadd>; | 
 | let cx = 1 in | 
 | defm FADDS : RRFm<"fadd.s", 0x4C, F32, f32, fadd, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.2 - FSB (Floating Subtract) | 
 | defm FSUBD : RRFm<"fsub.d", 0x5C, I64, f64, fsub>; | 
 | let cx = 1 in | 
 | defm FSUBS : RRFm<"fsub.s", 0x5C, F32, f32, fsub, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.3 - FMP (Floating Multiply) | 
 | defm FMULD : RRFm<"fmul.d", 0x4D, I64, f64, fmul>; | 
 | let cx = 1 in | 
 | defm FMULS : RRFm<"fmul.s", 0x4D, F32, f32, fmul, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.4 - FDV (Floating Divide) | 
 | defm FDIVD : RRFm<"fdiv.d", 0x5D, I64, f64, fdiv>; | 
 | let cx = 1 in | 
 | defm FDIVS : RRFm<"fdiv.s", 0x5D, F32, f32, fdiv, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.5 - FCP (Floating Compare) | 
 | defm FCMPD : RRFm<"fcmp.d", 0x7E, I64, f64, cmpf>; | 
 | let cx = 1 in | 
 | defm FCMPS : RRFm<"fcmp.s", 0x7E, F32, f32, cmpf, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.6 - CMS (Compare and Select Maximum/Minimum Single) | 
 | // cx: double/float, cw: max/min | 
 | let cw = 0, cx = 0 in | 
 | defm FMAXD : RRFm<"fmax.d", 0x3E, I64, f64, fmaxnum>; | 
 | let cw = 0, cx = 1 in | 
 | defm FMAXS : RRFm<"fmax.s", 0x3E, F32, f32, fmaxnum, simm7fp, mimmfp32>; | 
 | let cw = 1, cx = 0 in | 
 | defm FMIND : RRFm<"fmin.d", 0x3E, I64, f64, fminnum>; | 
 | let cw = 1, cx = 1 in | 
 | defm FMINS : RRFm<"fmin.s", 0x3E, F32, f32, fminnum, simm7fp, mimmfp32>; | 
 |  | 
 | // Section 8.7.7 - FAQ (Floating Add Quadruple) | 
 | defm FADDQ : RRFm<"fadd.q", 0x6C, F128, f128, fadd>; | 
 |  | 
 | // Section 8.7.8 - FSQ (Floating Subtract Quadruple) | 
 | defm FSUBQ : RRFm<"fsub.q", 0x7C, F128, f128, fsub>; | 
 |  | 
 | // Section 8.7.9 - FMQ (Floating Subtract Quadruple) | 
 | defm FMULQ : RRFm<"fmul.q", 0x6D, F128, f128, fmul>; | 
 |  | 
 | // Section 8.7.10 - FCQ (Floating Compare Quadruple) | 
 | defm FCMPQ : RRNCbm<"fcmp.q", 0x7D, I64, f64, F128, f128, cmpq, simm7fp, | 
 |                     mimmfp>; | 
 |  | 
 | // Section 8.7.11 - FIX (Convert to Fixed Point) | 
 | // cx: double/float, cw: sx/zx, sz{0-3} = round | 
 | let cx = 0, cw = 0 /* sign extend */ in | 
 | defm CVTWDSX : CVTRDm<"cvt.w.d.sx", 0x4E, I32, I64>; | 
 | let cx = 0, cw = 1 /* zero extend */ in | 
 | defm CVTWDZX : CVTRDm<"cvt.w.d.zx", 0x4E, I32, I64>; | 
 | let cx = 1, cw = 0 /* sign extend */ in | 
 | defm CVTWSSX : CVTRDm<"cvt.w.s.sx", 0x4E, I32, F32>; | 
 | let cx = 1, cw = 1 /* zero extend */ in | 
 | defm CVTWSZX : CVTRDm<"cvt.w.s.zx", 0x4E, I32, F32>; | 
 |  | 
 | // Section 8.7.12 - FIXX (Convert to Fixed Point) | 
 | defm CVTLD : CVTRDm<"cvt.l.d", 0x4F, I64, I64>; | 
 |  | 
 | // Section 8.7.13 - FLT (Convert to Floating Point) | 
 | defm CVTDW : CVTm<"cvt.d.w", 0x5E, I64, f64, I32, i32, sint_to_fp>; | 
 | let cx = 1 in | 
 | defm CVTSW : CVTm<"cvt.s.w", 0x5E, F32, f32, I32, i32, sint_to_fp>; | 
 |  | 
 | // Section 8.7.14 - FLTX (Convert to Floating Point) | 
 | defm CVTDL : CVTm<"cvt.d.l", 0x5F, I64, f64, I64, i64, sint_to_fp>; | 
 |  | 
 | // Section 8.7.15 - CVS (Convert to Single-format) | 
 | defm CVTSD : CVTm<"cvt.s.d", 0x1F, F32, f32, I64, f64, fpround>; | 
 | let cx = 1 in | 
 | defm CVTSQ : CVTm<"cvt.s.q", 0x1F, F32, f32, F128, f128, fpround>; | 
 |  | 
 | // Section 8.7.16 - CVD (Convert to Double-format) | 
 | defm CVTDS : CVTm<"cvt.d.s", 0x0F, I64, f64, F32, f32, fpextend>; | 
 | let cx = 1 in | 
 | defm CVTDQ : CVTm<"cvt.d.q", 0x0F, I64, f64, F128, f128, fpround>; | 
 |  | 
 | // Section 8.7.17 - CVQ (Convert to Single-format) | 
 | defm CVTQD : CVTm<"cvt.q.d", 0x2D, F128, f128, I64, f64, fpextend>; | 
 | let cx = 1 in | 
 | defm CVTQS : CVTm<"cvt.q.s", 0x2D, F128, f128, F32, f32, fpextend>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.8 - Branch instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.8.1 - BC (Branch on Codition) | 
 | defm BCFL : BCm<"b${cond}.l", "b.l", "baf.l", 0x19, I64, simm7>; | 
 |  | 
 | // Indirect branch aliases | 
 | def : Pat<(brind I64:$reg), (BCFLari_t $reg, 0)>; | 
 | def : Pat<(brind tblockaddress:$imm), (BCFLazi_t 0, $imm)>; | 
 |  | 
 | // Return instruction is a special case of jump. | 
 | let Uses = [SX10], bpf = 3 /* TAKEN */, cond = 15 /* AT */, cy = 0, sy = 0, | 
 |     sz = 10 /* SX10 */, imm32 = 0, isReturn = 1, isTerminator = 1, | 
 |     isBarrier = 1, isCodeGenOnly = 1, hasSideEffects = 0 in | 
 | def RET : CF<0x19, (outs), (ins), "b.l.t (, %s10)", [(retglue)]>; | 
 |  | 
 | // Section 8.8.2 - BCS (Branch on Condition Single) | 
 | defm BCFW : BCm<"b${cond}.w", "b.w", "baf.w", 0x1B, I32, simm7>; | 
 |  | 
 | // Section 8.8.3 - BCF (Branch on Condition Floating Point) | 
 | defm BCFD : BCm<"b${cond}.d", "b.d", "baf.d", 0x1C, I64, simm7fp>; | 
 | let cx = 1 in | 
 | defm BCFS : BCm<"b${cond}.s", "b.s", "baf.s", 0x1C, F32, simm7fp>; | 
 |  | 
 | // Section 8.8.4 - BCR (Branch on Condition Relative) | 
 | let cx = 0, cx2 = 0 in | 
 | defm BRCFL : BCRm<"br${cond}.l", "br.l", "braf.l", 0x18, I64, simm7, zero>; | 
 | let cx = 1, cx2 = 0 in | 
 | defm BRCFW : BCRm<"br${cond}.w", "br.w", "braf.w", 0x18, I32, simm7, zero>; | 
 | let cx = 0, cx2 = 1 in | 
 | defm BRCFD : BCRm<"br${cond}.d", "br.d", "braf.d", 0x18, I64, simm7fp, zerofp>; | 
 | let cx = 1, cx2 = 1 in | 
 | defm BRCFS : BCRm<"br${cond}.s", "br.s", "braf.s", 0x18, F32, simm7fp, zerofp>; | 
 |  | 
 | // Section 8.8.5 - BSIC (Branch and Save IC) | 
 | let isCall = 1, hasSideEffects = 0, DecoderMethod = "DecodeCall" in | 
 | defm BSIC : RMm<"bsic", 0x08, I64>; | 
 |  | 
 | // Call instruction is a special case of BSIC. | 
 | let Defs = [SX10], sx = 10 /* SX10 */, cy = 0, sy = 0, imm32 = 0, | 
 |     isCall = 1, isCodeGenOnly = 1, hasSideEffects = 0 in | 
 | def CALLr : RM<0x08, (outs), (ins I64:$sz, variable_ops), | 
 |                "bsic %s10, (, $sz)", [(call i64:$sz)]>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.19 - Control Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.19.1 - SIC (Save Instruction Counter) | 
 | let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [IC] in | 
 | def SIC : RR<0x28, (outs I32:$sx), (ins), "sic $sx">; | 
 |  | 
 | // Section 8.19.2 - LPM (Load Program Mode Flags) | 
 | let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in | 
 | def LPM : RR<0x3a, (outs), (ins I64:$sy), "lpm $sy">; | 
 |  | 
 | // Section 8.19.3 - SPM (Save Program Mode Flags) | 
 | let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in | 
 | def SPM : RR<0x2a, (outs I64:$sx), (ins), "spm $sx">; | 
 |  | 
 | // Section 8.19.4 - LFR (Load Flag Register) | 
 | let sx = 0, cz = 0, sz = 0, hasSideEffects = 1, Defs = [PSW] in { | 
 |   def LFRr : RR<0x69, (outs), (ins I64:$sy), "lfr $sy">; | 
 |   let cy = 0 in def LFRi : RR<0x69, (outs), (ins uimm6:$sy), "lfr $sy">; | 
 | } | 
 |  | 
 | // Section 8.19.5 - SFR (Save Flag Register) | 
 | let cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1, Uses = [PSW] in | 
 | def SFR : RR<0x29, (outs I64:$sx), (ins), "sfr $sx">; | 
 |  | 
 | // Section 8.19.6 - SMIR (Save Miscellaneous Register) | 
 | let cy = 0, cz = 0, sz = 0, hasSideEffects = 1 in { | 
 |   def SMIR : RR<0x22, (outs I64:$sx), (ins MISC:$sy), "smir $sx, $sy">; | 
 | } | 
 |  | 
 | // Section 8.19.7 - NOP (No Operation) | 
 | let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 0 in | 
 | def NOP : RR<0x79, (outs), (ins), "nop">; | 
 |  | 
 | // Section 8.19.8 - MONC (Monitor Call) | 
 | let sx = 0, cy = 0, sy = 0, cz = 0, sz = 0, hasSideEffects = 1 in { | 
 |   def MONC : RR<0x3F, (outs), (ins), "monc">; | 
 |   let cx = 1, isTrap = 1 in def MONCHDB : RR<0x3F, (outs), (ins), "monc.hdb">; | 
 | } | 
 |  | 
 | // Section 8.19.9 - LCR (Load Communication Register) | 
 | defm LCR : LOADCRm<"lcr", 0x40, I64>; | 
 |  | 
 | // Section 8.19.10 - SCR (Save Communication Register) | 
 | defm SCR : STORECRm<"scr", 0x50, I64>; | 
 |  | 
 | // Section 8.19.11 - TSCR (Test & Set Communication Register) | 
 | defm TSCR : TSCRm<"tscr", 0x41, I64>; | 
 |  | 
 | // Section 8.19.12 - FIDCR (Fetch & Increment/Decrement CR) | 
 | defm FIDCR : FIDCRm<"fidcr", 0x51, I64>; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // Section 8.20 - Host Memory Access Instructions | 
 | //----------------------------------------------------------------------------- | 
 |  | 
 | // Section 8.20.1 - LHM (Load Host Memory) | 
 | let ry = 3, DecoderMethod = "DecodeLoadASI64" in | 
 | defm LHML : LHMm<"lhm.l", 0x21, I64>; | 
 | let ry = 2, DecoderMethod = "DecodeLoadASI64" in | 
 | defm LHMW : LHMm<"lhm.w", 0x21, I64>; | 
 | let ry = 1, DecoderMethod = "DecodeLoadASI64" in | 
 | defm LHMH : LHMm<"lhm.h", 0x21, I64>; | 
 | let ry = 0, DecoderMethod = "DecodeLoadASI64" in | 
 | defm LHMB : LHMm<"lhm.b", 0x21, I64>; | 
 |  | 
 | // Section 8.20.2 - SHM (Store Host Memory) | 
 | let ry = 3, DecoderMethod = "DecodeStoreASI64" in | 
 | defm SHML : SHMm<"shm.l", 0x31, I64>; | 
 | let ry = 2, DecoderMethod = "DecodeStoreASI64" in | 
 | defm SHMW : SHMm<"shm.w", 0x31, I64>; | 
 | let ry = 1, DecoderMethod = "DecodeStoreASI64" in | 
 | defm SHMH : SHMm<"shm.h", 0x31, I64>; | 
 | let ry = 0, DecoderMethod = "DecodeStoreASI64" in | 
 | defm SHMB : SHMm<"shm.b", 0x31, I64>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Instructions for CodeGenOnly | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Pattern Matchings | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Basic cast between registers.  This is often used in ISel patterns, so make | 
 | // them as OutPatFrag. | 
 | def i2l : OutPatFrag<(ops node:$exp), | 
 |                      (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_i32)>; | 
 | def l2i : OutPatFrag<(ops node:$exp), | 
 |                      (EXTRACT_SUBREG $exp, sub_i32)>; | 
 | def f2l : OutPatFrag<(ops node:$exp), | 
 |                      (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $exp, sub_f32)>; | 
 | def l2f : OutPatFrag<(ops node:$exp), | 
 |                      (EXTRACT_SUBREG $exp, sub_f32)>; | 
 |  | 
 | // Zero out subregisters. | 
 | def zero_i32 : OutPatFrag<(ops node:$expr), | 
 |                           (ANDrm $expr, 32)>; | 
 | def zero_f32 : OutPatFrag<(ops node:$expr), | 
 |                           (ANDrm $expr, !add(32, 64))>; | 
 |  | 
 | // Small immediates. | 
 | def : Pat<(i32 simm7:$val), (l2i (ORim (LO7 $val), 0))>; | 
 | def : Pat<(i64 simm7:$val), (ORim (LO7 $val), 0)>; | 
 | // Medium immediates. | 
 | def : Pat<(i32 simm32:$val), (l2i (LEAzii 0, 0, (LO32 $val)))>; | 
 | def : Pat<(i64 simm32:$val), (LEAzii 0, 0, (LO32 $val))>; | 
 | def : Pat<(i64 uimm32:$val), (zero_f32 (LEAzii 0, 0, (LO32 $val)))>; | 
 | // Arbitrary immediates. | 
 | def : Pat<(i64 lozero:$val), | 
 |           (LEASLzii 0, 0, (HI32 imm:$val))>; | 
 | def : Pat<(i64 lomsbzero:$val), | 
 |           (LEASLrii (LEAzii 0, 0, (LO32 imm:$val)), 0, (HI32 imm:$val))>; | 
 | def : Pat<(i64 imm:$val), | 
 |           (LEASLrii (ANDrm (LEAzii 0, 0, (LO32 imm:$val)), !add(32, 64)), 0, | 
 |                     (HI32 imm:$val))>; | 
 |  | 
 | // LEA patterns | 
 | def lea_add : PatFrags<(ops node:$base, node:$idx, node:$disp), | 
 |                        [(add (add node:$base, node:$idx), node:$disp), | 
 |                         (add (add node:$base, node:$disp), node:$idx), | 
 |                         (add node:$base, (add $idx, $disp))]>; | 
 | def : Pat<(lea_add I64:$base, simm7:$idx, simm32:$disp), | 
 |           (LEArii $base, (LO7 $idx), (LO32 $disp))>; | 
 | def : Pat<(lea_add I64:$base, I64:$idx, simm32:$disp), | 
 |           (LEArri $base, $idx, (LO32 $disp))>; | 
 | def : Pat<(lea_add I64:$base, simm7:$idx, lozero:$disp), | 
 |           (LEASLrii $base, (LO7 $idx), (HI32 $disp))>; | 
 | def : Pat<(lea_add I64:$base, I64:$idx, lozero:$disp), | 
 |           (LEASLrri $base, $idx, (HI32 $disp))>; | 
 |  | 
 | // Address calculation patterns and optimizations | 
 | // | 
 | // Generate following instructions: | 
 | //   1. LEA %reg, label@LO32 | 
 | //      AND %reg, %reg, (32)0 | 
 | //   2. LEASL %reg, label@HI32 | 
 | //   3. (LEA %reg, label@LO32) | 
 | //      (AND %reg, %reg, (32)0) | 
 | //      LEASL %reg, label@HI32(, %reg) | 
 | //   4. (LEA %reg, label@LO32) | 
 | //      (AND %reg, %reg, (32)0) | 
 | //      LEASL %reg, label@HI32(%reg, %got) | 
 | // | 
 | def velo_only : OutPatFrag<(ops node:$lo), | 
 |                            (ANDrm (LEAzii 0, 0, $lo), !add(32, 64))>; | 
 | def vehi_only : OutPatFrag<(ops node:$hi), | 
 |                            (LEASLzii 0, 0, $hi)>; | 
 | def vehi_lo : OutPatFrag<(ops node:$hi, node:$lo), | 
 |                          (LEASLrii $lo, 0, $hi)>; | 
 | def vehi_lo_imm : OutPatFrag<(ops node:$hi, node:$lo, node:$idx), | 
 |                              (LEASLrii $lo, $idx, $hi)>; | 
 | def vehi_baselo : OutPatFrag<(ops node:$base, node:$hi, node:$lo), | 
 |                              (LEASLrri $base, $lo, $hi)>; | 
 | foreach type = [ "tblockaddress", "tconstpool", "texternalsym", "tglobaladdr", | 
 |                  "tglobaltlsaddr", "tjumptable" ] in { | 
 |   def : Pat<(VElo !cast<SDNode>(type):$lo), (velo_only $lo)>; | 
 |   def : Pat<(VEhi !cast<SDNode>(type):$hi), (vehi_only $hi)>; | 
 |   def : Pat<(add (VEhi !cast<SDNode>(type):$hi), I64:$lo), (vehi_lo $hi, $lo)>; | 
 |   def : Pat<(add (add (VEhi !cast<SDNode>(type):$hi), I64:$lo), simm7:$val), | 
 |             (vehi_lo_imm $hi, $lo, (LO7 $val))>; | 
 |   def : Pat<(add I64:$base, (add (VEhi !cast<SDNode>(type):$hi), I64:$lo)), | 
 |             (vehi_baselo $base, $hi, $lo)>; | 
 | } | 
 |  | 
 | // floating point | 
 | def : Pat<(f32 fpimm:$val), | 
 |           (EXTRACT_SUBREG (LEASLzii 0, 0, (HIFP32 $val)), sub_f32)>; | 
 | def : Pat<(f64 fplozero:$val), | 
 |           (LEASLzii 0, 0, (HIFP32 $val))>; | 
 | def : Pat<(f64 fplomsbzero:$val), | 
 |           (LEASLrii (LEAzii 0, 0, (LOFP32 $val)), 0, (HIFP32 $val))>; | 
 | def : Pat<(f64 fpimm:$val), | 
 |           (LEASLrii (ANDrm (LEAzii 0, 0, (LOFP32 $val)), !add(32, 64)), 0, | 
 |                     (HIFP32 $val))>; | 
 |  | 
 | // The same integer registers are used for i32 and i64 values. | 
 | // When registers hold i32 values, the high bits are unused. | 
 |  | 
 | // TODO Use standard expansion for shift-based lowering of sext_inreg | 
 |  | 
 | // Cast to i1 | 
 | def : Pat<(sext_inreg I32:$src, i1), | 
 |           (SRAWSXri (SLAWSXri $src, 31), 31)>; | 
 | def : Pat<(sext_inreg I64:$src, i1), | 
 |           (SRALri (SLLri $src, 63), 63)>; | 
 |  | 
 | // Cast to i8 | 
 | def : Pat<(sext_inreg I32:$src, i8), | 
 |           (SRAWSXri (SLAWSXri $src, 24), 24)>; | 
 | def : Pat<(sext_inreg I64:$src, i8), | 
 |           (SRALri (SLLri $src, 56), 56)>; | 
 | def : Pat<(sext_inreg (i32 (trunc i64:$src)), i8), | 
 |           (EXTRACT_SUBREG (SRALri (SLLri $src, 56), 56), sub_i32)>; | 
 | def : Pat<(i32 (and (trunc i64:$src), 0xff)), | 
 |           (EXTRACT_SUBREG (ANDrm $src, !add(56, 64)), sub_i32)>; | 
 |  | 
 | // Cast to i16 | 
 | def : Pat<(sext_inreg I32:$src, i16), | 
 |           (SRAWSXri (SLAWSXri $src, 16), 16)>; | 
 | def : Pat<(sext_inreg I64:$src, i16), | 
 |           (SRALri (SLLri $src, 48), 48)>; | 
 | def : Pat<(sext_inreg (i32 (trunc i64:$src)), i16), | 
 |           (EXTRACT_SUBREG (SRALri (SLLri $src, 48), 48), sub_i32)>; | 
 | def : Pat<(i32 (and (trunc i64:$src), 0xffff)), | 
 |           (EXTRACT_SUBREG (ANDrm $src, !add(48, 64)), sub_i32)>; | 
 |  | 
 | // Cast to i32 | 
 | def : Pat<(i32 (trunc i64:$src)), (l2i (zero_f32 $src))>; | 
 | def : Pat<(i32 (fp_to_sint f32:$src)), (CVTWSSXr RD_RZ, $src)>; | 
 | def : Pat<(i32 (fp_to_sint f64:$src)), (CVTWDSXr RD_RZ, $src)>; | 
 | def : Pat<(i32 (fp_to_sint f128:$src)), (CVTWDSXr RD_RZ, (CVTDQr $src))>; | 
 |  | 
 | // Cast to i64 | 
 | def : Pat<(sext_inreg i64:$src, i32), (i2l (ADDSWSXrm (l2i $src), 0))>; | 
 | def : Pat<(i64 (sext i32:$src)), (i2l (ADDSWSXrm $src, 0))>; | 
 | def : Pat<(i64 (zext i32:$src)), (i2l (ADDSWZXrm $src, 0))>; | 
 | def : Pat<(i64 (anyext i32:$sy)), (i2l $sy)>; | 
 | def : Pat<(i64 (fp_to_sint f32:$src)), (CVTLDr RD_RZ, (CVTDSr $src))>; | 
 | def : Pat<(i64 (fp_to_sint f64:$src)), (CVTLDr RD_RZ, $src)>; | 
 | def : Pat<(i64 (fp_to_sint f128:$src)), (CVTLDr RD_RZ, (CVTDQr $src))>; | 
 |  | 
 | // Cast to f32 | 
 | def : Pat<(f32 (sint_to_fp i64:$src)), (CVTSDr (CVTDLr i64:$src))>; | 
 |  | 
 | // Cast to f128 | 
 | def : Pat<(f128 (sint_to_fp i32:$src)), (CVTQDr (CVTDWr $src))>; | 
 | def : Pat<(f128 (sint_to_fp i64:$src)), (CVTQDr (CVTDLr $src))>; | 
 |  | 
 |  | 
 | // extload, sextload and zextload stuff | 
 | multiclass EXT64m<SDPatternOperator from, | 
 |                   RM torri, | 
 |                   RM torii, | 
 |                   RM tozri, | 
 |                   RM tozii> { | 
 |   def : Pat<(i64 (from ADDRrri:$addr)), | 
 |             (i2l (torri MEMrri:$addr))>; | 
 |   def : Pat<(i64 (from ADDRrii:$addr)), | 
 |             (i2l (torii MEMrii:$addr))>; | 
 |   def : Pat<(i64 (from ADDRzri:$addr)), | 
 |             (i2l (tozri MEMzri:$addr))>; | 
 |   def : Pat<(i64 (from ADDRzii:$addr)), | 
 |             (i2l (tozii MEMzii:$addr))>; | 
 | } | 
 | defm : EXT64m<sextloadi8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>; | 
 | defm : EXT64m<zextloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>; | 
 | defm : EXT64m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>; | 
 | defm : EXT64m<sextloadi16, LD2BSXrri, LD2BSXrii, LD2BSXzri, LD2BSXzii>; | 
 | defm : EXT64m<zextloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>; | 
 | defm : EXT64m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>; | 
 | defm : EXT64m<sextloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>; | 
 | defm : EXT64m<zextloadi32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>; | 
 | defm : EXT64m<extloadi32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>; | 
 |  | 
 | // anyextload | 
 | multiclass EXT32m<SDPatternOperator from, | 
 |                   RM torri, | 
 |                   RM torii, | 
 |                   RM tozri, | 
 |                   RM tozii> { | 
 |   def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>; | 
 |   def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>; | 
 |   def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>; | 
 |   def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>; | 
 | } | 
 | defm : EXT32m<extloadi8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>; | 
 | defm : EXT32m<extloadi16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>; | 
 |  | 
 | // truncstore | 
 | multiclass TRUNC64m<SDPatternOperator from, | 
 |                     RM torri, | 
 |                     RM torii, | 
 |                     RM tozri, | 
 |                     RM tozii> { | 
 |   def : Pat<(from i64:$src, ADDRrri:$addr), | 
 |             (torri MEMrri:$addr, (l2i $src))>; | 
 |   def : Pat<(from i64:$src, ADDRrii:$addr), | 
 |             (torii MEMrii:$addr, (l2i $src))>; | 
 |   def : Pat<(from i64:$src, ADDRzri:$addr), | 
 |             (tozri MEMzri:$addr, (l2i $src))>; | 
 |   def : Pat<(from i64:$src, ADDRzii:$addr), | 
 |             (tozii MEMzii:$addr, (l2i $src))>; | 
 | } | 
 | defm : TRUNC64m<truncstorei8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>; | 
 | defm : TRUNC64m<truncstorei16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>; | 
 | defm : TRUNC64m<truncstorei32, STLrri, STLrii, STLzri, ST1Bzii>; | 
 |  | 
 | // Atomic loads | 
 | multiclass ATMLDm<SDPatternOperator from, | 
 |                   RM torri, RM torii, | 
 |                   RM tozri, RM tozii> { | 
 |   def : Pat<(from ADDRrri:$addr), (torri MEMrri:$addr)>; | 
 |   def : Pat<(from ADDRrii:$addr), (torii MEMrii:$addr)>; | 
 |   def : Pat<(from ADDRzri:$addr), (tozri MEMzri:$addr)>; | 
 |   def : Pat<(from ADDRzii:$addr), (tozii MEMzii:$addr)>; | 
 | } | 
 | defm : ATMLDm<atomic_load_8, LD1BZXrri, LD1BZXrii, LD1BZXzri, LD1BZXzii>; | 
 | defm : ATMLDm<atomic_load_16, LD2BZXrri, LD2BZXrii, LD2BZXzri, LD2BZXzii>; | 
 | defm : ATMLDm<atomic_load_32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>; | 
 | defm : ATMLDm<atomic_load_64, LDrri, LDrii, LDzri, LDzii>; | 
 |  | 
 | // Optimized atomic loads with sext | 
 | multiclass SXATMLDm<SDPatternOperator from, ValueType TY, | 
 |                     RM torri, RM torii, | 
 |                     RM tozri, RM tozii> { | 
 |   def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrri:$addr))), TY)), | 
 |             (i2l (torri MEMrri:$addr))>; | 
 |   def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRrii:$addr))), TY)), | 
 |             (i2l (torii MEMrii:$addr))>; | 
 |   def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzri:$addr))), TY)), | 
 |             (i2l (tozri MEMzri:$addr))>; | 
 |   def : Pat<(i64 (sext_inreg (i64 (anyext (from ADDRzii:$addr))), TY)), | 
 |             (i2l (tozii MEMzii:$addr))>; | 
 | } | 
 | multiclass SXATMLD32m<SDPatternOperator from, | 
 |                       RM torri, RM torii, | 
 |                       RM tozri, RM tozii> { | 
 |   def : Pat<(i64 (sext (from ADDRrri:$addr))), | 
 |             (i2l (torri MEMrri:$addr))>; | 
 |   def : Pat<(i64 (sext (from ADDRrii:$addr))), | 
 |             (i2l (torii MEMrii:$addr))>; | 
 |   def : Pat<(i64 (sext (from ADDRzri:$addr))), | 
 |             (i2l (tozri MEMzri:$addr))>; | 
 |   def : Pat<(i64 (sext (from ADDRzii:$addr))), | 
 |             (i2l (tozii MEMzii:$addr))>; | 
 | } | 
 | defm : SXATMLDm<atomic_load_8, i8, LD1BSXrri, LD1BSXrii, LD1BSXzri, LD1BSXzii>; | 
 | defm : SXATMLDm<atomic_load_16, i16, LD2BSXrri, LD2BSXrii, LD2BSXzri, | 
 |                 LD2BSXzii>; | 
 | defm : SXATMLD32m<atomic_load_32, LDLSXrri, LDLSXrii, LDLSXzri, LDLSXzii>; | 
 |  | 
 | // Optimized atomic loads with zext | 
 | multiclass ZXATMLDm<SDPatternOperator from, int VAL, | 
 |                     RM torri, RM torii, | 
 |                     RM tozri, RM tozii> { | 
 |   def : Pat<(i64 (and (anyext (from ADDRrri:$addr)), VAL)), | 
 |             (i2l (torri MEMrri:$addr))>; | 
 |   def : Pat<(i64 (and (anyext (from ADDRrii:$addr)), VAL)), | 
 |             (i2l (torii MEMrii:$addr))>; | 
 |   def : Pat<(i64 (and (anyext (from ADDRzri:$addr)), VAL)), | 
 |             (i2l (tozri MEMzri:$addr))>; | 
 |   def : Pat<(i64 (and (anyext (from ADDRzii:$addr)), VAL)), | 
 |             (i2l (tozii MEMzii:$addr))>; | 
 | } | 
 | multiclass ZXATMLD32m<SDPatternOperator from, | 
 |                       RM torri, RM torii, | 
 |                       RM tozri, RM tozii> { | 
 |   def : Pat<(i64 (zext (from ADDRrri:$addr))), | 
 |             (i2l (torri MEMrri:$addr))>; | 
 |   def : Pat<(i64 (zext (from ADDRrii:$addr))), | 
 |             (i2l (torii MEMrii:$addr))>; | 
 |   def : Pat<(i64 (zext (from ADDRzri:$addr))), | 
 |             (i2l (tozri MEMzri:$addr))>; | 
 |   def : Pat<(i64 (zext (from ADDRzii:$addr))), | 
 |             (i2l (tozii MEMzii:$addr))>; | 
 | } | 
 | defm : ZXATMLDm<atomic_load_8, 0xFF, LD1BZXrri, LD1BZXrii, LD1BZXzri, | 
 |                 LD1BZXzii>; | 
 | defm : ZXATMLDm<atomic_load_16, 0xFFFF, LD2BZXrri, LD2BZXrii, LD2BZXzri, | 
 |                 LD2BZXzii>; | 
 | defm : ZXATMLD32m<atomic_load_32, LDLZXrri, LDLZXrii, LDLZXzri, LDLZXzii>; | 
 |  | 
 | // Atomic stores | 
 | multiclass ATMSTm<SDPatternOperator from, ValueType ty, | 
 |                   RM torri, RM torii, | 
 |                   RM tozri, RM tozii> { | 
 |   def : Pat<(from ADDRrri:$addr, ty:$src), (torri MEMrri:$addr, $src)>; | 
 |   def : Pat<(from ADDRrii:$addr, ty:$src), (torii MEMrii:$addr, $src)>; | 
 |   def : Pat<(from ADDRzri:$addr, ty:$src), (tozri MEMzri:$addr, $src)>; | 
 |   def : Pat<(from ADDRzii:$addr, ty:$src), (tozii MEMzii:$addr, $src)>; | 
 | } | 
 | defm : ATMSTm<atomic_store_8, i32, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>; | 
 | defm : ATMSTm<atomic_store_16, i32, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>; | 
 | defm : ATMSTm<atomic_store_32, i32, STLrri, STLrii, STLzri, STLzii>; | 
 | defm : ATMSTm<atomic_store_64, i64, STrri, STrii, STzri, STzii>; | 
 |  | 
 | // Optimized atomic stores with truncate | 
 | multiclass TRATMSTm<SDPatternOperator from, | 
 |                   RM torri, | 
 |                   RM torii, | 
 |                   RM tozri, | 
 |                   RM tozii> { | 
 |   def : Pat<(from ADDRrri:$addr, (i32 (trunc i64:$src))), | 
 |             (torri MEMrri:$addr, (l2i $src))>; | 
 |   def : Pat<(from ADDRrii:$addr, (i32 (trunc i64:$src))), | 
 |             (torii MEMrii:$addr, (l2i $src))>; | 
 |   def : Pat<(from ADDRzri:$addr, (i32 (trunc i64:$src))), | 
 |             (tozri MEMzri:$addr, (l2i $src))>; | 
 |   def : Pat<(from ADDRzii:$addr, (i32 (trunc i64:$src))), | 
 |             (tozii MEMzii:$addr, (l2i $src))>; | 
 | } | 
 | defm : TRATMSTm<atomic_store_8, ST1Brri, ST1Brii, ST1Bzri, ST1Bzii>; | 
 | defm : TRATMSTm<atomic_store_16, ST2Brri, ST2Brii, ST2Bzri, ST2Bzii>; | 
 | defm : TRATMSTm<atomic_store_32, STLrri, STLrii, STLzri, STLzii>; | 
 |  | 
 | // Atomic swaps | 
 | def : Pat<(i32 (ts1am i64:$src, i32:$flag, i32:$new)), | 
 |           (TS1AMWrir $src, 0, $flag, $new)>; | 
 | def : Pat<(i32 (atomic_swap_32 ADDRri:$src, i32:$new)), | 
 |           (TS1AMWrii MEMriRRM:$src, 15, $new)>; | 
 | def : Pat<(i64 (atomic_swap_64 ADDRri:$src, i64:$new)), | 
 |           (TS1AMLrir MEMriRRM:$src, (LEAzii 0, 0, 255), i64:$new)>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // SJLJ Exception handling patterns | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, | 
 |     usesCustomInserter = 1 in { | 
 |   let isTerminator = 1 in | 
 |   def EH_SjLj_LongJmp : Pseudo<(outs), (ins I64:$buf), | 
 |                                "# EH_SJLJ_LONGJMP", | 
 |                                [(VEeh_sjlj_longjmp I64:$buf)]>; | 
 |  | 
 |   def EH_SjLj_SetJmp  : Pseudo<(outs I32:$dst), (ins I64:$buf), | 
 |                                "# EH_SJLJ_SETJMP", | 
 |                                [(set I32:$dst, (VEeh_sjlj_setjmp I64:$buf))]>; | 
 |  | 
 |   def EH_SjLj_Setup_Dispatch : Pseudo<(outs), (ins), "# EH_SJLJ_SETUP_DISPATCH", | 
 |                                       [(VEeh_sjlj_setup_dispatch)]>; | 
 | } | 
 |  | 
 | let isTerminator = 1, isBranch = 1, isCodeGenOnly = 1 in | 
 |   def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst), | 
 |                              "# EH_SJlJ_SETUP $dst">; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Branch related patterns | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Branches | 
 | def : Pat<(br bb:$addr), (BRCFLa bb:$addr)>; | 
 |  | 
 | // brcc | 
 | // integer brcc | 
 | multiclass BRCCIm<ValueType ty, CF BrOpNode1, | 
 |                  CF BrOpNode2, | 
 |                  RR CmpOpNode1, | 
 |                  RR CmpOpNode2> { | 
 |   def : Pat<(brcc CCSIOp:$cond, ty:$l, simm7:$r, bb:$addr), | 
 |             (BrOpNode2 (icond2ccSwap $cond), (LO7 $r), $l, bb:$addr)>; | 
 |   def : Pat<(brcc CCSIOp:$cond, ty:$l, ty:$r, bb:$addr), | 
 |             (BrOpNode1 (icond2cc $cond), $l, $r, bb:$addr)>; | 
 |   def : Pat<(brcc CCUIOp:$cond, ty:$l, simm7:$r, bb:$addr), | 
 |             (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode2 (LO7 $r), $l), | 
 |                        bb:$addr)>; | 
 |   def : Pat<(brcc CCUIOp:$cond, ty:$l, ty:$r, bb:$addr), | 
 |             (BrOpNode2 (icond2cc $cond), 0, (CmpOpNode1 $r, $l), bb:$addr)>; | 
 | } | 
 | defm : BRCCIm<i32, BRCFWrr, BRCFWir, CMPUWrr, CMPUWir>; | 
 | defm : BRCCIm<i64, BRCFLrr, BRCFLir, CMPULrr, CMPULir>; | 
 |  | 
 | // floating point brcc | 
 | multiclass BRCCFm<ValueType ty, CF BrOpNode1, CF BrOpNode2> { | 
 |   def : Pat<(brcc cond:$cond, ty:$l, simm7fp:$r, bb:$addr), | 
 |             (BrOpNode2 (fcond2ccSwap $cond), (LO7FP $r), $l, bb:$addr)>; | 
 |   def : Pat<(brcc cond:$cond, ty:$l, ty:$r, bb:$addr), | 
 |             (BrOpNode1 (fcond2cc $cond), $l, $r, bb:$addr)>; | 
 | } | 
 | defm : BRCCFm<f32, BRCFSrr, BRCFSir>; | 
 | defm : BRCCFm<f64, BRCFDrr, BRCFDir>; | 
 | def : Pat<(brcc cond:$cond, f128:$l, f128:$r, bb:$addr), | 
 |           (BRCFDir (fcond2cc $cond), 0, (FCMPQrr $r, $l), bb:$addr)>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Pseudo Instructions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // GETGOT for PIC | 
 | let Defs = [SX15 /* %got */, SX16 /* %plt */], hasSideEffects = 0 in { | 
 |   def GETGOT : Pseudo<(outs getGOT:$getpcseq), (ins), "$getpcseq">; | 
 | } | 
 |  | 
 | // GETFUNPLT for PIC | 
 | let hasSideEffects = 0 in | 
 | def GETFUNPLT : Pseudo<(outs I64:$dst), (ins i64imm:$addr), | 
 |                        "$dst, $addr", | 
 |                        [(set iPTR:$dst, (GetFunPLT tglobaladdr:$addr))] >; | 
 |  | 
 | def : Pat<(GetFunPLT tglobaladdr:$dst), | 
 |           (GETFUNPLT tglobaladdr:$dst)>; | 
 | def : Pat<(GetFunPLT texternalsym:$dst), | 
 |           (GETFUNPLT texternalsym:$dst)>; | 
 |  | 
 | // GETTLSADDR for TLS | 
 | let Defs = [SX0, SX10, SX12], hasSideEffects = 0 in | 
 | def GETTLSADDR : Pseudo<(outs), (ins i64imm:$addr), | 
 |                         "# GETTLSADDR $addr", | 
 |                         [(GetTLSAddr tglobaltlsaddr:$addr)] >; | 
 |  | 
 | def : Pat<(GetTLSAddr tglobaltlsaddr:$dst), | 
 |           (GETTLSADDR tglobaltlsaddr:$dst)>; | 
 |  | 
 | let Defs = [SX11], Uses = [SX11], hasSideEffects = 0 in { | 
 | def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt, i64imm:$amt2), | 
 |                               "# ADJCALLSTACKDOWN $amt, $amt2", | 
 |                               [(callseq_start timm:$amt, timm:$amt2)]>; | 
 | def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), | 
 |                             "# ADJCALLSTACKUP $amt1", | 
 |                             [(callseq_end timm:$amt1, timm:$amt2)]>; | 
 | } | 
 |  | 
 | let Defs = [SX8], Uses = [SX8, SX11], hasSideEffects = 0 in | 
 | def EXTEND_STACK : Pseudo<(outs), (ins), | 
 |                           "# EXTEND STACK", | 
 |                           []>; | 
 | let  hasSideEffects = 0 in | 
 | def EXTEND_STACK_GUARD : Pseudo<(outs), (ins), | 
 |                                 "# EXTEND STACK GUARD", | 
 |                                 []>; | 
 |  | 
 | // Dynamic stack allocation yields a __llvm_grow_stack for VE targets. | 
 | // These calls are needed to probe the stack when allocating more over | 
 | // %s8 (%sl - stack limit). | 
 |  | 
 | let Uses = [SX11], hasSideEffects = 1 in | 
 | def GETSTACKTOP : Pseudo<(outs I64:$dst), (ins), | 
 |                          "# GET STACK TOP", | 
 |                          [(set iPTR:$dst, (GetStackTop))]>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Other patterns | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // SETCC pattern matches | 
 | // | 
 | //   CMP  %tmp, lhs, rhs     ; compare lhs and rhs | 
 | //   or   %res, 0, (0)1      ; initialize by 0 | 
 | //   CMOV %res, (63)0, %tmp  ; set 1 if %tmp is true | 
 |  | 
 | class setccrr<Instruction INSN> : | 
 |     OutPatFrag<(ops node:$cond, node:$comp), | 
 |                (EXTRACT_SUBREG | 
 |                    (INSN $cond, $comp, | 
 |                          !add(63, 64), // means (63)0 == 1 | 
 |                          (ORim 0, 0)), sub_i32)>; | 
 |  | 
 | def : Pat<(i32 (setcc i32:$l, i32:$r, CCSIOp:$cond)), | 
 |           (setccrr<CMOVWrm> (icond2cc $cond), (CMPSWSXrr $l, $r))>; | 
 | def : Pat<(i32 (setcc i32:$l, i32:$r, CCUIOp:$cond)), | 
 |           (setccrr<CMOVWrm> (icond2cc $cond), (CMPUWrr $l, $r))>; | 
 | def : Pat<(i32 (setcc i64:$l, i64:$r, CCSIOp:$cond)), | 
 |           (setccrr<CMOVLrm> (icond2cc $cond), (CMPSLrr $l, $r))>; | 
 | def : Pat<(i32 (setcc i64:$l, i64:$r, CCUIOp:$cond)), | 
 |           (setccrr<CMOVLrm> (icond2cc $cond), (CMPULrr $l, $r))>; | 
 | def : Pat<(i32 (setcc f32:$l, f32:$r, cond:$cond)), | 
 |           (setccrr<CMOVSrm> (fcond2cc $cond), (FCMPSrr $l, $r))>; | 
 | def : Pat<(i32 (setcc f64:$l, f64:$r, cond:$cond)), | 
 |           (setccrr<CMOVDrm> (fcond2cc $cond), (FCMPDrr $l, $r))>; | 
 | def : Pat<(i32 (setcc f128:$l, f128:$r, cond:$cond)), | 
 |           (setccrr<CMOVDrm> (fcond2cc $cond), (FCMPQrr $l, $r))>; | 
 |  | 
 | // Generic CMOV pattern matches | 
 | //   CMOV accepts i64 $t, $f, and result.  So, we extend it to support | 
 | //   i32/f32/f64/f128 $t, $f, and result. | 
 |  | 
 | // CMOV for i32 | 
 | multiclass CMOVI32m<ValueType TY, string Insn> { | 
 |   def : Pat<(i32 (cmov TY:$cmp, i32:$t, i32:$f, (i32 CCOp:$cond))), | 
 |             (EXTRACT_SUBREG | 
 |                 (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp, | 
 |                            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_i32), | 
 |                            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)), | 
 |                 sub_i32)>; | 
 |   def : Pat<(i32 (cmov TY:$cmp, (i32 mimm:$t), i32:$f, (i32 CCOp:$cond))), | 
 |             (EXTRACT_SUBREG | 
 |                 (!cast<Instruction>(Insn#"rm") (CCOP $cond), $cmp, | 
 |                            (MIMM $t), | 
 |                            (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_i32)), | 
 |                 sub_i32)>; | 
 | } | 
 | defm : CMOVI32m<i64, "CMOVL">; | 
 | defm : CMOVI32m<i32, "CMOVW">; | 
 | defm : CMOVI32m<f64, "CMOVD">; | 
 | defm : CMOVI32m<f32, "CMOVS">; | 
 |  | 
 | // CMOV for f32 | 
 | multiclass CMOVF32m<ValueType TY, string Insn> { | 
 |   def : Pat<(f32 (cmov TY:$cmp, f32:$t, f32:$f, (i32 CCOp:$cond))), | 
 |             (EXTRACT_SUBREG | 
 |                 (!cast<Instruction>(Insn#"rr") | 
 |                     (CCOP $cond), $cmp, | 
 |                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $t, sub_f32), | 
 |                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)), | 
 |                 sub_f32)>; | 
 |   def : Pat<(f32 (cmov TY:$cmp, (f32 mimmfp:$t), f32:$f, (i32 CCOp:$cond))), | 
 |             (EXTRACT_SUBREG | 
 |                 (!cast<Instruction>(Insn#"rm") | 
 |                     (CCOP $cond), $cmp, (MIMMFP $t), | 
 |                     (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $f, sub_f32)), | 
 |                 sub_f32)>; | 
 | } | 
 | defm : CMOVF32m<i64, "CMOVL">; | 
 | defm : CMOVF32m<i32, "CMOVW">; | 
 | defm : CMOVF32m<f64, "CMOVD">; | 
 | defm : CMOVF32m<f32, "CMOVS">; | 
 |  | 
 | // CMOV for f64 | 
 | multiclass CMOVF64m<ValueType TY, string Insn> { | 
 |   def : Pat<(f64 (cmov TY:$cmp, f64:$t, f64:$f, (i32 CCOp:$cond))), | 
 |             (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp, $t, $f)>; | 
 |   def : Pat<(f64 (cmov TY:$cmp, (f64 mimmfp:$t), f64:$f, (i32 CCOp:$cond))), | 
 |             (!cast<Instruction>(Insn#"rm") (CCOP $cond), $cmp, (MIMMFP $t), | 
 |                                            $f)>; | 
 | } | 
 | defm : CMOVF64m<i64, "CMOVL">; | 
 | defm : CMOVF64m<i32, "CMOVW">; | 
 | defm : CMOVF64m<f64, "CMOVD">; | 
 | defm : CMOVF64m<f32, "CMOVS">; | 
 |  | 
 | // CMOV for f128 | 
 | multiclass CMOVF128m<ValueType TY, string Insn> { | 
 |   def : Pat<(f128 (cmov TY:$cmp, f128:$t, f128:$f, (i32 CCOp:$cond))), | 
 |             (INSERT_SUBREG | 
 |               (INSERT_SUBREG (f128 (IMPLICIT_DEF)), | 
 |                 (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp, | 
 |                   (EXTRACT_SUBREG $t, sub_odd), | 
 |                   (EXTRACT_SUBREG $f, sub_odd)), sub_odd), | 
 |               (!cast<Instruction>(Insn#"rr") (CCOP $cond), $cmp, | 
 |                 (EXTRACT_SUBREG $t, sub_even), | 
 |                 (EXTRACT_SUBREG $f, sub_even)), sub_even)>; | 
 | } | 
 | defm : CMOVF128m<i64, "CMOVL">; | 
 | defm : CMOVF128m<i32, "CMOVW">; | 
 | defm : CMOVF128m<f64, "CMOVD">; | 
 | defm : CMOVF128m<f32, "CMOVS">; | 
 |  | 
 | // bitconvert | 
 | def : Pat<(f64 (bitconvert i64:$src)), (COPY_TO_REGCLASS $src, I64)>; | 
 | def : Pat<(i64 (bitconvert f64:$src)), (COPY_TO_REGCLASS $src, I64)>; | 
 |  | 
 | def : Pat<(i32 (bitconvert f32:$op)), (l2i (SRALri (f2l $op), 32))>; | 
 | def : Pat<(f32 (bitconvert i32:$op)), (l2f (SLLri (i2l $op), 32))>; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Vector Instruction Pattern Stuff | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Custom intermediate ISDs. | 
 | class IsVLVT<int OpIdx> : SDTCisVT<OpIdx,i32>; | 
 | def vec_broadcast       : SDNode<"VEISD::VEC_BROADCAST", SDTypeProfile<1, 2, | 
 |                                  [SDTCisVec<0>, IsVLVT<2>]>>; | 
 |  | 
 | ///// Packed mode Support ///// | 
 | // unpack the lo part of this vector | 
 | def vec_unpack_lo   : SDNode<"VEISD::VEC_UNPACK_LO", SDTypeProfile<1, 2, | 
 |                              [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>; | 
 | // unpack the hipart of this vector | 
 | def vec_unpack_hi   : SDNode<"VEISD::VEC_UNPACK_HI", SDTypeProfile<1, 2, | 
 |                              [SDTCisVec<0>, SDTCisVec<1>, IsVLVT<2>]>>; | 
 | // re-pack v256i32, v256f32 back into tone v512.32 | 
 | def vec_pack        : SDNode<"VEISD::VEC_PACK", SDTypeProfile<1, 3, | 
 |                              [SDTCisVec<0>, SDTCisVec<1>, SDTCisVec<2>, | 
 |                               SDTCisSameNumEltsAs<1,2>, IsVLVT<3>]>>; | 
 |  | 
 | // replicate lower 32bit to upper 32bit (f32 scalar replication). | 
 | def repl_f32            : SDNode<"VEISD::REPL_F32", | 
 |                             SDTypeProfile<1, 1, | 
 |                               [SDTCisInt<0>, SDTCisFP<1>]>>; | 
 | // replicate upper 32bit to lower 32 bit (i32 scalar replication). | 
 | def repl_i32            : SDNode<"VEISD::REPL_I32", | 
 |                             SDTypeProfile<1, 1, | 
 |                               [SDTCisInt<0>, SDTCisInt<1>]>>; | 
 |  | 
 |  | 
 | // Whether this is an all-true mask (assuming undef-bits above VL are all-true). | 
 | def true_mask           : PatLeaf< | 
 |                             (vec_broadcast (i32 nonzero), (i32 srcvalue))>; | 
 | // Match any broadcast (ignoring VL). | 
 | def any_broadcast       : PatFrag<(ops node:$sx), | 
 |                                   (vec_broadcast node:$sx, (i32 srcvalue))>; | 
 |  | 
 | // Vector instructions. | 
 | include "VEInstrVec.td" | 
 |  | 
 | // The vevlintrin | 
 | include "VEInstrIntrinsicVL.td" | 
 |  | 
 | // Patterns and intermediate SD nodes (VEC_*). | 
 | include "VEInstrPatternsVec.td" | 
 |  | 
 | // Patterns and intermediate SD nodes (VVP_*). | 
 | include "VVPInstrPatternsVec.td" |