| //===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir-c/Dialect/SparseTensor.h" |
| #include "mlir-c/IR.h" |
| #include "mlir/Bindings/Python/PybindAdaptors.h" |
| #include <optional> |
| |
| namespace py = pybind11; |
| using namespace llvm; |
| using namespace mlir; |
| using namespace mlir::python::adaptors; |
| |
| static void populateDialectSparseTensorSubmodule(const py::module &m) { |
| py::enum_<MlirSparseTensorDimLevelType>(m, "DimLevelType", py::module_local()) |
| .value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE) |
| .value("compressed24", MLIR_SPARSE_TENSOR_DIM_LEVEL_TWO_OUT_OF_FOUR) |
| .value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED) |
| .value("compressed-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU) |
| .value("compressed-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO) |
| .value("compressed-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO) |
| .value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON) |
| .value("singleton-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU) |
| .value("singleton-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO) |
| .value("singleton-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO) |
| .value("compressed-hi", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI) |
| .value("compressed-hi-nu", |
| MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NU) |
| .value("compressed-hi-no", |
| MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NO) |
| .value("compressed-hi-nu-no", |
| MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_WITH_HI_NU_NO); |
| |
| mlir_attribute_subclass(m, "EncodingAttr", |
| mlirAttributeIsASparseTensorEncodingAttr) |
| .def_classmethod( |
| "get", |
| [](py::object cls, std::vector<MlirSparseTensorDimLevelType> lvlTypes, |
| std::optional<MlirAffineMap> dimToLvl, int posWidth, int crdWidth, |
| MlirContext context) { |
| return cls(mlirSparseTensorEncodingAttrGet( |
| context, lvlTypes.size(), lvlTypes.data(), |
| dimToLvl ? *dimToLvl : MlirAffineMap{nullptr}, posWidth, |
| crdWidth)); |
| }, |
| py::arg("cls"), py::arg("lvl_types"), py::arg("dim_to_lvl"), |
| py::arg("pos_width"), py::arg("crd_width"), |
| py::arg("context") = py::none(), |
| "Gets a sparse_tensor.encoding from parameters.") |
| .def_property_readonly( |
| "lvl_types", |
| [](MlirAttribute self) { |
| const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self); |
| std::vector<MlirSparseTensorDimLevelType> ret; |
| ret.reserve(lvlRank); |
| for (int l = 0; l < lvlRank; ++l) |
| ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l)); |
| return ret; |
| }) |
| .def_property_readonly( |
| "dim_to_lvl", |
| [](MlirAttribute self) -> std::optional<MlirAffineMap> { |
| MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self); |
| if (mlirAffineMapIsNull(ret)) |
| return {}; |
| return ret; |
| }) |
| .def_property_readonly("pos_width", |
| mlirSparseTensorEncodingAttrGetPosWidth) |
| .def_property_readonly("crd_width", |
| mlirSparseTensorEncodingAttrGetCrdWidth); |
| } |
| |
| PYBIND11_MODULE(_mlirDialectsSparseTensor, m) { |
| m.doc() = "MLIR SparseTensor dialect."; |
| populateDialectSparseTensorSubmodule(m); |
| } |