| //===- DependenceGraphBuilder.cpp ------------------------------------------==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // This file implements common steps of the build algorithm for construction | 
 | // of dependence graphs such as DDG and PDG. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/DependenceGraphBuilder.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/EnumeratedArray.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/ADT/SCCIterator.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/DDG.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "dgb" | 
 |  | 
 | STATISTIC(TotalGraphs, "Number of dependence graphs created."); | 
 | STATISTIC(TotalDefUseEdges, "Number of def-use edges created."); | 
 | STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created."); | 
 | STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created."); | 
 | STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created."); | 
 | STATISTIC(TotalConfusedEdges, | 
 |           "Number of confused memory dependencies between two nodes."); | 
 | STATISTIC(TotalEdgeReversals, | 
 |           "Number of times the source and sink of dependence was reversed to " | 
 |           "expose cycles in the graph."); | 
 |  | 
 | using InstructionListType = SmallVector<Instruction *, 2>; | 
 |  | 
 | //===--------------------------------------------------------------------===// | 
 | // AbstractDependenceGraphBuilder implementation | 
 | //===--------------------------------------------------------------------===// | 
 |  | 
 | template <class G> | 
 | void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() { | 
 |   // The BBList is expected to be in program order. | 
 |   size_t NextOrdinal = 1; | 
 |   for (auto *BB : BBList) | 
 |     for (auto &I : *BB) | 
 |       InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++)); | 
 | } | 
 |  | 
 | template <class G> | 
 | void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() { | 
 |   ++TotalGraphs; | 
 |   assert(IMap.empty() && "Expected empty instruction map at start"); | 
 |   for (BasicBlock *BB : BBList) | 
 |     for (Instruction &I : *BB) { | 
 |       auto &NewNode = createFineGrainedNode(I); | 
 |       IMap.insert(std::make_pair(&I, &NewNode)); | 
 |       NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I))); | 
 |       ++TotalFineGrainedNodes; | 
 |     } | 
 | } | 
 |  | 
 | template <class G> | 
 | void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() { | 
 |   // Create a root node that connects to every connected component of the graph. | 
 |   // This is done to allow graph iterators to visit all the disjoint components | 
 |   // of the graph, in a single walk. | 
 |   // | 
 |   // This algorithm works by going through each node of the graph and for each | 
 |   // node N, do a DFS starting from N. A rooted edge is established between the | 
 |   // root node and N (if N is not yet visited). All the nodes reachable from N | 
 |   // are marked as visited and are skipped in the DFS of subsequent nodes. | 
 |   // | 
 |   // Note: This algorithm tries to limit the number of edges out of the root | 
 |   // node to some extent, but there may be redundant edges created depending on | 
 |   // the iteration order. For example for a graph {A -> B}, an edge from the | 
 |   // root node is added to both nodes if B is visited before A. While it does | 
 |   // not result in minimal number of edges, this approach saves compile-time | 
 |   // while keeping the number of edges in check. | 
 |   auto &RootNode = createRootNode(); | 
 |   df_iterator_default_set<const NodeType *, 4> Visited; | 
 |   for (auto *N : Graph) { | 
 |     if (*N == RootNode) | 
 |       continue; | 
 |     for (auto I : depth_first_ext(N, Visited)) | 
 |       if (I == N) | 
 |         createRootedEdge(RootNode, *N); | 
 |   } | 
 | } | 
 |  | 
 | template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() { | 
 |   if (!shouldCreatePiBlocks()) | 
 |     return; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n"); | 
 |  | 
 |   // The overall algorithm is as follows: | 
 |   // 1. Identify SCCs and for each SCC create a pi-block node containing all | 
 |   //    the nodes in that SCC. | 
 |   // 2. Identify incoming edges incident to the nodes inside of the SCC and | 
 |   //    reconnect them to the pi-block node. | 
 |   // 3. Identify outgoing edges from the nodes inside of the SCC to nodes | 
 |   //    outside of it and reconnect them so that the edges are coming out of the | 
 |   //    SCC node instead. | 
 |  | 
 |   // Adding nodes as we iterate through the SCCs cause the SCC | 
 |   // iterators to get invalidated. To prevent this invalidation, we first | 
 |   // collect a list of nodes that are part of an SCC, and then iterate over | 
 |   // those lists to create the pi-block nodes. Each element of the list is a | 
 |   // list of nodes in an SCC. Note: trivial SCCs containing a single node are | 
 |   // ignored. | 
 |   SmallVector<NodeListType, 4> ListOfSCCs; | 
 |   for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) { | 
 |     if (SCC.size() > 1) | 
 |       ListOfSCCs.emplace_back(SCC.begin(), SCC.end()); | 
 |   } | 
 |  | 
 |   for (NodeListType &NL : ListOfSCCs) { | 
 |     LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size() | 
 |                       << " nodes in it.\n"); | 
 |  | 
 |     // SCC iterator may put the nodes in an order that's different from the | 
 |     // program order. To preserve original program order, we sort the list of | 
 |     // nodes based on ordinal numbers computed earlier. | 
 |     llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) { | 
 |       return getOrdinal(*LHS) < getOrdinal(*RHS); | 
 |     }); | 
 |  | 
 |     NodeType &PiNode = createPiBlock(NL); | 
 |     ++TotalPiBlockNodes; | 
 |  | 
 |     // Build a set to speed up the lookup for edges whose targets | 
 |     // are inside the SCC. | 
 |     SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end()); | 
 |  | 
 |     // We have the set of nodes in the SCC. We go through the set of nodes | 
 |     // that are outside of the SCC and look for edges that cross the two sets. | 
 |     for (NodeType *N : Graph) { | 
 |  | 
 |       // Skip the SCC node and all the nodes inside of it. | 
 |       if (*N == PiNode || NodesInSCC.count(N)) | 
 |         continue; | 
 |  | 
 |       enum Direction { | 
 |         Incoming,      // Incoming edges to the SCC | 
 |         Outgoing,      // Edges going ot of the SCC | 
 |         DirectionCount // To make the enum usable as an array index. | 
 |       }; | 
 |  | 
 |       // Use these flags to help us avoid creating redundant edges. If there | 
 |       // are more than one edges from an outside node to inside nodes, we only | 
 |       // keep one edge from that node to the pi-block node. Similarly, if | 
 |       // there are more than one edges from inside nodes to an outside node, | 
 |       // we only keep one edge from the pi-block node to the outside node. | 
 |       // There is a flag defined for each direction (incoming vs outgoing) and | 
 |       // for each type of edge supported, using a two-dimensional boolean | 
 |       // array. | 
 |       using EdgeKind = typename EdgeType::EdgeKind; | 
 |       EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{false, | 
 |                                                                          false}; | 
 |  | 
 |       auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst, | 
 |                                      const EdgeKind K) { | 
 |         switch (K) { | 
 |         case EdgeKind::RegisterDefUse: | 
 |           createDefUseEdge(Src, Dst); | 
 |           break; | 
 |         case EdgeKind::MemoryDependence: | 
 |           createMemoryEdge(Src, Dst); | 
 |           break; | 
 |         case EdgeKind::Rooted: | 
 |           createRootedEdge(Src, Dst); | 
 |           break; | 
 |         default: | 
 |           llvm_unreachable("Unsupported type of edge."); | 
 |         } | 
 |       }; | 
 |  | 
 |       auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New, | 
 |                                 const Direction Dir) { | 
 |         if (!Src->hasEdgeTo(*Dst)) | 
 |           return; | 
 |         LLVM_DEBUG( | 
 |             dbgs() << "reconnecting(" | 
 |                    << (Dir == Direction::Incoming ? "incoming)" : "outgoing)") | 
 |                    << ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New | 
 |                    << "\n"); | 
 |         assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) && | 
 |                "Invalid direction."); | 
 |  | 
 |         SmallVector<EdgeType *, 10> EL; | 
 |         Src->findEdgesTo(*Dst, EL); | 
 |         for (EdgeType *OldEdge : EL) { | 
 |           EdgeKind Kind = OldEdge->getKind(); | 
 |           if (!EdgeAlreadyCreated[Dir][Kind]) { | 
 |             if (Dir == Direction::Incoming) { | 
 |               createEdgeOfKind(*Src, *New, Kind); | 
 |               LLVM_DEBUG(dbgs() << "created edge from Src to New.\n"); | 
 |             } else if (Dir == Direction::Outgoing) { | 
 |               createEdgeOfKind(*New, *Dst, Kind); | 
 |               LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n"); | 
 |             } | 
 |             EdgeAlreadyCreated[Dir][Kind] = true; | 
 |           } | 
 |           Src->removeEdge(*OldEdge); | 
 |           destroyEdge(*OldEdge); | 
 |           LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n"); | 
 |         } | 
 |       }; | 
 |  | 
 |       for (NodeType *SCCNode : NL) { | 
 |         // Process incoming edges incident to the pi-block node. | 
 |         reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming); | 
 |  | 
 |         // Process edges that are coming out of the pi-block node. | 
 |         reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Ordinal maps are no longer needed. | 
 |   InstOrdinalMap.clear(); | 
 |   NodeOrdinalMap.clear(); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n"); | 
 | } | 
 |  | 
 | template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() { | 
 |   for (NodeType *N : Graph) { | 
 |     InstructionListType SrcIList; | 
 |     N->collectInstructions([](const Instruction *I) { return true; }, SrcIList); | 
 |  | 
 |     // Use a set to mark the targets that we link to N, so we don't add | 
 |     // duplicate def-use edges when more than one instruction in a target node | 
 |     // use results of instructions that are contained in N. | 
 |     SmallPtrSet<NodeType *, 4> VisitedTargets; | 
 |  | 
 |     for (Instruction *II : SrcIList) { | 
 |       for (User *U : II->users()) { | 
 |         Instruction *UI = dyn_cast<Instruction>(U); | 
 |         if (!UI) | 
 |           continue; | 
 |         NodeType *DstNode = nullptr; | 
 |         if (IMap.find(UI) != IMap.end()) | 
 |           DstNode = IMap.find(UI)->second; | 
 |  | 
 |         // In the case of loops, the scope of the subgraph is all the | 
 |         // basic blocks (and instructions within them) belonging to the loop. We | 
 |         // simply ignore all the edges coming from (or going into) instructions | 
 |         // or basic blocks outside of this range. | 
 |         if (!DstNode) { | 
 |           LLVM_DEBUG( | 
 |               dbgs() | 
 |               << "skipped def-use edge since the sink" << *UI | 
 |               << " is outside the range of instructions being considered.\n"); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // Self dependencies are ignored because they are redundant and | 
 |         // uninteresting. | 
 |         if (DstNode == N) { | 
 |           LLVM_DEBUG(dbgs() | 
 |                      << "skipped def-use edge since the sink and the source (" | 
 |                      << N << ") are the same.\n"); | 
 |           continue; | 
 |         } | 
 |  | 
 |         if (VisitedTargets.insert(DstNode).second) { | 
 |           createDefUseEdge(*N, *DstNode); | 
 |           ++TotalDefUseEdges; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <class G> | 
 | void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() { | 
 |   using DGIterator = typename G::iterator; | 
 |   auto isMemoryAccess = [](const Instruction *I) { | 
 |     return I->mayReadOrWriteMemory(); | 
 |   }; | 
 |   for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) { | 
 |     InstructionListType SrcIList; | 
 |     (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList); | 
 |     if (SrcIList.empty()) | 
 |       continue; | 
 |  | 
 |     for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) { | 
 |       if (**SrcIt == **DstIt) | 
 |         continue; | 
 |       InstructionListType DstIList; | 
 |       (*DstIt)->collectInstructions(isMemoryAccess, DstIList); | 
 |       if (DstIList.empty()) | 
 |         continue; | 
 |       bool ForwardEdgeCreated = false; | 
 |       bool BackwardEdgeCreated = false; | 
 |       for (Instruction *ISrc : SrcIList) { | 
 |         for (Instruction *IDst : DstIList) { | 
 |           auto D = DI.depends(ISrc, IDst, true); | 
 |           if (!D) | 
 |             continue; | 
 |  | 
 |           // If we have a dependence with its left-most non-'=' direction | 
 |           // being '>' we need to reverse the direction of the edge, because | 
 |           // the source of the dependence cannot occur after the sink. For | 
 |           // confused dependencies, we will create edges in both directions to | 
 |           // represent the possibility of a cycle. | 
 |  | 
 |           auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) { | 
 |             if (!ForwardEdgeCreated) { | 
 |               createMemoryEdge(Src, Dst); | 
 |               ++TotalMemoryEdges; | 
 |             } | 
 |             if (!BackwardEdgeCreated) { | 
 |               createMemoryEdge(Dst, Src); | 
 |               ++TotalMemoryEdges; | 
 |             } | 
 |             ForwardEdgeCreated = BackwardEdgeCreated = true; | 
 |             ++TotalConfusedEdges; | 
 |           }; | 
 |  | 
 |           auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) { | 
 |             if (!ForwardEdgeCreated) { | 
 |               createMemoryEdge(Src, Dst); | 
 |               ++TotalMemoryEdges; | 
 |             } | 
 |             ForwardEdgeCreated = true; | 
 |           }; | 
 |  | 
 |           auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) { | 
 |             if (!BackwardEdgeCreated) { | 
 |               createMemoryEdge(Dst, Src); | 
 |               ++TotalMemoryEdges; | 
 |             } | 
 |             BackwardEdgeCreated = true; | 
 |           }; | 
 |  | 
 |           if (D->isConfused()) | 
 |             createConfusedEdges(**SrcIt, **DstIt); | 
 |           else if (D->isOrdered() && !D->isLoopIndependent()) { | 
 |             bool ReversedEdge = false; | 
 |             for (unsigned Level = 1; Level <= D->getLevels(); ++Level) { | 
 |               if (D->getDirection(Level) == Dependence::DVEntry::EQ) | 
 |                 continue; | 
 |               else if (D->getDirection(Level) == Dependence::DVEntry::GT) { | 
 |                 createBackwardEdge(**SrcIt, **DstIt); | 
 |                 ReversedEdge = true; | 
 |                 ++TotalEdgeReversals; | 
 |                 break; | 
 |               } else if (D->getDirection(Level) == Dependence::DVEntry::LT) | 
 |                 break; | 
 |               else { | 
 |                 createConfusedEdges(**SrcIt, **DstIt); | 
 |                 break; | 
 |               } | 
 |             } | 
 |             if (!ReversedEdge) | 
 |               createForwardEdge(**SrcIt, **DstIt); | 
 |           } else | 
 |             createForwardEdge(**SrcIt, **DstIt); | 
 |  | 
 |           // Avoid creating duplicate edges. | 
 |           if (ForwardEdgeCreated && BackwardEdgeCreated) | 
 |             break; | 
 |         } | 
 |  | 
 |         // If we've created edges in both directions, there is no more | 
 |         // unique edge that we can create between these two nodes, so we | 
 |         // can exit early. | 
 |         if (ForwardEdgeCreated && BackwardEdgeCreated) | 
 |           break; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <class G> void AbstractDependenceGraphBuilder<G>::simplify() { | 
 |   if (!shouldSimplify()) | 
 |     return; | 
 |   LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n"); | 
 |  | 
 |   // This algorithm works by first collecting a set of candidate nodes that have | 
 |   // an out-degree of one (in terms of def-use edges), and then ignoring those | 
 |   // whose targets have an in-degree more than one. Each node in the resulting | 
 |   // set can then be merged with its corresponding target and put back into the | 
 |   // worklist until no further merge candidates are available. | 
 |   SmallPtrSet<NodeType *, 32> CandidateSourceNodes; | 
 |  | 
 |   // A mapping between nodes and their in-degree. To save space, this map | 
 |   // only contains nodes that are targets of nodes in the CandidateSourceNodes. | 
 |   DenseMap<NodeType *, unsigned> TargetInDegreeMap; | 
 |  | 
 |   for (NodeType *N : Graph) { | 
 |     if (N->getEdges().size() != 1) | 
 |       continue; | 
 |     EdgeType &Edge = N->back(); | 
 |     if (!Edge.isDefUse()) | 
 |       continue; | 
 |     CandidateSourceNodes.insert(N); | 
 |  | 
 |     // Insert an element into the in-degree map and initialize to zero. The | 
 |     // count will get updated in the next step. | 
 |     TargetInDegreeMap.insert({&Edge.getTargetNode(), 0}); | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size() | 
 |            << "\nNode with single outgoing def-use edge:\n"; | 
 |     for (NodeType *N : CandidateSourceNodes) { | 
 |       dbgs() << N << "\n"; | 
 |     } | 
 |   }); | 
 |  | 
 |   for (NodeType *N : Graph) { | 
 |     for (EdgeType *E : *N) { | 
 |       NodeType *Tgt = &E->getTargetNode(); | 
 |       auto TgtIT = TargetInDegreeMap.find(Tgt); | 
 |       if (TgtIT != TargetInDegreeMap.end()) | 
 |         ++(TgtIT->second); | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size() | 
 |            << "\nContent of in-degree map:\n"; | 
 |     for (auto &I : TargetInDegreeMap) { | 
 |       dbgs() << I.first << " --> " << I.second << "\n"; | 
 |     } | 
 |   }); | 
 |  | 
 |   SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(), | 
 |                                        CandidateSourceNodes.end()); | 
 |   while (!Worklist.empty()) { | 
 |     NodeType &Src = *Worklist.pop_back_val(); | 
 |     // As nodes get merged, we need to skip any node that has been removed from | 
 |     // the candidate set (see below). | 
 |     if (!CandidateSourceNodes.erase(&Src)) | 
 |       continue; | 
 |  | 
 |     assert(Src.getEdges().size() == 1 && | 
 |            "Expected a single edge from the candidate src node."); | 
 |     NodeType &Tgt = Src.back().getTargetNode(); | 
 |     assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() && | 
 |            "Expected target to be in the in-degree map."); | 
 |  | 
 |     if (TargetInDegreeMap[&Tgt] != 1) | 
 |       continue; | 
 |  | 
 |     if (!areNodesMergeable(Src, Tgt)) | 
 |       continue; | 
 |  | 
 |     // Do not merge if there is also an edge from target to src (immediate | 
 |     // cycle). | 
 |     if (Tgt.hasEdgeTo(Src)) | 
 |       continue; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n"); | 
 |  | 
 |     mergeNodes(Src, Tgt); | 
 |  | 
 |     // If the target node is in the candidate set itself, we need to put the | 
 |     // src node back into the worklist again so it gives the target a chance | 
 |     // to get merged into it. For example if we have: | 
 |     // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a}, | 
 |     // then after merging (a) and (b) together, we need to put (a,b) back in | 
 |     // the worklist so that (c) can get merged in as well resulting in | 
 |     // {(a,b,c) -> d} | 
 |     // We also need to remove the old target (b), from the worklist. We first | 
 |     // remove it from the candidate set here, and skip any item from the | 
 |     // worklist that is not in the set. | 
 |     if (CandidateSourceNodes.erase(&Tgt)) { | 
 |       Worklist.push_back(&Src); | 
 |       CandidateSourceNodes.insert(&Src); | 
 |       LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n"); | 
 |     } | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n"); | 
 | } | 
 |  | 
 | template <class G> | 
 | void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() { | 
 |  | 
 |   // If we don't create pi-blocks, then we may not have a DAG. | 
 |   if (!shouldCreatePiBlocks()) | 
 |     return; | 
 |  | 
 |   SmallVector<NodeType *, 64> NodesInPO; | 
 |   using NodeKind = typename NodeType::NodeKind; | 
 |   for (NodeType *N : post_order(&Graph)) { | 
 |     if (N->getKind() == NodeKind::PiBlock) { | 
 |       // Put members of the pi-block right after the pi-block itself, for | 
 |       // convenience. | 
 |       const NodeListType &PiBlockMembers = getNodesInPiBlock(*N); | 
 |       llvm::append_range(NodesInPO, PiBlockMembers); | 
 |     } | 
 |     NodesInPO.push_back(N); | 
 |   } | 
 |  | 
 |   size_t OldSize = Graph.Nodes.size(); | 
 |   Graph.Nodes.clear(); | 
 |   append_range(Graph.Nodes, reverse(NodesInPO)); | 
 |   if (Graph.Nodes.size() != OldSize) | 
 |     assert(false && | 
 |            "Expected the number of nodes to stay the same after the sort"); | 
 | } | 
 |  | 
 | template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>; | 
 | template class llvm::DependenceGraphInfo<DDGNode>; |