| //===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains routines that help determine which pointers are captured. | 
 | // A pointer value is captured if the function makes a copy of any part of the | 
 | // pointer that outlives the call.  Not being captured means, more or less, that | 
 | // the pointer is only dereferenced and not stored in a global.  Returning part | 
 | // of the pointer as the function return value may or may not count as capturing | 
 | // the pointer, depending on the context. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/CaptureTracking.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/CFG.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "capture-tracking" | 
 |  | 
 | STATISTIC(NumCaptured,          "Number of pointers maybe captured"); | 
 | STATISTIC(NumNotCaptured,       "Number of pointers not captured"); | 
 | STATISTIC(NumCapturedBefore,    "Number of pointers maybe captured before"); | 
 | STATISTIC(NumNotCapturedBefore, "Number of pointers not captured before"); | 
 |  | 
 | /// The default value for MaxUsesToExplore argument. It's relatively small to | 
 | /// keep the cost of analysis reasonable for clients like BasicAliasAnalysis, | 
 | /// where the results can't be cached. | 
 | /// TODO: we should probably introduce a caching CaptureTracking analysis and | 
 | /// use it where possible. The caching version can use much higher limit or | 
 | /// don't have this cap at all. | 
 | static cl::opt<unsigned> | 
 |     DefaultMaxUsesToExplore("capture-tracking-max-uses-to-explore", cl::Hidden, | 
 |                             cl::desc("Maximal number of uses to explore."), | 
 |                             cl::init(100)); | 
 |  | 
 | unsigned llvm::getDefaultMaxUsesToExploreForCaptureTracking() { | 
 |   return DefaultMaxUsesToExplore; | 
 | } | 
 |  | 
 | CaptureTracker::~CaptureTracker() = default; | 
 |  | 
 | bool CaptureTracker::shouldExplore(const Use *U) { return true; } | 
 |  | 
 | bool CaptureTracker::isDereferenceableOrNull(Value *O, const DataLayout &DL) { | 
 |   // We want comparisons to null pointers to not be considered capturing, | 
 |   // but need to guard against cases like gep(p, -ptrtoint(p2)) == null, | 
 |   // which are equivalent to p == p2 and would capture the pointer. | 
 |   // | 
 |   // A dereferenceable pointer is a case where this is known to be safe, | 
 |   // because the pointer resulting from such a construction would not be | 
 |   // dereferenceable. | 
 |   // | 
 |   // It is not sufficient to check for inbounds GEP here, because GEP with | 
 |   // zero offset is always inbounds. | 
 |   bool CanBeNull, CanBeFreed; | 
 |   return O->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); | 
 | } | 
 |  | 
 | namespace { | 
 |   struct SimpleCaptureTracker : public CaptureTracker { | 
 |     explicit SimpleCaptureTracker( | 
 |  | 
 |         const SmallPtrSetImpl<const Value *> &EphValues, bool ReturnCaptures) | 
 |         : EphValues(EphValues), ReturnCaptures(ReturnCaptures) {} | 
 |  | 
 |     void tooManyUses() override { | 
 |       LLVM_DEBUG(dbgs() << "Captured due to too many uses\n"); | 
 |       Captured = true; | 
 |     } | 
 |  | 
 |     bool captured(const Use *U) override { | 
 |       if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) | 
 |         return false; | 
 |  | 
 |       if (EphValues.contains(U->getUser())) | 
 |         return false; | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "Captured by: " << *U->getUser() << "\n"); | 
 |  | 
 |       Captured = true; | 
 |       return true; | 
 |     } | 
 |  | 
 |     const SmallPtrSetImpl<const Value *> &EphValues; | 
 |  | 
 |     bool ReturnCaptures; | 
 |  | 
 |     bool Captured = false; | 
 |   }; | 
 |  | 
 |   /// Only find pointer captures which happen before the given instruction. Uses | 
 |   /// the dominator tree to determine whether one instruction is before another. | 
 |   /// Only support the case where the Value is defined in the same basic block | 
 |   /// as the given instruction and the use. | 
 |   struct CapturesBefore : public CaptureTracker { | 
 |  | 
 |     CapturesBefore(bool ReturnCaptures, const Instruction *I, | 
 |                    const DominatorTree *DT, bool IncludeI, const LoopInfo *LI) | 
 |         : BeforeHere(I), DT(DT), ReturnCaptures(ReturnCaptures), | 
 |           IncludeI(IncludeI), LI(LI) {} | 
 |  | 
 |     void tooManyUses() override { Captured = true; } | 
 |  | 
 |     bool isSafeToPrune(Instruction *I) { | 
 |       if (BeforeHere == I) | 
 |         return !IncludeI; | 
 |  | 
 |       // We explore this usage only if the usage can reach "BeforeHere". | 
 |       // If use is not reachable from entry, there is no need to explore. | 
 |       if (!DT->isReachableFromEntry(I->getParent())) | 
 |         return true; | 
 |  | 
 |       // Check whether there is a path from I to BeforeHere. | 
 |       return !isPotentiallyReachable(I, BeforeHere, nullptr, DT, LI); | 
 |     } | 
 |  | 
 |     bool captured(const Use *U) override { | 
 |       Instruction *I = cast<Instruction>(U->getUser()); | 
 |       if (isa<ReturnInst>(I) && !ReturnCaptures) | 
 |         return false; | 
 |  | 
 |       // Check isSafeToPrune() here rather than in shouldExplore() to avoid | 
 |       // an expensive reachability query for every instruction we look at. | 
 |       // Instead we only do one for actual capturing candidates. | 
 |       if (isSafeToPrune(I)) | 
 |         return false; | 
 |  | 
 |       Captured = true; | 
 |       return true; | 
 |     } | 
 |  | 
 |     const Instruction *BeforeHere; | 
 |     const DominatorTree *DT; | 
 |  | 
 |     bool ReturnCaptures; | 
 |     bool IncludeI; | 
 |  | 
 |     bool Captured = false; | 
 |  | 
 |     const LoopInfo *LI; | 
 |   }; | 
 |  | 
 |   /// Find the 'earliest' instruction before which the pointer is known not to | 
 |   /// be captured. Here an instruction A is considered earlier than instruction | 
 |   /// B, if A dominates B. If 2 escapes do not dominate each other, the | 
 |   /// terminator of the common dominator is chosen. If not all uses cannot be | 
 |   /// analyzed, the earliest escape is set to the first instruction in the | 
 |   /// function entry block. | 
 |   // NOTE: Users have to make sure instructions compared against the earliest | 
 |   // escape are not in a cycle. | 
 |   struct EarliestCaptures : public CaptureTracker { | 
 |  | 
 |     EarliestCaptures(bool ReturnCaptures, Function &F, const DominatorTree &DT, | 
 |                      const SmallPtrSetImpl<const Value *> &EphValues) | 
 |         : EphValues(EphValues), DT(DT), ReturnCaptures(ReturnCaptures), F(F) {} | 
 |  | 
 |     void tooManyUses() override { | 
 |       Captured = true; | 
 |       EarliestCapture = &*F.getEntryBlock().begin(); | 
 |     } | 
 |  | 
 |     bool captured(const Use *U) override { | 
 |       Instruction *I = cast<Instruction>(U->getUser()); | 
 |       if (isa<ReturnInst>(I) && !ReturnCaptures) | 
 |         return false; | 
 |  | 
 |       if (EphValues.contains(I)) | 
 |         return false; | 
 |  | 
 |       if (!EarliestCapture) | 
 |         EarliestCapture = I; | 
 |       else | 
 |         EarliestCapture = DT.findNearestCommonDominator(EarliestCapture, I); | 
 |       Captured = true; | 
 |  | 
 |       // Return false to continue analysis; we need to see all potential | 
 |       // captures. | 
 |       return false; | 
 |     } | 
 |  | 
 |     const SmallPtrSetImpl<const Value *> &EphValues; | 
 |  | 
 |     Instruction *EarliestCapture = nullptr; | 
 |  | 
 |     const DominatorTree &DT; | 
 |  | 
 |     bool ReturnCaptures; | 
 |  | 
 |     bool Captured = false; | 
 |  | 
 |     Function &F; | 
 |   }; | 
 | } | 
 |  | 
 | /// PointerMayBeCaptured - Return true if this pointer value may be captured | 
 | /// by the enclosing function (which is required to exist).  This routine can | 
 | /// be expensive, so consider caching the results.  The boolean ReturnCaptures | 
 | /// specifies whether returning the value (or part of it) from the function | 
 | /// counts as capturing it or not.  The boolean StoreCaptures specified whether | 
 | /// storing the value (or part of it) into memory anywhere automatically | 
 | /// counts as capturing it or not. | 
 | bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures, | 
 |                                 bool StoreCaptures, unsigned MaxUsesToExplore) { | 
 |   SmallPtrSet<const Value *, 1> Empty; | 
 |   return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, Empty, | 
 |                               MaxUsesToExplore); | 
 | } | 
 |  | 
 | /// Variant of the above function which accepts a set of Values that are | 
 | /// ephemeral and cannot cause pointers to escape. | 
 | bool llvm::PointerMayBeCaptured(const Value *V, bool ReturnCaptures, | 
 |                                 bool StoreCaptures, | 
 |                                 const SmallPtrSetImpl<const Value *> &EphValues, | 
 |                                 unsigned MaxUsesToExplore) { | 
 |   assert(!isa<GlobalValue>(V) && | 
 |          "It doesn't make sense to ask whether a global is captured."); | 
 |  | 
 |   // TODO: If StoreCaptures is not true, we could do Fancy analysis | 
 |   // to determine whether this store is not actually an escape point. | 
 |   // In that case, BasicAliasAnalysis should be updated as well to | 
 |   // take advantage of this. | 
 |   (void)StoreCaptures; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Captured?: " << *V << " = "); | 
 |  | 
 |   SimpleCaptureTracker SCT(EphValues, ReturnCaptures); | 
 |   PointerMayBeCaptured(V, &SCT, MaxUsesToExplore); | 
 |   if (SCT.Captured) | 
 |     ++NumCaptured; | 
 |   else { | 
 |     ++NumNotCaptured; | 
 |     LLVM_DEBUG(dbgs() << "not captured\n"); | 
 |   } | 
 |   return SCT.Captured; | 
 | } | 
 |  | 
 | /// PointerMayBeCapturedBefore - Return true if this pointer value may be | 
 | /// captured by the enclosing function (which is required to exist). If a | 
 | /// DominatorTree is provided, only captures which happen before the given | 
 | /// instruction are considered. This routine can be expensive, so consider | 
 | /// caching the results.  The boolean ReturnCaptures specifies whether | 
 | /// returning the value (or part of it) from the function counts as capturing | 
 | /// it or not.  The boolean StoreCaptures specified whether storing the value | 
 | /// (or part of it) into memory anywhere automatically counts as capturing it | 
 | /// or not. | 
 | bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, | 
 |                                       bool StoreCaptures, const Instruction *I, | 
 |                                       const DominatorTree *DT, bool IncludeI, | 
 |                                       unsigned MaxUsesToExplore, | 
 |                                       const LoopInfo *LI) { | 
 |   assert(!isa<GlobalValue>(V) && | 
 |          "It doesn't make sense to ask whether a global is captured."); | 
 |  | 
 |   if (!DT) | 
 |     return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures, | 
 |                                 MaxUsesToExplore); | 
 |  | 
 |   // TODO: See comment in PointerMayBeCaptured regarding what could be done | 
 |   // with StoreCaptures. | 
 |  | 
 |   CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, LI); | 
 |   PointerMayBeCaptured(V, &CB, MaxUsesToExplore); | 
 |   if (CB.Captured) | 
 |     ++NumCapturedBefore; | 
 |   else | 
 |     ++NumNotCapturedBefore; | 
 |   return CB.Captured; | 
 | } | 
 |  | 
 | Instruction * | 
 | llvm::FindEarliestCapture(const Value *V, Function &F, bool ReturnCaptures, | 
 |                           bool StoreCaptures, const DominatorTree &DT, | 
 |  | 
 |                           const SmallPtrSetImpl<const Value *> &EphValues, | 
 |                           unsigned MaxUsesToExplore) { | 
 |   assert(!isa<GlobalValue>(V) && | 
 |          "It doesn't make sense to ask whether a global is captured."); | 
 |  | 
 |   EarliestCaptures CB(ReturnCaptures, F, DT, EphValues); | 
 |   PointerMayBeCaptured(V, &CB, MaxUsesToExplore); | 
 |   if (CB.Captured) | 
 |     ++NumCapturedBefore; | 
 |   else | 
 |     ++NumNotCapturedBefore; | 
 |   return CB.EarliestCapture; | 
 | } | 
 |  | 
 | UseCaptureKind llvm::DetermineUseCaptureKind( | 
 |     const Use &U, | 
 |     function_ref<bool(Value *, const DataLayout &)> IsDereferenceableOrNull) { | 
 |   Instruction *I = cast<Instruction>(U.getUser()); | 
 |  | 
 |   switch (I->getOpcode()) { | 
 |   case Instruction::Call: | 
 |   case Instruction::Invoke: { | 
 |     auto *Call = cast<CallBase>(I); | 
 |     // Not captured if the callee is readonly, doesn't return a copy through | 
 |     // its return value and doesn't unwind (a readonly function can leak bits | 
 |     // by throwing an exception or not depending on the input value). | 
 |     if (Call->onlyReadsMemory() && Call->doesNotThrow() && | 
 |         Call->getType()->isVoidTy()) | 
 |       return UseCaptureKind::NO_CAPTURE; | 
 |  | 
 |     // The pointer is not captured if returned pointer is not captured. | 
 |     // NOTE: CaptureTracking users should not assume that only functions | 
 |     // marked with nocapture do not capture. This means that places like | 
 |     // getUnderlyingObject in ValueTracking or DecomposeGEPExpression | 
 |     // in BasicAA also need to know about this property. | 
 |     if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call, true)) | 
 |       return UseCaptureKind::PASSTHROUGH; | 
 |  | 
 |     // Volatile operations effectively capture the memory location that they | 
 |     // load and store to. | 
 |     if (auto *MI = dyn_cast<MemIntrinsic>(Call)) | 
 |       if (MI->isVolatile()) | 
 |         return UseCaptureKind::MAY_CAPTURE; | 
 |  | 
 |     // Calling a function pointer does not in itself cause the pointer to | 
 |     // be captured.  This is a subtle point considering that (for example) | 
 |     // the callee might return its own address.  It is analogous to saying | 
 |     // that loading a value from a pointer does not cause the pointer to be | 
 |     // captured, even though the loaded value might be the pointer itself | 
 |     // (think of self-referential objects). | 
 |     if (Call->isCallee(&U)) | 
 |       return UseCaptureKind::NO_CAPTURE; | 
 |  | 
 |     // Not captured if only passed via 'nocapture' arguments. | 
 |     if (Call->isDataOperand(&U) && | 
 |         !Call->doesNotCapture(Call->getDataOperandNo(&U))) { | 
 |       // The parameter is not marked 'nocapture' - captured. | 
 |       return UseCaptureKind::MAY_CAPTURE; | 
 |     } | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   } | 
 |   case Instruction::Load: | 
 |     // Volatile loads make the address observable. | 
 |     if (cast<LoadInst>(I)->isVolatile()) | 
 |       return UseCaptureKind::MAY_CAPTURE; | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   case Instruction::VAArg: | 
 |     // "va-arg" from a pointer does not cause it to be captured. | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   case Instruction::Store: | 
 |     // Stored the pointer - conservatively assume it may be captured. | 
 |     // Volatile stores make the address observable. | 
 |     if (U.getOperandNo() == 0 || cast<StoreInst>(I)->isVolatile()) | 
 |       return UseCaptureKind::MAY_CAPTURE; | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   case Instruction::AtomicRMW: { | 
 |     // atomicrmw conceptually includes both a load and store from | 
 |     // the same location. | 
 |     // As with a store, the location being accessed is not captured, | 
 |     // but the value being stored is. | 
 |     // Volatile stores make the address observable. | 
 |     auto *ARMWI = cast<AtomicRMWInst>(I); | 
 |     if (U.getOperandNo() == 1 || ARMWI->isVolatile()) | 
 |       return UseCaptureKind::MAY_CAPTURE; | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   } | 
 |   case Instruction::AtomicCmpXchg: { | 
 |     // cmpxchg conceptually includes both a load and store from | 
 |     // the same location. | 
 |     // As with a store, the location being accessed is not captured, | 
 |     // but the value being stored is. | 
 |     // Volatile stores make the address observable. | 
 |     auto *ACXI = cast<AtomicCmpXchgInst>(I); | 
 |     if (U.getOperandNo() == 1 || U.getOperandNo() == 2 || ACXI->isVolatile()) | 
 |       return UseCaptureKind::MAY_CAPTURE; | 
 |     return UseCaptureKind::NO_CAPTURE; | 
 |   } | 
 |   case Instruction::BitCast: | 
 |   case Instruction::GetElementPtr: | 
 |   case Instruction::PHI: | 
 |   case Instruction::Select: | 
 |   case Instruction::AddrSpaceCast: | 
 |     // The original value is not captured via this if the new value isn't. | 
 |     return UseCaptureKind::PASSTHROUGH; | 
 |   case Instruction::ICmp: { | 
 |     unsigned Idx = U.getOperandNo(); | 
 |     unsigned OtherIdx = 1 - Idx; | 
 |     if (auto *CPN = dyn_cast<ConstantPointerNull>(I->getOperand(OtherIdx))) { | 
 |       // Don't count comparisons of a no-alias return value against null as | 
 |       // captures. This allows us to ignore comparisons of malloc results | 
 |       // with null, for example. | 
 |       if (CPN->getType()->getAddressSpace() == 0) | 
 |         if (isNoAliasCall(U.get()->stripPointerCasts())) | 
 |           return UseCaptureKind::NO_CAPTURE; | 
 |       if (!I->getFunction()->nullPointerIsDefined()) { | 
 |         auto *O = I->getOperand(Idx)->stripPointerCastsSameRepresentation(); | 
 |         // Comparing a dereferenceable_or_null pointer against null cannot | 
 |         // lead to pointer escapes, because if it is not null it must be a | 
 |         // valid (in-bounds) pointer. | 
 |         const DataLayout &DL = I->getModule()->getDataLayout(); | 
 |         if (IsDereferenceableOrNull && IsDereferenceableOrNull(O, DL)) | 
 |           return UseCaptureKind::NO_CAPTURE; | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise, be conservative. There are crazy ways to capture pointers | 
 |     // using comparisons. | 
 |     return UseCaptureKind::MAY_CAPTURE; | 
 |   } | 
 |   default: | 
 |     // Something else - be conservative and say it is captured. | 
 |     return UseCaptureKind::MAY_CAPTURE; | 
 |   } | 
 | } | 
 |  | 
 | void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker, | 
 |                                 unsigned MaxUsesToExplore) { | 
 |   assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); | 
 |   if (MaxUsesToExplore == 0) | 
 |     MaxUsesToExplore = DefaultMaxUsesToExplore; | 
 |  | 
 |   SmallVector<const Use *, 20> Worklist; | 
 |   Worklist.reserve(getDefaultMaxUsesToExploreForCaptureTracking()); | 
 |   SmallSet<const Use *, 20> Visited; | 
 |  | 
 |   auto AddUses = [&](const Value *V) { | 
 |     for (const Use &U : V->uses()) { | 
 |       // If there are lots of uses, conservatively say that the value | 
 |       // is captured to avoid taking too much compile time. | 
 |       if (Visited.size()  >= MaxUsesToExplore) { | 
 |         Tracker->tooManyUses(); | 
 |         return false; | 
 |       } | 
 |       if (!Visited.insert(&U).second) | 
 |         continue; | 
 |       if (!Tracker->shouldExplore(&U)) | 
 |         continue; | 
 |       Worklist.push_back(&U); | 
 |     } | 
 |     return true; | 
 |   }; | 
 |   if (!AddUses(V)) | 
 |     return; | 
 |  | 
 |   auto IsDereferenceableOrNull = [Tracker](Value *V, const DataLayout &DL) { | 
 |     return Tracker->isDereferenceableOrNull(V, DL); | 
 |   }; | 
 |   while (!Worklist.empty()) { | 
 |     const Use *U = Worklist.pop_back_val(); | 
 |     switch (DetermineUseCaptureKind(*U, IsDereferenceableOrNull)) { | 
 |     case UseCaptureKind::NO_CAPTURE: | 
 |       continue; | 
 |     case UseCaptureKind::MAY_CAPTURE: | 
 |       if (Tracker->captured(U)) | 
 |         return; | 
 |       continue; | 
 |     case UseCaptureKind::PASSTHROUGH: | 
 |       if (!AddUses(U->getUser())) | 
 |         return; | 
 |       continue; | 
 |     } | 
 |   } | 
 |  | 
 |   // All uses examined. | 
 | } | 
 |  | 
 | bool llvm::isNonEscapingLocalObject( | 
 |     const Value *V, SmallDenseMap<const Value *, bool, 8> *IsCapturedCache) { | 
 |   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt; | 
 |   if (IsCapturedCache) { | 
 |     bool Inserted; | 
 |     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); | 
 |     if (!Inserted) | 
 |       // Found cached result, return it! | 
 |       return CacheIt->second; | 
 |   } | 
 |  | 
 |   // If this is an identified function-local object, check to see if it escapes. | 
 |   if (isIdentifiedFunctionLocal(V)) { | 
 |     // Set StoreCaptures to True so that we can assume in our callers that the | 
 |     // pointer is not the result of a load instruction. Currently | 
 |     // PointerMayBeCaptured doesn't have any special analysis for the | 
 |     // StoreCaptures=false case; if it did, our callers could be refined to be | 
 |     // more precise. | 
 |     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); | 
 |     if (IsCapturedCache) | 
 |       CacheIt->second = Ret; | 
 |     return Ret; | 
 |   } | 
 |  | 
 |   return false; | 
 | } |