| //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Loops should be simplified before this analysis. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SCCIterator.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/Support/BlockFrequency.h" | 
 | #include "llvm/Support/BranchProbability.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/ScaledNumber.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <list> | 
 | #include <numeric> | 
 | #include <optional> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::bfi_detail; | 
 |  | 
 | #define DEBUG_TYPE "block-freq" | 
 |  | 
 | namespace llvm { | 
 | cl::opt<bool> CheckBFIUnknownBlockQueries( | 
 |     "check-bfi-unknown-block-queries", | 
 |     cl::init(false), cl::Hidden, | 
 |     cl::desc("Check if block frequency is queried for an unknown block " | 
 |              "for debugging missed BFI updates")); | 
 |  | 
 | cl::opt<bool> UseIterativeBFIInference( | 
 |     "use-iterative-bfi-inference", cl::Hidden, | 
 |     cl::desc("Apply an iterative post-processing to infer correct BFI counts")); | 
 |  | 
 | cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock( | 
 |     "iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden, | 
 |     cl::desc("Iterative inference: maximum number of update iterations " | 
 |              "per block")); | 
 |  | 
 | cl::opt<double> IterativeBFIPrecision( | 
 |     "iterative-bfi-precision", cl::init(1e-12), cl::Hidden, | 
 |     cl::desc("Iterative inference: delta convergence precision; smaller values " | 
 |              "typically lead to better results at the cost of worsen runtime")); | 
 | } // namespace llvm | 
 |  | 
 | ScaledNumber<uint64_t> BlockMass::toScaled() const { | 
 |   if (isFull()) | 
 |     return ScaledNumber<uint64_t>(1, 0); | 
 |   return ScaledNumber<uint64_t>(getMass() + 1, -64); | 
 | } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } | 
 | #endif | 
 |  | 
 | static char getHexDigit(int N) { | 
 |   assert(N < 16); | 
 |   if (N < 10) | 
 |     return '0' + N; | 
 |   return 'a' + N - 10; | 
 | } | 
 |  | 
 | raw_ostream &BlockMass::print(raw_ostream &OS) const { | 
 |   for (int Digits = 0; Digits < 16; ++Digits) | 
 |     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); | 
 |   return OS; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | using BlockNode = BlockFrequencyInfoImplBase::BlockNode; | 
 | using Distribution = BlockFrequencyInfoImplBase::Distribution; | 
 | using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; | 
 | using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; | 
 | using LoopData = BlockFrequencyInfoImplBase::LoopData; | 
 | using Weight = BlockFrequencyInfoImplBase::Weight; | 
 | using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; | 
 |  | 
 | /// Dithering mass distributer. | 
 | /// | 
 | /// This class splits up a single mass into portions by weight, dithering to | 
 | /// spread out error.  No mass is lost.  The dithering precision depends on the | 
 | /// precision of the product of \a BlockMass and \a BranchProbability. | 
 | /// | 
 | /// The distribution algorithm follows. | 
 | /// | 
 | ///  1. Initialize by saving the sum of the weights in \a RemWeight and the | 
 | ///     mass to distribute in \a RemMass. | 
 | /// | 
 | ///  2. For each portion: | 
 | /// | 
 | ///      1. Construct a branch probability, P, as the portion's weight divided | 
 | ///         by the current value of \a RemWeight. | 
 | ///      2. Calculate the portion's mass as \a RemMass times P. | 
 | ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting | 
 | ///         the current portion's weight and mass. | 
 | struct DitheringDistributer { | 
 |   uint32_t RemWeight; | 
 |   BlockMass RemMass; | 
 |  | 
 |   DitheringDistributer(Distribution &Dist, const BlockMass &Mass); | 
 |  | 
 |   BlockMass takeMass(uint32_t Weight); | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | DitheringDistributer::DitheringDistributer(Distribution &Dist, | 
 |                                            const BlockMass &Mass) { | 
 |   Dist.normalize(); | 
 |   RemWeight = Dist.Total; | 
 |   RemMass = Mass; | 
 | } | 
 |  | 
 | BlockMass DitheringDistributer::takeMass(uint32_t Weight) { | 
 |   assert(Weight && "invalid weight"); | 
 |   assert(Weight <= RemWeight); | 
 |   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); | 
 |  | 
 |   // Decrement totals (dither). | 
 |   RemWeight -= Weight; | 
 |   RemMass -= Mass; | 
 |   return Mass; | 
 | } | 
 |  | 
 | void Distribution::add(const BlockNode &Node, uint64_t Amount, | 
 |                        Weight::DistType Type) { | 
 |   assert(Amount && "invalid weight of 0"); | 
 |   uint64_t NewTotal = Total + Amount; | 
 |  | 
 |   // Check for overflow.  It should be impossible to overflow twice. | 
 |   bool IsOverflow = NewTotal < Total; | 
 |   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); | 
 |   DidOverflow |= IsOverflow; | 
 |  | 
 |   // Update the total. | 
 |   Total = NewTotal; | 
 |  | 
 |   // Save the weight. | 
 |   Weights.push_back(Weight(Type, Node, Amount)); | 
 | } | 
 |  | 
 | static void combineWeight(Weight &W, const Weight &OtherW) { | 
 |   assert(OtherW.TargetNode.isValid()); | 
 |   if (!W.Amount) { | 
 |     W = OtherW; | 
 |     return; | 
 |   } | 
 |   assert(W.Type == OtherW.Type); | 
 |   assert(W.TargetNode == OtherW.TargetNode); | 
 |   assert(OtherW.Amount && "Expected non-zero weight"); | 
 |   if (W.Amount > W.Amount + OtherW.Amount) | 
 |     // Saturate on overflow. | 
 |     W.Amount = UINT64_MAX; | 
 |   else | 
 |     W.Amount += OtherW.Amount; | 
 | } | 
 |  | 
 | static void combineWeightsBySorting(WeightList &Weights) { | 
 |   // Sort so edges to the same node are adjacent. | 
 |   llvm::sort(Weights, [](const Weight &L, const Weight &R) { | 
 |     return L.TargetNode < R.TargetNode; | 
 |   }); | 
 |  | 
 |   // Combine adjacent edges. | 
 |   WeightList::iterator O = Weights.begin(); | 
 |   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; | 
 |        ++O, (I = L)) { | 
 |     *O = *I; | 
 |  | 
 |     // Find the adjacent weights to the same node. | 
 |     for (++L; L != E && I->TargetNode == L->TargetNode; ++L) | 
 |       combineWeight(*O, *L); | 
 |   } | 
 |  | 
 |   // Erase extra entries. | 
 |   Weights.erase(O, Weights.end()); | 
 | } | 
 |  | 
 | static void combineWeightsByHashing(WeightList &Weights) { | 
 |   // Collect weights into a DenseMap. | 
 |   using HashTable = DenseMap<BlockNode::IndexType, Weight>; | 
 |  | 
 |   HashTable Combined(NextPowerOf2(2 * Weights.size())); | 
 |   for (const Weight &W : Weights) | 
 |     combineWeight(Combined[W.TargetNode.Index], W); | 
 |  | 
 |   // Check whether anything changed. | 
 |   if (Weights.size() == Combined.size()) | 
 |     return; | 
 |  | 
 |   // Fill in the new weights. | 
 |   Weights.clear(); | 
 |   Weights.reserve(Combined.size()); | 
 |   for (const auto &I : Combined) | 
 |     Weights.push_back(I.second); | 
 | } | 
 |  | 
 | static void combineWeights(WeightList &Weights) { | 
 |   // Use a hash table for many successors to keep this linear. | 
 |   if (Weights.size() > 128) { | 
 |     combineWeightsByHashing(Weights); | 
 |     return; | 
 |   } | 
 |  | 
 |   combineWeightsBySorting(Weights); | 
 | } | 
 |  | 
 | static uint64_t shiftRightAndRound(uint64_t N, int Shift) { | 
 |   assert(Shift >= 0); | 
 |   assert(Shift < 64); | 
 |   if (!Shift) | 
 |     return N; | 
 |   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); | 
 | } | 
 |  | 
 | void Distribution::normalize() { | 
 |   // Early exit for termination nodes. | 
 |   if (Weights.empty()) | 
 |     return; | 
 |  | 
 |   // Only bother if there are multiple successors. | 
 |   if (Weights.size() > 1) | 
 |     combineWeights(Weights); | 
 |  | 
 |   // Early exit when combined into a single successor. | 
 |   if (Weights.size() == 1) { | 
 |     Total = 1; | 
 |     Weights.front().Amount = 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Determine how much to shift right so that the total fits into 32-bits. | 
 |   // | 
 |   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1 | 
 |   // for each weight can cause a 32-bit overflow. | 
 |   int Shift = 0; | 
 |   if (DidOverflow) | 
 |     Shift = 33; | 
 |   else if (Total > UINT32_MAX) | 
 |     Shift = 33 - llvm::countl_zero(Total); | 
 |  | 
 |   // Early exit if nothing needs to be scaled. | 
 |   if (!Shift) { | 
 |     // If we didn't overflow then combineWeights() shouldn't have changed the | 
 |     // sum of the weights, but let's double-check. | 
 |     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), | 
 |                                     [](uint64_t Sum, const Weight &W) { | 
 |                       return Sum + W.Amount; | 
 |                     }) && | 
 |            "Expected total to be correct"); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Recompute the total through accumulation (rather than shifting it) so that | 
 |   // it's accurate after shifting and any changes combineWeights() made above. | 
 |   Total = 0; | 
 |  | 
 |   // Sum the weights to each node and shift right if necessary. | 
 |   for (Weight &W : Weights) { | 
 |     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we | 
 |     // can round here without concern about overflow. | 
 |     assert(W.TargetNode.isValid()); | 
 |     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); | 
 |     assert(W.Amount <= UINT32_MAX); | 
 |  | 
 |     // Update the total. | 
 |     Total += W.Amount; | 
 |   } | 
 |   assert(Total <= UINT32_MAX); | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::clear() { | 
 |   // Swap with a default-constructed std::vector, since std::vector<>::clear() | 
 |   // does not actually clear heap storage. | 
 |   std::vector<FrequencyData>().swap(Freqs); | 
 |   IsIrrLoopHeader.clear(); | 
 |   std::vector<WorkingData>().swap(Working); | 
 |   Loops.clear(); | 
 | } | 
 |  | 
 | /// Clear all memory not needed downstream. | 
 | /// | 
 | /// Releases all memory not used downstream.  In particular, saves Freqs. | 
 | static void cleanup(BlockFrequencyInfoImplBase &BFI) { | 
 |   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); | 
 |   SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader)); | 
 |   BFI.clear(); | 
 |   BFI.Freqs = std::move(SavedFreqs); | 
 |   BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); | 
 | } | 
 |  | 
 | bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, | 
 |                                            const LoopData *OuterLoop, | 
 |                                            const BlockNode &Pred, | 
 |                                            const BlockNode &Succ, | 
 |                                            uint64_t Weight) { | 
 |   if (!Weight) | 
 |     Weight = 1; | 
 |  | 
 |   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { | 
 |     return OuterLoop && OuterLoop->isHeader(Node); | 
 |   }; | 
 |  | 
 |   BlockNode Resolved = Working[Succ.Index].getResolvedNode(); | 
 |  | 
 | #ifndef NDEBUG | 
 |   auto debugSuccessor = [&](const char *Type) { | 
 |     dbgs() << "  =>" | 
 |            << " [" << Type << "] weight = " << Weight; | 
 |     if (!isLoopHeader(Resolved)) | 
 |       dbgs() << ", succ = " << getBlockName(Succ); | 
 |     if (Resolved != Succ) | 
 |       dbgs() << ", resolved = " << getBlockName(Resolved); | 
 |     dbgs() << "\n"; | 
 |   }; | 
 |   (void)debugSuccessor; | 
 | #endif | 
 |  | 
 |   if (isLoopHeader(Resolved)) { | 
 |     LLVM_DEBUG(debugSuccessor("backedge")); | 
 |     Dist.addBackedge(Resolved, Weight); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { | 
 |     LLVM_DEBUG(debugSuccessor("  exit  ")); | 
 |     Dist.addExit(Resolved, Weight); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Resolved < Pred) { | 
 |     if (!isLoopHeader(Pred)) { | 
 |       // If OuterLoop is an irreducible loop, we can't actually handle this. | 
 |       assert((!OuterLoop || !OuterLoop->isIrreducible()) && | 
 |              "unhandled irreducible control flow"); | 
 |  | 
 |       // Irreducible backedge.  Abort. | 
 |       LLVM_DEBUG(debugSuccessor("abort!!!")); | 
 |       return false; | 
 |     } | 
 |  | 
 |     // If "Pred" is a loop header, then this isn't really a backedge; rather, | 
 |     // OuterLoop must be irreducible.  These false backedges can come only from | 
 |     // secondary loop headers. | 
 |     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && | 
 |            "unhandled irreducible control flow"); | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(debugSuccessor(" local  ")); | 
 |   Dist.addLocal(Resolved, Weight); | 
 |   return true; | 
 | } | 
 |  | 
 | bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( | 
 |     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { | 
 |   // Copy the exit map into Dist. | 
 |   for (const auto &I : Loop.Exits) | 
 |     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, | 
 |                    I.second.getMass())) | 
 |       // Irreducible backedge. | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Compute the loop scale for a loop. | 
 | void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { | 
 |   // Compute loop scale. | 
 |   LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); | 
 |  | 
 |   // Infinite loops need special handling. If we give the back edge an infinite | 
 |   // mass, they may saturate all the other scales in the function down to 1, | 
 |   // making all the other region temperatures look exactly the same. Choose an | 
 |   // arbitrary scale to avoid these issues. | 
 |   // | 
 |   // FIXME: An alternate way would be to select a symbolic scale which is later | 
 |   // replaced to be the maximum of all computed scales plus 1. This would | 
 |   // appropriately describe the loop as having a large scale, without skewing | 
 |   // the final frequency computation. | 
 |   const Scaled64 InfiniteLoopScale(1, 12); | 
 |  | 
 |   // LoopScale == 1 / ExitMass | 
 |   // ExitMass == HeadMass - BackedgeMass | 
 |   BlockMass TotalBackedgeMass; | 
 |   for (auto &Mass : Loop.BackedgeMass) | 
 |     TotalBackedgeMass += Mass; | 
 |   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; | 
 |  | 
 |   // Block scale stores the inverse of the scale. If this is an infinite loop, | 
 |   // its exit mass will be zero. In this case, use an arbitrary scale for the | 
 |   // loop scale. | 
 |   Loop.Scale = | 
 |       ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" | 
 |                     << BlockMass::getFull() << " - " << TotalBackedgeMass | 
 |                     << ")\n" | 
 |                     << " - scale = " << Loop.Scale << "\n"); | 
 | } | 
 |  | 
 | /// Package up a loop. | 
 | void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { | 
 |   LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); | 
 |  | 
 |   // Clear the subloop exits to prevent quadratic memory usage. | 
 |   for (const BlockNode &M : Loop.Nodes) { | 
 |     if (auto *Loop = Working[M.Index].getPackagedLoop()) | 
 |       Loop->Exits.clear(); | 
 |     LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); | 
 |   } | 
 |   Loop.IsPackaged = true; | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static void debugAssign(const BlockFrequencyInfoImplBase &BFI, | 
 |                         const DitheringDistributer &D, const BlockNode &T, | 
 |                         const BlockMass &M, const char *Desc) { | 
 |   dbgs() << "  => assign " << M << " (" << D.RemMass << ")"; | 
 |   if (Desc) | 
 |     dbgs() << " [" << Desc << "]"; | 
 |   if (T.isValid()) | 
 |     dbgs() << " to " << BFI.getBlockName(T); | 
 |   dbgs() << "\n"; | 
 | } | 
 | #endif | 
 |  | 
 | void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, | 
 |                                                 LoopData *OuterLoop, | 
 |                                                 Distribution &Dist) { | 
 |   BlockMass Mass = Working[Source.Index].getMass(); | 
 |   LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n"); | 
 |  | 
 |   // Distribute mass to successors as laid out in Dist. | 
 |   DitheringDistributer D(Dist, Mass); | 
 |  | 
 |   for (const Weight &W : Dist.Weights) { | 
 |     // Check for a local edge (non-backedge and non-exit). | 
 |     BlockMass Taken = D.takeMass(W.Amount); | 
 |     if (W.Type == Weight::Local) { | 
 |       Working[W.TargetNode.Index].getMass() += Taken; | 
 |       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Backedges and exits only make sense if we're processing a loop. | 
 |     assert(OuterLoop && "backedge or exit outside of loop"); | 
 |  | 
 |     // Check for a backedge. | 
 |     if (W.Type == Weight::Backedge) { | 
 |       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; | 
 |       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // This must be an exit. | 
 |     assert(W.Type == Weight::Exit); | 
 |     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); | 
 |     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); | 
 |   } | 
 | } | 
 |  | 
 | static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, | 
 |                                      const Scaled64 &Min, const Scaled64 &Max) { | 
 |   // Scale the Factor to a size that creates integers.  Ideally, integers would | 
 |   // be scaled so that Max == UINT64_MAX so that they can be best | 
 |   // differentiated.  However, in the presence of large frequency values, small | 
 |   // frequencies are scaled down to 1, making it impossible to differentiate | 
 |   // small, unequal numbers. When the spread between Min and Max frequencies | 
 |   // fits well within MaxBits, we make the scale be at least 8. | 
 |   const unsigned MaxBits = 64; | 
 |   const unsigned SpreadBits = (Max / Min).lg(); | 
 |   Scaled64 ScalingFactor; | 
 |   if (SpreadBits <= MaxBits - 3) { | 
 |     // If the values are small enough, make the scaling factor at least 8 to | 
 |     // allow distinguishing small values. | 
 |     ScalingFactor = Min.inverse(); | 
 |     ScalingFactor <<= 3; | 
 |   } else { | 
 |     // If the values need more than MaxBits to be represented, saturate small | 
 |     // frequency values down to 1 by using a scaling factor that benefits large | 
 |     // frequency values. | 
 |     ScalingFactor = Scaled64(1, MaxBits) / Max; | 
 |   } | 
 |  | 
 |   // Translate the floats to integers. | 
 |   LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max | 
 |                     << ", factor = " << ScalingFactor << "\n"); | 
 |   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { | 
 |     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; | 
 |     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); | 
 |     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " | 
 |                       << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled | 
 |                       << ", int = " << BFI.Freqs[Index].Integer << "\n"); | 
 |   } | 
 | } | 
 |  | 
 | /// Unwrap a loop package. | 
 | /// | 
 | /// Visits all the members of a loop, adjusting their BlockData according to | 
 | /// the loop's pseudo-node. | 
 | static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { | 
 |   LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) | 
 |                     << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale | 
 |                     << "\n"); | 
 |   Loop.Scale *= Loop.Mass.toScaled(); | 
 |   Loop.IsPackaged = false; | 
 |   LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n"); | 
 |  | 
 |   // Propagate the head scale through the loop.  Since members are visited in | 
 |   // RPO, the head scale will be updated by the loop scale first, and then the | 
 |   // final head scale will be used for updated the rest of the members. | 
 |   for (const BlockNode &N : Loop.Nodes) { | 
 |     const auto &Working = BFI.Working[N.Index]; | 
 |     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale | 
 |                                        : BFI.Freqs[N.Index].Scaled; | 
 |     Scaled64 New = Loop.Scale * F; | 
 |     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " | 
 |                       << New << "\n"); | 
 |     F = New; | 
 |   } | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::unwrapLoops() { | 
 |   // Set initial frequencies from loop-local masses. | 
 |   for (size_t Index = 0; Index < Working.size(); ++Index) | 
 |     Freqs[Index].Scaled = Working[Index].Mass.toScaled(); | 
 |  | 
 |   for (LoopData &Loop : Loops) | 
 |     unwrapLoop(*this, Loop); | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::finalizeMetrics() { | 
 |   // Unwrap loop packages in reverse post-order, tracking min and max | 
 |   // frequencies. | 
 |   auto Min = Scaled64::getLargest(); | 
 |   auto Max = Scaled64::getZero(); | 
 |   for (size_t Index = 0; Index < Working.size(); ++Index) { | 
 |     // Update min/max scale. | 
 |     Min = std::min(Min, Freqs[Index].Scaled); | 
 |     Max = std::max(Max, Freqs[Index].Scaled); | 
 |   } | 
 |  | 
 |   // Convert to integers. | 
 |   convertFloatingToInteger(*this, Min, Max); | 
 |  | 
 |   // Clean up data structures. | 
 |   cleanup(*this); | 
 |  | 
 |   // Print out the final stats. | 
 |   LLVM_DEBUG(dump()); | 
 | } | 
 |  | 
 | BlockFrequency | 
 | BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { | 
 |   if (!Node.isValid()) { | 
 | #ifndef NDEBUG | 
 |     if (CheckBFIUnknownBlockQueries) { | 
 |       SmallString<256> Msg; | 
 |       raw_svector_ostream OS(Msg); | 
 |       OS << "*** Detected BFI query for unknown block " << getBlockName(Node); | 
 |       report_fatal_error(OS.str()); | 
 |     } | 
 | #endif | 
 |     return 0; | 
 |   } | 
 |   return Freqs[Node.Index].Integer; | 
 | } | 
 |  | 
 | std::optional<uint64_t> | 
 | BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, | 
 |                                                  const BlockNode &Node, | 
 |                                                  bool AllowSynthetic) const { | 
 |   return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(), | 
 |                                  AllowSynthetic); | 
 | } | 
 |  | 
 | std::optional<uint64_t> | 
 | BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, | 
 |                                                     uint64_t Freq, | 
 |                                                     bool AllowSynthetic) const { | 
 |   auto EntryCount = F.getEntryCount(AllowSynthetic); | 
 |   if (!EntryCount) | 
 |     return std::nullopt; | 
 |   // Use 128 bit APInt to do the arithmetic to avoid overflow. | 
 |   APInt BlockCount(128, EntryCount->getCount()); | 
 |   APInt BlockFreq(128, Freq); | 
 |   APInt EntryFreq(128, getEntryFreq()); | 
 |   BlockCount *= BlockFreq; | 
 |   // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned | 
 |   // lshr by 1 gives EntryFreq/2. | 
 |   BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq); | 
 |   return BlockCount.getLimitedValue(); | 
 | } | 
 |  | 
 | bool | 
 | BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) { | 
 |   if (!Node.isValid()) | 
 |     return false; | 
 |   return IsIrrLoopHeader.test(Node.Index); | 
 | } | 
 |  | 
 | Scaled64 | 
 | BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { | 
 |   if (!Node.isValid()) | 
 |     return Scaled64::getZero(); | 
 |   return Freqs[Node.Index].Scaled; | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, | 
 |                                               uint64_t Freq) { | 
 |   assert(Node.isValid() && "Expected valid node"); | 
 |   assert(Node.Index < Freqs.size() && "Expected legal index"); | 
 |   Freqs[Node.Index].Integer = Freq; | 
 | } | 
 |  | 
 | std::string | 
 | BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { | 
 |   return {}; | 
 | } | 
 |  | 
 | std::string | 
 | BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { | 
 |   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); | 
 | } | 
 |  | 
 | raw_ostream & | 
 | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, | 
 |                                            const BlockNode &Node) const { | 
 |   return OS << getFloatingBlockFreq(Node); | 
 | } | 
 |  | 
 | raw_ostream & | 
 | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, | 
 |                                            const BlockFrequency &Freq) const { | 
 |   Scaled64 Block(Freq.getFrequency(), 0); | 
 |   Scaled64 Entry(getEntryFreq(), 0); | 
 |  | 
 |   return OS << Block / Entry; | 
 | } | 
 |  | 
 | void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { | 
 |   Start = OuterLoop.getHeader(); | 
 |   Nodes.reserve(OuterLoop.Nodes.size()); | 
 |   for (auto N : OuterLoop.Nodes) | 
 |     addNode(N); | 
 |   indexNodes(); | 
 | } | 
 |  | 
 | void IrreducibleGraph::addNodesInFunction() { | 
 |   Start = 0; | 
 |   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) | 
 |     if (!BFI.Working[Index].isPackaged()) | 
 |       addNode(Index); | 
 |   indexNodes(); | 
 | } | 
 |  | 
 | void IrreducibleGraph::indexNodes() { | 
 |   for (auto &I : Nodes) | 
 |     Lookup[I.Node.Index] = &I; | 
 | } | 
 |  | 
 | void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, | 
 |                                const BFIBase::LoopData *OuterLoop) { | 
 |   if (OuterLoop && OuterLoop->isHeader(Succ)) | 
 |     return; | 
 |   auto L = Lookup.find(Succ.Index); | 
 |   if (L == Lookup.end()) | 
 |     return; | 
 |   IrrNode &SuccIrr = *L->second; | 
 |   Irr.Edges.push_back(&SuccIrr); | 
 |   SuccIrr.Edges.push_front(&Irr); | 
 |   ++SuccIrr.NumIn; | 
 | } | 
 |  | 
 | namespace llvm { | 
 |  | 
 | template <> struct GraphTraits<IrreducibleGraph> { | 
 |   using GraphT = bfi_detail::IrreducibleGraph; | 
 |   using NodeRef = const GraphT::IrrNode *; | 
 |   using ChildIteratorType = GraphT::IrrNode::iterator; | 
 |  | 
 |   static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } | 
 |   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } | 
 |   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } | 
 | }; | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | /// Find extra irreducible headers. | 
 | /// | 
 | /// Find entry blocks and other blocks with backedges, which exist when \c G | 
 | /// contains irreducible sub-SCCs. | 
 | static void findIrreducibleHeaders( | 
 |     const BlockFrequencyInfoImplBase &BFI, | 
 |     const IrreducibleGraph &G, | 
 |     const std::vector<const IrreducibleGraph::IrrNode *> &SCC, | 
 |     LoopData::NodeList &Headers, LoopData::NodeList &Others) { | 
 |   // Map from nodes in the SCC to whether it's an entry block. | 
 |   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; | 
 |  | 
 |   // InSCC also acts the set of nodes in the graph.  Seed it. | 
 |   for (const auto *I : SCC) | 
 |     InSCC[I] = false; | 
 |  | 
 |   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { | 
 |     auto &Irr = *I->first; | 
 |     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { | 
 |       if (InSCC.count(P)) | 
 |         continue; | 
 |  | 
 |       // This is an entry block. | 
 |       I->second = true; | 
 |       Headers.push_back(Irr.Node); | 
 |       LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) | 
 |                         << "\n"); | 
 |       break; | 
 |     } | 
 |   } | 
 |   assert(Headers.size() >= 2 && | 
 |          "Expected irreducible CFG; -loop-info is likely invalid"); | 
 |   if (Headers.size() == InSCC.size()) { | 
 |     // Every block is a header. | 
 |     llvm::sort(Headers); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Look for extra headers from irreducible sub-SCCs. | 
 |   for (const auto &I : InSCC) { | 
 |     // Entry blocks are already headers. | 
 |     if (I.second) | 
 |       continue; | 
 |  | 
 |     auto &Irr = *I.first; | 
 |     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { | 
 |       // Skip forward edges. | 
 |       if (P->Node < Irr.Node) | 
 |         continue; | 
 |  | 
 |       // Skip predecessors from entry blocks.  These can have inverted | 
 |       // ordering. | 
 |       if (InSCC.lookup(P)) | 
 |         continue; | 
 |  | 
 |       // Store the extra header. | 
 |       Headers.push_back(Irr.Node); | 
 |       LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) | 
 |                         << "\n"); | 
 |       break; | 
 |     } | 
 |     if (Headers.back() == Irr.Node) | 
 |       // Added this as a header. | 
 |       continue; | 
 |  | 
 |     // This is not a header. | 
 |     Others.push_back(Irr.Node); | 
 |     LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n"); | 
 |   } | 
 |   llvm::sort(Headers); | 
 |   llvm::sort(Others); | 
 | } | 
 |  | 
 | static void createIrreducibleLoop( | 
 |     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, | 
 |     LoopData *OuterLoop, std::list<LoopData>::iterator Insert, | 
 |     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { | 
 |   // Translate the SCC into RPO. | 
 |   LLVM_DEBUG(dbgs() << " - found-scc\n"); | 
 |  | 
 |   LoopData::NodeList Headers; | 
 |   LoopData::NodeList Others; | 
 |   findIrreducibleHeaders(BFI, G, SCC, Headers, Others); | 
 |  | 
 |   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), | 
 |                                 Headers.end(), Others.begin(), Others.end()); | 
 |  | 
 |   // Update loop hierarchy. | 
 |   for (const auto &N : Loop->Nodes) | 
 |     if (BFI.Working[N.Index].isLoopHeader()) | 
 |       BFI.Working[N.Index].Loop->Parent = &*Loop; | 
 |     else | 
 |       BFI.Working[N.Index].Loop = &*Loop; | 
 | } | 
 |  | 
 | iterator_range<std::list<LoopData>::iterator> | 
 | BlockFrequencyInfoImplBase::analyzeIrreducible( | 
 |     const IrreducibleGraph &G, LoopData *OuterLoop, | 
 |     std::list<LoopData>::iterator Insert) { | 
 |   assert((OuterLoop == nullptr) == (Insert == Loops.begin())); | 
 |   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); | 
 |  | 
 |   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { | 
 |     if (I->size() < 2) | 
 |       continue; | 
 |  | 
 |     // Translate the SCC into RPO. | 
 |     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); | 
 |   } | 
 |  | 
 |   if (OuterLoop) | 
 |     return make_range(std::next(Prev), Insert); | 
 |   return make_range(Loops.begin(), Insert); | 
 | } | 
 |  | 
 | void | 
 | BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { | 
 |   OuterLoop.Exits.clear(); | 
 |   for (auto &Mass : OuterLoop.BackedgeMass) | 
 |     Mass = BlockMass::getEmpty(); | 
 |   auto O = OuterLoop.Nodes.begin() + 1; | 
 |   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) | 
 |     if (!Working[I->Index].isPackaged()) | 
 |       *O++ = *I; | 
 |   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { | 
 |   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); | 
 |  | 
 |   // Since the loop has more than one header block, the mass flowing back into | 
 |   // each header will be different. Adjust the mass in each header loop to | 
 |   // reflect the masses flowing through back edges. | 
 |   // | 
 |   // To do this, we distribute the initial mass using the backedge masses | 
 |   // as weights for the distribution. | 
 |   BlockMass LoopMass = BlockMass::getFull(); | 
 |   Distribution Dist; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n"); | 
 |   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { | 
 |     auto &HeaderNode = Loop.Nodes[H]; | 
 |     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; | 
 |     LLVM_DEBUG(dbgs() << " - Add back edge mass for node " | 
 |                       << getBlockName(HeaderNode) << ": " << BackedgeMass | 
 |                       << "\n"); | 
 |     if (BackedgeMass.getMass() > 0) | 
 |       Dist.addLocal(HeaderNode, BackedgeMass.getMass()); | 
 |     else | 
 |       LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n"); | 
 |   } | 
 |  | 
 |   DitheringDistributer D(Dist, LoopMass); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass | 
 |                     << " to headers using above weights\n"); | 
 |   for (const Weight &W : Dist.Weights) { | 
 |     BlockMass Taken = D.takeMass(W.Amount); | 
 |     assert(W.Type == Weight::Local && "all weights should be local"); | 
 |     Working[W.TargetNode.Index].getMass() = Taken; | 
 |     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
 |   } | 
 | } | 
 |  | 
 | void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) { | 
 |   BlockMass LoopMass = BlockMass::getFull(); | 
 |   DitheringDistributer D(Dist, LoopMass); | 
 |   for (const Weight &W : Dist.Weights) { | 
 |     BlockMass Taken = D.takeMass(W.Amount); | 
 |     assert(W.Type == Weight::Local && "all weights should be local"); | 
 |     Working[W.TargetNode.Index].getMass() = Taken; | 
 |     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
 |   } | 
 | } |