| //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGCXXABI.h" | 
 | #include "CGCleanup.h" | 
 | #include "CGDebugInfo.h" | 
 | #include "CGObjCRuntime.h" | 
 | #include "CGOpenMPRuntime.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "CodeGenModule.h" | 
 | #include "ConstantEmitter.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/StmtVisitor.h" | 
 | #include "clang/Basic/CodeGenOptions.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "llvm/ADT/APFixedPoint.h" | 
 | #include "llvm/IR/CFG.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/FixedPointBuilder.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/IntrinsicsPowerPC.h" | 
 | #include "llvm/IR/MatrixBuilder.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/Support/TypeSize.h" | 
 | #include <cstdarg> | 
 | #include <optional> | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 | using llvm::Value; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Scalar Expression Emitter | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace { | 
 |  | 
 | /// Determine whether the given binary operation may overflow. | 
 | /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, | 
 | /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, | 
 | /// the returned overflow check is precise. The returned value is 'true' for | 
 | /// all other opcodes, to be conservative. | 
 | bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, | 
 |                              BinaryOperator::Opcode Opcode, bool Signed, | 
 |                              llvm::APInt &Result) { | 
 |   // Assume overflow is possible, unless we can prove otherwise. | 
 |   bool Overflow = true; | 
 |   const auto &LHSAP = LHS->getValue(); | 
 |   const auto &RHSAP = RHS->getValue(); | 
 |   if (Opcode == BO_Add) { | 
 |     Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow) | 
 |                     : LHSAP.uadd_ov(RHSAP, Overflow); | 
 |   } else if (Opcode == BO_Sub) { | 
 |     Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow) | 
 |                     : LHSAP.usub_ov(RHSAP, Overflow); | 
 |   } else if (Opcode == BO_Mul) { | 
 |     Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow) | 
 |                     : LHSAP.umul_ov(RHSAP, Overflow); | 
 |   } else if (Opcode == BO_Div || Opcode == BO_Rem) { | 
 |     if (Signed && !RHS->isZero()) | 
 |       Result = LHSAP.sdiv_ov(RHSAP, Overflow); | 
 |     else | 
 |       return false; | 
 |   } | 
 |   return Overflow; | 
 | } | 
 |  | 
 | struct BinOpInfo { | 
 |   Value *LHS; | 
 |   Value *RHS; | 
 |   QualType Ty;  // Computation Type. | 
 |   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform | 
 |   FPOptions FPFeatures; | 
 |   const Expr *E;      // Entire expr, for error unsupported.  May not be binop. | 
 |  | 
 |   /// Check if the binop can result in integer overflow. | 
 |   bool mayHaveIntegerOverflow() const { | 
 |     // Without constant input, we can't rule out overflow. | 
 |     auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); | 
 |     auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); | 
 |     if (!LHSCI || !RHSCI) | 
 |       return true; | 
 |  | 
 |     llvm::APInt Result; | 
 |     return ::mayHaveIntegerOverflow( | 
 |         LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); | 
 |   } | 
 |  | 
 |   /// Check if the binop computes a division or a remainder. | 
 |   bool isDivremOp() const { | 
 |     return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || | 
 |            Opcode == BO_RemAssign; | 
 |   } | 
 |  | 
 |   /// Check if the binop can result in an integer division by zero. | 
 |   bool mayHaveIntegerDivisionByZero() const { | 
 |     if (isDivremOp()) | 
 |       if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) | 
 |         return CI->isZero(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Check if the binop can result in a float division by zero. | 
 |   bool mayHaveFloatDivisionByZero() const { | 
 |     if (isDivremOp()) | 
 |       if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) | 
 |         return CFP->isZero(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Check if at least one operand is a fixed point type. In such cases, this | 
 |   /// operation did not follow usual arithmetic conversion and both operands | 
 |   /// might not be of the same type. | 
 |   bool isFixedPointOp() const { | 
 |     // We cannot simply check the result type since comparison operations return | 
 |     // an int. | 
 |     if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { | 
 |       QualType LHSType = BinOp->getLHS()->getType(); | 
 |       QualType RHSType = BinOp->getRHS()->getType(); | 
 |       return LHSType->isFixedPointType() || RHSType->isFixedPointType(); | 
 |     } | 
 |     if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) | 
 |       return UnOp->getSubExpr()->getType()->isFixedPointType(); | 
 |     return false; | 
 |   } | 
 | }; | 
 |  | 
 | static bool MustVisitNullValue(const Expr *E) { | 
 |   // If a null pointer expression's type is the C++0x nullptr_t, then | 
 |   // it's not necessarily a simple constant and it must be evaluated | 
 |   // for its potential side effects. | 
 |   return E->getType()->isNullPtrType(); | 
 | } | 
 |  | 
 | /// If \p E is a widened promoted integer, get its base (unpromoted) type. | 
 | static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, | 
 |                                                        const Expr *E) { | 
 |   const Expr *Base = E->IgnoreImpCasts(); | 
 |   if (E == Base) | 
 |     return std::nullopt; | 
 |  | 
 |   QualType BaseTy = Base->getType(); | 
 |   if (!Ctx.isPromotableIntegerType(BaseTy) || | 
 |       Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) | 
 |     return std::nullopt; | 
 |  | 
 |   return BaseTy; | 
 | } | 
 |  | 
 | /// Check if \p E is a widened promoted integer. | 
 | static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { | 
 |   return getUnwidenedIntegerType(Ctx, E).has_value(); | 
 | } | 
 |  | 
 | /// Check if we can skip the overflow check for \p Op. | 
 | static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { | 
 |   assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && | 
 |          "Expected a unary or binary operator"); | 
 |  | 
 |   // If the binop has constant inputs and we can prove there is no overflow, | 
 |   // we can elide the overflow check. | 
 |   if (!Op.mayHaveIntegerOverflow()) | 
 |     return true; | 
 |  | 
 |   // If a unary op has a widened operand, the op cannot overflow. | 
 |   if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) | 
 |     return !UO->canOverflow(); | 
 |  | 
 |   // We usually don't need overflow checks for binops with widened operands. | 
 |   // Multiplication with promoted unsigned operands is a special case. | 
 |   const auto *BO = cast<BinaryOperator>(Op.E); | 
 |   auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); | 
 |   if (!OptionalLHSTy) | 
 |     return false; | 
 |  | 
 |   auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); | 
 |   if (!OptionalRHSTy) | 
 |     return false; | 
 |  | 
 |   QualType LHSTy = *OptionalLHSTy; | 
 |   QualType RHSTy = *OptionalRHSTy; | 
 |  | 
 |   // This is the simple case: binops without unsigned multiplication, and with | 
 |   // widened operands. No overflow check is needed here. | 
 |   if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || | 
 |       !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) | 
 |     return true; | 
 |  | 
 |   // For unsigned multiplication the overflow check can be elided if either one | 
 |   // of the unpromoted types are less than half the size of the promoted type. | 
 |   unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); | 
 |   return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || | 
 |          (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; | 
 | } | 
 |  | 
 | class ScalarExprEmitter | 
 |   : public StmtVisitor<ScalarExprEmitter, Value*> { | 
 |   CodeGenFunction &CGF; | 
 |   CGBuilderTy &Builder; | 
 |   bool IgnoreResultAssign; | 
 |   llvm::LLVMContext &VMContext; | 
 | public: | 
 |  | 
 |   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) | 
 |     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), | 
 |       VMContext(cgf.getLLVMContext()) { | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                               Utilities | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   bool TestAndClearIgnoreResultAssign() { | 
 |     bool I = IgnoreResultAssign; | 
 |     IgnoreResultAssign = false; | 
 |     return I; | 
 |   } | 
 |  | 
 |   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } | 
 |   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } | 
 |   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { | 
 |     return CGF.EmitCheckedLValue(E, TCK); | 
 |   } | 
 |  | 
 |   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, | 
 |                       const BinOpInfo &Info); | 
 |  | 
 |   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { | 
 |     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); | 
 |   } | 
 |  | 
 |   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { | 
 |     const AlignValueAttr *AVAttr = nullptr; | 
 |     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { | 
 |       const ValueDecl *VD = DRE->getDecl(); | 
 |  | 
 |       if (VD->getType()->isReferenceType()) { | 
 |         if (const auto *TTy = | 
 |                 VD->getType().getNonReferenceType()->getAs<TypedefType>()) | 
 |           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); | 
 |       } else { | 
 |         // Assumptions for function parameters are emitted at the start of the | 
 |         // function, so there is no need to repeat that here, | 
 |         // unless the alignment-assumption sanitizer is enabled, | 
 |         // then we prefer the assumption over alignment attribute | 
 |         // on IR function param. | 
 |         if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) | 
 |           return; | 
 |  | 
 |         AVAttr = VD->getAttr<AlignValueAttr>(); | 
 |       } | 
 |     } | 
 |  | 
 |     if (!AVAttr) | 
 |       if (const auto *TTy = E->getType()->getAs<TypedefType>()) | 
 |         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); | 
 |  | 
 |     if (!AVAttr) | 
 |       return; | 
 |  | 
 |     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); | 
 |     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); | 
 |     CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); | 
 |   } | 
 |  | 
 |   /// EmitLoadOfLValue - Given an expression with complex type that represents a | 
 |   /// value l-value, this method emits the address of the l-value, then loads | 
 |   /// and returns the result. | 
 |   Value *EmitLoadOfLValue(const Expr *E) { | 
 |     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), | 
 |                                 E->getExprLoc()); | 
 |  | 
 |     EmitLValueAlignmentAssumption(E, V); | 
 |     return V; | 
 |   } | 
 |  | 
 |   /// EmitConversionToBool - Convert the specified expression value to a | 
 |   /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
 |   Value *EmitConversionToBool(Value *Src, QualType DstTy); | 
 |  | 
 |   /// Emit a check that a conversion from a floating-point type does not | 
 |   /// overflow. | 
 |   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, | 
 |                                 Value *Src, QualType SrcType, QualType DstType, | 
 |                                 llvm::Type *DstTy, SourceLocation Loc); | 
 |  | 
 |   /// Known implicit conversion check kinds. | 
 |   /// Keep in sync with the enum of the same name in ubsan_handlers.h | 
 |   enum ImplicitConversionCheckKind : unsigned char { | 
 |     ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. | 
 |     ICCK_UnsignedIntegerTruncation = 1, | 
 |     ICCK_SignedIntegerTruncation = 2, | 
 |     ICCK_IntegerSignChange = 3, | 
 |     ICCK_SignedIntegerTruncationOrSignChange = 4, | 
 |   }; | 
 |  | 
 |   /// Emit a check that an [implicit] truncation of an integer  does not | 
 |   /// discard any bits. It is not UB, so we use the value after truncation. | 
 |   void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, | 
 |                                   QualType DstType, SourceLocation Loc); | 
 |  | 
 |   /// Emit a check that an [implicit] conversion of an integer does not change | 
 |   /// the sign of the value. It is not UB, so we use the value after conversion. | 
 |   /// NOTE: Src and Dst may be the exact same value! (point to the same thing) | 
 |   void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, | 
 |                                   QualType DstType, SourceLocation Loc); | 
 |  | 
 |   /// Emit a conversion from the specified type to the specified destination | 
 |   /// type, both of which are LLVM scalar types. | 
 |   struct ScalarConversionOpts { | 
 |     bool TreatBooleanAsSigned; | 
 |     bool EmitImplicitIntegerTruncationChecks; | 
 |     bool EmitImplicitIntegerSignChangeChecks; | 
 |  | 
 |     ScalarConversionOpts() | 
 |         : TreatBooleanAsSigned(false), | 
 |           EmitImplicitIntegerTruncationChecks(false), | 
 |           EmitImplicitIntegerSignChangeChecks(false) {} | 
 |  | 
 |     ScalarConversionOpts(clang::SanitizerSet SanOpts) | 
 |         : TreatBooleanAsSigned(false), | 
 |           EmitImplicitIntegerTruncationChecks( | 
 |               SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), | 
 |           EmitImplicitIntegerSignChangeChecks( | 
 |               SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} | 
 |   }; | 
 |   Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, | 
 |                         llvm::Type *SrcTy, llvm::Type *DstTy, | 
 |                         ScalarConversionOpts Opts); | 
 |   Value * | 
 |   EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, | 
 |                        SourceLocation Loc, | 
 |                        ScalarConversionOpts Opts = ScalarConversionOpts()); | 
 |  | 
 |   /// Convert between either a fixed point and other fixed point or fixed point | 
 |   /// and an integer. | 
 |   Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, | 
 |                                   SourceLocation Loc); | 
 |  | 
 |   /// Emit a conversion from the specified complex type to the specified | 
 |   /// destination type, where the destination type is an LLVM scalar type. | 
 |   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, | 
 |                                        QualType SrcTy, QualType DstTy, | 
 |                                        SourceLocation Loc); | 
 |  | 
 |   /// EmitNullValue - Emit a value that corresponds to null for the given type. | 
 |   Value *EmitNullValue(QualType Ty); | 
 |  | 
 |   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. | 
 |   Value *EmitFloatToBoolConversion(Value *V) { | 
 |     // Compare against 0.0 for fp scalars. | 
 |     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); | 
 |     return Builder.CreateFCmpUNE(V, Zero, "tobool"); | 
 |   } | 
 |  | 
 |   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. | 
 |   Value *EmitPointerToBoolConversion(Value *V, QualType QT) { | 
 |     Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); | 
 |  | 
 |     return Builder.CreateICmpNE(V, Zero, "tobool"); | 
 |   } | 
 |  | 
 |   Value *EmitIntToBoolConversion(Value *V) { | 
 |     // Because of the type rules of C, we often end up computing a | 
 |     // logical value, then zero extending it to int, then wanting it | 
 |     // as a logical value again.  Optimize this common case. | 
 |     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { | 
 |       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { | 
 |         Value *Result = ZI->getOperand(0); | 
 |         // If there aren't any more uses, zap the instruction to save space. | 
 |         // Note that there can be more uses, for example if this | 
 |         // is the result of an assignment. | 
 |         if (ZI->use_empty()) | 
 |           ZI->eraseFromParent(); | 
 |         return Result; | 
 |       } | 
 |     } | 
 |  | 
 |     return Builder.CreateIsNotNull(V, "tobool"); | 
 |   } | 
 |  | 
 |   //===--------------------------------------------------------------------===// | 
 |   //                            Visitor Methods | 
 |   //===--------------------------------------------------------------------===// | 
 |  | 
 |   Value *Visit(Expr *E) { | 
 |     ApplyDebugLocation DL(CGF, E); | 
 |     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); | 
 |   } | 
 |  | 
 |   Value *VisitStmt(Stmt *S) { | 
 |     S->dump(llvm::errs(), CGF.getContext()); | 
 |     llvm_unreachable("Stmt can't have complex result type!"); | 
 |   } | 
 |   Value *VisitExpr(Expr *S); | 
 |  | 
 |   Value *VisitConstantExpr(ConstantExpr *E) { | 
 |     // A constant expression of type 'void' generates no code and produces no | 
 |     // value. | 
 |     if (E->getType()->isVoidType()) | 
 |       return nullptr; | 
 |  | 
 |     if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { | 
 |       if (E->isGLValue()) | 
 |         return CGF.Builder.CreateLoad(Address( | 
 |             Result, CGF.ConvertTypeForMem(E->getType()), | 
 |             CGF.getContext().getTypeAlignInChars(E->getType()))); | 
 |       return Result; | 
 |     } | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |   Value *VisitParenExpr(ParenExpr *PE) { | 
 |     return Visit(PE->getSubExpr()); | 
 |   } | 
 |   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { | 
 |     return Visit(E->getReplacement()); | 
 |   } | 
 |   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { | 
 |     return Visit(GE->getResultExpr()); | 
 |   } | 
 |   Value *VisitCoawaitExpr(CoawaitExpr *S) { | 
 |     return CGF.EmitCoawaitExpr(*S).getScalarVal(); | 
 |   } | 
 |   Value *VisitCoyieldExpr(CoyieldExpr *S) { | 
 |     return CGF.EmitCoyieldExpr(*S).getScalarVal(); | 
 |   } | 
 |   Value *VisitUnaryCoawait(const UnaryOperator *E) { | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |  | 
 |   // Leaves. | 
 |   Value *VisitIntegerLiteral(const IntegerLiteral *E) { | 
 |     return Builder.getInt(E->getValue()); | 
 |   } | 
 |   Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { | 
 |     return Builder.getInt(E->getValue()); | 
 |   } | 
 |   Value *VisitFloatingLiteral(const FloatingLiteral *E) { | 
 |     return llvm::ConstantFP::get(VMContext, E->getValue()); | 
 |   } | 
 |   Value *VisitCharacterLiteral(const CharacterLiteral *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { | 
 |     if (E->getType()->isVoidType()) | 
 |       return nullptr; | 
 |  | 
 |     return EmitNullValue(E->getType()); | 
 |   } | 
 |   Value *VisitGNUNullExpr(const GNUNullExpr *E) { | 
 |     return EmitNullValue(E->getType()); | 
 |   } | 
 |   Value *VisitOffsetOfExpr(OffsetOfExpr *E); | 
 |   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); | 
 |   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { | 
 |     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); | 
 |     return Builder.CreateBitCast(V, ConvertType(E->getType())); | 
 |   } | 
 |  | 
 |   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); | 
 |   } | 
 |  | 
 |   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { | 
 |     return CGF.EmitPseudoObjectRValue(E).getScalarVal(); | 
 |   } | 
 |  | 
 |   Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); | 
 |  | 
 |   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { | 
 |     if (E->isGLValue()) | 
 |       return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), | 
 |                               E->getExprLoc()); | 
 |  | 
 |     // Otherwise, assume the mapping is the scalar directly. | 
 |     return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); | 
 |   } | 
 |  | 
 |   // l-values. | 
 |   Value *VisitDeclRefExpr(DeclRefExpr *E) { | 
 |     if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) | 
 |       return CGF.emitScalarConstant(Constant, E); | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |  | 
 |   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { | 
 |     return CGF.EmitObjCSelectorExpr(E); | 
 |   } | 
 |   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { | 
 |     return CGF.EmitObjCProtocolExpr(E); | 
 |   } | 
 |   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { | 
 |     if (E->getMethodDecl() && | 
 |         E->getMethodDecl()->getReturnType()->isReferenceType()) | 
 |       return EmitLoadOfLValue(E); | 
 |     return CGF.EmitObjCMessageExpr(E).getScalarVal(); | 
 |   } | 
 |  | 
 |   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { | 
 |     LValue LV = CGF.EmitObjCIsaExpr(E); | 
 |     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); | 
 |     return V; | 
 |   } | 
 |  | 
 |   Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { | 
 |     VersionTuple Version = E->getVersion(); | 
 |  | 
 |     // If we're checking for a platform older than our minimum deployment | 
 |     // target, we can fold the check away. | 
 |     if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) | 
 |       return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); | 
 |  | 
 |     return CGF.EmitBuiltinAvailable(Version); | 
 |   } | 
 |  | 
 |   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); | 
 |   Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); | 
 |   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); | 
 |   Value *VisitConvertVectorExpr(ConvertVectorExpr *E); | 
 |   Value *VisitMemberExpr(MemberExpr *E); | 
 |   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } | 
 |   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
 |     // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which | 
 |     // transitively calls EmitCompoundLiteralLValue, here in C++ since compound | 
 |     // literals aren't l-values in C++. We do so simply because that's the | 
 |     // cleanest way to handle compound literals in C++. | 
 |     // See the discussion here: https://reviews.llvm.org/D64464 | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |  | 
 |   Value *VisitInitListExpr(InitListExpr *E); | 
 |  | 
 |   Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { | 
 |     assert(CGF.getArrayInitIndex() && | 
 |            "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); | 
 |     return CGF.getArrayInitIndex(); | 
 |   } | 
 |  | 
 |   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { | 
 |     return EmitNullValue(E->getType()); | 
 |   } | 
 |   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { | 
 |     CGF.CGM.EmitExplicitCastExprType(E, &CGF); | 
 |     return VisitCastExpr(E); | 
 |   } | 
 |   Value *VisitCastExpr(CastExpr *E); | 
 |  | 
 |   Value *VisitCallExpr(const CallExpr *E) { | 
 |     if (E->getCallReturnType(CGF.getContext())->isReferenceType()) | 
 |       return EmitLoadOfLValue(E); | 
 |  | 
 |     Value *V = CGF.EmitCallExpr(E).getScalarVal(); | 
 |  | 
 |     EmitLValueAlignmentAssumption(E, V); | 
 |     return V; | 
 |   } | 
 |  | 
 |   Value *VisitStmtExpr(const StmtExpr *E); | 
 |  | 
 |   // Unary Operators. | 
 |   Value *VisitUnaryPostDec(const UnaryOperator *E) { | 
 |     LValue LV = EmitLValue(E->getSubExpr()); | 
 |     return EmitScalarPrePostIncDec(E, LV, false, false); | 
 |   } | 
 |   Value *VisitUnaryPostInc(const UnaryOperator *E) { | 
 |     LValue LV = EmitLValue(E->getSubExpr()); | 
 |     return EmitScalarPrePostIncDec(E, LV, true, false); | 
 |   } | 
 |   Value *VisitUnaryPreDec(const UnaryOperator *E) { | 
 |     LValue LV = EmitLValue(E->getSubExpr()); | 
 |     return EmitScalarPrePostIncDec(E, LV, false, true); | 
 |   } | 
 |   Value *VisitUnaryPreInc(const UnaryOperator *E) { | 
 |     LValue LV = EmitLValue(E->getSubExpr()); | 
 |     return EmitScalarPrePostIncDec(E, LV, true, true); | 
 |   } | 
 |  | 
 |   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, | 
 |                                                   llvm::Value *InVal, | 
 |                                                   bool IsInc); | 
 |  | 
 |   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
 |                                        bool isInc, bool isPre); | 
 |  | 
 |  | 
 |   Value *VisitUnaryAddrOf(const UnaryOperator *E) { | 
 |     if (isa<MemberPointerType>(E->getType())) // never sugared | 
 |       return CGF.CGM.getMemberPointerConstant(E); | 
 |  | 
 |     return EmitLValue(E->getSubExpr()).getPointer(CGF); | 
 |   } | 
 |   Value *VisitUnaryDeref(const UnaryOperator *E) { | 
 |     if (E->getType()->isVoidType()) | 
 |       return Visit(E->getSubExpr()); // the actual value should be unused | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |  | 
 |   Value *VisitUnaryPlus(const UnaryOperator *E, | 
 |                         QualType PromotionType = QualType()); | 
 |   Value *VisitPlus(const UnaryOperator *E, QualType PromotionType); | 
 |   Value *VisitUnaryMinus(const UnaryOperator *E, | 
 |                          QualType PromotionType = QualType()); | 
 |   Value *VisitMinus(const UnaryOperator *E, QualType PromotionType); | 
 |  | 
 |   Value *VisitUnaryNot      (const UnaryOperator *E); | 
 |   Value *VisitUnaryLNot     (const UnaryOperator *E); | 
 |   Value *VisitUnaryReal(const UnaryOperator *E, | 
 |                         QualType PromotionType = QualType()); | 
 |   Value *VisitReal(const UnaryOperator *E, QualType PromotionType); | 
 |   Value *VisitUnaryImag(const UnaryOperator *E, | 
 |                         QualType PromotionType = QualType()); | 
 |   Value *VisitImag(const UnaryOperator *E, QualType PromotionType); | 
 |   Value *VisitUnaryExtension(const UnaryOperator *E) { | 
 |     return Visit(E->getSubExpr()); | 
 |   } | 
 |  | 
 |   // C++ | 
 |   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { | 
 |     return EmitLoadOfLValue(E); | 
 |   } | 
 |   Value *VisitSourceLocExpr(SourceLocExpr *SLE) { | 
 |     auto &Ctx = CGF.getContext(); | 
 |     APValue Evaluated = | 
 |         SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); | 
 |     return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, | 
 |                                              SLE->getType()); | 
 |   } | 
 |  | 
 |   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { | 
 |     CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); | 
 |     return Visit(DAE->getExpr()); | 
 |   } | 
 |   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { | 
 |     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); | 
 |     return Visit(DIE->getExpr()); | 
 |   } | 
 |   Value *VisitCXXThisExpr(CXXThisExpr *TE) { | 
 |     return CGF.LoadCXXThis(); | 
 |   } | 
 |  | 
 |   Value *VisitExprWithCleanups(ExprWithCleanups *E); | 
 |   Value *VisitCXXNewExpr(const CXXNewExpr *E) { | 
 |     return CGF.EmitCXXNewExpr(E); | 
 |   } | 
 |   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { | 
 |     CGF.EmitCXXDeleteExpr(E); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { | 
 |     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
 |   } | 
 |  | 
 |   Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { | 
 |     return Builder.getInt1(E->isSatisfied()); | 
 |   } | 
 |  | 
 |   Value *VisitRequiresExpr(const RequiresExpr *E) { | 
 |     return Builder.getInt1(E->isSatisfied()); | 
 |   } | 
 |  | 
 |   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { | 
 |     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); | 
 |   } | 
 |  | 
 |   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { | 
 |     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); | 
 |   } | 
 |  | 
 |   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { | 
 |     // C++ [expr.pseudo]p1: | 
 |     //   The result shall only be used as the operand for the function call | 
 |     //   operator (), and the result of such a call has type void. The only | 
 |     //   effect is the evaluation of the postfix-expression before the dot or | 
 |     //   arrow. | 
 |     CGF.EmitScalarExpr(E->getBase()); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { | 
 |     return EmitNullValue(E->getType()); | 
 |   } | 
 |  | 
 |   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { | 
 |     CGF.EmitCXXThrowExpr(E); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { | 
 |     return Builder.getInt1(E->getValue()); | 
 |   } | 
 |  | 
 |   // Binary Operators. | 
 |   Value *EmitMul(const BinOpInfo &Ops) { | 
 |     if (Ops.Ty->isSignedIntegerOrEnumerationType()) { | 
 |       switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
 |       case LangOptions::SOB_Defined: | 
 |         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); | 
 |       case LangOptions::SOB_Undefined: | 
 |         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
 |           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); | 
 |         [[fallthrough]]; | 
 |       case LangOptions::SOB_Trapping: | 
 |         if (CanElideOverflowCheck(CGF.getContext(), Ops)) | 
 |           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); | 
 |         return EmitOverflowCheckedBinOp(Ops); | 
 |       } | 
 |     } | 
 |  | 
 |     if (Ops.Ty->isConstantMatrixType()) { | 
 |       llvm::MatrixBuilder MB(Builder); | 
 |       // We need to check the types of the operands of the operator to get the | 
 |       // correct matrix dimensions. | 
 |       auto *BO = cast<BinaryOperator>(Ops.E); | 
 |       auto *LHSMatTy = dyn_cast<ConstantMatrixType>( | 
 |           BO->getLHS()->getType().getCanonicalType()); | 
 |       auto *RHSMatTy = dyn_cast<ConstantMatrixType>( | 
 |           BO->getRHS()->getType().getCanonicalType()); | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); | 
 |       if (LHSMatTy && RHSMatTy) | 
 |         return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), | 
 |                                        LHSMatTy->getNumColumns(), | 
 |                                        RHSMatTy->getNumColumns()); | 
 |       return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); | 
 |     } | 
 |  | 
 |     if (Ops.Ty->isUnsignedIntegerType() && | 
 |         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
 |         !CanElideOverflowCheck(CGF.getContext(), Ops)) | 
 |       return EmitOverflowCheckedBinOp(Ops); | 
 |  | 
 |     if (Ops.LHS->getType()->isFPOrFPVectorTy()) { | 
 |       //  Preserve the old values | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); | 
 |       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); | 
 |     } | 
 |     if (Ops.isFixedPointOp()) | 
 |       return EmitFixedPointBinOp(Ops); | 
 |     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); | 
 |   } | 
 |   /// Create a binary op that checks for overflow. | 
 |   /// Currently only supports +, - and *. | 
 |   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); | 
 |  | 
 |   // Check for undefined division and modulus behaviors. | 
 |   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, | 
 |                                                   llvm::Value *Zero,bool isDiv); | 
 |   // Common helper for getting how wide LHS of shift is. | 
 |   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); | 
 |  | 
 |   // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for | 
 |   // non powers of two. | 
 |   Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); | 
 |  | 
 |   Value *EmitDiv(const BinOpInfo &Ops); | 
 |   Value *EmitRem(const BinOpInfo &Ops); | 
 |   Value *EmitAdd(const BinOpInfo &Ops); | 
 |   Value *EmitSub(const BinOpInfo &Ops); | 
 |   Value *EmitShl(const BinOpInfo &Ops); | 
 |   Value *EmitShr(const BinOpInfo &Ops); | 
 |   Value *EmitAnd(const BinOpInfo &Ops) { | 
 |     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); | 
 |   } | 
 |   Value *EmitXor(const BinOpInfo &Ops) { | 
 |     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); | 
 |   } | 
 |   Value *EmitOr (const BinOpInfo &Ops) { | 
 |     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); | 
 |   } | 
 |  | 
 |   // Helper functions for fixed point binary operations. | 
 |   Value *EmitFixedPointBinOp(const BinOpInfo &Ops); | 
 |  | 
 |   BinOpInfo EmitBinOps(const BinaryOperator *E, | 
 |                        QualType PromotionTy = QualType()); | 
 |  | 
 |   Value *EmitPromotedValue(Value *result, QualType PromotionType); | 
 |   Value *EmitUnPromotedValue(Value *result, QualType ExprType); | 
 |   Value *EmitPromoted(const Expr *E, QualType PromotionType); | 
 |  | 
 |   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, | 
 |                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &), | 
 |                                   Value *&Result); | 
 |  | 
 |   Value *EmitCompoundAssign(const CompoundAssignOperator *E, | 
 |                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); | 
 |  | 
 |   QualType getPromotionType(QualType Ty) { | 
 |     const auto &Ctx = CGF.getContext(); | 
 |     if (auto *CT = Ty->getAs<ComplexType>()) { | 
 |       QualType ElementType = CT->getElementType(); | 
 |       if (ElementType.UseExcessPrecision(Ctx)) | 
 |         return Ctx.getComplexType(Ctx.FloatTy); | 
 |     } | 
 |  | 
 |     if (Ty.UseExcessPrecision(Ctx)) { | 
 |       if (auto *VT = Ty->getAs<VectorType>()) { | 
 |         unsigned NumElements = VT->getNumElements(); | 
 |         return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind()); | 
 |       } | 
 |       return Ctx.FloatTy; | 
 |     } | 
 |  | 
 |     return QualType(); | 
 |   } | 
 |  | 
 |   // Binary operators and binary compound assignment operators. | 
 | #define HANDLEBINOP(OP)                                                        \ | 
 |   Value *VisitBin##OP(const BinaryOperator *E) {                               \ | 
 |     QualType promotionTy = getPromotionType(E->getType());                     \ | 
 |     auto result = Emit##OP(EmitBinOps(E, promotionTy));                        \ | 
 |     if (result && !promotionTy.isNull())                                       \ | 
 |       result = EmitUnPromotedValue(result, E->getType());                      \ | 
 |     return result;                                                             \ | 
 |   }                                                                            \ | 
 |   Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) {               \ | 
 |     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP);                \ | 
 |   } | 
 |   HANDLEBINOP(Mul) | 
 |   HANDLEBINOP(Div) | 
 |   HANDLEBINOP(Rem) | 
 |   HANDLEBINOP(Add) | 
 |   HANDLEBINOP(Sub) | 
 |   HANDLEBINOP(Shl) | 
 |   HANDLEBINOP(Shr) | 
 |   HANDLEBINOP(And) | 
 |   HANDLEBINOP(Xor) | 
 |   HANDLEBINOP(Or) | 
 | #undef HANDLEBINOP | 
 |  | 
 |   // Comparisons. | 
 |   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, | 
 |                      llvm::CmpInst::Predicate SICmpOpc, | 
 |                      llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); | 
 | #define VISITCOMP(CODE, UI, SI, FP, SIG) \ | 
 |     Value *VisitBin##CODE(const BinaryOperator *E) { \ | 
 |       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ | 
 |                          llvm::FCmpInst::FP, SIG); } | 
 |   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) | 
 |   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) | 
 |   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) | 
 |   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) | 
 |   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) | 
 |   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) | 
 | #undef VISITCOMP | 
 |  | 
 |   Value *VisitBinAssign     (const BinaryOperator *E); | 
 |  | 
 |   Value *VisitBinLAnd       (const BinaryOperator *E); | 
 |   Value *VisitBinLOr        (const BinaryOperator *E); | 
 |   Value *VisitBinComma      (const BinaryOperator *E); | 
 |  | 
 |   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } | 
 |   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } | 
 |  | 
 |   Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { | 
 |     return Visit(E->getSemanticForm()); | 
 |   } | 
 |  | 
 |   // Other Operators. | 
 |   Value *VisitBlockExpr(const BlockExpr *BE); | 
 |   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); | 
 |   Value *VisitChooseExpr(ChooseExpr *CE); | 
 |   Value *VisitVAArgExpr(VAArgExpr *VE); | 
 |   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { | 
 |     return CGF.EmitObjCStringLiteral(E); | 
 |   } | 
 |   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { | 
 |     return CGF.EmitObjCBoxedExpr(E); | 
 |   } | 
 |   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { | 
 |     return CGF.EmitObjCArrayLiteral(E); | 
 |   } | 
 |   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { | 
 |     return CGF.EmitObjCDictionaryLiteral(E); | 
 |   } | 
 |   Value *VisitAsTypeExpr(AsTypeExpr *CE); | 
 |   Value *VisitAtomicExpr(AtomicExpr *AE); | 
 | }; | 
 | }  // end anonymous namespace. | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                Utilities | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// EmitConversionToBool - Convert the specified expression value to a | 
 | /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
 | Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { | 
 |   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); | 
 |  | 
 |   if (SrcType->isRealFloatingType()) | 
 |     return EmitFloatToBoolConversion(Src); | 
 |  | 
 |   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) | 
 |     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); | 
 |  | 
 |   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && | 
 |          "Unknown scalar type to convert"); | 
 |  | 
 |   if (isa<llvm::IntegerType>(Src->getType())) | 
 |     return EmitIntToBoolConversion(Src); | 
 |  | 
 |   assert(isa<llvm::PointerType>(Src->getType())); | 
 |   return EmitPointerToBoolConversion(Src, SrcType); | 
 | } | 
 |  | 
 | void ScalarExprEmitter::EmitFloatConversionCheck( | 
 |     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, | 
 |     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { | 
 |   assert(SrcType->isFloatingType() && "not a conversion from floating point"); | 
 |   if (!isa<llvm::IntegerType>(DstTy)) | 
 |     return; | 
 |  | 
 |   CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |   using llvm::APFloat; | 
 |   using llvm::APSInt; | 
 |  | 
 |   llvm::Value *Check = nullptr; | 
 |   const llvm::fltSemantics &SrcSema = | 
 |     CGF.getContext().getFloatTypeSemantics(OrigSrcType); | 
 |  | 
 |   // Floating-point to integer. This has undefined behavior if the source is | 
 |   // +-Inf, NaN, or doesn't fit into the destination type (after truncation | 
 |   // to an integer). | 
 |   unsigned Width = CGF.getContext().getIntWidth(DstType); | 
 |   bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); | 
 |  | 
 |   APSInt Min = APSInt::getMinValue(Width, Unsigned); | 
 |   APFloat MinSrc(SrcSema, APFloat::uninitialized); | 
 |   if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & | 
 |       APFloat::opOverflow) | 
 |     // Don't need an overflow check for lower bound. Just check for | 
 |     // -Inf/NaN. | 
 |     MinSrc = APFloat::getInf(SrcSema, true); | 
 |   else | 
 |     // Find the largest value which is too small to represent (before | 
 |     // truncation toward zero). | 
 |     MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); | 
 |  | 
 |   APSInt Max = APSInt::getMaxValue(Width, Unsigned); | 
 |   APFloat MaxSrc(SrcSema, APFloat::uninitialized); | 
 |   if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & | 
 |       APFloat::opOverflow) | 
 |     // Don't need an overflow check for upper bound. Just check for | 
 |     // +Inf/NaN. | 
 |     MaxSrc = APFloat::getInf(SrcSema, false); | 
 |   else | 
 |     // Find the smallest value which is too large to represent (before | 
 |     // truncation toward zero). | 
 |     MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); | 
 |  | 
 |   // If we're converting from __half, convert the range to float to match | 
 |   // the type of src. | 
 |   if (OrigSrcType->isHalfType()) { | 
 |     const llvm::fltSemantics &Sema = | 
 |       CGF.getContext().getFloatTypeSemantics(SrcType); | 
 |     bool IsInexact; | 
 |     MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); | 
 |     MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); | 
 |   } | 
 |  | 
 |   llvm::Value *GE = | 
 |     Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); | 
 |   llvm::Value *LE = | 
 |     Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); | 
 |   Check = Builder.CreateAnd(GE, LE); | 
 |  | 
 |   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), | 
 |                                   CGF.EmitCheckTypeDescriptor(OrigSrcType), | 
 |                                   CGF.EmitCheckTypeDescriptor(DstType)}; | 
 |   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), | 
 |                 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); | 
 | } | 
 |  | 
 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. | 
 | // Returns 'i1 false' when the truncation Src -> Dst was lossy. | 
 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
 |                  std::pair<llvm::Value *, SanitizerMask>> | 
 | EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, | 
 |                                  QualType DstType, CGBuilderTy &Builder) { | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   llvm::Type *DstTy = Dst->getType(); | 
 |   (void)DstTy; // Only used in assert() | 
 |  | 
 |   // This should be truncation of integral types. | 
 |   assert(Src != Dst); | 
 |   assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); | 
 |   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && | 
 |          "non-integer llvm type"); | 
 |  | 
 |   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
 |   bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
 |  | 
 |   // If both (src and dst) types are unsigned, then it's an unsigned truncation. | 
 |   // Else, it is a signed truncation. | 
 |   ScalarExprEmitter::ImplicitConversionCheckKind Kind; | 
 |   SanitizerMask Mask; | 
 |   if (!SrcSigned && !DstSigned) { | 
 |     Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; | 
 |     Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; | 
 |   } else { | 
 |     Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; | 
 |     Mask = SanitizerKind::ImplicitSignedIntegerTruncation; | 
 |   } | 
 |  | 
 |   llvm::Value *Check = nullptr; | 
 |   // 1. Extend the truncated value back to the same width as the Src. | 
 |   Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); | 
 |   // 2. Equality-compare with the original source value | 
 |   Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); | 
 |   // If the comparison result is 'i1 false', then the truncation was lossy. | 
 |   return std::make_pair(Kind, std::make_pair(Check, Mask)); | 
 | } | 
 |  | 
 | static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( | 
 |     QualType SrcType, QualType DstType) { | 
 |   return SrcType->isIntegerType() && DstType->isIntegerType(); | 
 | } | 
 |  | 
 | void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, | 
 |                                                    Value *Dst, QualType DstType, | 
 |                                                    SourceLocation Loc) { | 
 |   if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) | 
 |     return; | 
 |  | 
 |   // We only care about int->int conversions here. | 
 |   // We ignore conversions to/from pointer and/or bool. | 
 |   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, | 
 |                                                                        DstType)) | 
 |     return; | 
 |  | 
 |   unsigned SrcBits = Src->getType()->getScalarSizeInBits(); | 
 |   unsigned DstBits = Dst->getType()->getScalarSizeInBits(); | 
 |   // This must be truncation. Else we do not care. | 
 |   if (SrcBits <= DstBits) | 
 |     return; | 
 |  | 
 |   assert(!DstType->isBooleanType() && "we should not get here with booleans."); | 
 |  | 
 |   // If the integer sign change sanitizer is enabled, | 
 |   // and we are truncating from larger unsigned type to smaller signed type, | 
 |   // let that next sanitizer deal with it. | 
 |   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
 |   bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
 |   if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && | 
 |       (!SrcSigned && DstSigned)) | 
 |     return; | 
 |  | 
 |   CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |  | 
 |   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
 |             std::pair<llvm::Value *, SanitizerMask>> | 
 |       Check = | 
 |           EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
 |   // If the comparison result is 'i1 false', then the truncation was lossy. | 
 |  | 
 |   // Do we care about this type of truncation? | 
 |   if (!CGF.SanOpts.has(Check.second.second)) | 
 |     return; | 
 |  | 
 |   llvm::Constant *StaticArgs[] = { | 
 |       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), | 
 |       CGF.EmitCheckTypeDescriptor(DstType), | 
 |       llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; | 
 |   CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, | 
 |                 {Src, Dst}); | 
 | } | 
 |  | 
 | // Should be called within CodeGenFunction::SanitizerScope RAII scope. | 
 | // Returns 'i1 false' when the conversion Src -> Dst changed the sign. | 
 | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
 |                  std::pair<llvm::Value *, SanitizerMask>> | 
 | EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, | 
 |                                  QualType DstType, CGBuilderTy &Builder) { | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   llvm::Type *DstTy = Dst->getType(); | 
 |  | 
 |   assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && | 
 |          "non-integer llvm type"); | 
 |  | 
 |   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
 |   bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
 |   (void)SrcSigned; // Only used in assert() | 
 |   (void)DstSigned; // Only used in assert() | 
 |   unsigned SrcBits = SrcTy->getScalarSizeInBits(); | 
 |   unsigned DstBits = DstTy->getScalarSizeInBits(); | 
 |   (void)SrcBits; // Only used in assert() | 
 |   (void)DstBits; // Only used in assert() | 
 |  | 
 |   assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && | 
 |          "either the widths should be different, or the signednesses."); | 
 |  | 
 |   // NOTE: zero value is considered to be non-negative. | 
 |   auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, | 
 |                                        const char *Name) -> Value * { | 
 |     // Is this value a signed type? | 
 |     bool VSigned = VType->isSignedIntegerOrEnumerationType(); | 
 |     llvm::Type *VTy = V->getType(); | 
 |     if (!VSigned) { | 
 |       // If the value is unsigned, then it is never negative. | 
 |       // FIXME: can we encounter non-scalar VTy here? | 
 |       return llvm::ConstantInt::getFalse(VTy->getContext()); | 
 |     } | 
 |     // Get the zero of the same type with which we will be comparing. | 
 |     llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); | 
 |     // %V.isnegative = icmp slt %V, 0 | 
 |     // I.e is %V *strictly* less than zero, does it have negative value? | 
 |     return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, | 
 |                               llvm::Twine(Name) + "." + V->getName() + | 
 |                                   ".negativitycheck"); | 
 |   }; | 
 |  | 
 |   // 1. Was the old Value negative? | 
 |   llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); | 
 |   // 2. Is the new Value negative? | 
 |   llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); | 
 |   // 3. Now, was the 'negativity status' preserved during the conversion? | 
 |   //    NOTE: conversion from negative to zero is considered to change the sign. | 
 |   //    (We want to get 'false' when the conversion changed the sign) | 
 |   //    So we should just equality-compare the negativity statuses. | 
 |   llvm::Value *Check = nullptr; | 
 |   Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); | 
 |   // If the comparison result is 'false', then the conversion changed the sign. | 
 |   return std::make_pair( | 
 |       ScalarExprEmitter::ICCK_IntegerSignChange, | 
 |       std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); | 
 | } | 
 |  | 
 | void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, | 
 |                                                    Value *Dst, QualType DstType, | 
 |                                                    SourceLocation Loc) { | 
 |   if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) | 
 |     return; | 
 |  | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   llvm::Type *DstTy = Dst->getType(); | 
 |  | 
 |   // We only care about int->int conversions here. | 
 |   // We ignore conversions to/from pointer and/or bool. | 
 |   if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, | 
 |                                                                        DstType)) | 
 |     return; | 
 |  | 
 |   bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
 |   bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
 |   unsigned SrcBits = SrcTy->getScalarSizeInBits(); | 
 |   unsigned DstBits = DstTy->getScalarSizeInBits(); | 
 |  | 
 |   // Now, we do not need to emit the check in *all* of the cases. | 
 |   // We can avoid emitting it in some obvious cases where it would have been | 
 |   // dropped by the opt passes (instcombine) always anyways. | 
 |   // If it's a cast between effectively the same type, no check. | 
 |   // NOTE: this is *not* equivalent to checking the canonical types. | 
 |   if (SrcSigned == DstSigned && SrcBits == DstBits) | 
 |     return; | 
 |   // At least one of the values needs to have signed type. | 
 |   // If both are unsigned, then obviously, neither of them can be negative. | 
 |   if (!SrcSigned && !DstSigned) | 
 |     return; | 
 |   // If the conversion is to *larger* *signed* type, then no check is needed. | 
 |   // Because either sign-extension happens (so the sign will remain), | 
 |   // or zero-extension will happen (the sign bit will be zero.) | 
 |   if ((DstBits > SrcBits) && DstSigned) | 
 |     return; | 
 |   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && | 
 |       (SrcBits > DstBits) && SrcSigned) { | 
 |     // If the signed integer truncation sanitizer is enabled, | 
 |     // and this is a truncation from signed type, then no check is needed. | 
 |     // Because here sign change check is interchangeable with truncation check. | 
 |     return; | 
 |   } | 
 |   // That's it. We can't rule out any more cases with the data we have. | 
 |  | 
 |   CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |  | 
 |   std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
 |             std::pair<llvm::Value *, SanitizerMask>> | 
 |       Check; | 
 |  | 
 |   // Each of these checks needs to return 'false' when an issue was detected. | 
 |   ImplicitConversionCheckKind CheckKind; | 
 |   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; | 
 |   // So we can 'and' all the checks together, and still get 'false', | 
 |   // if at least one of the checks detected an issue. | 
 |  | 
 |   Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
 |   CheckKind = Check.first; | 
 |   Checks.emplace_back(Check.second); | 
 |  | 
 |   if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && | 
 |       (SrcBits > DstBits) && !SrcSigned && DstSigned) { | 
 |     // If the signed integer truncation sanitizer was enabled, | 
 |     // and we are truncating from larger unsigned type to smaller signed type, | 
 |     // let's handle the case we skipped in that check. | 
 |     Check = | 
 |         EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
 |     CheckKind = ICCK_SignedIntegerTruncationOrSignChange; | 
 |     Checks.emplace_back(Check.second); | 
 |     // If the comparison result is 'i1 false', then the truncation was lossy. | 
 |   } | 
 |  | 
 |   llvm::Constant *StaticArgs[] = { | 
 |       CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), | 
 |       CGF.EmitCheckTypeDescriptor(DstType), | 
 |       llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; | 
 |   // EmitCheck() will 'and' all the checks together. | 
 |   CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, | 
 |                 {Src, Dst}); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, | 
 |                                          QualType DstType, llvm::Type *SrcTy, | 
 |                                          llvm::Type *DstTy, | 
 |                                          ScalarConversionOpts Opts) { | 
 |   // The Element types determine the type of cast to perform. | 
 |   llvm::Type *SrcElementTy; | 
 |   llvm::Type *DstElementTy; | 
 |   QualType SrcElementType; | 
 |   QualType DstElementType; | 
 |   if (SrcType->isMatrixType() && DstType->isMatrixType()) { | 
 |     SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); | 
 |     DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); | 
 |     SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); | 
 |     DstElementType = DstType->castAs<MatrixType>()->getElementType(); | 
 |   } else { | 
 |     assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && | 
 |            "cannot cast between matrix and non-matrix types"); | 
 |     SrcElementTy = SrcTy; | 
 |     DstElementTy = DstTy; | 
 |     SrcElementType = SrcType; | 
 |     DstElementType = DstType; | 
 |   } | 
 |  | 
 |   if (isa<llvm::IntegerType>(SrcElementTy)) { | 
 |     bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); | 
 |     if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { | 
 |       InputSigned = true; | 
 |     } | 
 |  | 
 |     if (isa<llvm::IntegerType>(DstElementTy)) | 
 |       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); | 
 |     if (InputSigned) | 
 |       return Builder.CreateSIToFP(Src, DstTy, "conv"); | 
 |     return Builder.CreateUIToFP(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   if (isa<llvm::IntegerType>(DstElementTy)) { | 
 |     assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); | 
 |     bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); | 
 |  | 
 |     // If we can't recognize overflow as undefined behavior, assume that | 
 |     // overflow saturates. This protects against normal optimizations if we are | 
 |     // compiling with non-standard FP semantics. | 
 |     if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { | 
 |       llvm::Intrinsic::ID IID = | 
 |           IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; | 
 |       return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); | 
 |     } | 
 |  | 
 |     if (IsSigned) | 
 |       return Builder.CreateFPToSI(Src, DstTy, "conv"); | 
 |     return Builder.CreateFPToUI(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) | 
 |     return Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
 |   return Builder.CreateFPExt(Src, DstTy, "conv"); | 
 | } | 
 |  | 
 | /// Emit a conversion from the specified type to the specified destination type, | 
 | /// both of which are LLVM scalar types. | 
 | Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, | 
 |                                                QualType DstType, | 
 |                                                SourceLocation Loc, | 
 |                                                ScalarConversionOpts Opts) { | 
 |   // All conversions involving fixed point types should be handled by the | 
 |   // EmitFixedPoint family functions. This is done to prevent bloating up this | 
 |   // function more, and although fixed point numbers are represented by | 
 |   // integers, we do not want to follow any logic that assumes they should be | 
 |   // treated as integers. | 
 |   // TODO(leonardchan): When necessary, add another if statement checking for | 
 |   // conversions to fixed point types from other types. | 
 |   if (SrcType->isFixedPointType()) { | 
 |     if (DstType->isBooleanType()) | 
 |       // It is important that we check this before checking if the dest type is | 
 |       // an integer because booleans are technically integer types. | 
 |       // We do not need to check the padding bit on unsigned types if unsigned | 
 |       // padding is enabled because overflow into this bit is undefined | 
 |       // behavior. | 
 |       return Builder.CreateIsNotNull(Src, "tobool"); | 
 |     if (DstType->isFixedPointType() || DstType->isIntegerType() || | 
 |         DstType->isRealFloatingType()) | 
 |       return EmitFixedPointConversion(Src, SrcType, DstType, Loc); | 
 |  | 
 |     llvm_unreachable( | 
 |         "Unhandled scalar conversion from a fixed point type to another type."); | 
 |   } else if (DstType->isFixedPointType()) { | 
 |     if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) | 
 |       // This also includes converting booleans and enums to fixed point types. | 
 |       return EmitFixedPointConversion(Src, SrcType, DstType, Loc); | 
 |  | 
 |     llvm_unreachable( | 
 |         "Unhandled scalar conversion to a fixed point type from another type."); | 
 |   } | 
 |  | 
 |   QualType NoncanonicalSrcType = SrcType; | 
 |   QualType NoncanonicalDstType = DstType; | 
 |  | 
 |   SrcType = CGF.getContext().getCanonicalType(SrcType); | 
 |   DstType = CGF.getContext().getCanonicalType(DstType); | 
 |   if (SrcType == DstType) return Src; | 
 |  | 
 |   if (DstType->isVoidType()) return nullptr; | 
 |  | 
 |   llvm::Value *OrigSrc = Src; | 
 |   QualType OrigSrcType = SrcType; | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |  | 
 |   // Handle conversions to bool first, they are special: comparisons against 0. | 
 |   if (DstType->isBooleanType()) | 
 |     return EmitConversionToBool(Src, SrcType); | 
 |  | 
 |   llvm::Type *DstTy = ConvertType(DstType); | 
 |  | 
 |   // Cast from half through float if half isn't a native type. | 
 |   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
 |     // Cast to FP using the intrinsic if the half type itself isn't supported. | 
 |     if (DstTy->isFloatingPointTy()) { | 
 |       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) | 
 |         return Builder.CreateCall( | 
 |             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), | 
 |             Src); | 
 |     } else { | 
 |       // Cast to other types through float, using either the intrinsic or FPExt, | 
 |       // depending on whether the half type itself is supported | 
 |       // (as opposed to operations on half, available with NativeHalfType). | 
 |       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
 |         Src = Builder.CreateCall( | 
 |             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, | 
 |                                  CGF.CGM.FloatTy), | 
 |             Src); | 
 |       } else { | 
 |         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); | 
 |       } | 
 |       SrcType = CGF.getContext().FloatTy; | 
 |       SrcTy = CGF.FloatTy; | 
 |     } | 
 |   } | 
 |  | 
 |   // Ignore conversions like int -> uint. | 
 |   if (SrcTy == DstTy) { | 
 |     if (Opts.EmitImplicitIntegerSignChangeChecks) | 
 |       EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, | 
 |                                  NoncanonicalDstType, Loc); | 
 |  | 
 |     return Src; | 
 |   } | 
 |  | 
 |   // Handle pointer conversions next: pointers can only be converted to/from | 
 |   // other pointers and integers. Check for pointer types in terms of LLVM, as | 
 |   // some native types (like Obj-C id) may map to a pointer type. | 
 |   if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { | 
 |     // The source value may be an integer, or a pointer. | 
 |     if (isa<llvm::PointerType>(SrcTy)) | 
 |       return Builder.CreateBitCast(Src, DstTy, "conv"); | 
 |  | 
 |     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); | 
 |     // First, convert to the correct width so that we control the kind of | 
 |     // extension. | 
 |     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); | 
 |     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
 |     llvm::Value* IntResult = | 
 |         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
 |     // Then, cast to pointer. | 
 |     return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   if (isa<llvm::PointerType>(SrcTy)) { | 
 |     // Must be an ptr to int cast. | 
 |     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); | 
 |     return Builder.CreatePtrToInt(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   // A scalar can be splatted to an extended vector of the same element type | 
 |   if (DstType->isExtVectorType() && !SrcType->isVectorType()) { | 
 |     // Sema should add casts to make sure that the source expression's type is | 
 |     // the same as the vector's element type (sans qualifiers) | 
 |     assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == | 
 |                SrcType.getTypePtr() && | 
 |            "Splatted expr doesn't match with vector element type?"); | 
 |  | 
 |     // Splat the element across to all elements | 
 |     unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); | 
 |     return Builder.CreateVectorSplat(NumElements, Src, "splat"); | 
 |   } | 
 |  | 
 |   if (SrcType->isMatrixType() && DstType->isMatrixType()) | 
 |     return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); | 
 |  | 
 |   if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { | 
 |     // Allow bitcast from vector to integer/fp of the same size. | 
 |     llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits(); | 
 |     llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits(); | 
 |     if (SrcSize == DstSize) | 
 |       return Builder.CreateBitCast(Src, DstTy, "conv"); | 
 |  | 
 |     // Conversions between vectors of different sizes are not allowed except | 
 |     // when vectors of half are involved. Operations on storage-only half | 
 |     // vectors require promoting half vector operands to float vectors and | 
 |     // truncating the result, which is either an int or float vector, to a | 
 |     // short or half vector. | 
 |  | 
 |     // Source and destination are both expected to be vectors. | 
 |     llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); | 
 |     llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); | 
 |     (void)DstElementTy; | 
 |  | 
 |     assert(((SrcElementTy->isIntegerTy() && | 
 |              DstElementTy->isIntegerTy()) || | 
 |             (SrcElementTy->isFloatingPointTy() && | 
 |              DstElementTy->isFloatingPointTy())) && | 
 |            "unexpected conversion between a floating-point vector and an " | 
 |            "integer vector"); | 
 |  | 
 |     // Truncate an i32 vector to an i16 vector. | 
 |     if (SrcElementTy->isIntegerTy()) | 
 |       return Builder.CreateIntCast(Src, DstTy, false, "conv"); | 
 |  | 
 |     // Truncate a float vector to a half vector. | 
 |     if (SrcSize > DstSize) | 
 |       return Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
 |  | 
 |     // Promote a half vector to a float vector. | 
 |     return Builder.CreateFPExt(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   // Finally, we have the arithmetic types: real int/float. | 
 |   Value *Res = nullptr; | 
 |   llvm::Type *ResTy = DstTy; | 
 |  | 
 |   // An overflowing conversion has undefined behavior if either the source type | 
 |   // or the destination type is a floating-point type. However, we consider the | 
 |   // range of representable values for all floating-point types to be | 
 |   // [-inf,+inf], so no overflow can ever happen when the destination type is a | 
 |   // floating-point type. | 
 |   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && | 
 |       OrigSrcType->isFloatingType()) | 
 |     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, | 
 |                              Loc); | 
 |  | 
 |   // Cast to half through float if half isn't a native type. | 
 |   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
 |     // Make sure we cast in a single step if from another FP type. | 
 |     if (SrcTy->isFloatingPointTy()) { | 
 |       // Use the intrinsic if the half type itself isn't supported | 
 |       // (as opposed to operations on half, available with NativeHalfType). | 
 |       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) | 
 |         return Builder.CreateCall( | 
 |             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); | 
 |       // If the half type is supported, just use an fptrunc. | 
 |       return Builder.CreateFPTrunc(Src, DstTy); | 
 |     } | 
 |     DstTy = CGF.FloatTy; | 
 |   } | 
 |  | 
 |   Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); | 
 |  | 
 |   if (DstTy != ResTy) { | 
 |     if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
 |       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); | 
 |       Res = Builder.CreateCall( | 
 |         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), | 
 |         Res); | 
 |     } else { | 
 |       Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Opts.EmitImplicitIntegerTruncationChecks) | 
 |     EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, | 
 |                                NoncanonicalDstType, Loc); | 
 |  | 
 |   if (Opts.EmitImplicitIntegerSignChangeChecks) | 
 |     EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, | 
 |                                NoncanonicalDstType, Loc); | 
 |  | 
 |   return Res; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, | 
 |                                                    QualType DstTy, | 
 |                                                    SourceLocation Loc) { | 
 |   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); | 
 |   llvm::Value *Result; | 
 |   if (SrcTy->isRealFloatingType()) | 
 |     Result = FPBuilder.CreateFloatingToFixed(Src, | 
 |         CGF.getContext().getFixedPointSemantics(DstTy)); | 
 |   else if (DstTy->isRealFloatingType()) | 
 |     Result = FPBuilder.CreateFixedToFloating(Src, | 
 |         CGF.getContext().getFixedPointSemantics(SrcTy), | 
 |         ConvertType(DstTy)); | 
 |   else { | 
 |     auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); | 
 |     auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); | 
 |  | 
 |     if (DstTy->isIntegerType()) | 
 |       Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, | 
 |                                               DstFPSema.getWidth(), | 
 |                                               DstFPSema.isSigned()); | 
 |     else if (SrcTy->isIntegerType()) | 
 |       Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), | 
 |                                                DstFPSema); | 
 |     else | 
 |       Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Emit a conversion from the specified complex type to the specified | 
 | /// destination type, where the destination type is an LLVM scalar type. | 
 | Value *ScalarExprEmitter::EmitComplexToScalarConversion( | 
 |     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, | 
 |     SourceLocation Loc) { | 
 |   // Get the source element type. | 
 |   SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); | 
 |  | 
 |   // Handle conversions to bool first, they are special: comparisons against 0. | 
 |   if (DstTy->isBooleanType()) { | 
 |     //  Complex != 0  -> (Real != 0) | (Imag != 0) | 
 |     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); | 
 |     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); | 
 |     return Builder.CreateOr(Src.first, Src.second, "tobool"); | 
 |   } | 
 |  | 
 |   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, | 
 |   // the imaginary part of the complex value is discarded and the value of the | 
 |   // real part is converted according to the conversion rules for the | 
 |   // corresponding real type. | 
 |   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { | 
 |   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); | 
 | } | 
 |  | 
 | /// Emit a sanitization check for the given "binary" operation (which | 
 | /// might actually be a unary increment which has been lowered to a binary | 
 | /// operation). The check passes if all values in \p Checks (which are \c i1), | 
 | /// are \c true. | 
 | void ScalarExprEmitter::EmitBinOpCheck( | 
 |     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { | 
 |   assert(CGF.IsSanitizerScope); | 
 |   SanitizerHandler Check; | 
 |   SmallVector<llvm::Constant *, 4> StaticData; | 
 |   SmallVector<llvm::Value *, 2> DynamicData; | 
 |  | 
 |   BinaryOperatorKind Opcode = Info.Opcode; | 
 |   if (BinaryOperator::isCompoundAssignmentOp(Opcode)) | 
 |     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); | 
 |  | 
 |   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); | 
 |   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); | 
 |   if (UO && UO->getOpcode() == UO_Minus) { | 
 |     Check = SanitizerHandler::NegateOverflow; | 
 |     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); | 
 |     DynamicData.push_back(Info.RHS); | 
 |   } else { | 
 |     if (BinaryOperator::isShiftOp(Opcode)) { | 
 |       // Shift LHS negative or too large, or RHS out of bounds. | 
 |       Check = SanitizerHandler::ShiftOutOfBounds; | 
 |       const BinaryOperator *BO = cast<BinaryOperator>(Info.E); | 
 |       StaticData.push_back( | 
 |         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); | 
 |       StaticData.push_back( | 
 |         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); | 
 |     } else if (Opcode == BO_Div || Opcode == BO_Rem) { | 
 |       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). | 
 |       Check = SanitizerHandler::DivremOverflow; | 
 |       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); | 
 |     } else { | 
 |       // Arithmetic overflow (+, -, *). | 
 |       switch (Opcode) { | 
 |       case BO_Add: Check = SanitizerHandler::AddOverflow; break; | 
 |       case BO_Sub: Check = SanitizerHandler::SubOverflow; break; | 
 |       case BO_Mul: Check = SanitizerHandler::MulOverflow; break; | 
 |       default: llvm_unreachable("unexpected opcode for bin op check"); | 
 |       } | 
 |       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); | 
 |     } | 
 |     DynamicData.push_back(Info.LHS); | 
 |     DynamicData.push_back(Info.RHS); | 
 |   } | 
 |  | 
 |   CGF.EmitCheck(Checks, Check, StaticData, DynamicData); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Visitor Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Value *ScalarExprEmitter::VisitExpr(Expr *E) { | 
 |   CGF.ErrorUnsupported(E, "scalar expression"); | 
 |   if (E->getType()->isVoidType()) | 
 |     return nullptr; | 
 |   return llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
 | } | 
 |  | 
 | Value * | 
 | ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { | 
 |   ASTContext &Context = CGF.getContext(); | 
 |   unsigned AddrSpace = | 
 |       Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace()); | 
 |   llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( | 
 |       E->ComputeName(Context), "__usn_str", AddrSpace); | 
 |  | 
 |   llvm::Type *ExprTy = ConvertType(E->getType()); | 
 |   return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy, | 
 |                                                      "usn_addr_cast"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { | 
 |   // Vector Mask Case | 
 |   if (E->getNumSubExprs() == 2) { | 
 |     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); | 
 |     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); | 
 |     Value *Mask; | 
 |  | 
 |     auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); | 
 |     unsigned LHSElts = LTy->getNumElements(); | 
 |  | 
 |     Mask = RHS; | 
 |  | 
 |     auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); | 
 |  | 
 |     // Mask off the high bits of each shuffle index. | 
 |     Value *MaskBits = | 
 |         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); | 
 |     Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); | 
 |  | 
 |     // newv = undef | 
 |     // mask = mask & maskbits | 
 |     // for each elt | 
 |     //   n = extract mask i | 
 |     //   x = extract val n | 
 |     //   newv = insert newv, x, i | 
 |     auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), | 
 |                                            MTy->getNumElements()); | 
 |     Value* NewV = llvm::PoisonValue::get(RTy); | 
 |     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { | 
 |       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); | 
 |       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); | 
 |  | 
 |       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); | 
 |       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); | 
 |     } | 
 |     return NewV; | 
 |   } | 
 |  | 
 |   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); | 
 |   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); | 
 |  | 
 |   SmallVector<int, 32> Indices; | 
 |   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { | 
 |     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); | 
 |     // Check for -1 and output it as undef in the IR. | 
 |     if (Idx.isSigned() && Idx.isAllOnes()) | 
 |       Indices.push_back(-1); | 
 |     else | 
 |       Indices.push_back(Idx.getZExtValue()); | 
 |   } | 
 |  | 
 |   return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { | 
 |   QualType SrcType = E->getSrcExpr()->getType(), | 
 |            DstType = E->getType(); | 
 |  | 
 |   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr()); | 
 |  | 
 |   SrcType = CGF.getContext().getCanonicalType(SrcType); | 
 |   DstType = CGF.getContext().getCanonicalType(DstType); | 
 |   if (SrcType == DstType) return Src; | 
 |  | 
 |   assert(SrcType->isVectorType() && | 
 |          "ConvertVector source type must be a vector"); | 
 |   assert(DstType->isVectorType() && | 
 |          "ConvertVector destination type must be a vector"); | 
 |  | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   llvm::Type *DstTy = ConvertType(DstType); | 
 |  | 
 |   // Ignore conversions like int -> uint. | 
 |   if (SrcTy == DstTy) | 
 |     return Src; | 
 |  | 
 |   QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), | 
 |            DstEltType = DstType->castAs<VectorType>()->getElementType(); | 
 |  | 
 |   assert(SrcTy->isVectorTy() && | 
 |          "ConvertVector source IR type must be a vector"); | 
 |   assert(DstTy->isVectorTy() && | 
 |          "ConvertVector destination IR type must be a vector"); | 
 |  | 
 |   llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), | 
 |              *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); | 
 |  | 
 |   if (DstEltType->isBooleanType()) { | 
 |     assert((SrcEltTy->isFloatingPointTy() || | 
 |             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); | 
 |  | 
 |     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); | 
 |     if (SrcEltTy->isFloatingPointTy()) { | 
 |       return Builder.CreateFCmpUNE(Src, Zero, "tobool"); | 
 |     } else { | 
 |       return Builder.CreateICmpNE(Src, Zero, "tobool"); | 
 |     } | 
 |   } | 
 |  | 
 |   // We have the arithmetic types: real int/float. | 
 |   Value *Res = nullptr; | 
 |  | 
 |   if (isa<llvm::IntegerType>(SrcEltTy)) { | 
 |     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); | 
 |     if (isa<llvm::IntegerType>(DstEltTy)) | 
 |       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); | 
 |     else if (InputSigned) | 
 |       Res = Builder.CreateSIToFP(Src, DstTy, "conv"); | 
 |     else | 
 |       Res = Builder.CreateUIToFP(Src, DstTy, "conv"); | 
 |   } else if (isa<llvm::IntegerType>(DstEltTy)) { | 
 |     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); | 
 |     if (DstEltType->isSignedIntegerOrEnumerationType()) | 
 |       Res = Builder.CreateFPToSI(Src, DstTy, "conv"); | 
 |     else | 
 |       Res = Builder.CreateFPToUI(Src, DstTy, "conv"); | 
 |   } else { | 
 |     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && | 
 |            "Unknown real conversion"); | 
 |     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) | 
 |       Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
 |     else | 
 |       Res = Builder.CreateFPExt(Src, DstTy, "conv"); | 
 |   } | 
 |  | 
 |   return Res; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { | 
 |   if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { | 
 |     CGF.EmitIgnoredExpr(E->getBase()); | 
 |     return CGF.emitScalarConstant(Constant, E); | 
 |   } else { | 
 |     Expr::EvalResult Result; | 
 |     if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { | 
 |       llvm::APSInt Value = Result.Val.getInt(); | 
 |       CGF.EmitIgnoredExpr(E->getBase()); | 
 |       return Builder.getInt(Value); | 
 |     } | 
 |   } | 
 |  | 
 |   return EmitLoadOfLValue(E); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Emit subscript expressions in rvalue context's.  For most cases, this just | 
 |   // loads the lvalue formed by the subscript expr.  However, we have to be | 
 |   // careful, because the base of a vector subscript is occasionally an rvalue, | 
 |   // so we can't get it as an lvalue. | 
 |   if (!E->getBase()->getType()->isVectorType() && | 
 |       !E->getBase()->getType()->isVLSTBuiltinType()) | 
 |     return EmitLoadOfLValue(E); | 
 |  | 
 |   // Handle the vector case.  The base must be a vector, the index must be an | 
 |   // integer value. | 
 |   Value *Base = Visit(E->getBase()); | 
 |   Value *Idx  = Visit(E->getIdx()); | 
 |   QualType IdxTy = E->getIdx()->getType(); | 
 |  | 
 |   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) | 
 |     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); | 
 |  | 
 |   return Builder.CreateExtractElement(Base, Idx, "vecext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Handle the vector case.  The base must be a vector, the index must be an | 
 |   // integer value. | 
 |   Value *RowIdx = Visit(E->getRowIdx()); | 
 |   Value *ColumnIdx = Visit(E->getColumnIdx()); | 
 |  | 
 |   const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); | 
 |   unsigned NumRows = MatrixTy->getNumRows(); | 
 |   llvm::MatrixBuilder MB(Builder); | 
 |   Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); | 
 |   if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) | 
 |     MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); | 
 |  | 
 |   Value *Matrix = Visit(E->getBase()); | 
 |  | 
 |   // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? | 
 |   return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); | 
 | } | 
 |  | 
 | static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, | 
 |                       unsigned Off) { | 
 |   int MV = SVI->getMaskValue(Idx); | 
 |   if (MV == -1) | 
 |     return -1; | 
 |   return Off + MV; | 
 | } | 
 |  | 
 | static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { | 
 |   assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && | 
 |          "Index operand too large for shufflevector mask!"); | 
 |   return C->getZExtValue(); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |   (void)Ignore; | 
 |   assert (Ignore == false && "init list ignored"); | 
 |   unsigned NumInitElements = E->getNumInits(); | 
 |  | 
 |   if (E->hadArrayRangeDesignator()) | 
 |     CGF.ErrorUnsupported(E, "GNU array range designator extension"); | 
 |  | 
 |   llvm::VectorType *VType = | 
 |     dyn_cast<llvm::VectorType>(ConvertType(E->getType())); | 
 |  | 
 |   if (!VType) { | 
 |     if (NumInitElements == 0) { | 
 |       // C++11 value-initialization for the scalar. | 
 |       return EmitNullValue(E->getType()); | 
 |     } | 
 |     // We have a scalar in braces. Just use the first element. | 
 |     return Visit(E->getInit(0)); | 
 |   } | 
 |  | 
 |   if (isa<llvm::ScalableVectorType>(VType)) { | 
 |     if (NumInitElements == 0) { | 
 |       // C++11 value-initialization for the vector. | 
 |       return EmitNullValue(E->getType()); | 
 |     } | 
 |  | 
 |     if (NumInitElements == 1) { | 
 |       Expr *InitVector = E->getInit(0); | 
 |  | 
 |       // Initialize from another scalable vector of the same type. | 
 |       if (InitVector->getType() == E->getType()) | 
 |         return Visit(InitVector); | 
 |     } | 
 |  | 
 |     llvm_unreachable("Unexpected initialization of a scalable vector!"); | 
 |   } | 
 |  | 
 |   unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); | 
 |  | 
 |   // Loop over initializers collecting the Value for each, and remembering | 
 |   // whether the source was swizzle (ExtVectorElementExpr).  This will allow | 
 |   // us to fold the shuffle for the swizzle into the shuffle for the vector | 
 |   // initializer, since LLVM optimizers generally do not want to touch | 
 |   // shuffles. | 
 |   unsigned CurIdx = 0; | 
 |   bool VIsUndefShuffle = false; | 
 |   llvm::Value *V = llvm::UndefValue::get(VType); | 
 |   for (unsigned i = 0; i != NumInitElements; ++i) { | 
 |     Expr *IE = E->getInit(i); | 
 |     Value *Init = Visit(IE); | 
 |     SmallVector<int, 16> Args; | 
 |  | 
 |     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); | 
 |  | 
 |     // Handle scalar elements.  If the scalar initializer is actually one | 
 |     // element of a different vector of the same width, use shuffle instead of | 
 |     // extract+insert. | 
 |     if (!VVT) { | 
 |       if (isa<ExtVectorElementExpr>(IE)) { | 
 |         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); | 
 |  | 
 |         if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) | 
 |                 ->getNumElements() == ResElts) { | 
 |           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); | 
 |           Value *LHS = nullptr, *RHS = nullptr; | 
 |           if (CurIdx == 0) { | 
 |             // insert into undef -> shuffle (src, undef) | 
 |             // shufflemask must use an i32 | 
 |             Args.push_back(getAsInt32(C, CGF.Int32Ty)); | 
 |             Args.resize(ResElts, -1); | 
 |  | 
 |             LHS = EI->getVectorOperand(); | 
 |             RHS = V; | 
 |             VIsUndefShuffle = true; | 
 |           } else if (VIsUndefShuffle) { | 
 |             // insert into undefshuffle && size match -> shuffle (v, src) | 
 |             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); | 
 |             for (unsigned j = 0; j != CurIdx; ++j) | 
 |               Args.push_back(getMaskElt(SVV, j, 0)); | 
 |             Args.push_back(ResElts + C->getZExtValue()); | 
 |             Args.resize(ResElts, -1); | 
 |  | 
 |             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
 |             RHS = EI->getVectorOperand(); | 
 |             VIsUndefShuffle = false; | 
 |           } | 
 |           if (!Args.empty()) { | 
 |             V = Builder.CreateShuffleVector(LHS, RHS, Args); | 
 |             ++CurIdx; | 
 |             continue; | 
 |           } | 
 |         } | 
 |       } | 
 |       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), | 
 |                                       "vecinit"); | 
 |       VIsUndefShuffle = false; | 
 |       ++CurIdx; | 
 |       continue; | 
 |     } | 
 |  | 
 |     unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); | 
 |  | 
 |     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's | 
 |     // input is the same width as the vector being constructed, generate an | 
 |     // optimized shuffle of the swizzle input into the result. | 
 |     unsigned Offset = (CurIdx == 0) ? 0 : ResElts; | 
 |     if (isa<ExtVectorElementExpr>(IE)) { | 
 |       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); | 
 |       Value *SVOp = SVI->getOperand(0); | 
 |       auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); | 
 |  | 
 |       if (OpTy->getNumElements() == ResElts) { | 
 |         for (unsigned j = 0; j != CurIdx; ++j) { | 
 |           // If the current vector initializer is a shuffle with undef, merge | 
 |           // this shuffle directly into it. | 
 |           if (VIsUndefShuffle) { | 
 |             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); | 
 |           } else { | 
 |             Args.push_back(j); | 
 |           } | 
 |         } | 
 |         for (unsigned j = 0, je = InitElts; j != je; ++j) | 
 |           Args.push_back(getMaskElt(SVI, j, Offset)); | 
 |         Args.resize(ResElts, -1); | 
 |  | 
 |         if (VIsUndefShuffle) | 
 |           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
 |  | 
 |         Init = SVOp; | 
 |       } | 
 |     } | 
 |  | 
 |     // Extend init to result vector length, and then shuffle its contribution | 
 |     // to the vector initializer into V. | 
 |     if (Args.empty()) { | 
 |       for (unsigned j = 0; j != InitElts; ++j) | 
 |         Args.push_back(j); | 
 |       Args.resize(ResElts, -1); | 
 |       Init = Builder.CreateShuffleVector(Init, Args, "vext"); | 
 |  | 
 |       Args.clear(); | 
 |       for (unsigned j = 0; j != CurIdx; ++j) | 
 |         Args.push_back(j); | 
 |       for (unsigned j = 0; j != InitElts; ++j) | 
 |         Args.push_back(j + Offset); | 
 |       Args.resize(ResElts, -1); | 
 |     } | 
 |  | 
 |     // If V is undef, make sure it ends up on the RHS of the shuffle to aid | 
 |     // merging subsequent shuffles into this one. | 
 |     if (CurIdx == 0) | 
 |       std::swap(V, Init); | 
 |     V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); | 
 |     VIsUndefShuffle = isa<llvm::UndefValue>(Init); | 
 |     CurIdx += InitElts; | 
 |   } | 
 |  | 
 |   // FIXME: evaluate codegen vs. shuffling against constant null vector. | 
 |   // Emit remaining default initializers. | 
 |   llvm::Type *EltTy = VType->getElementType(); | 
 |  | 
 |   // Emit remaining default initializers | 
 |   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { | 
 |     Value *Idx = Builder.getInt32(CurIdx); | 
 |     llvm::Value *Init = llvm::Constant::getNullValue(EltTy); | 
 |     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); | 
 |   } | 
 |   return V; | 
 | } | 
 |  | 
 | bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { | 
 |   const Expr *E = CE->getSubExpr(); | 
 |  | 
 |   if (CE->getCastKind() == CK_UncheckedDerivedToBase) | 
 |     return false; | 
 |  | 
 |   if (isa<CXXThisExpr>(E->IgnoreParens())) { | 
 |     // We always assume that 'this' is never null. | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { | 
 |     // And that glvalue casts are never null. | 
 |     if (ICE->isGLValue()) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts | 
 | // have to handle a more broad range of conversions than explicit casts, as they | 
 | // handle things like function to ptr-to-function decay etc. | 
 | Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { | 
 |   Expr *E = CE->getSubExpr(); | 
 |   QualType DestTy = CE->getType(); | 
 |   CastKind Kind = CE->getCastKind(); | 
 |   CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE); | 
 |  | 
 |   // These cases are generally not written to ignore the result of | 
 |   // evaluating their sub-expressions, so we clear this now. | 
 |   bool Ignored = TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Since almost all cast kinds apply to scalars, this switch doesn't have | 
 |   // a default case, so the compiler will warn on a missing case.  The cases | 
 |   // are in the same order as in the CastKind enum. | 
 |   switch (Kind) { | 
 |   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); | 
 |   case CK_BuiltinFnToFnPtr: | 
 |     llvm_unreachable("builtin functions are handled elsewhere"); | 
 |  | 
 |   case CK_LValueBitCast: | 
 |   case CK_ObjCObjectLValueCast: { | 
 |     Address Addr = EmitLValue(E).getAddress(CGF); | 
 |     Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); | 
 |     LValue LV = CGF.MakeAddrLValue(Addr, DestTy); | 
 |     return EmitLoadOfLValue(LV, CE->getExprLoc()); | 
 |   } | 
 |  | 
 |   case CK_LValueToRValueBitCast: { | 
 |     LValue SourceLVal = CGF.EmitLValue(E); | 
 |     Address Addr = SourceLVal.getAddress(CGF).withElementType( | 
 |         CGF.ConvertTypeForMem(DestTy)); | 
 |     LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); | 
 |     DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); | 
 |     return EmitLoadOfLValue(DestLV, CE->getExprLoc()); | 
 |   } | 
 |  | 
 |   case CK_CPointerToObjCPointerCast: | 
 |   case CK_BlockPointerToObjCPointerCast: | 
 |   case CK_AnyPointerToBlockPointerCast: | 
 |   case CK_BitCast: { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |     llvm::Type *SrcTy = Src->getType(); | 
 |     llvm::Type *DstTy = ConvertType(DestTy); | 
 |     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && | 
 |         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { | 
 |       llvm_unreachable("wrong cast for pointers in different address spaces" | 
 |                        "(must be an address space cast)!"); | 
 |     } | 
 |  | 
 |     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { | 
 |       if (auto *PT = DestTy->getAs<PointerType>()) { | 
 |         CGF.EmitVTablePtrCheckForCast( | 
 |             PT->getPointeeType(), | 
 |             Address(Src, | 
 |                     CGF.ConvertTypeForMem( | 
 |                         E->getType()->castAs<PointerType>()->getPointeeType()), | 
 |                     CGF.getPointerAlign()), | 
 |             /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast, | 
 |             CE->getBeginLoc()); | 
 |       } | 
 |     } | 
 |  | 
 |     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
 |       const QualType SrcType = E->getType(); | 
 |  | 
 |       if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { | 
 |         // Casting to pointer that could carry dynamic information (provided by | 
 |         // invariant.group) requires launder. | 
 |         Src = Builder.CreateLaunderInvariantGroup(Src); | 
 |       } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { | 
 |         // Casting to pointer that does not carry dynamic information (provided | 
 |         // by invariant.group) requires stripping it.  Note that we don't do it | 
 |         // if the source could not be dynamic type and destination could be | 
 |         // dynamic because dynamic information is already laundered.  It is | 
 |         // because launder(strip(src)) == launder(src), so there is no need to | 
 |         // add extra strip before launder. | 
 |         Src = Builder.CreateStripInvariantGroup(Src); | 
 |       } | 
 |     } | 
 |  | 
 |     // Update heapallocsite metadata when there is an explicit pointer cast. | 
 |     if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { | 
 |       if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) && | 
 |           !isa<CastExpr>(E)) { | 
 |         QualType PointeeType = DestTy->getPointeeType(); | 
 |         if (!PointeeType.isNull()) | 
 |           CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, | 
 |                                                        CE->getExprLoc()); | 
 |       } | 
 |     } | 
 |  | 
 |     // If Src is a fixed vector and Dst is a scalable vector, and both have the | 
 |     // same element type, use the llvm.vector.insert intrinsic to perform the | 
 |     // bitcast. | 
 |     if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { | 
 |       if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { | 
 |         // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate | 
 |         // vector, use a vector insert and bitcast the result. | 
 |         bool NeedsBitCast = false; | 
 |         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); | 
 |         llvm::Type *OrigType = DstTy; | 
 |         if (ScalableDst == PredType && | 
 |             FixedSrc->getElementType() == Builder.getInt8Ty()) { | 
 |           DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); | 
 |           ScalableDst = cast<llvm::ScalableVectorType>(DstTy); | 
 |           NeedsBitCast = true; | 
 |         } | 
 |         if (FixedSrc->getElementType() == ScalableDst->getElementType()) { | 
 |           llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); | 
 |           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); | 
 |           llvm::Value *Result = Builder.CreateInsertVector( | 
 |               DstTy, UndefVec, Src, Zero, "cast.scalable"); | 
 |           if (NeedsBitCast) | 
 |             Result = Builder.CreateBitCast(Result, OrigType); | 
 |           return Result; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // If Src is a scalable vector and Dst is a fixed vector, and both have the | 
 |     // same element type, use the llvm.vector.extract intrinsic to perform the | 
 |     // bitcast. | 
 |     if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { | 
 |       if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { | 
 |         // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 | 
 |         // vector, bitcast the source and use a vector extract. | 
 |         auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); | 
 |         if (ScalableSrc == PredType && | 
 |             FixedDst->getElementType() == Builder.getInt8Ty()) { | 
 |           SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); | 
 |           ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy); | 
 |           Src = Builder.CreateBitCast(Src, SrcTy); | 
 |         } | 
 |         if (ScalableSrc->getElementType() == FixedDst->getElementType()) { | 
 |           llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); | 
 |           return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed"); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Perform VLAT <-> VLST bitcast through memory. | 
 |     // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics | 
 |     //       require the element types of the vectors to be the same, we | 
 |     //       need to keep this around for bitcasts between VLAT <-> VLST where | 
 |     //       the element types of the vectors are not the same, until we figure | 
 |     //       out a better way of doing these casts. | 
 |     if ((isa<llvm::FixedVectorType>(SrcTy) && | 
 |          isa<llvm::ScalableVectorType>(DstTy)) || | 
 |         (isa<llvm::ScalableVectorType>(SrcTy) && | 
 |          isa<llvm::FixedVectorType>(DstTy))) { | 
 |       Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); | 
 |       LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); | 
 |       CGF.EmitStoreOfScalar(Src, LV); | 
 |       Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); | 
 |       LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); | 
 |       DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); | 
 |       return EmitLoadOfLValue(DestLV, CE->getExprLoc()); | 
 |     } | 
 |     return Builder.CreateBitCast(Src, DstTy); | 
 |   } | 
 |   case CK_AddressSpaceConversion: { | 
 |     Expr::EvalResult Result; | 
 |     if (E->EvaluateAsRValue(Result, CGF.getContext()) && | 
 |         Result.Val.isNullPointer()) { | 
 |       // If E has side effect, it is emitted even if its final result is a | 
 |       // null pointer. In that case, a DCE pass should be able to | 
 |       // eliminate the useless instructions emitted during translating E. | 
 |       if (Result.HasSideEffects) | 
 |         Visit(E); | 
 |       return CGF.CGM.getNullPointer(cast<llvm::PointerType>( | 
 |           ConvertType(DestTy)), DestTy); | 
 |     } | 
 |     // Since target may map different address spaces in AST to the same address | 
 |     // space, an address space conversion may end up as a bitcast. | 
 |     return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( | 
 |         CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), | 
 |         DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); | 
 |   } | 
 |   case CK_AtomicToNonAtomic: | 
 |   case CK_NonAtomicToAtomic: | 
 |   case CK_UserDefinedConversion: | 
 |     return Visit(const_cast<Expr*>(E)); | 
 |  | 
 |   case CK_NoOp: { | 
 |     llvm::Value *V = Visit(const_cast<Expr *>(E)); | 
 |     if (V) { | 
 |       // CK_NoOp can model a pointer qualification conversion, which can remove | 
 |       // an array bound and change the IR type. | 
 |       // FIXME: Once pointee types are removed from IR, remove this. | 
 |       llvm::Type *T = ConvertType(DestTy); | 
 |       if (T != V->getType()) | 
 |         V = Builder.CreateBitCast(V, T); | 
 |     } | 
 |     return V; | 
 |   } | 
 |  | 
 |   case CK_BaseToDerived: { | 
 |     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); | 
 |     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); | 
 |  | 
 |     Address Base = CGF.EmitPointerWithAlignment(E); | 
 |     Address Derived = | 
 |       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, | 
 |                                    CE->path_begin(), CE->path_end(), | 
 |                                    CGF.ShouldNullCheckClassCastValue(CE)); | 
 |  | 
 |     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is | 
 |     // performed and the object is not of the derived type. | 
 |     if (CGF.sanitizePerformTypeCheck()) | 
 |       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), | 
 |                         Derived.getPointer(), DestTy->getPointeeType()); | 
 |  | 
 |     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) | 
 |       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, | 
 |                                     /*MayBeNull=*/true, | 
 |                                     CodeGenFunction::CFITCK_DerivedCast, | 
 |                                     CE->getBeginLoc()); | 
 |  | 
 |     return Derived.getPointer(); | 
 |   } | 
 |   case CK_UncheckedDerivedToBase: | 
 |   case CK_DerivedToBase: { | 
 |     // The EmitPointerWithAlignment path does this fine; just discard | 
 |     // the alignment. | 
 |     return CGF.EmitPointerWithAlignment(CE).getPointer(); | 
 |   } | 
 |  | 
 |   case CK_Dynamic: { | 
 |     Address V = CGF.EmitPointerWithAlignment(E); | 
 |     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); | 
 |     return CGF.EmitDynamicCast(V, DCE); | 
 |   } | 
 |  | 
 |   case CK_ArrayToPointerDecay: | 
 |     return CGF.EmitArrayToPointerDecay(E).getPointer(); | 
 |   case CK_FunctionToPointerDecay: | 
 |     return EmitLValue(E).getPointer(CGF); | 
 |  | 
 |   case CK_NullToPointer: | 
 |     if (MustVisitNullValue(E)) | 
 |       CGF.EmitIgnoredExpr(E); | 
 |  | 
 |     return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), | 
 |                               DestTy); | 
 |  | 
 |   case CK_NullToMemberPointer: { | 
 |     if (MustVisitNullValue(E)) | 
 |       CGF.EmitIgnoredExpr(E); | 
 |  | 
 |     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); | 
 |     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); | 
 |   } | 
 |  | 
 |   case CK_ReinterpretMemberPointer: | 
 |   case CK_BaseToDerivedMemberPointer: | 
 |   case CK_DerivedToBaseMemberPointer: { | 
 |     Value *Src = Visit(E); | 
 |  | 
 |     // Note that the AST doesn't distinguish between checked and | 
 |     // unchecked member pointer conversions, so we always have to | 
 |     // implement checked conversions here.  This is inefficient when | 
 |     // actual control flow may be required in order to perform the | 
 |     // check, which it is for data member pointers (but not member | 
 |     // function pointers on Itanium and ARM). | 
 |     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); | 
 |   } | 
 |  | 
 |   case CK_ARCProduceObject: | 
 |     return CGF.EmitARCRetainScalarExpr(E); | 
 |   case CK_ARCConsumeObject: | 
 |     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); | 
 |   case CK_ARCReclaimReturnedObject: | 
 |     return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); | 
 |   case CK_ARCExtendBlockObject: | 
 |     return CGF.EmitARCExtendBlockObject(E); | 
 |  | 
 |   case CK_CopyAndAutoreleaseBlockObject: | 
 |     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); | 
 |  | 
 |   case CK_FloatingRealToComplex: | 
 |   case CK_FloatingComplexCast: | 
 |   case CK_IntegralRealToComplex: | 
 |   case CK_IntegralComplexCast: | 
 |   case CK_IntegralComplexToFloatingComplex: | 
 |   case CK_FloatingComplexToIntegralComplex: | 
 |   case CK_ConstructorConversion: | 
 |   case CK_ToUnion: | 
 |     llvm_unreachable("scalar cast to non-scalar value"); | 
 |  | 
 |   case CK_LValueToRValue: | 
 |     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); | 
 |     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); | 
 |     return Visit(const_cast<Expr*>(E)); | 
 |  | 
 |   case CK_IntegralToPointer: { | 
 |     Value *Src = Visit(const_cast<Expr*>(E)); | 
 |  | 
 |     // First, convert to the correct width so that we control the kind of | 
 |     // extension. | 
 |     auto DestLLVMTy = ConvertType(DestTy); | 
 |     llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); | 
 |     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); | 
 |     llvm::Value* IntResult = | 
 |       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
 |  | 
 |     auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); | 
 |  | 
 |     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
 |       // Going from integer to pointer that could be dynamic requires reloading | 
 |       // dynamic information from invariant.group. | 
 |       if (DestTy.mayBeDynamicClass()) | 
 |         IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); | 
 |     } | 
 |     return IntToPtr; | 
 |   } | 
 |   case CK_PointerToIntegral: { | 
 |     assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); | 
 |     auto *PtrExpr = Visit(E); | 
 |  | 
 |     if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
 |       const QualType SrcType = E->getType(); | 
 |  | 
 |       // Casting to integer requires stripping dynamic information as it does | 
 |       // not carries it. | 
 |       if (SrcType.mayBeDynamicClass()) | 
 |         PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); | 
 |     } | 
 |  | 
 |     return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); | 
 |   } | 
 |   case CK_ToVoid: { | 
 |     CGF.EmitIgnoredExpr(E); | 
 |     return nullptr; | 
 |   } | 
 |   case CK_MatrixCast: { | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |   } | 
 |   case CK_VectorSplat: { | 
 |     llvm::Type *DstTy = ConvertType(DestTy); | 
 |     Value *Elt = Visit(const_cast<Expr *>(E)); | 
 |     // Splat the element across to all elements | 
 |     llvm::ElementCount NumElements = | 
 |         cast<llvm::VectorType>(DstTy)->getElementCount(); | 
 |     return Builder.CreateVectorSplat(NumElements, Elt, "splat"); | 
 |   } | 
 |  | 
 |   case CK_FixedPointCast: | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |  | 
 |   case CK_FixedPointToBoolean: | 
 |     assert(E->getType()->isFixedPointType() && | 
 |            "Expected src type to be fixed point type"); | 
 |     assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |  | 
 |   case CK_FixedPointToIntegral: | 
 |     assert(E->getType()->isFixedPointType() && | 
 |            "Expected src type to be fixed point type"); | 
 |     assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |  | 
 |   case CK_IntegralToFixedPoint: | 
 |     assert(E->getType()->isIntegerType() && | 
 |            "Expected src type to be an integer"); | 
 |     assert(DestTy->isFixedPointType() && | 
 |            "Expected dest type to be fixed point type"); | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |  | 
 |   case CK_IntegralCast: { | 
 |     ScalarConversionOpts Opts; | 
 |     if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { | 
 |       if (!ICE->isPartOfExplicitCast()) | 
 |         Opts = ScalarConversionOpts(CGF.SanOpts); | 
 |     } | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc(), Opts); | 
 |   } | 
 |   case CK_IntegralToFloating: | 
 |   case CK_FloatingToIntegral: | 
 |   case CK_FloatingCast: | 
 |   case CK_FixedPointToFloating: | 
 |   case CK_FloatingToFixedPoint: { | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc()); | 
 |   } | 
 |   case CK_BooleanToSignedIntegral: { | 
 |     ScalarConversionOpts Opts; | 
 |     Opts.TreatBooleanAsSigned = true; | 
 |     return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
 |                                 CE->getExprLoc(), Opts); | 
 |   } | 
 |   case CK_IntegralToBoolean: | 
 |     return EmitIntToBoolConversion(Visit(E)); | 
 |   case CK_PointerToBoolean: | 
 |     return EmitPointerToBoolConversion(Visit(E), E->getType()); | 
 |   case CK_FloatingToBoolean: { | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); | 
 |     return EmitFloatToBoolConversion(Visit(E)); | 
 |   } | 
 |   case CK_MemberPointerToBoolean: { | 
 |     llvm::Value *MemPtr = Visit(E); | 
 |     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); | 
 |     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); | 
 |   } | 
 |  | 
 |   case CK_FloatingComplexToReal: | 
 |   case CK_IntegralComplexToReal: | 
 |     return CGF.EmitComplexExpr(E, false, true).first; | 
 |  | 
 |   case CK_FloatingComplexToBoolean: | 
 |   case CK_IntegralComplexToBoolean: { | 
 |     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); | 
 |  | 
 |     // TODO: kill this function off, inline appropriate case here | 
 |     return EmitComplexToScalarConversion(V, E->getType(), DestTy, | 
 |                                          CE->getExprLoc()); | 
 |   } | 
 |  | 
 |   case CK_ZeroToOCLOpaqueType: { | 
 |     assert((DestTy->isEventT() || DestTy->isQueueT() || | 
 |             DestTy->isOCLIntelSubgroupAVCType()) && | 
 |            "CK_ZeroToOCLEvent cast on non-event type"); | 
 |     return llvm::Constant::getNullValue(ConvertType(DestTy)); | 
 |   } | 
 |  | 
 |   case CK_IntToOCLSampler: | 
 |     return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); | 
 |  | 
 |   } // end of switch | 
 |  | 
 |   llvm_unreachable("unknown scalar cast"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { | 
 |   CodeGenFunction::StmtExprEvaluation eval(CGF); | 
 |   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), | 
 |                                            !E->getType()->isVoidType()); | 
 |   if (!RetAlloca.isValid()) | 
 |     return nullptr; | 
 |   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), | 
 |                               E->getExprLoc()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { | 
 |   CodeGenFunction::RunCleanupsScope Scope(CGF); | 
 |   Value *V = Visit(E->getSubExpr()); | 
 |   // Defend against dominance problems caused by jumps out of expression | 
 |   // evaluation through the shared cleanup block. | 
 |   Scope.ForceCleanup({&V}); | 
 |   return V; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Unary Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, | 
 |                                            llvm::Value *InVal, bool IsInc, | 
 |                                            FPOptions FPFeatures) { | 
 |   BinOpInfo BinOp; | 
 |   BinOp.LHS = InVal; | 
 |   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); | 
 |   BinOp.Ty = E->getType(); | 
 |   BinOp.Opcode = IsInc ? BO_Add : BO_Sub; | 
 |   BinOp.FPFeatures = FPFeatures; | 
 |   BinOp.E = E; | 
 |   return BinOp; | 
 | } | 
 |  | 
 | llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( | 
 |     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { | 
 |   llvm::Value *Amount = | 
 |       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); | 
 |   StringRef Name = IsInc ? "inc" : "dec"; | 
 |   switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
 |   case LangOptions::SOB_Defined: | 
 |     return Builder.CreateAdd(InVal, Amount, Name); | 
 |   case LangOptions::SOB_Undefined: | 
 |     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
 |       return Builder.CreateNSWAdd(InVal, Amount, Name); | 
 |     [[fallthrough]]; | 
 |   case LangOptions::SOB_Trapping: | 
 |     if (!E->canOverflow()) | 
 |       return Builder.CreateNSWAdd(InVal, Amount, Name); | 
 |     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( | 
 |         E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); | 
 |   } | 
 |   llvm_unreachable("Unknown SignedOverflowBehaviorTy"); | 
 | } | 
 |  | 
 | namespace { | 
 | /// Handles check and update for lastprivate conditional variables. | 
 | class OMPLastprivateConditionalUpdateRAII { | 
 | private: | 
 |   CodeGenFunction &CGF; | 
 |   const UnaryOperator *E; | 
 |  | 
 | public: | 
 |   OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, | 
 |                                       const UnaryOperator *E) | 
 |       : CGF(CGF), E(E) {} | 
 |   ~OMPLastprivateConditionalUpdateRAII() { | 
 |     if (CGF.getLangOpts().OpenMP) | 
 |       CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( | 
 |           CGF, E->getSubExpr()); | 
 |   } | 
 | }; | 
 | } // namespace | 
 |  | 
 | llvm::Value * | 
 | ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
 |                                            bool isInc, bool isPre) { | 
 |   OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); | 
 |   QualType type = E->getSubExpr()->getType(); | 
 |   llvm::PHINode *atomicPHI = nullptr; | 
 |   llvm::Value *value; | 
 |   llvm::Value *input; | 
 |  | 
 |   int amount = (isInc ? 1 : -1); | 
 |   bool isSubtraction = !isInc; | 
 |  | 
 |   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { | 
 |     type = atomicTy->getValueType(); | 
 |     if (isInc && type->isBooleanType()) { | 
 |       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); | 
 |       if (isPre) { | 
 |         Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) | 
 |             ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); | 
 |         return Builder.getTrue(); | 
 |       } | 
 |       // For atomic bool increment, we just store true and return it for | 
 |       // preincrement, do an atomic swap with true for postincrement | 
 |       return Builder.CreateAtomicRMW( | 
 |           llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, | 
 |           llvm::AtomicOrdering::SequentiallyConsistent); | 
 |     } | 
 |     // Special case for atomic increment / decrement on integers, emit | 
 |     // atomicrmw instructions.  We skip this if we want to be doing overflow | 
 |     // checking, and fall into the slow path with the atomic cmpxchg loop. | 
 |     if (!type->isBooleanType() && type->isIntegerType() && | 
 |         !(type->isUnsignedIntegerType() && | 
 |           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && | 
 |         CGF.getLangOpts().getSignedOverflowBehavior() != | 
 |             LangOptions::SOB_Trapping) { | 
 |       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : | 
 |         llvm::AtomicRMWInst::Sub; | 
 |       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : | 
 |         llvm::Instruction::Sub; | 
 |       llvm::Value *amt = CGF.EmitToMemory( | 
 |           llvm::ConstantInt::get(ConvertType(type), 1, true), type); | 
 |       llvm::Value *old = | 
 |           Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, | 
 |                                   llvm::AtomicOrdering::SequentiallyConsistent); | 
 |       return isPre ? Builder.CreateBinOp(op, old, amt) : old; | 
 |     } | 
 |     value = EmitLoadOfLValue(LV, E->getExprLoc()); | 
 |     input = value; | 
 |     // For every other atomic operation, we need to emit a load-op-cmpxchg loop | 
 |     llvm::BasicBlock *startBB = Builder.GetInsertBlock(); | 
 |     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); | 
 |     value = CGF.EmitToMemory(value, type); | 
 |     Builder.CreateBr(opBB); | 
 |     Builder.SetInsertPoint(opBB); | 
 |     atomicPHI = Builder.CreatePHI(value->getType(), 2); | 
 |     atomicPHI->addIncoming(value, startBB); | 
 |     value = atomicPHI; | 
 |   } else { | 
 |     value = EmitLoadOfLValue(LV, E->getExprLoc()); | 
 |     input = value; | 
 |   } | 
 |  | 
 |   // Special case of integer increment that we have to check first: bool++. | 
 |   // Due to promotion rules, we get: | 
 |   //   bool++ -> bool = bool + 1 | 
 |   //          -> bool = (int)bool + 1 | 
 |   //          -> bool = ((int)bool + 1 != 0) | 
 |   // An interesting aspect of this is that increment is always true. | 
 |   // Decrement does not have this property. | 
 |   if (isInc && type->isBooleanType()) { | 
 |     value = Builder.getTrue(); | 
 |  | 
 |   // Most common case by far: integer increment. | 
 |   } else if (type->isIntegerType()) { | 
 |     QualType promotedType; | 
 |     bool canPerformLossyDemotionCheck = false; | 
 |     if (CGF.getContext().isPromotableIntegerType(type)) { | 
 |       promotedType = CGF.getContext().getPromotedIntegerType(type); | 
 |       assert(promotedType != type && "Shouldn't promote to the same type."); | 
 |       canPerformLossyDemotionCheck = true; | 
 |       canPerformLossyDemotionCheck &= | 
 |           CGF.getContext().getCanonicalType(type) != | 
 |           CGF.getContext().getCanonicalType(promotedType); | 
 |       canPerformLossyDemotionCheck &= | 
 |           PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( | 
 |               type, promotedType); | 
 |       assert((!canPerformLossyDemotionCheck || | 
 |               type->isSignedIntegerOrEnumerationType() || | 
 |               promotedType->isSignedIntegerOrEnumerationType() || | 
 |               ConvertType(type)->getScalarSizeInBits() == | 
 |                   ConvertType(promotedType)->getScalarSizeInBits()) && | 
 |              "The following check expects that if we do promotion to different " | 
 |              "underlying canonical type, at least one of the types (either " | 
 |              "base or promoted) will be signed, or the bitwidths will match."); | 
 |     } | 
 |     if (CGF.SanOpts.hasOneOf( | 
 |             SanitizerKind::ImplicitIntegerArithmeticValueChange) && | 
 |         canPerformLossyDemotionCheck) { | 
 |       // While `x += 1` (for `x` with width less than int) is modeled as | 
 |       // promotion+arithmetics+demotion, and we can catch lossy demotion with | 
 |       // ease; inc/dec with width less than int can't overflow because of | 
 |       // promotion rules, so we omit promotion+demotion, which means that we can | 
 |       // not catch lossy "demotion". Because we still want to catch these cases | 
 |       // when the sanitizer is enabled, we perform the promotion, then perform | 
 |       // the increment/decrement in the wider type, and finally | 
 |       // perform the demotion. This will catch lossy demotions. | 
 |  | 
 |       value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); | 
 |       Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); | 
 |       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); | 
 |       // Do pass non-default ScalarConversionOpts so that sanitizer check is | 
 |       // emitted. | 
 |       value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), | 
 |                                    ScalarConversionOpts(CGF.SanOpts)); | 
 |  | 
 |       // Note that signed integer inc/dec with width less than int can't | 
 |       // overflow because of promotion rules; we're just eliding a few steps | 
 |       // here. | 
 |     } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { | 
 |       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); | 
 |     } else if (E->canOverflow() && type->isUnsignedIntegerType() && | 
 |                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { | 
 |       value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( | 
 |           E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); | 
 |     } else { | 
 |       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); | 
 |       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); | 
 |     } | 
 |  | 
 |   // Next most common: pointer increment. | 
 |   } else if (const PointerType *ptr = type->getAs<PointerType>()) { | 
 |     QualType type = ptr->getPointeeType(); | 
 |  | 
 |     // VLA types don't have constant size. | 
 |     if (const VariableArrayType *vla | 
 |           = CGF.getContext().getAsVariableArrayType(type)) { | 
 |       llvm::Value *numElts = CGF.getVLASize(vla).NumElts; | 
 |       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); | 
 |       llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); | 
 |       if (CGF.getLangOpts().isSignedOverflowDefined()) | 
 |         value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); | 
 |       else | 
 |         value = CGF.EmitCheckedInBoundsGEP( | 
 |             elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, | 
 |             E->getExprLoc(), "vla.inc"); | 
 |  | 
 |     // Arithmetic on function pointers (!) is just +-1. | 
 |     } else if (type->isFunctionType()) { | 
 |       llvm::Value *amt = Builder.getInt32(amount); | 
 |  | 
 |       if (CGF.getLangOpts().isSignedOverflowDefined()) | 
 |         value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); | 
 |       else | 
 |         value = | 
 |             CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, | 
 |                                        /*SignedIndices=*/false, isSubtraction, | 
 |                                        E->getExprLoc(), "incdec.funcptr"); | 
 |  | 
 |     // For everything else, we can just do a simple increment. | 
 |     } else { | 
 |       llvm::Value *amt = Builder.getInt32(amount); | 
 |       llvm::Type *elemTy = CGF.ConvertTypeForMem(type); | 
 |       if (CGF.getLangOpts().isSignedOverflowDefined()) | 
 |         value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); | 
 |       else | 
 |         value = CGF.EmitCheckedInBoundsGEP( | 
 |             elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, | 
 |             E->getExprLoc(), "incdec.ptr"); | 
 |     } | 
 |  | 
 |   // Vector increment/decrement. | 
 |   } else if (type->isVectorType()) { | 
 |     if (type->hasIntegerRepresentation()) { | 
 |       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); | 
 |  | 
 |       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); | 
 |     } else { | 
 |       value = Builder.CreateFAdd( | 
 |                   value, | 
 |                   llvm::ConstantFP::get(value->getType(), amount), | 
 |                   isInc ? "inc" : "dec"); | 
 |     } | 
 |  | 
 |   // Floating point. | 
 |   } else if (type->isRealFloatingType()) { | 
 |     // Add the inc/dec to the real part. | 
 |     llvm::Value *amt; | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); | 
 |  | 
 |     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
 |       // Another special case: half FP increment should be done via float | 
 |       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
 |         value = Builder.CreateCall( | 
 |             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, | 
 |                                  CGF.CGM.FloatTy), | 
 |             input, "incdec.conv"); | 
 |       } else { | 
 |         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); | 
 |       } | 
 |     } | 
 |  | 
 |     if (value->getType()->isFloatTy()) | 
 |       amt = llvm::ConstantFP::get(VMContext, | 
 |                                   llvm::APFloat(static_cast<float>(amount))); | 
 |     else if (value->getType()->isDoubleTy()) | 
 |       amt = llvm::ConstantFP::get(VMContext, | 
 |                                   llvm::APFloat(static_cast<double>(amount))); | 
 |     else { | 
 |       // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert | 
 |       // from float. | 
 |       llvm::APFloat F(static_cast<float>(amount)); | 
 |       bool ignored; | 
 |       const llvm::fltSemantics *FS; | 
 |       // Don't use getFloatTypeSemantics because Half isn't | 
 |       // necessarily represented using the "half" LLVM type. | 
 |       if (value->getType()->isFP128Ty()) | 
 |         FS = &CGF.getTarget().getFloat128Format(); | 
 |       else if (value->getType()->isHalfTy()) | 
 |         FS = &CGF.getTarget().getHalfFormat(); | 
 |       else if (value->getType()->isPPC_FP128Ty()) | 
 |         FS = &CGF.getTarget().getIbm128Format(); | 
 |       else | 
 |         FS = &CGF.getTarget().getLongDoubleFormat(); | 
 |       F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); | 
 |       amt = llvm::ConstantFP::get(VMContext, F); | 
 |     } | 
 |     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); | 
 |  | 
 |     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
 |       if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
 |         value = Builder.CreateCall( | 
 |             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, | 
 |                                  CGF.CGM.FloatTy), | 
 |             value, "incdec.conv"); | 
 |       } else { | 
 |         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); | 
 |       } | 
 |     } | 
 |  | 
 |   // Fixed-point types. | 
 |   } else if (type->isFixedPointType()) { | 
 |     // Fixed-point types are tricky. In some cases, it isn't possible to | 
 |     // represent a 1 or a -1 in the type at all. Piggyback off of | 
 |     // EmitFixedPointBinOp to avoid having to reimplement saturation. | 
 |     BinOpInfo Info; | 
 |     Info.E = E; | 
 |     Info.Ty = E->getType(); | 
 |     Info.Opcode = isInc ? BO_Add : BO_Sub; | 
 |     Info.LHS = value; | 
 |     Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); | 
 |     // If the type is signed, it's better to represent this as +(-1) or -(-1), | 
 |     // since -1 is guaranteed to be representable. | 
 |     if (type->isSignedFixedPointType()) { | 
 |       Info.Opcode = isInc ? BO_Sub : BO_Add; | 
 |       Info.RHS = Builder.CreateNeg(Info.RHS); | 
 |     } | 
 |     // Now, convert from our invented integer literal to the type of the unary | 
 |     // op. This will upscale and saturate if necessary. This value can become | 
 |     // undef in some cases. | 
 |     llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); | 
 |     auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); | 
 |     Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); | 
 |     value = EmitFixedPointBinOp(Info); | 
 |  | 
 |   // Objective-C pointer types. | 
 |   } else { | 
 |     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); | 
 |  | 
 |     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); | 
 |     if (!isInc) size = -size; | 
 |     llvm::Value *sizeValue = | 
 |       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); | 
 |  | 
 |     if (CGF.getLangOpts().isSignedOverflowDefined()) | 
 |       value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); | 
 |     else | 
 |       value = CGF.EmitCheckedInBoundsGEP( | 
 |           CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, | 
 |           E->getExprLoc(), "incdec.objptr"); | 
 |     value = Builder.CreateBitCast(value, input->getType()); | 
 |   } | 
 |  | 
 |   if (atomicPHI) { | 
 |     llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); | 
 |     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); | 
 |     auto Pair = CGF.EmitAtomicCompareExchange( | 
 |         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); | 
 |     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); | 
 |     llvm::Value *success = Pair.second; | 
 |     atomicPHI->addIncoming(old, curBlock); | 
 |     Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); | 
 |     Builder.SetInsertPoint(contBB); | 
 |     return isPre ? value : input; | 
 |   } | 
 |  | 
 |   // Store the updated result through the lvalue. | 
 |   if (LV.isBitField()) | 
 |     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); | 
 |   else | 
 |     CGF.EmitStoreThroughLValue(RValue::get(value), LV); | 
 |  | 
 |   // If this is a postinc, return the value read from memory, otherwise use the | 
 |   // updated value. | 
 |   return isPre ? value : input; | 
 | } | 
 |  | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E, | 
 |                                          QualType PromotionType) { | 
 |   QualType promotionTy = PromotionType.isNull() | 
 |                              ? getPromotionType(E->getSubExpr()->getType()) | 
 |                              : PromotionType; | 
 |   Value *result = VisitPlus(E, promotionTy); | 
 |   if (result && !promotionTy.isNull()) | 
 |     result = EmitUnPromotedValue(result, E->getType()); | 
 |   return result; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E, | 
 |                                     QualType PromotionType) { | 
 |   // This differs from gcc, though, most likely due to a bug in gcc. | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   if (!PromotionType.isNull()) | 
 |     return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); | 
 |   return Visit(E->getSubExpr()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E, | 
 |                                           QualType PromotionType) { | 
 |   QualType promotionTy = PromotionType.isNull() | 
 |                              ? getPromotionType(E->getSubExpr()->getType()) | 
 |                              : PromotionType; | 
 |   Value *result = VisitMinus(E, promotionTy); | 
 |   if (result && !promotionTy.isNull()) | 
 |     result = EmitUnPromotedValue(result, E->getType()); | 
 |   return result; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E, | 
 |                                      QualType PromotionType) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Op; | 
 |   if (!PromotionType.isNull()) | 
 |     Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); | 
 |   else | 
 |     Op = Visit(E->getSubExpr()); | 
 |  | 
 |   // Generate a unary FNeg for FP ops. | 
 |   if (Op->getType()->isFPOrFPVectorTy()) | 
 |     return Builder.CreateFNeg(Op, "fneg"); | 
 |  | 
 |   // Emit unary minus with EmitSub so we handle overflow cases etc. | 
 |   BinOpInfo BinOp; | 
 |   BinOp.RHS = Op; | 
 |   BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); | 
 |   BinOp.Ty = E->getType(); | 
 |   BinOp.Opcode = BO_Sub; | 
 |   BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); | 
 |   BinOp.E = E; | 
 |   return EmitSub(BinOp); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Op = Visit(E->getSubExpr()); | 
 |   return Builder.CreateNot(Op, "not"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { | 
 |   // Perform vector logical not on comparison with zero vector. | 
 |   if (E->getType()->isVectorType() && | 
 |       E->getType()->castAs<VectorType>()->getVectorKind() == | 
 |           VectorType::GenericVector) { | 
 |     Value *Oper = Visit(E->getSubExpr()); | 
 |     Value *Zero = llvm::Constant::getNullValue(Oper->getType()); | 
 |     Value *Result; | 
 |     if (Oper->getType()->isFPOrFPVectorTy()) { | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII( | 
 |           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); | 
 |       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); | 
 |     } else | 
 |       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); | 
 |     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); | 
 |   } | 
 |  | 
 |   // Compare operand to zero. | 
 |   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); | 
 |  | 
 |   // Invert value. | 
 |   // TODO: Could dynamically modify easy computations here.  For example, if | 
 |   // the operand is an icmp ne, turn into icmp eq. | 
 |   BoolVal = Builder.CreateNot(BoolVal, "lnot"); | 
 |  | 
 |   // ZExt result to the expr type. | 
 |   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { | 
 |   // Try folding the offsetof to a constant. | 
 |   Expr::EvalResult EVResult; | 
 |   if (E->EvaluateAsInt(EVResult, CGF.getContext())) { | 
 |     llvm::APSInt Value = EVResult.Val.getInt(); | 
 |     return Builder.getInt(Value); | 
 |   } | 
 |  | 
 |   // Loop over the components of the offsetof to compute the value. | 
 |   unsigned n = E->getNumComponents(); | 
 |   llvm::Type* ResultType = ConvertType(E->getType()); | 
 |   llvm::Value* Result = llvm::Constant::getNullValue(ResultType); | 
 |   QualType CurrentType = E->getTypeSourceInfo()->getType(); | 
 |   for (unsigned i = 0; i != n; ++i) { | 
 |     OffsetOfNode ON = E->getComponent(i); | 
 |     llvm::Value *Offset = nullptr; | 
 |     switch (ON.getKind()) { | 
 |     case OffsetOfNode::Array: { | 
 |       // Compute the index | 
 |       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); | 
 |       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); | 
 |       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); | 
 |       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); | 
 |  | 
 |       // Save the element type | 
 |       CurrentType = | 
 |           CGF.getContext().getAsArrayType(CurrentType)->getElementType(); | 
 |  | 
 |       // Compute the element size | 
 |       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, | 
 |           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); | 
 |  | 
 |       // Multiply out to compute the result | 
 |       Offset = Builder.CreateMul(Idx, ElemSize); | 
 |       break; | 
 |     } | 
 |  | 
 |     case OffsetOfNode::Field: { | 
 |       FieldDecl *MemberDecl = ON.getField(); | 
 |       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); | 
 |       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); | 
 |  | 
 |       // Compute the index of the field in its parent. | 
 |       unsigned i = 0; | 
 |       // FIXME: It would be nice if we didn't have to loop here! | 
 |       for (RecordDecl::field_iterator Field = RD->field_begin(), | 
 |                                       FieldEnd = RD->field_end(); | 
 |            Field != FieldEnd; ++Field, ++i) { | 
 |         if (*Field == MemberDecl) | 
 |           break; | 
 |       } | 
 |       assert(i < RL.getFieldCount() && "offsetof field in wrong type"); | 
 |  | 
 |       // Compute the offset to the field | 
 |       int64_t OffsetInt = RL.getFieldOffset(i) / | 
 |                           CGF.getContext().getCharWidth(); | 
 |       Offset = llvm::ConstantInt::get(ResultType, OffsetInt); | 
 |  | 
 |       // Save the element type. | 
 |       CurrentType = MemberDecl->getType(); | 
 |       break; | 
 |     } | 
 |  | 
 |     case OffsetOfNode::Identifier: | 
 |       llvm_unreachable("dependent __builtin_offsetof"); | 
 |  | 
 |     case OffsetOfNode::Base: { | 
 |       if (ON.getBase()->isVirtual()) { | 
 |         CGF.ErrorUnsupported(E, "virtual base in offsetof"); | 
 |         continue; | 
 |       } | 
 |  | 
 |       RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); | 
 |       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); | 
 |  | 
 |       // Save the element type. | 
 |       CurrentType = ON.getBase()->getType(); | 
 |  | 
 |       // Compute the offset to the base. | 
 |       auto *BaseRT = CurrentType->castAs<RecordType>(); | 
 |       auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
 |       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); | 
 |       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); | 
 |       break; | 
 |     } | 
 |     } | 
 |     Result = Builder.CreateAdd(Result, Offset); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of | 
 | /// argument of the sizeof expression as an integer. | 
 | Value * | 
 | ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( | 
 |                               const UnaryExprOrTypeTraitExpr *E) { | 
 |   QualType TypeToSize = E->getTypeOfArgument(); | 
 |   if (E->getKind() == UETT_SizeOf) { | 
 |     if (const VariableArrayType *VAT = | 
 |           CGF.getContext().getAsVariableArrayType(TypeToSize)) { | 
 |       if (E->isArgumentType()) { | 
 |         // sizeof(type) - make sure to emit the VLA size. | 
 |         CGF.EmitVariablyModifiedType(TypeToSize); | 
 |       } else { | 
 |         // C99 6.5.3.4p2: If the argument is an expression of type | 
 |         // VLA, it is evaluated. | 
 |         CGF.EmitIgnoredExpr(E->getArgumentExpr()); | 
 |       } | 
 |  | 
 |       auto VlaSize = CGF.getVLASize(VAT); | 
 |       llvm::Value *size = VlaSize.NumElts; | 
 |  | 
 |       // Scale the number of non-VLA elements by the non-VLA element size. | 
 |       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); | 
 |       if (!eltSize.isOne()) | 
 |         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); | 
 |  | 
 |       return size; | 
 |     } | 
 |   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { | 
 |     auto Alignment = | 
 |         CGF.getContext() | 
 |             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( | 
 |                 E->getTypeOfArgument()->getPointeeType())) | 
 |             .getQuantity(); | 
 |     return llvm::ConstantInt::get(CGF.SizeTy, Alignment); | 
 |   } | 
 |  | 
 |   // If this isn't sizeof(vla), the result must be constant; use the constant | 
 |   // folding logic so we don't have to duplicate it here. | 
 |   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E, | 
 |                                          QualType PromotionType) { | 
 |   QualType promotionTy = PromotionType.isNull() | 
 |                              ? getPromotionType(E->getSubExpr()->getType()) | 
 |                              : PromotionType; | 
 |   Value *result = VisitReal(E, promotionTy); | 
 |   if (result && !promotionTy.isNull()) | 
 |     result = EmitUnPromotedValue(result, E->getType()); | 
 |   return result; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E, | 
 |                                     QualType PromotionType) { | 
 |   Expr *Op = E->getSubExpr(); | 
 |   if (Op->getType()->isAnyComplexType()) { | 
 |     // If it's an l-value, load through the appropriate subobject l-value. | 
 |     // Note that we have to ask E because Op might be an l-value that | 
 |     // this won't work for, e.g. an Obj-C property. | 
 |     if (E->isGLValue())  { | 
 |       if (!PromotionType.isNull()) { | 
 |         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( | 
 |             Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true); | 
 |         if (result.first) | 
 |           result.first = CGF.EmitPromotedValue(result, PromotionType).first; | 
 |         return result.first; | 
 |       } else { | 
 |         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) | 
 |             .getScalarVal(); | 
 |       } | 
 |     } | 
 |     // Otherwise, calculate and project. | 
 |     return CGF.EmitComplexExpr(Op, false, true).first; | 
 |   } | 
 |  | 
 |   if (!PromotionType.isNull()) | 
 |     return CGF.EmitPromotedScalarExpr(Op, PromotionType); | 
 |   return Visit(Op); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E, | 
 |                                          QualType PromotionType) { | 
 |   QualType promotionTy = PromotionType.isNull() | 
 |                              ? getPromotionType(E->getSubExpr()->getType()) | 
 |                              : PromotionType; | 
 |   Value *result = VisitImag(E, promotionTy); | 
 |   if (result && !promotionTy.isNull()) | 
 |     result = EmitUnPromotedValue(result, E->getType()); | 
 |   return result; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E, | 
 |                                     QualType PromotionType) { | 
 |   Expr *Op = E->getSubExpr(); | 
 |   if (Op->getType()->isAnyComplexType()) { | 
 |     // If it's an l-value, load through the appropriate subobject l-value. | 
 |     // Note that we have to ask E because Op might be an l-value that | 
 |     // this won't work for, e.g. an Obj-C property. | 
 |     if (Op->isGLValue()) { | 
 |       if (!PromotionType.isNull()) { | 
 |         CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( | 
 |             Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign); | 
 |         if (result.second) | 
 |           result.second = CGF.EmitPromotedValue(result, PromotionType).second; | 
 |         return result.second; | 
 |       } else { | 
 |         return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) | 
 |             .getScalarVal(); | 
 |       } | 
 |     } | 
 |     // Otherwise, calculate and project. | 
 |     return CGF.EmitComplexExpr(Op, true, false).second; | 
 |   } | 
 |  | 
 |   // __imag on a scalar returns zero.  Emit the subexpr to ensure side | 
 |   // effects are evaluated, but not the actual value. | 
 |   if (Op->isGLValue()) | 
 |     CGF.EmitLValue(Op); | 
 |   else if (!PromotionType.isNull()) | 
 |     CGF.EmitPromotedScalarExpr(Op, PromotionType); | 
 |   else | 
 |     CGF.EmitScalarExpr(Op, true); | 
 |   if (!PromotionType.isNull()) | 
 |     return llvm::Constant::getNullValue(ConvertType(PromotionType)); | 
 |   return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           Binary Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Value *ScalarExprEmitter::EmitPromotedValue(Value *result, | 
 |                                             QualType PromotionType) { | 
 |   return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result, | 
 |                                               QualType ExprType) { | 
 |   return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) { | 
 |   E = E->IgnoreParens(); | 
 |   if (auto BO = dyn_cast<BinaryOperator>(E)) { | 
 |     switch (BO->getOpcode()) { | 
 | #define HANDLE_BINOP(OP)                                                       \ | 
 |   case BO_##OP:                                                                \ | 
 |     return Emit##OP(EmitBinOps(BO, PromotionType)); | 
 |       HANDLE_BINOP(Add) | 
 |       HANDLE_BINOP(Sub) | 
 |       HANDLE_BINOP(Mul) | 
 |       HANDLE_BINOP(Div) | 
 | #undef HANDLE_BINOP | 
 |     default: | 
 |       break; | 
 |     } | 
 |   } else if (auto UO = dyn_cast<UnaryOperator>(E)) { | 
 |     switch (UO->getOpcode()) { | 
 |     case UO_Imag: | 
 |       return VisitImag(UO, PromotionType); | 
 |     case UO_Real: | 
 |       return VisitReal(UO, PromotionType); | 
 |     case UO_Minus: | 
 |       return VisitMinus(UO, PromotionType); | 
 |     case UO_Plus: | 
 |       return VisitPlus(UO, PromotionType); | 
 |     default: | 
 |       break; | 
 |     } | 
 |   } | 
 |   auto result = Visit(const_cast<Expr *>(E)); | 
 |   if (result) { | 
 |     if (!PromotionType.isNull()) | 
 |       return EmitPromotedValue(result, PromotionType); | 
 |     else | 
 |       return EmitUnPromotedValue(result, E->getType()); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E, | 
 |                                         QualType PromotionType) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   BinOpInfo Result; | 
 |   Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType); | 
 |   Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType); | 
 |   if (!PromotionType.isNull()) | 
 |     Result.Ty = PromotionType; | 
 |   else | 
 |     Result.Ty  = E->getType(); | 
 |   Result.Opcode = E->getOpcode(); | 
 |   Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); | 
 |   Result.E = E; | 
 |   return Result; | 
 | } | 
 |  | 
 | LValue ScalarExprEmitter::EmitCompoundAssignLValue( | 
 |                                               const CompoundAssignOperator *E, | 
 |                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), | 
 |                                                    Value *&Result) { | 
 |   QualType LHSTy = E->getLHS()->getType(); | 
 |   BinOpInfo OpInfo; | 
 |  | 
 |   if (E->getComputationResultType()->isAnyComplexType()) | 
 |     return CGF.EmitScalarCompoundAssignWithComplex(E, Result); | 
 |  | 
 |   // Emit the RHS first.  __block variables need to have the rhs evaluated | 
 |   // first, plus this should improve codegen a little. | 
 |  | 
 |   QualType PromotionTypeCR; | 
 |   PromotionTypeCR = getPromotionType(E->getComputationResultType()); | 
 |   if (PromotionTypeCR.isNull()) | 
 |       PromotionTypeCR = E->getComputationResultType(); | 
 |   QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); | 
 |   QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); | 
 |   if (!PromotionTypeRHS.isNull()) | 
 |     OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS); | 
 |   else | 
 |     OpInfo.RHS = Visit(E->getRHS()); | 
 |   OpInfo.Ty = PromotionTypeCR; | 
 |   OpInfo.Opcode = E->getOpcode(); | 
 |   OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); | 
 |   OpInfo.E = E; | 
 |   // Load/convert the LHS. | 
 |   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
 |  | 
 |   llvm::PHINode *atomicPHI = nullptr; | 
 |   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { | 
 |     QualType type = atomicTy->getValueType(); | 
 |     if (!type->isBooleanType() && type->isIntegerType() && | 
 |         !(type->isUnsignedIntegerType() && | 
 |           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && | 
 |         CGF.getLangOpts().getSignedOverflowBehavior() != | 
 |             LangOptions::SOB_Trapping) { | 
 |       llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; | 
 |       llvm::Instruction::BinaryOps Op; | 
 |       switch (OpInfo.Opcode) { | 
 |         // We don't have atomicrmw operands for *, %, /, <<, >> | 
 |         case BO_MulAssign: case BO_DivAssign: | 
 |         case BO_RemAssign: | 
 |         case BO_ShlAssign: | 
 |         case BO_ShrAssign: | 
 |           break; | 
 |         case BO_AddAssign: | 
 |           AtomicOp = llvm::AtomicRMWInst::Add; | 
 |           Op = llvm::Instruction::Add; | 
 |           break; | 
 |         case BO_SubAssign: | 
 |           AtomicOp = llvm::AtomicRMWInst::Sub; | 
 |           Op = llvm::Instruction::Sub; | 
 |           break; | 
 |         case BO_AndAssign: | 
 |           AtomicOp = llvm::AtomicRMWInst::And; | 
 |           Op = llvm::Instruction::And; | 
 |           break; | 
 |         case BO_XorAssign: | 
 |           AtomicOp = llvm::AtomicRMWInst::Xor; | 
 |           Op = llvm::Instruction::Xor; | 
 |           break; | 
 |         case BO_OrAssign: | 
 |           AtomicOp = llvm::AtomicRMWInst::Or; | 
 |           Op = llvm::Instruction::Or; | 
 |           break; | 
 |         default: | 
 |           llvm_unreachable("Invalid compound assignment type"); | 
 |       } | 
 |       if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { | 
 |         llvm::Value *Amt = CGF.EmitToMemory( | 
 |             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, | 
 |                                  E->getExprLoc()), | 
 |             LHSTy); | 
 |         Value *OldVal = Builder.CreateAtomicRMW( | 
 |             AtomicOp, LHSLV.getPointer(CGF), Amt, | 
 |             llvm::AtomicOrdering::SequentiallyConsistent); | 
 |  | 
 |         // Since operation is atomic, the result type is guaranteed to be the | 
 |         // same as the input in LLVM terms. | 
 |         Result = Builder.CreateBinOp(Op, OldVal, Amt); | 
 |         return LHSLV; | 
 |       } | 
 |     } | 
 |     // FIXME: For floating point types, we should be saving and restoring the | 
 |     // floating point environment in the loop. | 
 |     llvm::BasicBlock *startBB = Builder.GetInsertBlock(); | 
 |     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); | 
 |     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); | 
 |     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); | 
 |     Builder.CreateBr(opBB); | 
 |     Builder.SetInsertPoint(opBB); | 
 |     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); | 
 |     atomicPHI->addIncoming(OpInfo.LHS, startBB); | 
 |     OpInfo.LHS = atomicPHI; | 
 |   } | 
 |   else | 
 |     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); | 
 |  | 
 |   CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); | 
 |   SourceLocation Loc = E->getExprLoc(); | 
 |   if (!PromotionTypeLHS.isNull()) | 
 |     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS, | 
 |                                       E->getExprLoc()); | 
 |   else | 
 |     OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, | 
 |                                       E->getComputationLHSType(), Loc); | 
 |  | 
 |   // Expand the binary operator. | 
 |   Result = (this->*Func)(OpInfo); | 
 |  | 
 |   // Convert the result back to the LHS type, | 
 |   // potentially with Implicit Conversion sanitizer check. | 
 |   Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc, | 
 |                                 ScalarConversionOpts(CGF.SanOpts)); | 
 |  | 
 |   if (atomicPHI) { | 
 |     llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); | 
 |     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); | 
 |     auto Pair = CGF.EmitAtomicCompareExchange( | 
 |         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); | 
 |     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); | 
 |     llvm::Value *success = Pair.second; | 
 |     atomicPHI->addIncoming(old, curBlock); | 
 |     Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); | 
 |     Builder.SetInsertPoint(contBB); | 
 |     return LHSLV; | 
 |   } | 
 |  | 
 |   // Store the result value into the LHS lvalue. Bit-fields are handled | 
 |   // specially because the result is altered by the store, i.e., [C99 6.5.16p1] | 
 |   // 'An assignment expression has the value of the left operand after the | 
 |   // assignment...'. | 
 |   if (LHSLV.isBitField()) | 
 |     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); | 
 |   else | 
 |     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); | 
 |  | 
 |   if (CGF.getLangOpts().OpenMP) | 
 |     CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, | 
 |                                                                   E->getLHS()); | 
 |   return LHSLV; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, | 
 |                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |   Value *RHS = nullptr; | 
 |   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); | 
 |  | 
 |   // If the result is clearly ignored, return now. | 
 |   if (Ignore) | 
 |     return nullptr; | 
 |  | 
 |   // The result of an assignment in C is the assigned r-value. | 
 |   if (!CGF.getLangOpts().CPlusPlus) | 
 |     return RHS; | 
 |  | 
 |   // If the lvalue is non-volatile, return the computed value of the assignment. | 
 |   if (!LHS.isVolatileQualified()) | 
 |     return RHS; | 
 |  | 
 |   // Otherwise, reload the value. | 
 |   return EmitLoadOfLValue(LHS, E->getExprLoc()); | 
 | } | 
 |  | 
 | void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( | 
 |     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { | 
 |   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; | 
 |  | 
 |   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { | 
 |     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), | 
 |                                     SanitizerKind::IntegerDivideByZero)); | 
 |   } | 
 |  | 
 |   const auto *BO = cast<BinaryOperator>(Ops.E); | 
 |   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && | 
 |       Ops.Ty->hasSignedIntegerRepresentation() && | 
 |       !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && | 
 |       Ops.mayHaveIntegerOverflow()) { | 
 |     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); | 
 |  | 
 |     llvm::Value *IntMin = | 
 |       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); | 
 |     llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); | 
 |  | 
 |     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); | 
 |     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); | 
 |     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); | 
 |     Checks.push_back( | 
 |         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); | 
 |   } | 
 |  | 
 |   if (Checks.size() > 0) | 
 |     EmitBinOpCheck(Checks, Ops); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { | 
 |   { | 
 |     CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || | 
 |          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && | 
 |         Ops.Ty->isIntegerType() && | 
 |         (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { | 
 |       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
 |       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); | 
 |     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && | 
 |                Ops.Ty->isRealFloatingType() && | 
 |                Ops.mayHaveFloatDivisionByZero()) { | 
 |       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
 |       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); | 
 |       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), | 
 |                      Ops); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Ops.Ty->isConstantMatrixType()) { | 
 |     llvm::MatrixBuilder MB(Builder); | 
 |     // We need to check the types of the operands of the operator to get the | 
 |     // correct matrix dimensions. | 
 |     auto *BO = cast<BinaryOperator>(Ops.E); | 
 |     (void)BO; | 
 |     assert( | 
 |         isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && | 
 |         "first operand must be a matrix"); | 
 |     assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && | 
 |            "second operand must be an arithmetic type"); | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); | 
 |     return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, | 
 |                               Ops.Ty->hasUnsignedIntegerRepresentation()); | 
 |   } | 
 |  | 
 |   if (Ops.LHS->getType()->isFPOrFPVectorTy()) { | 
 |     llvm::Value *Val; | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); | 
 |     Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); | 
 |     CGF.SetDivFPAccuracy(Val); | 
 |     return Val; | 
 |   } | 
 |   else if (Ops.isFixedPointOp()) | 
 |     return EmitFixedPointBinOp(Ops); | 
 |   else if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
 |     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); | 
 |   else | 
 |     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { | 
 |   // Rem in C can't be a floating point type: C99 6.5.5p2. | 
 |   if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || | 
 |        CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && | 
 |       Ops.Ty->isIntegerType() && | 
 |       (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { | 
 |     CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
 |     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); | 
 |   } | 
 |  | 
 |   if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
 |     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); | 
 |   else | 
 |     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { | 
 |   unsigned IID; | 
 |   unsigned OpID = 0; | 
 |   SanitizerHandler OverflowKind; | 
 |  | 
 |   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); | 
 |   switch (Ops.Opcode) { | 
 |   case BO_Add: | 
 |   case BO_AddAssign: | 
 |     OpID = 1; | 
 |     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : | 
 |                      llvm::Intrinsic::uadd_with_overflow; | 
 |     OverflowKind = SanitizerHandler::AddOverflow; | 
 |     break; | 
 |   case BO_Sub: | 
 |   case BO_SubAssign: | 
 |     OpID = 2; | 
 |     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : | 
 |                      llvm::Intrinsic::usub_with_overflow; | 
 |     OverflowKind = SanitizerHandler::SubOverflow; | 
 |     break; | 
 |   case BO_Mul: | 
 |   case BO_MulAssign: | 
 |     OpID = 3; | 
 |     IID = isSigned ? llvm::Intrinsic::smul_with_overflow : | 
 |                      llvm::Intrinsic::umul_with_overflow; | 
 |     OverflowKind = SanitizerHandler::MulOverflow; | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("Unsupported operation for overflow detection"); | 
 |   } | 
 |   OpID <<= 1; | 
 |   if (isSigned) | 
 |     OpID |= 1; | 
 |  | 
 |   CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); | 
 |  | 
 |   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); | 
 |  | 
 |   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); | 
 |   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); | 
 |   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); | 
 |  | 
 |   // Handle overflow with llvm.trap if no custom handler has been specified. | 
 |   const std::string *handlerName = | 
 |     &CGF.getLangOpts().OverflowHandler; | 
 |   if (handlerName->empty()) { | 
 |     // If the signed-integer-overflow sanitizer is enabled, emit a call to its | 
 |     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. | 
 |     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { | 
 |       llvm::Value *NotOverflow = Builder.CreateNot(overflow); | 
 |       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow | 
 |                               : SanitizerKind::UnsignedIntegerOverflow; | 
 |       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); | 
 |     } else | 
 |       CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); | 
 |     return result; | 
 |   } | 
 |  | 
 |   // Branch in case of overflow. | 
 |   llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); | 
 |   llvm::BasicBlock *continueBB = | 
 |       CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); | 
 |   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); | 
 |  | 
 |   Builder.CreateCondBr(overflow, overflowBB, continueBB); | 
 |  | 
 |   // If an overflow handler is set, then we want to call it and then use its | 
 |   // result, if it returns. | 
 |   Builder.SetInsertPoint(overflowBB); | 
 |  | 
 |   // Get the overflow handler. | 
 |   llvm::Type *Int8Ty = CGF.Int8Ty; | 
 |   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; | 
 |   llvm::FunctionType *handlerTy = | 
 |       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); | 
 |   llvm::FunctionCallee handler = | 
 |       CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); | 
 |  | 
 |   // Sign extend the args to 64-bit, so that we can use the same handler for | 
 |   // all types of overflow. | 
 |   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); | 
 |   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); | 
 |  | 
 |   // Call the handler with the two arguments, the operation, and the size of | 
 |   // the result. | 
 |   llvm::Value *handlerArgs[] = { | 
 |     lhs, | 
 |     rhs, | 
 |     Builder.getInt8(OpID), | 
 |     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) | 
 |   }; | 
 |   llvm::Value *handlerResult = | 
 |     CGF.EmitNounwindRuntimeCall(handler, handlerArgs); | 
 |  | 
 |   // Truncate the result back to the desired size. | 
 |   handlerResult = Builder.CreateTrunc(handlerResult, opTy); | 
 |   Builder.CreateBr(continueBB); | 
 |  | 
 |   Builder.SetInsertPoint(continueBB); | 
 |   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); | 
 |   phi->addIncoming(result, initialBB); | 
 |   phi->addIncoming(handlerResult, overflowBB); | 
 |  | 
 |   return phi; | 
 | } | 
 |  | 
 | /// Emit pointer + index arithmetic. | 
 | static Value *emitPointerArithmetic(CodeGenFunction &CGF, | 
 |                                     const BinOpInfo &op, | 
 |                                     bool isSubtraction) { | 
 |   // Must have binary (not unary) expr here.  Unary pointer | 
 |   // increment/decrement doesn't use this path. | 
 |   const BinaryOperator *expr = cast<BinaryOperator>(op.E); | 
 |  | 
 |   Value *pointer = op.LHS; | 
 |   Expr *pointerOperand = expr->getLHS(); | 
 |   Value *index = op.RHS; | 
 |   Expr *indexOperand = expr->getRHS(); | 
 |  | 
 |   // In a subtraction, the LHS is always the pointer. | 
 |   if (!isSubtraction && !pointer->getType()->isPointerTy()) { | 
 |     std::swap(pointer, index); | 
 |     std::swap(pointerOperand, indexOperand); | 
 |   } | 
 |  | 
 |   bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); | 
 |  | 
 |   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); | 
 |   auto &DL = CGF.CGM.getDataLayout(); | 
 |   auto PtrTy = cast<llvm::PointerType>(pointer->getType()); | 
 |  | 
 |   // Some versions of glibc and gcc use idioms (particularly in their malloc | 
 |   // routines) that add a pointer-sized integer (known to be a pointer value) | 
 |   // to a null pointer in order to cast the value back to an integer or as | 
 |   // part of a pointer alignment algorithm.  This is undefined behavior, but | 
 |   // we'd like to be able to compile programs that use it. | 
 |   // | 
 |   // Normally, we'd generate a GEP with a null-pointer base here in response | 
 |   // to that code, but it's also UB to dereference a pointer created that | 
 |   // way.  Instead (as an acknowledged hack to tolerate the idiom) we will | 
 |   // generate a direct cast of the integer value to a pointer. | 
 |   // | 
 |   // The idiom (p = nullptr + N) is not met if any of the following are true: | 
 |   // | 
 |   //   The operation is subtraction. | 
 |   //   The index is not pointer-sized. | 
 |   //   The pointer type is not byte-sized. | 
 |   // | 
 |   if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), | 
 |                                                        op.Opcode, | 
 |                                                        expr->getLHS(), | 
 |                                                        expr->getRHS())) | 
 |     return CGF.Builder.CreateIntToPtr(index, pointer->getType()); | 
 |  | 
 |   if (width != DL.getIndexTypeSizeInBits(PtrTy)) { | 
 |     // Zero-extend or sign-extend the pointer value according to | 
 |     // whether the index is signed or not. | 
 |     index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, | 
 |                                       "idx.ext"); | 
 |   } | 
 |  | 
 |   // If this is subtraction, negate the index. | 
 |   if (isSubtraction) | 
 |     index = CGF.Builder.CreateNeg(index, "idx.neg"); | 
 |  | 
 |   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) | 
 |     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), | 
 |                         /*Accessed*/ false); | 
 |  | 
 |   const PointerType *pointerType | 
 |     = pointerOperand->getType()->getAs<PointerType>(); | 
 |   if (!pointerType) { | 
 |     QualType objectType = pointerOperand->getType() | 
 |                                         ->castAs<ObjCObjectPointerType>() | 
 |                                         ->getPointeeType(); | 
 |     llvm::Value *objectSize | 
 |       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); | 
 |  | 
 |     index = CGF.Builder.CreateMul(index, objectSize); | 
 |  | 
 |     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); | 
 |     result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); | 
 |     return CGF.Builder.CreateBitCast(result, pointer->getType()); | 
 |   } | 
 |  | 
 |   QualType elementType = pointerType->getPointeeType(); | 
 |   if (const VariableArrayType *vla | 
 |         = CGF.getContext().getAsVariableArrayType(elementType)) { | 
 |     // The element count here is the total number of non-VLA elements. | 
 |     llvm::Value *numElements = CGF.getVLASize(vla).NumElts; | 
 |  | 
 |     // Effectively, the multiply by the VLA size is part of the GEP. | 
 |     // GEP indexes are signed, and scaling an index isn't permitted to | 
 |     // signed-overflow, so we use the same semantics for our explicit | 
 |     // multiply.  We suppress this if overflow is not undefined behavior. | 
 |     llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); | 
 |     if (CGF.getLangOpts().isSignedOverflowDefined()) { | 
 |       index = CGF.Builder.CreateMul(index, numElements, "vla.index"); | 
 |       pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); | 
 |     } else { | 
 |       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); | 
 |       pointer = CGF.EmitCheckedInBoundsGEP( | 
 |           elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), | 
 |           "add.ptr"); | 
 |     } | 
 |     return pointer; | 
 |   } | 
 |  | 
 |   // Explicitly handle GNU void* and function pointer arithmetic extensions. The | 
 |   // GNU void* casts amount to no-ops since our void* type is i8*, but this is | 
 |   // future proof. | 
 |   if (elementType->isVoidType() || elementType->isFunctionType()) | 
 |     return CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr"); | 
 |  | 
 |   llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); | 
 |   if (CGF.getLangOpts().isSignedOverflowDefined()) | 
 |     return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); | 
 |  | 
 |   return CGF.EmitCheckedInBoundsGEP( | 
 |       elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), | 
 |       "add.ptr"); | 
 | } | 
 |  | 
 | // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and | 
 | // Addend. Use negMul and negAdd to negate the first operand of the Mul or | 
 | // the add operand respectively. This allows fmuladd to represent a*b-c, or | 
 | // c-a*b. Patterns in LLVM should catch the negated forms and translate them to | 
 | // efficient operations. | 
 | static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, | 
 |                            const CodeGenFunction &CGF, CGBuilderTy &Builder, | 
 |                            bool negMul, bool negAdd) { | 
 |   Value *MulOp0 = MulOp->getOperand(0); | 
 |   Value *MulOp1 = MulOp->getOperand(1); | 
 |   if (negMul) | 
 |     MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); | 
 |   if (negAdd) | 
 |     Addend = Builder.CreateFNeg(Addend, "neg"); | 
 |  | 
 |   Value *FMulAdd = nullptr; | 
 |   if (Builder.getIsFPConstrained()) { | 
 |     assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && | 
 |            "Only constrained operation should be created when Builder is in FP " | 
 |            "constrained mode"); | 
 |     FMulAdd = Builder.CreateConstrainedFPCall( | 
 |         CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, | 
 |                              Addend->getType()), | 
 |         {MulOp0, MulOp1, Addend}); | 
 |   } else { | 
 |     FMulAdd = Builder.CreateCall( | 
 |         CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), | 
 |         {MulOp0, MulOp1, Addend}); | 
 |   } | 
 |   MulOp->eraseFromParent(); | 
 |  | 
 |   return FMulAdd; | 
 | } | 
 |  | 
 | // Check whether it would be legal to emit an fmuladd intrinsic call to | 
 | // represent op and if so, build the fmuladd. | 
 | // | 
 | // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. | 
 | // Does NOT check the type of the operation - it's assumed that this function | 
 | // will be called from contexts where it's known that the type is contractable. | 
 | static Value* tryEmitFMulAdd(const BinOpInfo &op, | 
 |                          const CodeGenFunction &CGF, CGBuilderTy &Builder, | 
 |                          bool isSub=false) { | 
 |  | 
 |   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || | 
 |           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && | 
 |          "Only fadd/fsub can be the root of an fmuladd."); | 
 |  | 
 |   // Check whether this op is marked as fusable. | 
 |   if (!op.FPFeatures.allowFPContractWithinStatement()) | 
 |     return nullptr; | 
 |  | 
 |   Value *LHS = op.LHS; | 
 |   Value *RHS = op.RHS; | 
 |  | 
 |   // Peek through fneg to look for fmul. Make sure fneg has no users, and that | 
 |   // it is the only use of its operand. | 
 |   bool NegLHS = false; | 
 |   if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) { | 
 |     if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg && | 
 |         LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) { | 
 |       LHS = LHSUnOp->getOperand(0); | 
 |       NegLHS = true; | 
 |     } | 
 |   } | 
 |  | 
 |   bool NegRHS = false; | 
 |   if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) { | 
 |     if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg && | 
 |         RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) { | 
 |       RHS = RHSUnOp->getOperand(0); | 
 |       NegRHS = true; | 
 |     } | 
 |   } | 
 |  | 
 |   // We have a potentially fusable op. Look for a mul on one of the operands. | 
 |   // Also, make sure that the mul result isn't used directly. In that case, | 
 |   // there's no point creating a muladd operation. | 
 |   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) { | 
 |     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && | 
 |         (LHSBinOp->use_empty() || NegLHS)) { | 
 |       // If we looked through fneg, erase it. | 
 |       if (NegLHS) | 
 |         cast<llvm::Instruction>(op.LHS)->eraseFromParent(); | 
 |       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); | 
 |     } | 
 |   } | 
 |   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) { | 
 |     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && | 
 |         (RHSBinOp->use_empty() || NegRHS)) { | 
 |       // If we looked through fneg, erase it. | 
 |       if (NegRHS) | 
 |         cast<llvm::Instruction>(op.RHS)->eraseFromParent(); | 
 |       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); | 
 |     } | 
 |   } | 
 |  | 
 |   if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) { | 
 |     if (LHSBinOp->getIntrinsicID() == | 
 |             llvm::Intrinsic::experimental_constrained_fmul && | 
 |         (LHSBinOp->use_empty() || NegLHS)) { | 
 |       // If we looked through fneg, erase it. | 
 |       if (NegLHS) | 
 |         cast<llvm::Instruction>(op.LHS)->eraseFromParent(); | 
 |       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); | 
 |     } | 
 |   } | 
 |   if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) { | 
 |     if (RHSBinOp->getIntrinsicID() == | 
 |             llvm::Intrinsic::experimental_constrained_fmul && | 
 |         (RHSBinOp->use_empty() || NegRHS)) { | 
 |       // If we looked through fneg, erase it. | 
 |       if (NegRHS) | 
 |         cast<llvm::Instruction>(op.RHS)->eraseFromParent(); | 
 |       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); | 
 |     } | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { | 
 |   if (op.LHS->getType()->isPointerTy() || | 
 |       op.RHS->getType()->isPointerTy()) | 
 |     return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); | 
 |  | 
 |   if (op.Ty->isSignedIntegerOrEnumerationType()) { | 
 |     switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
 |     case LangOptions::SOB_Defined: | 
 |       return Builder.CreateAdd(op.LHS, op.RHS, "add"); | 
 |     case LangOptions::SOB_Undefined: | 
 |       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
 |         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); | 
 |       [[fallthrough]]; | 
 |     case LangOptions::SOB_Trapping: | 
 |       if (CanElideOverflowCheck(CGF.getContext(), op)) | 
 |         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); | 
 |       return EmitOverflowCheckedBinOp(op); | 
 |     } | 
 |   } | 
 |  | 
 |   if (op.Ty->isConstantMatrixType()) { | 
 |     llvm::MatrixBuilder MB(Builder); | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); | 
 |     return MB.CreateAdd(op.LHS, op.RHS); | 
 |   } | 
 |  | 
 |   if (op.Ty->isUnsignedIntegerType() && | 
 |       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
 |       !CanElideOverflowCheck(CGF.getContext(), op)) | 
 |     return EmitOverflowCheckedBinOp(op); | 
 |  | 
 |   if (op.LHS->getType()->isFPOrFPVectorTy()) { | 
 |     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); | 
 |     // Try to form an fmuladd. | 
 |     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) | 
 |       return FMulAdd; | 
 |  | 
 |     return Builder.CreateFAdd(op.LHS, op.RHS, "add"); | 
 |   } | 
 |  | 
 |   if (op.isFixedPointOp()) | 
 |     return EmitFixedPointBinOp(op); | 
 |  | 
 |   return Builder.CreateAdd(op.LHS, op.RHS, "add"); | 
 | } | 
 |  | 
 | /// The resulting value must be calculated with exact precision, so the operands | 
 | /// may not be the same type. | 
 | Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { | 
 |   using llvm::APSInt; | 
 |   using llvm::ConstantInt; | 
 |  | 
 |   // This is either a binary operation where at least one of the operands is | 
 |   // a fixed-point type, or a unary operation where the operand is a fixed-point | 
 |   // type. The result type of a binary operation is determined by | 
 |   // Sema::handleFixedPointConversions(). | 
 |   QualType ResultTy = op.Ty; | 
 |   QualType LHSTy, RHSTy; | 
 |   if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { | 
 |     RHSTy = BinOp->getRHS()->getType(); | 
 |     if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { | 
 |       // For compound assignment, the effective type of the LHS at this point | 
 |       // is the computation LHS type, not the actual LHS type, and the final | 
 |       // result type is not the type of the expression but rather the | 
 |       // computation result type. | 
 |       LHSTy = CAO->getComputationLHSType(); | 
 |       ResultTy = CAO->getComputationResultType(); | 
 |     } else | 
 |       LHSTy = BinOp->getLHS()->getType(); | 
 |   } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { | 
 |     LHSTy = UnOp->getSubExpr()->getType(); | 
 |     RHSTy = UnOp->getSubExpr()->getType(); | 
 |   } | 
 |   ASTContext &Ctx = CGF.getContext(); | 
 |   Value *LHS = op.LHS; | 
 |   Value *RHS = op.RHS; | 
 |  | 
 |   auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); | 
 |   auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); | 
 |   auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); | 
 |   auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); | 
 |  | 
 |   // Perform the actual operation. | 
 |   Value *Result; | 
 |   llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); | 
 |   switch (op.Opcode) { | 
 |   case BO_AddAssign: | 
 |   case BO_Add: | 
 |     Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |     break; | 
 |   case BO_SubAssign: | 
 |   case BO_Sub: | 
 |     Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |     break; | 
 |   case BO_MulAssign: | 
 |   case BO_Mul: | 
 |     Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |     break; | 
 |   case BO_DivAssign: | 
 |   case BO_Div: | 
 |     Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |     break; | 
 |   case BO_ShlAssign: | 
 |   case BO_Shl: | 
 |     Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); | 
 |     break; | 
 |   case BO_ShrAssign: | 
 |   case BO_Shr: | 
 |     Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); | 
 |     break; | 
 |   case BO_LT: | 
 |     return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_GT: | 
 |     return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_LE: | 
 |     return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_GE: | 
 |     return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_EQ: | 
 |     // For equality operations, we assume any padding bits on unsigned types are | 
 |     // zero'd out. They could be overwritten through non-saturating operations | 
 |     // that cause overflow, but this leads to undefined behavior. | 
 |     return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_NE: | 
 |     return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); | 
 |   case BO_Cmp: | 
 |   case BO_LAnd: | 
 |   case BO_LOr: | 
 |     llvm_unreachable("Found unimplemented fixed point binary operation"); | 
 |   case BO_PtrMemD: | 
 |   case BO_PtrMemI: | 
 |   case BO_Rem: | 
 |   case BO_Xor: | 
 |   case BO_And: | 
 |   case BO_Or: | 
 |   case BO_Assign: | 
 |   case BO_RemAssign: | 
 |   case BO_AndAssign: | 
 |   case BO_XorAssign: | 
 |   case BO_OrAssign: | 
 |   case BO_Comma: | 
 |     llvm_unreachable("Found unsupported binary operation for fixed point types."); | 
 |   } | 
 |  | 
 |   bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || | 
 |                  BinaryOperator::isShiftAssignOp(op.Opcode); | 
 |   // Convert to the result type. | 
 |   return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema | 
 |                                                       : CommonFixedSema, | 
 |                                       ResultFixedSema); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { | 
 |   // The LHS is always a pointer if either side is. | 
 |   if (!op.LHS->getType()->isPointerTy()) { | 
 |     if (op.Ty->isSignedIntegerOrEnumerationType()) { | 
 |       switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
 |       case LangOptions::SOB_Defined: | 
 |         return Builder.CreateSub(op.LHS, op.RHS, "sub"); | 
 |       case LangOptions::SOB_Undefined: | 
 |         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
 |           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); | 
 |         [[fallthrough]]; | 
 |       case LangOptions::SOB_Trapping: | 
 |         if (CanElideOverflowCheck(CGF.getContext(), op)) | 
 |           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); | 
 |         return EmitOverflowCheckedBinOp(op); | 
 |       } | 
 |     } | 
 |  | 
 |     if (op.Ty->isConstantMatrixType()) { | 
 |       llvm::MatrixBuilder MB(Builder); | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); | 
 |       return MB.CreateSub(op.LHS, op.RHS); | 
 |     } | 
 |  | 
 |     if (op.Ty->isUnsignedIntegerType() && | 
 |         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
 |         !CanElideOverflowCheck(CGF.getContext(), op)) | 
 |       return EmitOverflowCheckedBinOp(op); | 
 |  | 
 |     if (op.LHS->getType()->isFPOrFPVectorTy()) { | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); | 
 |       // Try to form an fmuladd. | 
 |       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) | 
 |         return FMulAdd; | 
 |       return Builder.CreateFSub(op.LHS, op.RHS, "sub"); | 
 |     } | 
 |  | 
 |     if (op.isFixedPointOp()) | 
 |       return EmitFixedPointBinOp(op); | 
 |  | 
 |     return Builder.CreateSub(op.LHS, op.RHS, "sub"); | 
 |   } | 
 |  | 
 |   // If the RHS is not a pointer, then we have normal pointer | 
 |   // arithmetic. | 
 |   if (!op.RHS->getType()->isPointerTy()) | 
 |     return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); | 
 |  | 
 |   // Otherwise, this is a pointer subtraction. | 
 |  | 
 |   // Do the raw subtraction part. | 
 |   llvm::Value *LHS | 
 |     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); | 
 |   llvm::Value *RHS | 
 |     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); | 
 |   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); | 
 |  | 
 |   // Okay, figure out the element size. | 
 |   const BinaryOperator *expr = cast<BinaryOperator>(op.E); | 
 |   QualType elementType = expr->getLHS()->getType()->getPointeeType(); | 
 |  | 
 |   llvm::Value *divisor = nullptr; | 
 |  | 
 |   // For a variable-length array, this is going to be non-constant. | 
 |   if (const VariableArrayType *vla | 
 |         = CGF.getContext().getAsVariableArrayType(elementType)) { | 
 |     auto VlaSize = CGF.getVLASize(vla); | 
 |     elementType = VlaSize.Type; | 
 |     divisor = VlaSize.NumElts; | 
 |  | 
 |     // Scale the number of non-VLA elements by the non-VLA element size. | 
 |     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); | 
 |     if (!eltSize.isOne()) | 
 |       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); | 
 |  | 
 |   // For everything elese, we can just compute it, safe in the | 
 |   // assumption that Sema won't let anything through that we can't | 
 |   // safely compute the size of. | 
 |   } else { | 
 |     CharUnits elementSize; | 
 |     // Handle GCC extension for pointer arithmetic on void* and | 
 |     // function pointer types. | 
 |     if (elementType->isVoidType() || elementType->isFunctionType()) | 
 |       elementSize = CharUnits::One(); | 
 |     else | 
 |       elementSize = CGF.getContext().getTypeSizeInChars(elementType); | 
 |  | 
 |     // Don't even emit the divide for element size of 1. | 
 |     if (elementSize.isOne()) | 
 |       return diffInChars; | 
 |  | 
 |     divisor = CGF.CGM.getSize(elementSize); | 
 |   } | 
 |  | 
 |   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since | 
 |   // pointer difference in C is only defined in the case where both operands | 
 |   // are pointing to elements of an array. | 
 |   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { | 
 |   llvm::IntegerType *Ty; | 
 |   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) | 
 |     Ty = cast<llvm::IntegerType>(VT->getElementType()); | 
 |   else | 
 |     Ty = cast<llvm::IntegerType>(LHS->getType()); | 
 |   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, | 
 |                                               const Twine &Name) { | 
 |   llvm::IntegerType *Ty; | 
 |   if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) | 
 |     Ty = cast<llvm::IntegerType>(VT->getElementType()); | 
 |   else | 
 |     Ty = cast<llvm::IntegerType>(LHS->getType()); | 
 |  | 
 |   if (llvm::isPowerOf2_64(Ty->getBitWidth())) | 
 |         return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); | 
 |  | 
 |   return Builder.CreateURem( | 
 |       RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { | 
 |   // TODO: This misses out on the sanitizer check below. | 
 |   if (Ops.isFixedPointOp()) | 
 |     return EmitFixedPointBinOp(Ops); | 
 |  | 
 |   // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
 |   // RHS to the same size as the LHS. | 
 |   Value *RHS = Ops.RHS; | 
 |   if (Ops.LHS->getType() != RHS->getType()) | 
 |     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
 |  | 
 |   bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && | 
 |                             Ops.Ty->hasSignedIntegerRepresentation() && | 
 |                             !CGF.getLangOpts().isSignedOverflowDefined() && | 
 |                             !CGF.getLangOpts().CPlusPlus20; | 
 |   bool SanitizeUnsignedBase = | 
 |       CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && | 
 |       Ops.Ty->hasUnsignedIntegerRepresentation(); | 
 |   bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; | 
 |   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); | 
 |   // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
 |   if (CGF.getLangOpts().OpenCL) | 
 |     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); | 
 |   else if ((SanitizeBase || SanitizeExponent) && | 
 |            isa<llvm::IntegerType>(Ops.LHS->getType())) { | 
 |     CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; | 
 |     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); | 
 |     llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); | 
 |  | 
 |     if (SanitizeExponent) { | 
 |       Checks.push_back( | 
 |           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); | 
 |     } | 
 |  | 
 |     if (SanitizeBase) { | 
 |       // Check whether we are shifting any non-zero bits off the top of the | 
 |       // integer. We only emit this check if exponent is valid - otherwise | 
 |       // instructions below will have undefined behavior themselves. | 
 |       llvm::BasicBlock *Orig = Builder.GetInsertBlock(); | 
 |       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); | 
 |       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); | 
 |       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); | 
 |       llvm::Value *PromotedWidthMinusOne = | 
 |           (RHS == Ops.RHS) ? WidthMinusOne | 
 |                            : GetWidthMinusOneValue(Ops.LHS, RHS); | 
 |       CGF.EmitBlock(CheckShiftBase); | 
 |       llvm::Value *BitsShiftedOff = Builder.CreateLShr( | 
 |           Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", | 
 |                                      /*NUW*/ true, /*NSW*/ true), | 
 |           "shl.check"); | 
 |       if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { | 
 |         // In C99, we are not permitted to shift a 1 bit into the sign bit. | 
 |         // Under C++11's rules, shifting a 1 bit into the sign bit is | 
 |         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't | 
 |         // define signed left shifts, so we use the C99 and C++11 rules there). | 
 |         // Unsigned shifts can always shift into the top bit. | 
 |         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); | 
 |         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); | 
 |       } | 
 |       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); | 
 |       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); | 
 |       CGF.EmitBlock(Cont); | 
 |       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); | 
 |       BaseCheck->addIncoming(Builder.getTrue(), Orig); | 
 |       BaseCheck->addIncoming(ValidBase, CheckShiftBase); | 
 |       Checks.push_back(std::make_pair( | 
 |           BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase | 
 |                                         : SanitizerKind::UnsignedShiftBase)); | 
 |     } | 
 |  | 
 |     assert(!Checks.empty()); | 
 |     EmitBinOpCheck(Checks, Ops); | 
 |   } | 
 |  | 
 |   return Builder.CreateShl(Ops.LHS, RHS, "shl"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { | 
 |   // TODO: This misses out on the sanitizer check below. | 
 |   if (Ops.isFixedPointOp()) | 
 |     return EmitFixedPointBinOp(Ops); | 
 |  | 
 |   // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
 |   // RHS to the same size as the LHS. | 
 |   Value *RHS = Ops.RHS; | 
 |   if (Ops.LHS->getType() != RHS->getType()) | 
 |     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
 |  | 
 |   // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
 |   if (CGF.getLangOpts().OpenCL) | 
 |     RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); | 
 |   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && | 
 |            isa<llvm::IntegerType>(Ops.LHS->getType())) { | 
 |     CodeGenFunction::SanitizerScope SanScope(&CGF); | 
 |     llvm::Value *Valid = | 
 |         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); | 
 |     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); | 
 |   } | 
 |  | 
 |   if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
 |     return Builder.CreateLShr(Ops.LHS, RHS, "shr"); | 
 |   return Builder.CreateAShr(Ops.LHS, RHS, "shr"); | 
 | } | 
 |  | 
 | enum IntrinsicType { VCMPEQ, VCMPGT }; | 
 | // return corresponding comparison intrinsic for given vector type | 
 | static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, | 
 |                                         BuiltinType::Kind ElemKind) { | 
 |   switch (ElemKind) { | 
 |   default: llvm_unreachable("unexpected element type"); | 
 |   case BuiltinType::Char_U: | 
 |   case BuiltinType::UChar: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p; | 
 |   case BuiltinType::Char_S: | 
 |   case BuiltinType::SChar: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; | 
 |   case BuiltinType::UShort: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; | 
 |   case BuiltinType::Short: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; | 
 |   case BuiltinType::UInt: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; | 
 |   case BuiltinType::Int: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; | 
 |   case BuiltinType::ULong: | 
 |   case BuiltinType::ULongLong: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtud_p; | 
 |   case BuiltinType::Long: | 
 |   case BuiltinType::LongLong: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; | 
 |   case BuiltinType::Float: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : | 
 |                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; | 
 |   case BuiltinType::Double: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : | 
 |                             llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; | 
 |   case BuiltinType::UInt128: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p | 
 |                           : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; | 
 |   case BuiltinType::Int128: | 
 |     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p | 
 |                           : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; | 
 |   } | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, | 
 |                                       llvm::CmpInst::Predicate UICmpOpc, | 
 |                                       llvm::CmpInst::Predicate SICmpOpc, | 
 |                                       llvm::CmpInst::Predicate FCmpOpc, | 
 |                                       bool IsSignaling) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |   Value *Result; | 
 |   QualType LHSTy = E->getLHS()->getType(); | 
 |   QualType RHSTy = E->getRHS()->getType(); | 
 |   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { | 
 |     assert(E->getOpcode() == BO_EQ || | 
 |            E->getOpcode() == BO_NE); | 
 |     Value *LHS = CGF.EmitScalarExpr(E->getLHS()); | 
 |     Value *RHS = CGF.EmitScalarExpr(E->getRHS()); | 
 |     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( | 
 |                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); | 
 |   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { | 
 |     BinOpInfo BOInfo = EmitBinOps(E); | 
 |     Value *LHS = BOInfo.LHS; | 
 |     Value *RHS = BOInfo.RHS; | 
 |  | 
 |     // If AltiVec, the comparison results in a numeric type, so we use | 
 |     // intrinsics comparing vectors and giving 0 or 1 as a result | 
 |     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { | 
 |       // constants for mapping CR6 register bits to predicate result | 
 |       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; | 
 |  | 
 |       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; | 
 |  | 
 |       // in several cases vector arguments order will be reversed | 
 |       Value *FirstVecArg = LHS, | 
 |             *SecondVecArg = RHS; | 
 |  | 
 |       QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); | 
 |       BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); | 
 |  | 
 |       switch(E->getOpcode()) { | 
 |       default: llvm_unreachable("is not a comparison operation"); | 
 |       case BO_EQ: | 
 |         CR6 = CR6_LT; | 
 |         ID = GetIntrinsic(VCMPEQ, ElementKind); | 
 |         break; | 
 |       case BO_NE: | 
 |         CR6 = CR6_EQ; | 
 |         ID = GetIntrinsic(VCMPEQ, ElementKind); | 
 |         break; | 
 |       case BO_LT: | 
 |         CR6 = CR6_LT; | 
 |         ID = GetIntrinsic(VCMPGT, ElementKind); | 
 |         std::swap(FirstVecArg, SecondVecArg); | 
 |         break; | 
 |       case BO_GT: | 
 |         CR6 = CR6_LT; | 
 |         ID = GetIntrinsic(VCMPGT, ElementKind); | 
 |         break; | 
 |       case BO_LE: | 
 |         if (ElementKind == BuiltinType::Float) { | 
 |           CR6 = CR6_LT; | 
 |           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; | 
 |           std::swap(FirstVecArg, SecondVecArg); | 
 |         } | 
 |         else { | 
 |           CR6 = CR6_EQ; | 
 |           ID = GetIntrinsic(VCMPGT, ElementKind); | 
 |         } | 
 |         break; | 
 |       case BO_GE: | 
 |         if (ElementKind == BuiltinType::Float) { | 
 |           CR6 = CR6_LT; | 
 |           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; | 
 |         } | 
 |         else { | 
 |           CR6 = CR6_EQ; | 
 |           ID = GetIntrinsic(VCMPGT, ElementKind); | 
 |           std::swap(FirstVecArg, SecondVecArg); | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       Value *CR6Param = Builder.getInt32(CR6); | 
 |       llvm::Function *F = CGF.CGM.getIntrinsic(ID); | 
 |       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); | 
 |  | 
 |       // The result type of intrinsic may not be same as E->getType(). | 
 |       // If E->getType() is not BoolTy, EmitScalarConversion will do the | 
 |       // conversion work. If E->getType() is BoolTy, EmitScalarConversion will | 
 |       // do nothing, if ResultTy is not i1 at the same time, it will cause | 
 |       // crash later. | 
 |       llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); | 
 |       if (ResultTy->getBitWidth() > 1 && | 
 |           E->getType() == CGF.getContext().BoolTy) | 
 |         Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); | 
 |       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), | 
 |                                   E->getExprLoc()); | 
 |     } | 
 |  | 
 |     if (BOInfo.isFixedPointOp()) { | 
 |       Result = EmitFixedPointBinOp(BOInfo); | 
 |     } else if (LHS->getType()->isFPOrFPVectorTy()) { | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); | 
 |       if (!IsSignaling) | 
 |         Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); | 
 |       else | 
 |         Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); | 
 |     } else if (LHSTy->hasSignedIntegerRepresentation()) { | 
 |       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); | 
 |     } else { | 
 |       // Unsigned integers and pointers. | 
 |  | 
 |       if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && | 
 |           !isa<llvm::ConstantPointerNull>(LHS) && | 
 |           !isa<llvm::ConstantPointerNull>(RHS)) { | 
 |  | 
 |         // Dynamic information is required to be stripped for comparisons, | 
 |         // because it could leak the dynamic information.  Based on comparisons | 
 |         // of pointers to dynamic objects, the optimizer can replace one pointer | 
 |         // with another, which might be incorrect in presence of invariant | 
 |         // groups. Comparison with null is safe because null does not carry any | 
 |         // dynamic information. | 
 |         if (LHSTy.mayBeDynamicClass()) | 
 |           LHS = Builder.CreateStripInvariantGroup(LHS); | 
 |         if (RHSTy.mayBeDynamicClass()) | 
 |           RHS = Builder.CreateStripInvariantGroup(RHS); | 
 |       } | 
 |  | 
 |       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); | 
 |     } | 
 |  | 
 |     // If this is a vector comparison, sign extend the result to the appropriate | 
 |     // vector integer type and return it (don't convert to bool). | 
 |     if (LHSTy->isVectorType()) | 
 |       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); | 
 |  | 
 |   } else { | 
 |     // Complex Comparison: can only be an equality comparison. | 
 |     CodeGenFunction::ComplexPairTy LHS, RHS; | 
 |     QualType CETy; | 
 |     if (auto *CTy = LHSTy->getAs<ComplexType>()) { | 
 |       LHS = CGF.EmitComplexExpr(E->getLHS()); | 
 |       CETy = CTy->getElementType(); | 
 |     } else { | 
 |       LHS.first = Visit(E->getLHS()); | 
 |       LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); | 
 |       CETy = LHSTy; | 
 |     } | 
 |     if (auto *CTy = RHSTy->getAs<ComplexType>()) { | 
 |       RHS = CGF.EmitComplexExpr(E->getRHS()); | 
 |       assert(CGF.getContext().hasSameUnqualifiedType(CETy, | 
 |                                                      CTy->getElementType()) && | 
 |              "The element types must always match."); | 
 |       (void)CTy; | 
 |     } else { | 
 |       RHS.first = Visit(E->getRHS()); | 
 |       RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); | 
 |       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && | 
 |              "The element types must always match."); | 
 |     } | 
 |  | 
 |     Value *ResultR, *ResultI; | 
 |     if (CETy->isRealFloatingType()) { | 
 |       // As complex comparisons can only be equality comparisons, they | 
 |       // are never signaling comparisons. | 
 |       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); | 
 |       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); | 
 |     } else { | 
 |       // Complex comparisons can only be equality comparisons.  As such, signed | 
 |       // and unsigned opcodes are the same. | 
 |       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); | 
 |       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); | 
 |     } | 
 |  | 
 |     if (E->getOpcode() == BO_EQ) { | 
 |       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); | 
 |     } else { | 
 |       assert(E->getOpcode() == BO_NE && | 
 |              "Complex comparison other than == or != ?"); | 
 |       Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); | 
 |     } | 
 |   } | 
 |  | 
 |   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), | 
 |                               E->getExprLoc()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { | 
 |   bool Ignore = TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   Value *RHS; | 
 |   LValue LHS; | 
 |  | 
 |   switch (E->getLHS()->getType().getObjCLifetime()) { | 
 |   case Qualifiers::OCL_Strong: | 
 |     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_Autoreleasing: | 
 |     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_ExplicitNone: | 
 |     std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_Weak: | 
 |     RHS = Visit(E->getRHS()); | 
 |     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
 |     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_None: | 
 |     // __block variables need to have the rhs evaluated first, plus | 
 |     // this should improve codegen just a little. | 
 |     RHS = Visit(E->getRHS()); | 
 |     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
 |  | 
 |     // Store the value into the LHS.  Bit-fields are handled specially | 
 |     // because the result is altered by the store, i.e., [C99 6.5.16p1] | 
 |     // 'An assignment expression has the value of the left operand after | 
 |     // the assignment...'. | 
 |     if (LHS.isBitField()) { | 
 |       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); | 
 |     } else { | 
 |       CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); | 
 |       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the result is clearly ignored, return now. | 
 |   if (Ignore) | 
 |     return nullptr; | 
 |  | 
 |   // The result of an assignment in C is the assigned r-value. | 
 |   if (!CGF.getLangOpts().CPlusPlus) | 
 |     return RHS; | 
 |  | 
 |   // If the lvalue is non-volatile, return the computed value of the assignment. | 
 |   if (!LHS.isVolatileQualified()) | 
 |     return RHS; | 
 |  | 
 |   // Otherwise, reload the value. | 
 |   return EmitLoadOfLValue(LHS, E->getExprLoc()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { | 
 |   // Perform vector logical and on comparisons with zero vectors. | 
 |   if (E->getType()->isVectorType()) { | 
 |     CGF.incrementProfileCounter(E); | 
 |  | 
 |     Value *LHS = Visit(E->getLHS()); | 
 |     Value *RHS = Visit(E->getRHS()); | 
 |     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); | 
 |     if (LHS->getType()->isFPOrFPVectorTy()) { | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII( | 
 |           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); | 
 |       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); | 
 |       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); | 
 |     } else { | 
 |       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); | 
 |       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); | 
 |     } | 
 |     Value *And = Builder.CreateAnd(LHS, RHS); | 
 |     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); | 
 |   } | 
 |  | 
 |   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); | 
 |   llvm::Type *ResTy = ConvertType(E->getType()); | 
 |  | 
 |   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. | 
 |   // If we have 1 && X, just emit X without inserting the control flow. | 
 |   bool LHSCondVal; | 
 |   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { | 
 |     if (LHSCondVal) { // If we have 1 && X, just emit X. | 
 |       CGF.incrementProfileCounter(E); | 
 |  | 
 |       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |  | 
 |       // If we're generating for profiling or coverage, generate a branch to a | 
 |       // block that increments the RHS counter needed to track branch condition | 
 |       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and | 
 |       // "FalseBlock" after the increment is done. | 
 |       if (InstrumentRegions && | 
 |           CodeGenFunction::isInstrumentedCondition(E->getRHS())) { | 
 |         llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); | 
 |         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); | 
 |         Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); | 
 |         CGF.EmitBlock(RHSBlockCnt); | 
 |         CGF.incrementProfileCounter(E->getRHS()); | 
 |         CGF.EmitBranch(FBlock); | 
 |         CGF.EmitBlock(FBlock); | 
 |       } | 
 |  | 
 |       // ZExt result to int or bool. | 
 |       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); | 
 |     } | 
 |  | 
 |     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. | 
 |     if (!CGF.ContainsLabel(E->getRHS())) | 
 |       return llvm::Constant::getNullValue(ResTy); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); | 
 |   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs"); | 
 |  | 
 |   CodeGenFunction::ConditionalEvaluation eval(CGF); | 
 |  | 
 |   // Branch on the LHS first.  If it is false, go to the failure (cont) block. | 
 |   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, | 
 |                            CGF.getProfileCount(E->getRHS())); | 
 |  | 
 |   // Any edges into the ContBlock are now from an (indeterminate number of) | 
 |   // edges from this first condition.  All of these values will be false.  Start | 
 |   // setting up the PHI node in the Cont Block for this. | 
 |   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, | 
 |                                             "", ContBlock); | 
 |   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
 |        PI != PE; ++PI) | 
 |     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); | 
 |  | 
 |   eval.begin(CGF); | 
 |   CGF.EmitBlock(RHSBlock); | 
 |   CGF.incrementProfileCounter(E); | 
 |   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |   eval.end(CGF); | 
 |  | 
 |   // Reaquire the RHS block, as there may be subblocks inserted. | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |  | 
 |   // If we're generating for profiling or coverage, generate a branch on the | 
 |   // RHS to a block that increments the RHS true counter needed to track branch | 
 |   // condition coverage. | 
 |   if (InstrumentRegions && | 
 |       CodeGenFunction::isInstrumentedCondition(E->getRHS())) { | 
 |     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); | 
 |     Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); | 
 |     CGF.EmitBlock(RHSBlockCnt); | 
 |     CGF.incrementProfileCounter(E->getRHS()); | 
 |     CGF.EmitBranch(ContBlock); | 
 |     PN->addIncoming(RHSCond, RHSBlockCnt); | 
 |   } | 
 |  | 
 |   // Emit an unconditional branch from this block to ContBlock. | 
 |   { | 
 |     // There is no need to emit line number for unconditional branch. | 
 |     auto NL = ApplyDebugLocation::CreateEmpty(CGF); | 
 |     CGF.EmitBlock(ContBlock); | 
 |   } | 
 |   // Insert an entry into the phi node for the edge with the value of RHSCond. | 
 |   PN->addIncoming(RHSCond, RHSBlock); | 
 |  | 
 |   // Artificial location to preserve the scope information | 
 |   { | 
 |     auto NL = ApplyDebugLocation::CreateArtificial(CGF); | 
 |     PN->setDebugLoc(Builder.getCurrentDebugLocation()); | 
 |   } | 
 |  | 
 |   // ZExt result to int. | 
 |   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { | 
 |   // Perform vector logical or on comparisons with zero vectors. | 
 |   if (E->getType()->isVectorType()) { | 
 |     CGF.incrementProfileCounter(E); | 
 |  | 
 |     Value *LHS = Visit(E->getLHS()); | 
 |     Value *RHS = Visit(E->getRHS()); | 
 |     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); | 
 |     if (LHS->getType()->isFPOrFPVectorTy()) { | 
 |       CodeGenFunction::CGFPOptionsRAII FPOptsRAII( | 
 |           CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); | 
 |       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); | 
 |       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); | 
 |     } else { | 
 |       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); | 
 |       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); | 
 |     } | 
 |     Value *Or = Builder.CreateOr(LHS, RHS); | 
 |     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); | 
 |   } | 
 |  | 
 |   bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); | 
 |   llvm::Type *ResTy = ConvertType(E->getType()); | 
 |  | 
 |   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. | 
 |   // If we have 0 || X, just emit X without inserting the control flow. | 
 |   bool LHSCondVal; | 
 |   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { | 
 |     if (!LHSCondVal) { // If we have 0 || X, just emit X. | 
 |       CGF.incrementProfileCounter(E); | 
 |  | 
 |       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |  | 
 |       // If we're generating for profiling or coverage, generate a branch to a | 
 |       // block that increments the RHS counter need to track branch condition | 
 |       // coverage. In this case, use "FBlock" as both the final "TrueBlock" and | 
 |       // "FalseBlock" after the increment is done. | 
 |       if (InstrumentRegions && | 
 |           CodeGenFunction::isInstrumentedCondition(E->getRHS())) { | 
 |         llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); | 
 |         llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); | 
 |         Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); | 
 |         CGF.EmitBlock(RHSBlockCnt); | 
 |         CGF.incrementProfileCounter(E->getRHS()); | 
 |         CGF.EmitBranch(FBlock); | 
 |         CGF.EmitBlock(FBlock); | 
 |       } | 
 |  | 
 |       // ZExt result to int or bool. | 
 |       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); | 
 |     } | 
 |  | 
 |     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. | 
 |     if (!CGF.ContainsLabel(E->getRHS())) | 
 |       return llvm::ConstantInt::get(ResTy, 1); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); | 
 |   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); | 
 |  | 
 |   CodeGenFunction::ConditionalEvaluation eval(CGF); | 
 |  | 
 |   // Branch on the LHS first.  If it is true, go to the success (cont) block. | 
 |   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, | 
 |                            CGF.getCurrentProfileCount() - | 
 |                                CGF.getProfileCount(E->getRHS())); | 
 |  | 
 |   // Any edges into the ContBlock are now from an (indeterminate number of) | 
 |   // edges from this first condition.  All of these values will be true.  Start | 
 |   // setting up the PHI node in the Cont Block for this. | 
 |   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, | 
 |                                             "", ContBlock); | 
 |   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
 |        PI != PE; ++PI) | 
 |     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); | 
 |  | 
 |   eval.begin(CGF); | 
 |  | 
 |   // Emit the RHS condition as a bool value. | 
 |   CGF.EmitBlock(RHSBlock); | 
 |   CGF.incrementProfileCounter(E); | 
 |   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
 |  | 
 |   eval.end(CGF); | 
 |  | 
 |   // Reaquire the RHS block, as there may be subblocks inserted. | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |  | 
 |   // If we're generating for profiling or coverage, generate a branch on the | 
 |   // RHS to a block that increments the RHS true counter needed to track branch | 
 |   // condition coverage. | 
 |   if (InstrumentRegions && | 
 |       CodeGenFunction::isInstrumentedCondition(E->getRHS())) { | 
 |     llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); | 
 |     Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); | 
 |     CGF.EmitBlock(RHSBlockCnt); | 
 |     CGF.incrementProfileCounter(E->getRHS()); | 
 |     CGF.EmitBranch(ContBlock); | 
 |     PN->addIncoming(RHSCond, RHSBlockCnt); | 
 |   } | 
 |  | 
 |   // Emit an unconditional branch from this block to ContBlock.  Insert an entry | 
 |   // into the phi node for the edge with the value of RHSCond. | 
 |   CGF.EmitBlock(ContBlock); | 
 |   PN->addIncoming(RHSCond, RHSBlock); | 
 |  | 
 |   // ZExt result to int. | 
 |   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { | 
 |   CGF.EmitIgnoredExpr(E->getLHS()); | 
 |   CGF.EnsureInsertPoint(); | 
 |   return Visit(E->getRHS()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Other Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified | 
 | /// expression is cheap enough and side-effect-free enough to evaluate | 
 | /// unconditionally instead of conditionally.  This is used to convert control | 
 | /// flow into selects in some cases. | 
 | static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, | 
 |                                                    CodeGenFunction &CGF) { | 
 |   // Anything that is an integer or floating point constant is fine. | 
 |   return E->IgnoreParens()->isEvaluatable(CGF.getContext()); | 
 |  | 
 |   // Even non-volatile automatic variables can't be evaluated unconditionally. | 
 |   // Referencing a thread_local may cause non-trivial initialization work to | 
 |   // occur. If we're inside a lambda and one of the variables is from the scope | 
 |   // outside the lambda, that function may have returned already. Reading its | 
 |   // locals is a bad idea. Also, these reads may introduce races there didn't | 
 |   // exist in the source-level program. | 
 | } | 
 |  | 
 |  | 
 | Value *ScalarExprEmitter:: | 
 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { | 
 |   TestAndClearIgnoreResultAssign(); | 
 |  | 
 |   // Bind the common expression if necessary. | 
 |   CodeGenFunction::OpaqueValueMapping binding(CGF, E); | 
 |  | 
 |   Expr *condExpr = E->getCond(); | 
 |   Expr *lhsExpr = E->getTrueExpr(); | 
 |   Expr *rhsExpr = E->getFalseExpr(); | 
 |  | 
 |   // If the condition constant folds and can be elided, try to avoid emitting | 
 |   // the condition and the dead arm. | 
 |   bool CondExprBool; | 
 |   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { | 
 |     Expr *live = lhsExpr, *dead = rhsExpr; | 
 |     if (!CondExprBool) std::swap(live, dead); | 
 |  | 
 |     // If the dead side doesn't have labels we need, just emit the Live part. | 
 |     if (!CGF.ContainsLabel(dead)) { | 
 |       if (CondExprBool) | 
 |         CGF.incrementProfileCounter(E); | 
 |       Value *Result = Visit(live); | 
 |  | 
 |       // If the live part is a throw expression, it acts like it has a void | 
 |       // type, so evaluating it returns a null Value*.  However, a conditional | 
 |       // with non-void type must return a non-null Value*. | 
 |       if (!Result && !E->getType()->isVoidType()) | 
 |         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
 |  | 
 |       return Result; | 
 |     } | 
 |   } | 
 |  | 
 |   // OpenCL: If the condition is a vector, we can treat this condition like | 
 |   // the select function. | 
 |   if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || | 
 |       condExpr->getType()->isExtVectorType()) { | 
 |     CGF.incrementProfileCounter(E); | 
 |  | 
 |     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); | 
 |     llvm::Value *LHS = Visit(lhsExpr); | 
 |     llvm::Value *RHS = Visit(rhsExpr); | 
 |  | 
 |     llvm::Type *condType = ConvertType(condExpr->getType()); | 
 |     auto *vecTy = cast<llvm::FixedVectorType>(condType); | 
 |  | 
 |     unsigned numElem = vecTy->getNumElements(); | 
 |     llvm::Type *elemType = vecTy->getElementType(); | 
 |  | 
 |     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); | 
 |     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); | 
 |     llvm::Value *tmp = Builder.CreateSExt( | 
 |         TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); | 
 |     llvm::Value *tmp2 = Builder.CreateNot(tmp); | 
 |  | 
 |     // Cast float to int to perform ANDs if necessary. | 
 |     llvm::Value *RHSTmp = RHS; | 
 |     llvm::Value *LHSTmp = LHS; | 
 |     bool wasCast = false; | 
 |     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); | 
 |     if (rhsVTy->getElementType()->isFloatingPointTy()) { | 
 |       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); | 
 |       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); | 
 |       wasCast = true; | 
 |     } | 
 |  | 
 |     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); | 
 |     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); | 
 |     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); | 
 |     if (wasCast) | 
 |       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); | 
 |  | 
 |     return tmp5; | 
 |   } | 
 |  | 
 |   if (condExpr->getType()->isVectorType() || | 
 |       condExpr->getType()->isVLSTBuiltinType()) { | 
 |     CGF.incrementProfileCounter(E); | 
 |  | 
 |     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); | 
 |     llvm::Value *LHS = Visit(lhsExpr); | 
 |     llvm::Value *RHS = Visit(rhsExpr); | 
 |  | 
 |     llvm::Type *CondType = ConvertType(condExpr->getType()); | 
 |     auto *VecTy = cast<llvm::VectorType>(CondType); | 
 |     llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); | 
 |  | 
 |     CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); | 
 |     return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); | 
 |   } | 
 |  | 
 |   // If this is a really simple expression (like x ? 4 : 5), emit this as a | 
 |   // select instead of as control flow.  We can only do this if it is cheap and | 
 |   // safe to evaluate the LHS and RHS unconditionally. | 
 |   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && | 
 |       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { | 
 |     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); | 
 |     llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); | 
 |  | 
 |     CGF.incrementProfileCounter(E, StepV); | 
 |  | 
 |     llvm::Value *LHS = Visit(lhsExpr); | 
 |     llvm::Value *RHS = Visit(rhsExpr); | 
 |     if (!LHS) { | 
 |       // If the conditional has void type, make sure we return a null Value*. | 
 |       assert(!RHS && "LHS and RHS types must match"); | 
 |       return nullptr; | 
 |     } | 
 |     return Builder.CreateSelect(CondV, LHS, RHS, "cond"); | 
 |   } | 
 |  | 
 |   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); | 
 |   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); | 
 |   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); | 
 |  | 
 |   CodeGenFunction::ConditionalEvaluation eval(CGF); | 
 |   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, | 
 |                            CGF.getProfileCount(lhsExpr)); | 
 |  | 
 |   CGF.EmitBlock(LHSBlock); | 
 |   CGF.incrementProfileCounter(E); | 
 |   eval.begin(CGF); | 
 |   Value *LHS = Visit(lhsExpr); | 
 |   eval.end(CGF); | 
 |  | 
 |   LHSBlock = Builder.GetInsertBlock(); | 
 |   Builder.CreateBr(ContBlock); | 
 |  | 
 |   CGF.EmitBlock(RHSBlock); | 
 |   eval.begin(CGF); | 
 |   Value *RHS = Visit(rhsExpr); | 
 |   eval.end(CGF); | 
 |  | 
 |   RHSBlock = Builder.GetInsertBlock(); | 
 |   CGF.EmitBlock(ContBlock); | 
 |  | 
 |   // If the LHS or RHS is a throw expression, it will be legitimately null. | 
 |   if (!LHS) | 
 |     return RHS; | 
 |   if (!RHS) | 
 |     return LHS; | 
 |  | 
 |   // Create a PHI node for the real part. | 
 |   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); | 
 |   PN->addIncoming(LHS, LHSBlock); | 
 |   PN->addIncoming(RHS, RHSBlock); | 
 |   return PN; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { | 
 |   return Visit(E->getChosenSubExpr()); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { | 
 |   QualType Ty = VE->getType(); | 
 |  | 
 |   if (Ty->isVariablyModifiedType()) | 
 |     CGF.EmitVariablyModifiedType(Ty); | 
 |  | 
 |   Address ArgValue = Address::invalid(); | 
 |   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); | 
 |  | 
 |   llvm::Type *ArgTy = ConvertType(VE->getType()); | 
 |  | 
 |   // If EmitVAArg fails, emit an error. | 
 |   if (!ArgPtr.isValid()) { | 
 |     CGF.ErrorUnsupported(VE, "va_arg expression"); | 
 |     return llvm::UndefValue::get(ArgTy); | 
 |   } | 
 |  | 
 |   // FIXME Volatility. | 
 |   llvm::Value *Val = Builder.CreateLoad(ArgPtr); | 
 |  | 
 |   // If EmitVAArg promoted the type, we must truncate it. | 
 |   if (ArgTy != Val->getType()) { | 
 |     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) | 
 |       Val = Builder.CreateIntToPtr(Val, ArgTy); | 
 |     else | 
 |       Val = Builder.CreateTrunc(Val, ArgTy); | 
 |   } | 
 |  | 
 |   return Val; | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { | 
 |   return CGF.EmitBlockLiteral(block); | 
 | } | 
 |  | 
 | // Convert a vec3 to vec4, or vice versa. | 
 | static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, | 
 |                                  Value *Src, unsigned NumElementsDst) { | 
 |   static constexpr int Mask[] = {0, 1, 2, -1}; | 
 |   return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst)); | 
 | } | 
 |  | 
 | // Create cast instructions for converting LLVM value \p Src to LLVM type \p | 
 | // DstTy. \p Src has the same size as \p DstTy. Both are single value types | 
 | // but could be scalar or vectors of different lengths, and either can be | 
 | // pointer. | 
 | // There are 4 cases: | 
 | // 1. non-pointer -> non-pointer  : needs 1 bitcast | 
 | // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast | 
 | // 3. pointer -> non-pointer | 
 | //   a) pointer -> intptr_t       : needs 1 ptrtoint | 
 | //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast | 
 | // 4. non-pointer -> pointer | 
 | //   a) intptr_t -> pointer       : needs 1 inttoptr | 
 | //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr | 
 | // Note: for cases 3b and 4b two casts are required since LLVM casts do not | 
 | // allow casting directly between pointer types and non-integer non-pointer | 
 | // types. | 
 | static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, | 
 |                                            const llvm::DataLayout &DL, | 
 |                                            Value *Src, llvm::Type *DstTy, | 
 |                                            StringRef Name = "") { | 
 |   auto SrcTy = Src->getType(); | 
 |  | 
 |   // Case 1. | 
 |   if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) | 
 |     return Builder.CreateBitCast(Src, DstTy, Name); | 
 |  | 
 |   // Case 2. | 
 |   if (SrcTy->isPointerTy() && DstTy->isPointerTy()) | 
 |     return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); | 
 |  | 
 |   // Case 3. | 
 |   if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { | 
 |     // Case 3b. | 
 |     if (!DstTy->isIntegerTy()) | 
 |       Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); | 
 |     // Cases 3a and 3b. | 
 |     return Builder.CreateBitOrPointerCast(Src, DstTy, Name); | 
 |   } | 
 |  | 
 |   // Case 4b. | 
 |   if (!SrcTy->isIntegerTy()) | 
 |     Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); | 
 |   // Cases 4a and 4b. | 
 |   return Builder.CreateIntToPtr(Src, DstTy, Name); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { | 
 |   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr()); | 
 |   llvm::Type *DstTy = ConvertType(E->getType()); | 
 |  | 
 |   llvm::Type *SrcTy = Src->getType(); | 
 |   unsigned NumElementsSrc = | 
 |       isa<llvm::VectorType>(SrcTy) | 
 |           ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() | 
 |           : 0; | 
 |   unsigned NumElementsDst = | 
 |       isa<llvm::VectorType>(DstTy) | 
 |           ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() | 
 |           : 0; | 
 |  | 
 |   // Use bit vector expansion for ext_vector_type boolean vectors. | 
 |   if (E->getType()->isExtVectorBoolType()) | 
 |     return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype"); | 
 |  | 
 |   // Going from vec3 to non-vec3 is a special case and requires a shuffle | 
 |   // vector to get a vec4, then a bitcast if the target type is different. | 
 |   if (NumElementsSrc == 3 && NumElementsDst != 3) { | 
 |     Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); | 
 |     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, | 
 |                                        DstTy); | 
 |  | 
 |     Src->setName("astype"); | 
 |     return Src; | 
 |   } | 
 |  | 
 |   // Going from non-vec3 to vec3 is a special case and requires a bitcast | 
 |   // to vec4 if the original type is not vec4, then a shuffle vector to | 
 |   // get a vec3. | 
 |   if (NumElementsSrc != 3 && NumElementsDst == 3) { | 
 |     auto *Vec4Ty = llvm::FixedVectorType::get( | 
 |         cast<llvm::VectorType>(DstTy)->getElementType(), 4); | 
 |     Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, | 
 |                                        Vec4Ty); | 
 |  | 
 |     Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); | 
 |     Src->setName("astype"); | 
 |     return Src; | 
 |   } | 
 |  | 
 |   return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), | 
 |                                       Src, DstTy, "astype"); | 
 | } | 
 |  | 
 | Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { | 
 |   return CGF.EmitAtomicExpr(E).getScalarVal(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Entry Point into this File | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Emit the computation of the specified expression of scalar type, ignoring | 
 | /// the result. | 
 | Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { | 
 |   assert(E && hasScalarEvaluationKind(E->getType()) && | 
 |          "Invalid scalar expression to emit"); | 
 |  | 
 |   return ScalarExprEmitter(*this, IgnoreResultAssign) | 
 |       .Visit(const_cast<Expr *>(E)); | 
 | } | 
 |  | 
 | /// Emit a conversion from the specified type to the specified destination type, | 
 | /// both of which are LLVM scalar types. | 
 | Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, | 
 |                                              QualType DstTy, | 
 |                                              SourceLocation Loc) { | 
 |   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && | 
 |          "Invalid scalar expression to emit"); | 
 |   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); | 
 | } | 
 |  | 
 | /// Emit a conversion from the specified complex type to the specified | 
 | /// destination type, where the destination type is an LLVM scalar type. | 
 | Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, | 
 |                                                       QualType SrcTy, | 
 |                                                       QualType DstTy, | 
 |                                                       SourceLocation Loc) { | 
 |   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && | 
 |          "Invalid complex -> scalar conversion"); | 
 |   return ScalarExprEmitter(*this) | 
 |       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); | 
 | } | 
 |  | 
 |  | 
 | Value * | 
 | CodeGenFunction::EmitPromotedScalarExpr(const Expr *E, | 
 |                                         QualType PromotionType) { | 
 |   if (!PromotionType.isNull()) | 
 |     return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType); | 
 |   else | 
 |     return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E)); | 
 | } | 
 |  | 
 |  | 
 | llvm::Value *CodeGenFunction:: | 
 | EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
 |                         bool isInc, bool isPre) { | 
 |   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); | 
 | } | 
 |  | 
 | LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { | 
 |   // object->isa or (*object).isa | 
 |   // Generate code as for: *(Class*)object | 
 |  | 
 |   Expr *BaseExpr = E->getBase(); | 
 |   Address Addr = Address::invalid(); | 
 |   if (BaseExpr->isPRValue()) { | 
 |     llvm::Type *BaseTy = | 
 |         ConvertTypeForMem(BaseExpr->getType()->getPointeeType()); | 
 |     Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign()); | 
 |   } else { | 
 |     Addr = EmitLValue(BaseExpr).getAddress(*this); | 
 |   } | 
 |  | 
 |   // Cast the address to Class*. | 
 |   Addr = Addr.withElementType(ConvertType(E->getType())); | 
 |   return MakeAddrLValue(Addr, E->getType()); | 
 | } | 
 |  | 
 |  | 
 | LValue CodeGenFunction::EmitCompoundAssignmentLValue( | 
 |                                             const CompoundAssignOperator *E) { | 
 |   ScalarExprEmitter Scalar(*this); | 
 |   Value *Result = nullptr; | 
 |   switch (E->getOpcode()) { | 
 | #define COMPOUND_OP(Op)                                                       \ | 
 |     case BO_##Op##Assign:                                                     \ | 
 |       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ | 
 |                                              Result) | 
 |   COMPOUND_OP(Mul); | 
 |   COMPOUND_OP(Div); | 
 |   COMPOUND_OP(Rem); | 
 |   COMPOUND_OP(Add); | 
 |   COMPOUND_OP(Sub); | 
 |   COMPOUND_OP(Shl); | 
 |   COMPOUND_OP(Shr); | 
 |   COMPOUND_OP(And); | 
 |   COMPOUND_OP(Xor); | 
 |   COMPOUND_OP(Or); | 
 | #undef COMPOUND_OP | 
 |  | 
 |   case BO_PtrMemD: | 
 |   case BO_PtrMemI: | 
 |   case BO_Mul: | 
 |   case BO_Div: | 
 |   case BO_Rem: | 
 |   case BO_Add: | 
 |   case BO_Sub: | 
 |   case BO_Shl: | 
 |   case BO_Shr: | 
 |   case BO_LT: | 
 |   case BO_GT: | 
 |   case BO_LE: | 
 |   case BO_GE: | 
 |   case BO_EQ: | 
 |   case BO_NE: | 
 |   case BO_Cmp: | 
 |   case BO_And: | 
 |   case BO_Xor: | 
 |   case BO_Or: | 
 |   case BO_LAnd: | 
 |   case BO_LOr: | 
 |   case BO_Assign: | 
 |   case BO_Comma: | 
 |     llvm_unreachable("Not valid compound assignment operators"); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled compound assignment operator"); | 
 | } | 
 |  | 
 | struct GEPOffsetAndOverflow { | 
 |   // The total (signed) byte offset for the GEP. | 
 |   llvm::Value *TotalOffset; | 
 |   // The offset overflow flag - true if the total offset overflows. | 
 |   llvm::Value *OffsetOverflows; | 
 | }; | 
 |  | 
 | /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, | 
 | /// and compute the total offset it applies from it's base pointer BasePtr. | 
 | /// Returns offset in bytes and a boolean flag whether an overflow happened | 
 | /// during evaluation. | 
 | static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, | 
 |                                                  llvm::LLVMContext &VMContext, | 
 |                                                  CodeGenModule &CGM, | 
 |                                                  CGBuilderTy &Builder) { | 
 |   const auto &DL = CGM.getDataLayout(); | 
 |  | 
 |   // The total (signed) byte offset for the GEP. | 
 |   llvm::Value *TotalOffset = nullptr; | 
 |  | 
 |   // Was the GEP already reduced to a constant? | 
 |   if (isa<llvm::Constant>(GEPVal)) { | 
 |     // Compute the offset by casting both pointers to integers and subtracting: | 
 |     // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) | 
 |     Value *BasePtr_int = | 
 |         Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); | 
 |     Value *GEPVal_int = | 
 |         Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); | 
 |     TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); | 
 |     return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; | 
 |   } | 
 |  | 
 |   auto *GEP = cast<llvm::GEPOperator>(GEPVal); | 
 |   assert(GEP->getPointerOperand() == BasePtr && | 
 |          "BasePtr must be the base of the GEP."); | 
 |   assert(GEP->isInBounds() && "Expected inbounds GEP"); | 
 |  | 
 |   auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); | 
 |  | 
 |   // Grab references to the signed add/mul overflow intrinsics for intptr_t. | 
 |   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); | 
 |   auto *SAddIntrinsic = | 
 |       CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); | 
 |   auto *SMulIntrinsic = | 
 |       CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); | 
 |  | 
 |   // The offset overflow flag - true if the total offset overflows. | 
 |   llvm::Value *OffsetOverflows = Builder.getFalse(); | 
 |  | 
 |   /// Return the result of the given binary operation. | 
 |   auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, | 
 |                   llvm::Value *RHS) -> llvm::Value * { | 
 |     assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); | 
 |  | 
 |     // If the operands are constants, return a constant result. | 
 |     if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { | 
 |       if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { | 
 |         llvm::APInt N; | 
 |         bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, | 
 |                                                   /*Signed=*/true, N); | 
 |         if (HasOverflow) | 
 |           OffsetOverflows = Builder.getTrue(); | 
 |         return llvm::ConstantInt::get(VMContext, N); | 
 |       } | 
 |     } | 
 |  | 
 |     // Otherwise, compute the result with checked arithmetic. | 
 |     auto *ResultAndOverflow = Builder.CreateCall( | 
 |         (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); | 
 |     OffsetOverflows = Builder.CreateOr( | 
 |         Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); | 
 |     return Builder.CreateExtractValue(ResultAndOverflow, 0); | 
 |   }; | 
 |  | 
 |   // Determine the total byte offset by looking at each GEP operand. | 
 |   for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); | 
 |        GTI != GTE; ++GTI) { | 
 |     llvm::Value *LocalOffset; | 
 |     auto *Index = GTI.getOperand(); | 
 |     // Compute the local offset contributed by this indexing step: | 
 |     if (auto *STy = GTI.getStructTypeOrNull()) { | 
 |       // For struct indexing, the local offset is the byte position of the | 
 |       // specified field. | 
 |       unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); | 
 |       LocalOffset = llvm::ConstantInt::get( | 
 |           IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); | 
 |     } else { | 
 |       // Otherwise this is array-like indexing. The local offset is the index | 
 |       // multiplied by the element size. | 
 |       auto *ElementSize = llvm::ConstantInt::get( | 
 |           IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); | 
 |       auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); | 
 |       LocalOffset = eval(BO_Mul, ElementSize, IndexS); | 
 |     } | 
 |  | 
 |     // If this is the first offset, set it as the total offset. Otherwise, add | 
 |     // the local offset into the running total. | 
 |     if (!TotalOffset || TotalOffset == Zero) | 
 |       TotalOffset = LocalOffset; | 
 |     else | 
 |       TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); | 
 |   } | 
 |  | 
 |   return {TotalOffset, OffsetOverflows}; | 
 | } | 
 |  | 
 | Value * | 
 | CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, | 
 |                                         ArrayRef<Value *> IdxList, | 
 |                                         bool SignedIndices, bool IsSubtraction, | 
 |                                         SourceLocation Loc, const Twine &Name) { | 
 |   llvm::Type *PtrTy = Ptr->getType(); | 
 |   Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); | 
 |  | 
 |   // If the pointer overflow sanitizer isn't enabled, do nothing. | 
 |   if (!SanOpts.has(SanitizerKind::PointerOverflow)) | 
 |     return GEPVal; | 
 |  | 
 |   // Perform nullptr-and-offset check unless the nullptr is defined. | 
 |   bool PerformNullCheck = !NullPointerIsDefined( | 
 |       Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); | 
 |   // Check for overflows unless the GEP got constant-folded, | 
 |   // and only in the default address space | 
 |   bool PerformOverflowCheck = | 
 |       !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; | 
 |  | 
 |   if (!(PerformNullCheck || PerformOverflowCheck)) | 
 |     return GEPVal; | 
 |  | 
 |   const auto &DL = CGM.getDataLayout(); | 
 |  | 
 |   SanitizerScope SanScope(this); | 
 |   llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); | 
 |  | 
 |   GEPOffsetAndOverflow EvaluatedGEP = | 
 |       EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); | 
 |  | 
 |   assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || | 
 |           EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && | 
 |          "If the offset got constant-folded, we don't expect that there was an " | 
 |          "overflow."); | 
 |  | 
 |   auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); | 
 |  | 
 |   // Common case: if the total offset is zero, and we are using C++ semantics, | 
 |   // where nullptr+0 is defined, don't emit a check. | 
 |   if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) | 
 |     return GEPVal; | 
 |  | 
 |   // Now that we've computed the total offset, add it to the base pointer (with | 
 |   // wrapping semantics). | 
 |   auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); | 
 |   auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); | 
 |  | 
 |   llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; | 
 |  | 
 |   if (PerformNullCheck) { | 
 |     // In C++, if the base pointer evaluates to a null pointer value, | 
 |     // the only valid  pointer this inbounds GEP can produce is also | 
 |     // a null pointer, so the offset must also evaluate to zero. | 
 |     // Likewise, if we have non-zero base pointer, we can not get null pointer | 
 |     // as a result, so the offset can not be -intptr_t(BasePtr). | 
 |     // In other words, both pointers are either null, or both are non-null, | 
 |     // or the behaviour is undefined. | 
 |     // | 
 |     // C, however, is more strict in this regard, and gives more | 
 |     // optimization opportunities: in C, additionally, nullptr+0 is undefined. | 
 |     // So both the input to the 'gep inbounds' AND the output must not be null. | 
 |     auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); | 
 |     auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); | 
 |     auto *Valid = | 
 |         CGM.getLangOpts().CPlusPlus | 
 |             ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) | 
 |             : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); | 
 |     Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); | 
 |   } | 
 |  | 
 |   if (PerformOverflowCheck) { | 
 |     // The GEP is valid if: | 
 |     // 1) The total offset doesn't overflow, and | 
 |     // 2) The sign of the difference between the computed address and the base | 
 |     // pointer matches the sign of the total offset. | 
 |     llvm::Value *ValidGEP; | 
 |     auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); | 
 |     if (SignedIndices) { | 
 |       // GEP is computed as `unsigned base + signed offset`, therefore: | 
 |       // * If offset was positive, then the computed pointer can not be | 
 |       //   [unsigned] less than the base pointer, unless it overflowed. | 
 |       // * If offset was negative, then the computed pointer can not be | 
 |       //   [unsigned] greater than the bas pointere, unless it overflowed. | 
 |       auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); | 
 |       auto *PosOrZeroOffset = | 
 |           Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); | 
 |       llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); | 
 |       ValidGEP = | 
 |           Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); | 
 |     } else if (!IsSubtraction) { | 
 |       // GEP is computed as `unsigned base + unsigned offset`,  therefore the | 
 |       // computed pointer can not be [unsigned] less than base pointer, | 
 |       // unless there was an overflow. | 
 |       // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. | 
 |       ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); | 
 |     } else { | 
 |       // GEP is computed as `unsigned base - unsigned offset`, therefore the | 
 |       // computed pointer can not be [unsigned] greater than base pointer, | 
 |       // unless there was an overflow. | 
 |       // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. | 
 |       ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); | 
 |     } | 
 |     ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); | 
 |     Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); | 
 |   } | 
 |  | 
 |   assert(!Checks.empty() && "Should have produced some checks."); | 
 |  | 
 |   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; | 
 |   // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. | 
 |   llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; | 
 |   EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); | 
 |  | 
 |   return GEPVal; | 
 | } |