| //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This contains code dealing with code generation of C++ expressions | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CGCUDARuntime.h" | 
 | #include "CGCXXABI.h" | 
 | #include "CGDebugInfo.h" | 
 | #include "CGObjCRuntime.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "ConstantEmitter.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/Basic/CodeGenOptions.h" | 
 | #include "clang/CodeGen/CGFunctionInfo.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 | namespace { | 
 | struct MemberCallInfo { | 
 |   RequiredArgs ReqArgs; | 
 |   // Number of prefix arguments for the call. Ignores the `this` pointer. | 
 |   unsigned PrefixSize; | 
 | }; | 
 | } | 
 |  | 
 | static MemberCallInfo | 
 | commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD, | 
 |                                   llvm::Value *This, llvm::Value *ImplicitParam, | 
 |                                   QualType ImplicitParamTy, const CallExpr *CE, | 
 |                                   CallArgList &Args, CallArgList *RtlArgs) { | 
 |   auto *MD = cast<CXXMethodDecl>(GD.getDecl()); | 
 |  | 
 |   assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || | 
 |          isa<CXXOperatorCallExpr>(CE)); | 
 |   assert(MD->isInstance() && | 
 |          "Trying to emit a member or operator call expr on a static method!"); | 
 |  | 
 |   // Push the this ptr. | 
 |   const CXXRecordDecl *RD = | 
 |       CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD); | 
 |   Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); | 
 |  | 
 |   // If there is an implicit parameter (e.g. VTT), emit it. | 
 |   if (ImplicitParam) { | 
 |     Args.add(RValue::get(ImplicitParam), ImplicitParamTy); | 
 |   } | 
 |  | 
 |   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); | 
 |   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); | 
 |   unsigned PrefixSize = Args.size() - 1; | 
 |  | 
 |   // And the rest of the call args. | 
 |   if (RtlArgs) { | 
 |     // Special case: if the caller emitted the arguments right-to-left already | 
 |     // (prior to emitting the *this argument), we're done. This happens for | 
 |     // assignment operators. | 
 |     Args.addFrom(*RtlArgs); | 
 |   } else if (CE) { | 
 |     // Special case: skip first argument of CXXOperatorCall (it is "this"). | 
 |     unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; | 
 |     CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), | 
 |                      CE->getDirectCallee()); | 
 |   } else { | 
 |     assert( | 
 |         FPT->getNumParams() == 0 && | 
 |         "No CallExpr specified for function with non-zero number of arguments"); | 
 |   } | 
 |   return {required, PrefixSize}; | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( | 
 |     const CXXMethodDecl *MD, const CGCallee &Callee, | 
 |     ReturnValueSlot ReturnValue, | 
 |     llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, | 
 |     const CallExpr *CE, CallArgList *RtlArgs) { | 
 |   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); | 
 |   CallArgList Args; | 
 |   MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( | 
 |       *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); | 
 |   auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( | 
 |       Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); | 
 |   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, | 
 |                   CE && CE == MustTailCall, | 
 |                   CE ? CE->getExprLoc() : SourceLocation()); | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCXXDestructorCall( | 
 |     GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, | 
 |     llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { | 
 |   const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); | 
 |  | 
 |   assert(!ThisTy.isNull()); | 
 |   assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && | 
 |          "Pointer/Object mixup"); | 
 |  | 
 |   LangAS SrcAS = ThisTy.getAddressSpace(); | 
 |   LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); | 
 |   if (SrcAS != DstAS) { | 
 |     QualType DstTy = DtorDecl->getThisType(); | 
 |     llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); | 
 |     This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, | 
 |                                                  NewType); | 
 |   } | 
 |  | 
 |   CallArgList Args; | 
 |   commonEmitCXXMemberOrOperatorCall(*this, Dtor, This, ImplicitParam, | 
 |                                     ImplicitParamTy, CE, Args, nullptr); | 
 |   return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, | 
 |                   ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, | 
 |                   CE ? CE->getExprLoc() : SourceLocation{}); | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( | 
 |                                             const CXXPseudoDestructorExpr *E) { | 
 |   QualType DestroyedType = E->getDestroyedType(); | 
 |   if (DestroyedType.hasStrongOrWeakObjCLifetime()) { | 
 |     // Automatic Reference Counting: | 
 |     //   If the pseudo-expression names a retainable object with weak or | 
 |     //   strong lifetime, the object shall be released. | 
 |     Expr *BaseExpr = E->getBase(); | 
 |     Address BaseValue = Address::invalid(); | 
 |     Qualifiers BaseQuals; | 
 |  | 
 |     // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. | 
 |     if (E->isArrow()) { | 
 |       BaseValue = EmitPointerWithAlignment(BaseExpr); | 
 |       const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); | 
 |       BaseQuals = PTy->getPointeeType().getQualifiers(); | 
 |     } else { | 
 |       LValue BaseLV = EmitLValue(BaseExpr); | 
 |       BaseValue = BaseLV.getAddress(*this); | 
 |       QualType BaseTy = BaseExpr->getType(); | 
 |       BaseQuals = BaseTy.getQualifiers(); | 
 |     } | 
 |  | 
 |     switch (DestroyedType.getObjCLifetime()) { | 
 |     case Qualifiers::OCL_None: | 
 |     case Qualifiers::OCL_ExplicitNone: | 
 |     case Qualifiers::OCL_Autoreleasing: | 
 |       break; | 
 |  | 
 |     case Qualifiers::OCL_Strong: | 
 |       EmitARCRelease(Builder.CreateLoad(BaseValue, | 
 |                         DestroyedType.isVolatileQualified()), | 
 |                      ARCPreciseLifetime); | 
 |       break; | 
 |  | 
 |     case Qualifiers::OCL_Weak: | 
 |       EmitARCDestroyWeak(BaseValue); | 
 |       break; | 
 |     } | 
 |   } else { | 
 |     // C++ [expr.pseudo]p1: | 
 |     //   The result shall only be used as the operand for the function call | 
 |     //   operator (), and the result of such a call has type void. The only | 
 |     //   effect is the evaluation of the postfix-expression before the dot or | 
 |     //   arrow. | 
 |     EmitIgnoredExpr(E->getBase()); | 
 |   } | 
 |  | 
 |   return RValue::get(nullptr); | 
 | } | 
 |  | 
 | static CXXRecordDecl *getCXXRecord(const Expr *E) { | 
 |   QualType T = E->getType(); | 
 |   if (const PointerType *PTy = T->getAs<PointerType>()) | 
 |     T = PTy->getPointeeType(); | 
 |   const RecordType *Ty = T->castAs<RecordType>(); | 
 |   return cast<CXXRecordDecl>(Ty->getDecl()); | 
 | } | 
 |  | 
 | // Note: This function also emit constructor calls to support a MSVC | 
 | // extensions allowing explicit constructor function call. | 
 | RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, | 
 |                                               ReturnValueSlot ReturnValue) { | 
 |   const Expr *callee = CE->getCallee()->IgnoreParens(); | 
 |  | 
 |   if (isa<BinaryOperator>(callee)) | 
 |     return EmitCXXMemberPointerCallExpr(CE, ReturnValue); | 
 |  | 
 |   const MemberExpr *ME = cast<MemberExpr>(callee); | 
 |   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); | 
 |  | 
 |   if (MD->isStatic()) { | 
 |     // The method is static, emit it as we would a regular call. | 
 |     CGCallee callee = | 
 |         CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); | 
 |     return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, | 
 |                     ReturnValue); | 
 |   } | 
 |  | 
 |   bool HasQualifier = ME->hasQualifier(); | 
 |   NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; | 
 |   bool IsArrow = ME->isArrow(); | 
 |   const Expr *Base = ME->getBase(); | 
 |  | 
 |   return EmitCXXMemberOrOperatorMemberCallExpr( | 
 |       CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( | 
 |     const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, | 
 |     bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, | 
 |     const Expr *Base) { | 
 |   assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); | 
 |  | 
 |   // Compute the object pointer. | 
 |   bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; | 
 |  | 
 |   const CXXMethodDecl *DevirtualizedMethod = nullptr; | 
 |   if (CanUseVirtualCall && | 
 |       MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { | 
 |     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); | 
 |     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); | 
 |     assert(DevirtualizedMethod); | 
 |     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); | 
 |     const Expr *Inner = Base->IgnoreParenBaseCasts(); | 
 |     if (DevirtualizedMethod->getReturnType().getCanonicalType() != | 
 |         MD->getReturnType().getCanonicalType()) | 
 |       // If the return types are not the same, this might be a case where more | 
 |       // code needs to run to compensate for it. For example, the derived | 
 |       // method might return a type that inherits form from the return | 
 |       // type of MD and has a prefix. | 
 |       // For now we just avoid devirtualizing these covariant cases. | 
 |       DevirtualizedMethod = nullptr; | 
 |     else if (getCXXRecord(Inner) == DevirtualizedClass) | 
 |       // If the class of the Inner expression is where the dynamic method | 
 |       // is defined, build the this pointer from it. | 
 |       Base = Inner; | 
 |     else if (getCXXRecord(Base) != DevirtualizedClass) { | 
 |       // If the method is defined in a class that is not the best dynamic | 
 |       // one or the one of the full expression, we would have to build | 
 |       // a derived-to-base cast to compute the correct this pointer, but | 
 |       // we don't have support for that yet, so do a virtual call. | 
 |       DevirtualizedMethod = nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   bool TrivialForCodegen = | 
 |       MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); | 
 |   bool TrivialAssignment = | 
 |       TrivialForCodegen && | 
 |       (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && | 
 |       !MD->getParent()->mayInsertExtraPadding(); | 
 |  | 
 |   // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment | 
 |   // operator before the LHS. | 
 |   CallArgList RtlArgStorage; | 
 |   CallArgList *RtlArgs = nullptr; | 
 |   LValue TrivialAssignmentRHS; | 
 |   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { | 
 |     if (OCE->isAssignmentOp()) { | 
 |       if (TrivialAssignment) { | 
 |         TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); | 
 |       } else { | 
 |         RtlArgs = &RtlArgStorage; | 
 |         EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), | 
 |                      drop_begin(CE->arguments(), 1), CE->getDirectCallee(), | 
 |                      /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   LValue This; | 
 |   if (IsArrow) { | 
 |     LValueBaseInfo BaseInfo; | 
 |     TBAAAccessInfo TBAAInfo; | 
 |     Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); | 
 |     This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); | 
 |   } else { | 
 |     This = EmitLValue(Base); | 
 |   } | 
 |  | 
 |   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { | 
 |     // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's | 
 |     // constructing a new complete object of type Ctor. | 
 |     assert(!RtlArgs); | 
 |     assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); | 
 |     CallArgList Args; | 
 |     commonEmitCXXMemberOrOperatorCall( | 
 |         *this, {Ctor, Ctor_Complete}, This.getPointer(*this), | 
 |         /*ImplicitParam=*/nullptr, | 
 |         /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); | 
 |  | 
 |     EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, | 
 |                            /*Delegating=*/false, This.getAddress(*this), Args, | 
 |                            AggValueSlot::DoesNotOverlap, CE->getExprLoc(), | 
 |                            /*NewPointerIsChecked=*/false); | 
 |     return RValue::get(nullptr); | 
 |   } | 
 |  | 
 |   if (TrivialForCodegen) { | 
 |     if (isa<CXXDestructorDecl>(MD)) | 
 |       return RValue::get(nullptr); | 
 |  | 
 |     if (TrivialAssignment) { | 
 |       // We don't like to generate the trivial copy/move assignment operator | 
 |       // when it isn't necessary; just produce the proper effect here. | 
 |       // It's important that we use the result of EmitLValue here rather than | 
 |       // emitting call arguments, in order to preserve TBAA information from | 
 |       // the RHS. | 
 |       LValue RHS = isa<CXXOperatorCallExpr>(CE) | 
 |                        ? TrivialAssignmentRHS | 
 |                        : EmitLValue(*CE->arg_begin()); | 
 |       EmitAggregateAssign(This, RHS, CE->getType()); | 
 |       return RValue::get(This.getPointer(*this)); | 
 |     } | 
 |  | 
 |     assert(MD->getParent()->mayInsertExtraPadding() && | 
 |            "unknown trivial member function"); | 
 |   } | 
 |  | 
 |   // Compute the function type we're calling. | 
 |   const CXXMethodDecl *CalleeDecl = | 
 |       DevirtualizedMethod ? DevirtualizedMethod : MD; | 
 |   const CGFunctionInfo *FInfo = nullptr; | 
 |   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) | 
 |     FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( | 
 |         GlobalDecl(Dtor, Dtor_Complete)); | 
 |   else | 
 |     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); | 
 |  | 
 |   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); | 
 |  | 
 |   // C++11 [class.mfct.non-static]p2: | 
 |   //   If a non-static member function of a class X is called for an object that | 
 |   //   is not of type X, or of a type derived from X, the behavior is undefined. | 
 |   SourceLocation CallLoc; | 
 |   ASTContext &C = getContext(); | 
 |   if (CE) | 
 |     CallLoc = CE->getExprLoc(); | 
 |  | 
 |   SanitizerSet SkippedChecks; | 
 |   if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { | 
 |     auto *IOA = CMCE->getImplicitObjectArgument(); | 
 |     bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); | 
 |     if (IsImplicitObjectCXXThis) | 
 |       SkippedChecks.set(SanitizerKind::Alignment, true); | 
 |     if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) | 
 |       SkippedChecks.set(SanitizerKind::Null, true); | 
 |   } | 
 |   EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, | 
 |                 This.getPointer(*this), | 
 |                 C.getRecordType(CalleeDecl->getParent()), | 
 |                 /*Alignment=*/CharUnits::Zero(), SkippedChecks); | 
 |  | 
 |   // C++ [class.virtual]p12: | 
 |   //   Explicit qualification with the scope operator (5.1) suppresses the | 
 |   //   virtual call mechanism. | 
 |   // | 
 |   // We also don't emit a virtual call if the base expression has a record type | 
 |   // because then we know what the type is. | 
 |   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; | 
 |  | 
 |   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { | 
 |     assert(CE->arg_begin() == CE->arg_end() && | 
 |            "Destructor shouldn't have explicit parameters"); | 
 |     assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); | 
 |     if (UseVirtualCall) { | 
 |       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, | 
 |                                                 This.getAddress(*this), | 
 |                                                 cast<CXXMemberCallExpr>(CE)); | 
 |     } else { | 
 |       GlobalDecl GD(Dtor, Dtor_Complete); | 
 |       CGCallee Callee; | 
 |       if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) | 
 |         Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); | 
 |       else if (!DevirtualizedMethod) | 
 |         Callee = | 
 |             CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); | 
 |       else { | 
 |         Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); | 
 |       } | 
 |  | 
 |       QualType ThisTy = | 
 |           IsArrow ? Base->getType()->getPointeeType() : Base->getType(); | 
 |       EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, | 
 |                             /*ImplicitParam=*/nullptr, | 
 |                             /*ImplicitParamTy=*/QualType(), CE); | 
 |     } | 
 |     return RValue::get(nullptr); | 
 |   } | 
 |  | 
 |   // FIXME: Uses of 'MD' past this point need to be audited. We may need to use | 
 |   // 'CalleeDecl' instead. | 
 |  | 
 |   CGCallee Callee; | 
 |   if (UseVirtualCall) { | 
 |     Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); | 
 |   } else { | 
 |     if (SanOpts.has(SanitizerKind::CFINVCall) && | 
 |         MD->getParent()->isDynamicClass()) { | 
 |       llvm::Value *VTable; | 
 |       const CXXRecordDecl *RD; | 
 |       std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( | 
 |           *this, This.getAddress(*this), CalleeDecl->getParent()); | 
 |       EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); | 
 |     } | 
 |  | 
 |     if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) | 
 |       Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); | 
 |     else if (!DevirtualizedMethod) | 
 |       Callee = | 
 |           CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); | 
 |     else { | 
 |       Callee = | 
 |           CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), | 
 |                               GlobalDecl(DevirtualizedMethod)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (MD->isVirtual()) { | 
 |     Address NewThisAddr = | 
 |         CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( | 
 |             *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); | 
 |     This.setAddress(NewThisAddr); | 
 |   } | 
 |  | 
 |   return EmitCXXMemberOrOperatorCall( | 
 |       CalleeDecl, Callee, ReturnValue, This.getPointer(*this), | 
 |       /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); | 
 | } | 
 |  | 
 | RValue | 
 | CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, | 
 |                                               ReturnValueSlot ReturnValue) { | 
 |   const BinaryOperator *BO = | 
 |       cast<BinaryOperator>(E->getCallee()->IgnoreParens()); | 
 |   const Expr *BaseExpr = BO->getLHS(); | 
 |   const Expr *MemFnExpr = BO->getRHS(); | 
 |  | 
 |   const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); | 
 |   const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); | 
 |   const auto *RD = | 
 |       cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); | 
 |  | 
 |   // Emit the 'this' pointer. | 
 |   Address This = Address::invalid(); | 
 |   if (BO->getOpcode() == BO_PtrMemI) | 
 |     This = EmitPointerWithAlignment(BaseExpr, nullptr, nullptr, KnownNonNull); | 
 |   else | 
 |     This = EmitLValue(BaseExpr, KnownNonNull).getAddress(*this); | 
 |  | 
 |   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), | 
 |                 QualType(MPT->getClass(), 0)); | 
 |  | 
 |   // Get the member function pointer. | 
 |   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); | 
 |  | 
 |   // Ask the ABI to load the callee.  Note that This is modified. | 
 |   llvm::Value *ThisPtrForCall = nullptr; | 
 |   CGCallee Callee = | 
 |     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, | 
 |                                              ThisPtrForCall, MemFnPtr, MPT); | 
 |  | 
 |   CallArgList Args; | 
 |  | 
 |   QualType ThisType = | 
 |     getContext().getPointerType(getContext().getTagDeclType(RD)); | 
 |  | 
 |   // Push the this ptr. | 
 |   Args.add(RValue::get(ThisPtrForCall), ThisType); | 
 |  | 
 |   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); | 
 |  | 
 |   // And the rest of the call args | 
 |   EmitCallArgs(Args, FPT, E->arguments()); | 
 |   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, | 
 |                                                       /*PrefixSize=*/0), | 
 |                   Callee, ReturnValue, Args, nullptr, E == MustTailCall, | 
 |                   E->getExprLoc()); | 
 | } | 
 |  | 
 | RValue | 
 | CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, | 
 |                                                const CXXMethodDecl *MD, | 
 |                                                ReturnValueSlot ReturnValue) { | 
 |   assert(MD->isInstance() && | 
 |          "Trying to emit a member call expr on a static method!"); | 
 |   return EmitCXXMemberOrOperatorMemberCallExpr( | 
 |       E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, | 
 |       /*IsArrow=*/false, E->getArg(0)); | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, | 
 |                                                ReturnValueSlot ReturnValue) { | 
 |   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); | 
 | } | 
 |  | 
 | static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, | 
 |                                             Address DestPtr, | 
 |                                             const CXXRecordDecl *Base) { | 
 |   if (Base->isEmpty()) | 
 |     return; | 
 |  | 
 |   DestPtr = DestPtr.withElementType(CGF.Int8Ty); | 
 |  | 
 |   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); | 
 |   CharUnits NVSize = Layout.getNonVirtualSize(); | 
 |  | 
 |   // We cannot simply zero-initialize the entire base sub-object if vbptrs are | 
 |   // present, they are initialized by the most derived class before calling the | 
 |   // constructor. | 
 |   SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; | 
 |   Stores.emplace_back(CharUnits::Zero(), NVSize); | 
 |  | 
 |   // Each store is split by the existence of a vbptr. | 
 |   CharUnits VBPtrWidth = CGF.getPointerSize(); | 
 |   std::vector<CharUnits> VBPtrOffsets = | 
 |       CGF.CGM.getCXXABI().getVBPtrOffsets(Base); | 
 |   for (CharUnits VBPtrOffset : VBPtrOffsets) { | 
 |     // Stop before we hit any virtual base pointers located in virtual bases. | 
 |     if (VBPtrOffset >= NVSize) | 
 |       break; | 
 |     std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); | 
 |     CharUnits LastStoreOffset = LastStore.first; | 
 |     CharUnits LastStoreSize = LastStore.second; | 
 |  | 
 |     CharUnits SplitBeforeOffset = LastStoreOffset; | 
 |     CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; | 
 |     assert(!SplitBeforeSize.isNegative() && "negative store size!"); | 
 |     if (!SplitBeforeSize.isZero()) | 
 |       Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); | 
 |  | 
 |     CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; | 
 |     CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; | 
 |     assert(!SplitAfterSize.isNegative() && "negative store size!"); | 
 |     if (!SplitAfterSize.isZero()) | 
 |       Stores.emplace_back(SplitAfterOffset, SplitAfterSize); | 
 |   } | 
 |  | 
 |   // If the type contains a pointer to data member we can't memset it to zero. | 
 |   // Instead, create a null constant and copy it to the destination. | 
 |   // TODO: there are other patterns besides zero that we can usefully memset, | 
 |   // like -1, which happens to be the pattern used by member-pointers. | 
 |   // TODO: isZeroInitializable can be over-conservative in the case where a | 
 |   // virtual base contains a member pointer. | 
 |   llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); | 
 |   if (!NullConstantForBase->isNullValue()) { | 
 |     llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( | 
 |         CGF.CGM.getModule(), NullConstantForBase->getType(), | 
 |         /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, | 
 |         NullConstantForBase, Twine()); | 
 |  | 
 |     CharUnits Align = | 
 |         std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); | 
 |     NullVariable->setAlignment(Align.getAsAlign()); | 
 |  | 
 |     Address SrcPtr(NullVariable, CGF.Int8Ty, Align); | 
 |  | 
 |     // Get and call the appropriate llvm.memcpy overload. | 
 |     for (std::pair<CharUnits, CharUnits> Store : Stores) { | 
 |       CharUnits StoreOffset = Store.first; | 
 |       CharUnits StoreSize = Store.second; | 
 |       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); | 
 |       CGF.Builder.CreateMemCpy( | 
 |           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), | 
 |           CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), | 
 |           StoreSizeVal); | 
 |     } | 
 |  | 
 |   // Otherwise, just memset the whole thing to zero.  This is legal | 
 |   // because in LLVM, all default initializers (other than the ones we just | 
 |   // handled above) are guaranteed to have a bit pattern of all zeros. | 
 |   } else { | 
 |     for (std::pair<CharUnits, CharUnits> Store : Stores) { | 
 |       CharUnits StoreOffset = Store.first; | 
 |       CharUnits StoreSize = Store.second; | 
 |       llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); | 
 |       CGF.Builder.CreateMemSet( | 
 |           CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), | 
 |           CGF.Builder.getInt8(0), StoreSizeVal); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, | 
 |                                       AggValueSlot Dest) { | 
 |   assert(!Dest.isIgnored() && "Must have a destination!"); | 
 |   const CXXConstructorDecl *CD = E->getConstructor(); | 
 |  | 
 |   // If we require zero initialization before (or instead of) calling the | 
 |   // constructor, as can be the case with a non-user-provided default | 
 |   // constructor, emit the zero initialization now, unless destination is | 
 |   // already zeroed. | 
 |   if (E->requiresZeroInitialization() && !Dest.isZeroed()) { | 
 |     switch (E->getConstructionKind()) { | 
 |     case CXXConstructExpr::CK_Delegating: | 
 |     case CXXConstructExpr::CK_Complete: | 
 |       EmitNullInitialization(Dest.getAddress(), E->getType()); | 
 |       break; | 
 |     case CXXConstructExpr::CK_VirtualBase: | 
 |     case CXXConstructExpr::CK_NonVirtualBase: | 
 |       EmitNullBaseClassInitialization(*this, Dest.getAddress(), | 
 |                                       CD->getParent()); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a call to a trivial default constructor, do nothing. | 
 |   if (CD->isTrivial() && CD->isDefaultConstructor()) | 
 |     return; | 
 |  | 
 |   // Elide the constructor if we're constructing from a temporary. | 
 |   if (getLangOpts().ElideConstructors && E->isElidable()) { | 
 |     // FIXME: This only handles the simplest case, where the source object | 
 |     //        is passed directly as the first argument to the constructor. | 
 |     //        This should also handle stepping though implicit casts and | 
 |     //        conversion sequences which involve two steps, with a | 
 |     //        conversion operator followed by a converting constructor. | 
 |     const Expr *SrcObj = E->getArg(0); | 
 |     assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); | 
 |     assert( | 
 |         getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); | 
 |     EmitAggExpr(SrcObj, Dest); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const ArrayType *arrayType | 
 |         = getContext().getAsArrayType(E->getType())) { | 
 |     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, | 
 |                                Dest.isSanitizerChecked()); | 
 |   } else { | 
 |     CXXCtorType Type = Ctor_Complete; | 
 |     bool ForVirtualBase = false; | 
 |     bool Delegating = false; | 
 |  | 
 |     switch (E->getConstructionKind()) { | 
 |      case CXXConstructExpr::CK_Delegating: | 
 |       // We should be emitting a constructor; GlobalDecl will assert this | 
 |       Type = CurGD.getCtorType(); | 
 |       Delegating = true; | 
 |       break; | 
 |  | 
 |      case CXXConstructExpr::CK_Complete: | 
 |       Type = Ctor_Complete; | 
 |       break; | 
 |  | 
 |      case CXXConstructExpr::CK_VirtualBase: | 
 |       ForVirtualBase = true; | 
 |       [[fallthrough]]; | 
 |  | 
 |      case CXXConstructExpr::CK_NonVirtualBase: | 
 |       Type = Ctor_Base; | 
 |      } | 
 |  | 
 |      // Call the constructor. | 
 |      EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, | 
 |                                                  const Expr *Exp) { | 
 |   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) | 
 |     Exp = E->getSubExpr(); | 
 |   assert(isa<CXXConstructExpr>(Exp) && | 
 |          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); | 
 |   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); | 
 |   const CXXConstructorDecl *CD = E->getConstructor(); | 
 |   RunCleanupsScope Scope(*this); | 
 |  | 
 |   // If we require zero initialization before (or instead of) calling the | 
 |   // constructor, as can be the case with a non-user-provided default | 
 |   // constructor, emit the zero initialization now. | 
 |   // FIXME. Do I still need this for a copy ctor synthesis? | 
 |   if (E->requiresZeroInitialization()) | 
 |     EmitNullInitialization(Dest, E->getType()); | 
 |  | 
 |   assert(!getContext().getAsConstantArrayType(E->getType()) | 
 |          && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); | 
 |   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); | 
 | } | 
 |  | 
 | static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, | 
 |                                         const CXXNewExpr *E) { | 
 |   if (!E->isArray()) | 
 |     return CharUnits::Zero(); | 
 |  | 
 |   // No cookie is required if the operator new[] being used is the | 
 |   // reserved placement operator new[]. | 
 |   if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) | 
 |     return CharUnits::Zero(); | 
 |  | 
 |   return CGF.CGM.getCXXABI().GetArrayCookieSize(E); | 
 | } | 
 |  | 
 | static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, | 
 |                                         const CXXNewExpr *e, | 
 |                                         unsigned minElements, | 
 |                                         llvm::Value *&numElements, | 
 |                                         llvm::Value *&sizeWithoutCookie) { | 
 |   QualType type = e->getAllocatedType(); | 
 |  | 
 |   if (!e->isArray()) { | 
 |     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); | 
 |     sizeWithoutCookie | 
 |       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); | 
 |     return sizeWithoutCookie; | 
 |   } | 
 |  | 
 |   // The width of size_t. | 
 |   unsigned sizeWidth = CGF.SizeTy->getBitWidth(); | 
 |  | 
 |   // Figure out the cookie size. | 
 |   llvm::APInt cookieSize(sizeWidth, | 
 |                          CalculateCookiePadding(CGF, e).getQuantity()); | 
 |  | 
 |   // Emit the array size expression. | 
 |   // We multiply the size of all dimensions for NumElements. | 
 |   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. | 
 |   numElements = | 
 |     ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); | 
 |   if (!numElements) | 
 |     numElements = CGF.EmitScalarExpr(*e->getArraySize()); | 
 |   assert(isa<llvm::IntegerType>(numElements->getType())); | 
 |  | 
 |   // The number of elements can be have an arbitrary integer type; | 
 |   // essentially, we need to multiply it by a constant factor, add a | 
 |   // cookie size, and verify that the result is representable as a | 
 |   // size_t.  That's just a gloss, though, and it's wrong in one | 
 |   // important way: if the count is negative, it's an error even if | 
 |   // the cookie size would bring the total size >= 0. | 
 |   bool isSigned | 
 |     = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); | 
 |   llvm::IntegerType *numElementsType | 
 |     = cast<llvm::IntegerType>(numElements->getType()); | 
 |   unsigned numElementsWidth = numElementsType->getBitWidth(); | 
 |  | 
 |   // Compute the constant factor. | 
 |   llvm::APInt arraySizeMultiplier(sizeWidth, 1); | 
 |   while (const ConstantArrayType *CAT | 
 |              = CGF.getContext().getAsConstantArrayType(type)) { | 
 |     type = CAT->getElementType(); | 
 |     arraySizeMultiplier *= CAT->getSize(); | 
 |   } | 
 |  | 
 |   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); | 
 |   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); | 
 |   typeSizeMultiplier *= arraySizeMultiplier; | 
 |  | 
 |   // This will be a size_t. | 
 |   llvm::Value *size; | 
 |  | 
 |   // If someone is doing 'new int[42]' there is no need to do a dynamic check. | 
 |   // Don't bloat the -O0 code. | 
 |   if (llvm::ConstantInt *numElementsC = | 
 |         dyn_cast<llvm::ConstantInt>(numElements)) { | 
 |     const llvm::APInt &count = numElementsC->getValue(); | 
 |  | 
 |     bool hasAnyOverflow = false; | 
 |  | 
 |     // If 'count' was a negative number, it's an overflow. | 
 |     if (isSigned && count.isNegative()) | 
 |       hasAnyOverflow = true; | 
 |  | 
 |     // We want to do all this arithmetic in size_t.  If numElements is | 
 |     // wider than that, check whether it's already too big, and if so, | 
 |     // overflow. | 
 |     else if (numElementsWidth > sizeWidth && | 
 |              numElementsWidth - sizeWidth > count.countl_zero()) | 
 |       hasAnyOverflow = true; | 
 |  | 
 |     // Okay, compute a count at the right width. | 
 |     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); | 
 |  | 
 |     // If there is a brace-initializer, we cannot allocate fewer elements than | 
 |     // there are initializers. If we do, that's treated like an overflow. | 
 |     if (adjustedCount.ult(minElements)) | 
 |       hasAnyOverflow = true; | 
 |  | 
 |     // Scale numElements by that.  This might overflow, but we don't | 
 |     // care because it only overflows if allocationSize does, too, and | 
 |     // if that overflows then we shouldn't use this. | 
 |     numElements = llvm::ConstantInt::get(CGF.SizeTy, | 
 |                                          adjustedCount * arraySizeMultiplier); | 
 |  | 
 |     // Compute the size before cookie, and track whether it overflowed. | 
 |     bool overflow; | 
 |     llvm::APInt allocationSize | 
 |       = adjustedCount.umul_ov(typeSizeMultiplier, overflow); | 
 |     hasAnyOverflow |= overflow; | 
 |  | 
 |     // Add in the cookie, and check whether it's overflowed. | 
 |     if (cookieSize != 0) { | 
 |       // Save the current size without a cookie.  This shouldn't be | 
 |       // used if there was overflow. | 
 |       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); | 
 |  | 
 |       allocationSize = allocationSize.uadd_ov(cookieSize, overflow); | 
 |       hasAnyOverflow |= overflow; | 
 |     } | 
 |  | 
 |     // On overflow, produce a -1 so operator new will fail. | 
 |     if (hasAnyOverflow) { | 
 |       size = llvm::Constant::getAllOnesValue(CGF.SizeTy); | 
 |     } else { | 
 |       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); | 
 |     } | 
 |  | 
 |   // Otherwise, we might need to use the overflow intrinsics. | 
 |   } else { | 
 |     // There are up to five conditions we need to test for: | 
 |     // 1) if isSigned, we need to check whether numElements is negative; | 
 |     // 2) if numElementsWidth > sizeWidth, we need to check whether | 
 |     //   numElements is larger than something representable in size_t; | 
 |     // 3) if minElements > 0, we need to check whether numElements is smaller | 
 |     //    than that. | 
 |     // 4) we need to compute | 
 |     //      sizeWithoutCookie := numElements * typeSizeMultiplier | 
 |     //    and check whether it overflows; and | 
 |     // 5) if we need a cookie, we need to compute | 
 |     //      size := sizeWithoutCookie + cookieSize | 
 |     //    and check whether it overflows. | 
 |  | 
 |     llvm::Value *hasOverflow = nullptr; | 
 |  | 
 |     // If numElementsWidth > sizeWidth, then one way or another, we're | 
 |     // going to have to do a comparison for (2), and this happens to | 
 |     // take care of (1), too. | 
 |     if (numElementsWidth > sizeWidth) { | 
 |       llvm::APInt threshold = | 
 |           llvm::APInt::getOneBitSet(numElementsWidth, sizeWidth); | 
 |  | 
 |       llvm::Value *thresholdV | 
 |         = llvm::ConstantInt::get(numElementsType, threshold); | 
 |  | 
 |       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); | 
 |       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); | 
 |  | 
 |     // Otherwise, if we're signed, we want to sext up to size_t. | 
 |     } else if (isSigned) { | 
 |       if (numElementsWidth < sizeWidth) | 
 |         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); | 
 |  | 
 |       // If there's a non-1 type size multiplier, then we can do the | 
 |       // signedness check at the same time as we do the multiply | 
 |       // because a negative number times anything will cause an | 
 |       // unsigned overflow.  Otherwise, we have to do it here. But at least | 
 |       // in this case, we can subsume the >= minElements check. | 
 |       if (typeSizeMultiplier == 1) | 
 |         hasOverflow = CGF.Builder.CreateICmpSLT(numElements, | 
 |                               llvm::ConstantInt::get(CGF.SizeTy, minElements)); | 
 |  | 
 |     // Otherwise, zext up to size_t if necessary. | 
 |     } else if (numElementsWidth < sizeWidth) { | 
 |       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); | 
 |     } | 
 |  | 
 |     assert(numElements->getType() == CGF.SizeTy); | 
 |  | 
 |     if (minElements) { | 
 |       // Don't allow allocation of fewer elements than we have initializers. | 
 |       if (!hasOverflow) { | 
 |         hasOverflow = CGF.Builder.CreateICmpULT(numElements, | 
 |                               llvm::ConstantInt::get(CGF.SizeTy, minElements)); | 
 |       } else if (numElementsWidth > sizeWidth) { | 
 |         // The other existing overflow subsumes this check. | 
 |         // We do an unsigned comparison, since any signed value < -1 is | 
 |         // taken care of either above or below. | 
 |         hasOverflow = CGF.Builder.CreateOr(hasOverflow, | 
 |                           CGF.Builder.CreateICmpULT(numElements, | 
 |                               llvm::ConstantInt::get(CGF.SizeTy, minElements))); | 
 |       } | 
 |     } | 
 |  | 
 |     size = numElements; | 
 |  | 
 |     // Multiply by the type size if necessary.  This multiplier | 
 |     // includes all the factors for nested arrays. | 
 |     // | 
 |     // This step also causes numElements to be scaled up by the | 
 |     // nested-array factor if necessary.  Overflow on this computation | 
 |     // can be ignored because the result shouldn't be used if | 
 |     // allocation fails. | 
 |     if (typeSizeMultiplier != 1) { | 
 |       llvm::Function *umul_with_overflow | 
 |         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); | 
 |  | 
 |       llvm::Value *tsmV = | 
 |         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); | 
 |       llvm::Value *result = | 
 |           CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); | 
 |  | 
 |       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); | 
 |       if (hasOverflow) | 
 |         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); | 
 |       else | 
 |         hasOverflow = overflowed; | 
 |  | 
 |       size = CGF.Builder.CreateExtractValue(result, 0); | 
 |  | 
 |       // Also scale up numElements by the array size multiplier. | 
 |       if (arraySizeMultiplier != 1) { | 
 |         // If the base element type size is 1, then we can re-use the | 
 |         // multiply we just did. | 
 |         if (typeSize.isOne()) { | 
 |           assert(arraySizeMultiplier == typeSizeMultiplier); | 
 |           numElements = size; | 
 |  | 
 |         // Otherwise we need a separate multiply. | 
 |         } else { | 
 |           llvm::Value *asmV = | 
 |             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); | 
 |           numElements = CGF.Builder.CreateMul(numElements, asmV); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // numElements doesn't need to be scaled. | 
 |       assert(arraySizeMultiplier == 1); | 
 |     } | 
 |  | 
 |     // Add in the cookie size if necessary. | 
 |     if (cookieSize != 0) { | 
 |       sizeWithoutCookie = size; | 
 |  | 
 |       llvm::Function *uadd_with_overflow | 
 |         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); | 
 |  | 
 |       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); | 
 |       llvm::Value *result = | 
 |           CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); | 
 |  | 
 |       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); | 
 |       if (hasOverflow) | 
 |         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); | 
 |       else | 
 |         hasOverflow = overflowed; | 
 |  | 
 |       size = CGF.Builder.CreateExtractValue(result, 0); | 
 |     } | 
 |  | 
 |     // If we had any possibility of dynamic overflow, make a select to | 
 |     // overwrite 'size' with an all-ones value, which should cause | 
 |     // operator new to throw. | 
 |     if (hasOverflow) | 
 |       size = CGF.Builder.CreateSelect(hasOverflow, | 
 |                                  llvm::Constant::getAllOnesValue(CGF.SizeTy), | 
 |                                       size); | 
 |   } | 
 |  | 
 |   if (cookieSize == 0) | 
 |     sizeWithoutCookie = size; | 
 |   else | 
 |     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); | 
 |  | 
 |   return size; | 
 | } | 
 |  | 
 | static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, | 
 |                                     QualType AllocType, Address NewPtr, | 
 |                                     AggValueSlot::Overlap_t MayOverlap) { | 
 |   // FIXME: Refactor with EmitExprAsInit. | 
 |   switch (CGF.getEvaluationKind(AllocType)) { | 
 |   case TEK_Scalar: | 
 |     CGF.EmitScalarInit(Init, nullptr, | 
 |                        CGF.MakeAddrLValue(NewPtr, AllocType), false); | 
 |     return; | 
 |   case TEK_Complex: | 
 |     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), | 
 |                                   /*isInit*/ true); | 
 |     return; | 
 |   case TEK_Aggregate: { | 
 |     AggValueSlot Slot | 
 |       = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), | 
 |                               AggValueSlot::IsDestructed, | 
 |                               AggValueSlot::DoesNotNeedGCBarriers, | 
 |                               AggValueSlot::IsNotAliased, | 
 |                               MayOverlap, AggValueSlot::IsNotZeroed, | 
 |                               AggValueSlot::IsSanitizerChecked); | 
 |     CGF.EmitAggExpr(Init, Slot); | 
 |     return; | 
 |   } | 
 |   } | 
 |   llvm_unreachable("bad evaluation kind"); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitNewArrayInitializer( | 
 |     const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, | 
 |     Address BeginPtr, llvm::Value *NumElements, | 
 |     llvm::Value *AllocSizeWithoutCookie) { | 
 |   // If we have a type with trivial initialization and no initializer, | 
 |   // there's nothing to do. | 
 |   if (!E->hasInitializer()) | 
 |     return; | 
 |  | 
 |   Address CurPtr = BeginPtr; | 
 |  | 
 |   unsigned InitListElements = 0; | 
 |  | 
 |   const Expr *Init = E->getInitializer(); | 
 |   Address EndOfInit = Address::invalid(); | 
 |   QualType::DestructionKind DtorKind = ElementType.isDestructedType(); | 
 |   EHScopeStack::stable_iterator Cleanup; | 
 |   llvm::Instruction *CleanupDominator = nullptr; | 
 |  | 
 |   CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); | 
 |   CharUnits ElementAlign = | 
 |     BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); | 
 |  | 
 |   // Attempt to perform zero-initialization using memset. | 
 |   auto TryMemsetInitialization = [&]() -> bool { | 
 |     // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, | 
 |     // we can initialize with a memset to -1. | 
 |     if (!CGM.getTypes().isZeroInitializable(ElementType)) | 
 |       return false; | 
 |  | 
 |     // Optimization: since zero initialization will just set the memory | 
 |     // to all zeroes, generate a single memset to do it in one shot. | 
 |  | 
 |     // Subtract out the size of any elements we've already initialized. | 
 |     auto *RemainingSize = AllocSizeWithoutCookie; | 
 |     if (InitListElements) { | 
 |       // We know this can't overflow; we check this when doing the allocation. | 
 |       auto *InitializedSize = llvm::ConstantInt::get( | 
 |           RemainingSize->getType(), | 
 |           getContext().getTypeSizeInChars(ElementType).getQuantity() * | 
 |               InitListElements); | 
 |       RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); | 
 |     } | 
 |  | 
 |     // Create the memset. | 
 |     Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // If the initializer is an initializer list, first do the explicit elements. | 
 |   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { | 
 |     // Initializing from a (braced) string literal is a special case; the init | 
 |     // list element does not initialize a (single) array element. | 
 |     if (ILE->isStringLiteralInit()) { | 
 |       // Initialize the initial portion of length equal to that of the string | 
 |       // literal. The allocation must be for at least this much; we emitted a | 
 |       // check for that earlier. | 
 |       AggValueSlot Slot = | 
 |           AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), | 
 |                                 AggValueSlot::IsDestructed, | 
 |                                 AggValueSlot::DoesNotNeedGCBarriers, | 
 |                                 AggValueSlot::IsNotAliased, | 
 |                                 AggValueSlot::DoesNotOverlap, | 
 |                                 AggValueSlot::IsNotZeroed, | 
 |                                 AggValueSlot::IsSanitizerChecked); | 
 |       EmitAggExpr(ILE->getInit(0), Slot); | 
 |  | 
 |       // Move past these elements. | 
 |       InitListElements = | 
 |           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) | 
 |               ->getSize().getZExtValue(); | 
 |       CurPtr = Builder.CreateConstInBoundsGEP( | 
 |           CurPtr, InitListElements, "string.init.end"); | 
 |  | 
 |       // Zero out the rest, if any remain. | 
 |       llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); | 
 |       if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { | 
 |         bool OK = TryMemsetInitialization(); | 
 |         (void)OK; | 
 |         assert(OK && "couldn't memset character type?"); | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     InitListElements = ILE->getNumInits(); | 
 |  | 
 |     // If this is a multi-dimensional array new, we will initialize multiple | 
 |     // elements with each init list element. | 
 |     QualType AllocType = E->getAllocatedType(); | 
 |     if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( | 
 |             AllocType->getAsArrayTypeUnsafe())) { | 
 |       ElementTy = ConvertTypeForMem(AllocType); | 
 |       CurPtr = CurPtr.withElementType(ElementTy); | 
 |       InitListElements *= getContext().getConstantArrayElementCount(CAT); | 
 |     } | 
 |  | 
 |     // Enter a partial-destruction Cleanup if necessary. | 
 |     if (needsEHCleanup(DtorKind)) { | 
 |       // In principle we could tell the Cleanup where we are more | 
 |       // directly, but the control flow can get so varied here that it | 
 |       // would actually be quite complex.  Therefore we go through an | 
 |       // alloca. | 
 |       EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), | 
 |                                    "array.init.end"); | 
 |       CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); | 
 |       pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, | 
 |                                        ElementType, ElementAlign, | 
 |                                        getDestroyer(DtorKind)); | 
 |       Cleanup = EHStack.stable_begin(); | 
 |     } | 
 |  | 
 |     CharUnits StartAlign = CurPtr.getAlignment(); | 
 |     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { | 
 |       // Tell the cleanup that it needs to destroy up to this | 
 |       // element.  TODO: some of these stores can be trivially | 
 |       // observed to be unnecessary. | 
 |       if (EndOfInit.isValid()) { | 
 |         auto FinishedPtr = | 
 |           Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); | 
 |         Builder.CreateStore(FinishedPtr, EndOfInit); | 
 |       } | 
 |       // FIXME: If the last initializer is an incomplete initializer list for | 
 |       // an array, and we have an array filler, we can fold together the two | 
 |       // initialization loops. | 
 |       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), | 
 |                               ILE->getInit(i)->getType(), CurPtr, | 
 |                               AggValueSlot::DoesNotOverlap); | 
 |       CurPtr = Address(Builder.CreateInBoundsGEP( | 
 |                            CurPtr.getElementType(), CurPtr.getPointer(), | 
 |                            Builder.getSize(1), "array.exp.next"), | 
 |                        CurPtr.getElementType(), | 
 |                        StartAlign.alignmentAtOffset((i + 1) * ElementSize)); | 
 |     } | 
 |  | 
 |     // The remaining elements are filled with the array filler expression. | 
 |     Init = ILE->getArrayFiller(); | 
 |  | 
 |     // Extract the initializer for the individual array elements by pulling | 
 |     // out the array filler from all the nested initializer lists. This avoids | 
 |     // generating a nested loop for the initialization. | 
 |     while (Init && Init->getType()->isConstantArrayType()) { | 
 |       auto *SubILE = dyn_cast<InitListExpr>(Init); | 
 |       if (!SubILE) | 
 |         break; | 
 |       assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); | 
 |       Init = SubILE->getArrayFiller(); | 
 |     } | 
 |  | 
 |     // Switch back to initializing one base element at a time. | 
 |     CurPtr = CurPtr.withElementType(BeginPtr.getElementType()); | 
 |   } | 
 |  | 
 |   // If all elements have already been initialized, skip any further | 
 |   // initialization. | 
 |   llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); | 
 |   if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { | 
 |     // If there was a Cleanup, deactivate it. | 
 |     if (CleanupDominator) | 
 |       DeactivateCleanupBlock(Cleanup, CleanupDominator); | 
 |     return; | 
 |   } | 
 |  | 
 |   assert(Init && "have trailing elements to initialize but no initializer"); | 
 |  | 
 |   // If this is a constructor call, try to optimize it out, and failing that | 
 |   // emit a single loop to initialize all remaining elements. | 
 |   if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { | 
 |     CXXConstructorDecl *Ctor = CCE->getConstructor(); | 
 |     if (Ctor->isTrivial()) { | 
 |       // If new expression did not specify value-initialization, then there | 
 |       // is no initialization. | 
 |       if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) | 
 |         return; | 
 |  | 
 |       if (TryMemsetInitialization()) | 
 |         return; | 
 |     } | 
 |  | 
 |     // Store the new Cleanup position for irregular Cleanups. | 
 |     // | 
 |     // FIXME: Share this cleanup with the constructor call emission rather than | 
 |     // having it create a cleanup of its own. | 
 |     if (EndOfInit.isValid()) | 
 |       Builder.CreateStore(CurPtr.getPointer(), EndOfInit); | 
 |  | 
 |     // Emit a constructor call loop to initialize the remaining elements. | 
 |     if (InitListElements) | 
 |       NumElements = Builder.CreateSub( | 
 |           NumElements, | 
 |           llvm::ConstantInt::get(NumElements->getType(), InitListElements)); | 
 |     EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, | 
 |                                /*NewPointerIsChecked*/true, | 
 |                                CCE->requiresZeroInitialization()); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If this is value-initialization, we can usually use memset. | 
 |   ImplicitValueInitExpr IVIE(ElementType); | 
 |   if (isa<ImplicitValueInitExpr>(Init)) { | 
 |     if (TryMemsetInitialization()) | 
 |       return; | 
 |  | 
 |     // Switch to an ImplicitValueInitExpr for the element type. This handles | 
 |     // only one case: multidimensional array new of pointers to members. In | 
 |     // all other cases, we already have an initializer for the array element. | 
 |     Init = &IVIE; | 
 |   } | 
 |  | 
 |   // At this point we should have found an initializer for the individual | 
 |   // elements of the array. | 
 |   assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && | 
 |          "got wrong type of element to initialize"); | 
 |  | 
 |   // If we have an empty initializer list, we can usually use memset. | 
 |   if (auto *ILE = dyn_cast<InitListExpr>(Init)) | 
 |     if (ILE->getNumInits() == 0 && TryMemsetInitialization()) | 
 |       return; | 
 |  | 
 |   // If we have a struct whose every field is value-initialized, we can | 
 |   // usually use memset. | 
 |   if (auto *ILE = dyn_cast<InitListExpr>(Init)) { | 
 |     if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { | 
 |       if (RType->getDecl()->isStruct()) { | 
 |         unsigned NumElements = 0; | 
 |         if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) | 
 |           NumElements = CXXRD->getNumBases(); | 
 |         for (auto *Field : RType->getDecl()->fields()) | 
 |           if (!Field->isUnnamedBitfield()) | 
 |             ++NumElements; | 
 |         // FIXME: Recurse into nested InitListExprs. | 
 |         if (ILE->getNumInits() == NumElements) | 
 |           for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) | 
 |             if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) | 
 |               --NumElements; | 
 |         if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) | 
 |           return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Create the loop blocks. | 
 |   llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); | 
 |   llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); | 
 |   llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); | 
 |  | 
 |   // Find the end of the array, hoisted out of the loop. | 
 |   llvm::Value *EndPtr = | 
 |     Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), | 
 |                               NumElements, "array.end"); | 
 |  | 
 |   // If the number of elements isn't constant, we have to now check if there is | 
 |   // anything left to initialize. | 
 |   if (!ConstNum) { | 
 |     llvm::Value *IsEmpty = | 
 |       Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); | 
 |     Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); | 
 |   } | 
 |  | 
 |   // Enter the loop. | 
 |   EmitBlock(LoopBB); | 
 |  | 
 |   // Set up the current-element phi. | 
 |   llvm::PHINode *CurPtrPhi = | 
 |       Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); | 
 |   CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); | 
 |  | 
 |   CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); | 
 |  | 
 |   // Store the new Cleanup position for irregular Cleanups. | 
 |   if (EndOfInit.isValid()) | 
 |     Builder.CreateStore(CurPtr.getPointer(), EndOfInit); | 
 |  | 
 |   // Enter a partial-destruction Cleanup if necessary. | 
 |   if (!CleanupDominator && needsEHCleanup(DtorKind)) { | 
 |     pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), | 
 |                                    ElementType, ElementAlign, | 
 |                                    getDestroyer(DtorKind)); | 
 |     Cleanup = EHStack.stable_begin(); | 
 |     CleanupDominator = Builder.CreateUnreachable(); | 
 |   } | 
 |  | 
 |   // Emit the initializer into this element. | 
 |   StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, | 
 |                           AggValueSlot::DoesNotOverlap); | 
 |  | 
 |   // Leave the Cleanup if we entered one. | 
 |   if (CleanupDominator) { | 
 |     DeactivateCleanupBlock(Cleanup, CleanupDominator); | 
 |     CleanupDominator->eraseFromParent(); | 
 |   } | 
 |  | 
 |   // Advance to the next element by adjusting the pointer type as necessary. | 
 |   llvm::Value *NextPtr = | 
 |     Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, | 
 |                                        "array.next"); | 
 |  | 
 |   // Check whether we've gotten to the end of the array and, if so, | 
 |   // exit the loop. | 
 |   llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); | 
 |   Builder.CreateCondBr(IsEnd, ContBB, LoopBB); | 
 |   CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); | 
 |  | 
 |   EmitBlock(ContBB); | 
 | } | 
 |  | 
 | static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, | 
 |                                QualType ElementType, llvm::Type *ElementTy, | 
 |                                Address NewPtr, llvm::Value *NumElements, | 
 |                                llvm::Value *AllocSizeWithoutCookie) { | 
 |   ApplyDebugLocation DL(CGF, E); | 
 |   if (E->isArray()) | 
 |     CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, | 
 |                                 AllocSizeWithoutCookie); | 
 |   else if (const Expr *Init = E->getInitializer()) | 
 |     StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, | 
 |                             AggValueSlot::DoesNotOverlap); | 
 | } | 
 |  | 
 | /// Emit a call to an operator new or operator delete function, as implicitly | 
 | /// created by new-expressions and delete-expressions. | 
 | static RValue EmitNewDeleteCall(CodeGenFunction &CGF, | 
 |                                 const FunctionDecl *CalleeDecl, | 
 |                                 const FunctionProtoType *CalleeType, | 
 |                                 const CallArgList &Args) { | 
 |   llvm::CallBase *CallOrInvoke; | 
 |   llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); | 
 |   CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); | 
 |   RValue RV = | 
 |       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( | 
 |                        Args, CalleeType, /*ChainCall=*/false), | 
 |                    Callee, ReturnValueSlot(), Args, &CallOrInvoke); | 
 |  | 
 |   /// C++1y [expr.new]p10: | 
 |   ///   [In a new-expression,] an implementation is allowed to omit a call | 
 |   ///   to a replaceable global allocation function. | 
 |   /// | 
 |   /// We model such elidable calls with the 'builtin' attribute. | 
 |   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); | 
 |   if (CalleeDecl->isReplaceableGlobalAllocationFunction() && | 
 |       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { | 
 |     CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); | 
 |   } | 
 |  | 
 |   return RV; | 
 | } | 
 |  | 
 | RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, | 
 |                                                  const CallExpr *TheCall, | 
 |                                                  bool IsDelete) { | 
 |   CallArgList Args; | 
 |   EmitCallArgs(Args, Type, TheCall->arguments()); | 
 |   // Find the allocation or deallocation function that we're calling. | 
 |   ASTContext &Ctx = getContext(); | 
 |   DeclarationName Name = Ctx.DeclarationNames | 
 |       .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); | 
 |  | 
 |   for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) | 
 |     if (auto *FD = dyn_cast<FunctionDecl>(Decl)) | 
 |       if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) | 
 |         return EmitNewDeleteCall(*this, FD, Type, Args); | 
 |   llvm_unreachable("predeclared global operator new/delete is missing"); | 
 | } | 
 |  | 
 | namespace { | 
 | /// The parameters to pass to a usual operator delete. | 
 | struct UsualDeleteParams { | 
 |   bool DestroyingDelete = false; | 
 |   bool Size = false; | 
 |   bool Alignment = false; | 
 | }; | 
 | } | 
 |  | 
 | static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { | 
 |   UsualDeleteParams Params; | 
 |  | 
 |   const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); | 
 |   auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); | 
 |  | 
 |   // The first argument is always a void*. | 
 |   ++AI; | 
 |  | 
 |   // The next parameter may be a std::destroying_delete_t. | 
 |   if (FD->isDestroyingOperatorDelete()) { | 
 |     Params.DestroyingDelete = true; | 
 |     assert(AI != AE); | 
 |     ++AI; | 
 |   } | 
 |  | 
 |   // Figure out what other parameters we should be implicitly passing. | 
 |   if (AI != AE && (*AI)->isIntegerType()) { | 
 |     Params.Size = true; | 
 |     ++AI; | 
 |   } | 
 |  | 
 |   if (AI != AE && (*AI)->isAlignValT()) { | 
 |     Params.Alignment = true; | 
 |     ++AI; | 
 |   } | 
 |  | 
 |   assert(AI == AE && "unexpected usual deallocation function parameter"); | 
 |   return Params; | 
 | } | 
 |  | 
 | namespace { | 
 |   /// A cleanup to call the given 'operator delete' function upon abnormal | 
 |   /// exit from a new expression. Templated on a traits type that deals with | 
 |   /// ensuring that the arguments dominate the cleanup if necessary. | 
 |   template<typename Traits> | 
 |   class CallDeleteDuringNew final : public EHScopeStack::Cleanup { | 
 |     /// Type used to hold llvm::Value*s. | 
 |     typedef typename Traits::ValueTy ValueTy; | 
 |     /// Type used to hold RValues. | 
 |     typedef typename Traits::RValueTy RValueTy; | 
 |     struct PlacementArg { | 
 |       RValueTy ArgValue; | 
 |       QualType ArgType; | 
 |     }; | 
 |  | 
 |     unsigned NumPlacementArgs : 31; | 
 |     unsigned PassAlignmentToPlacementDelete : 1; | 
 |     const FunctionDecl *OperatorDelete; | 
 |     ValueTy Ptr; | 
 |     ValueTy AllocSize; | 
 |     CharUnits AllocAlign; | 
 |  | 
 |     PlacementArg *getPlacementArgs() { | 
 |       return reinterpret_cast<PlacementArg *>(this + 1); | 
 |     } | 
 |  | 
 |   public: | 
 |     static size_t getExtraSize(size_t NumPlacementArgs) { | 
 |       return NumPlacementArgs * sizeof(PlacementArg); | 
 |     } | 
 |  | 
 |     CallDeleteDuringNew(size_t NumPlacementArgs, | 
 |                         const FunctionDecl *OperatorDelete, ValueTy Ptr, | 
 |                         ValueTy AllocSize, bool PassAlignmentToPlacementDelete, | 
 |                         CharUnits AllocAlign) | 
 |       : NumPlacementArgs(NumPlacementArgs), | 
 |         PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), | 
 |         OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), | 
 |         AllocAlign(AllocAlign) {} | 
 |  | 
 |     void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { | 
 |       assert(I < NumPlacementArgs && "index out of range"); | 
 |       getPlacementArgs()[I] = {Arg, Type}; | 
 |     } | 
 |  | 
 |     void Emit(CodeGenFunction &CGF, Flags flags) override { | 
 |       const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); | 
 |       CallArgList DeleteArgs; | 
 |  | 
 |       // The first argument is always a void* (or C* for a destroying operator | 
 |       // delete for class type C). | 
 |       DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); | 
 |  | 
 |       // Figure out what other parameters we should be implicitly passing. | 
 |       UsualDeleteParams Params; | 
 |       if (NumPlacementArgs) { | 
 |         // A placement deallocation function is implicitly passed an alignment | 
 |         // if the placement allocation function was, but is never passed a size. | 
 |         Params.Alignment = PassAlignmentToPlacementDelete; | 
 |       } else { | 
 |         // For a non-placement new-expression, 'operator delete' can take a | 
 |         // size and/or an alignment if it has the right parameters. | 
 |         Params = getUsualDeleteParams(OperatorDelete); | 
 |       } | 
 |  | 
 |       assert(!Params.DestroyingDelete && | 
 |              "should not call destroying delete in a new-expression"); | 
 |  | 
 |       // The second argument can be a std::size_t (for non-placement delete). | 
 |       if (Params.Size) | 
 |         DeleteArgs.add(Traits::get(CGF, AllocSize), | 
 |                        CGF.getContext().getSizeType()); | 
 |  | 
 |       // The next (second or third) argument can be a std::align_val_t, which | 
 |       // is an enum whose underlying type is std::size_t. | 
 |       // FIXME: Use the right type as the parameter type. Note that in a call | 
 |       // to operator delete(size_t, ...), we may not have it available. | 
 |       if (Params.Alignment) | 
 |         DeleteArgs.add(RValue::get(llvm::ConstantInt::get( | 
 |                            CGF.SizeTy, AllocAlign.getQuantity())), | 
 |                        CGF.getContext().getSizeType()); | 
 |  | 
 |       // Pass the rest of the arguments, which must match exactly. | 
 |       for (unsigned I = 0; I != NumPlacementArgs; ++I) { | 
 |         auto Arg = getPlacementArgs()[I]; | 
 |         DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); | 
 |       } | 
 |  | 
 |       // Call 'operator delete'. | 
 |       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// Enter a cleanup to call 'operator delete' if the initializer in a | 
 | /// new-expression throws. | 
 | static void EnterNewDeleteCleanup(CodeGenFunction &CGF, | 
 |                                   const CXXNewExpr *E, | 
 |                                   Address NewPtr, | 
 |                                   llvm::Value *AllocSize, | 
 |                                   CharUnits AllocAlign, | 
 |                                   const CallArgList &NewArgs) { | 
 |   unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; | 
 |  | 
 |   // If we're not inside a conditional branch, then the cleanup will | 
 |   // dominate and we can do the easier (and more efficient) thing. | 
 |   if (!CGF.isInConditionalBranch()) { | 
 |     struct DirectCleanupTraits { | 
 |       typedef llvm::Value *ValueTy; | 
 |       typedef RValue RValueTy; | 
 |       static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } | 
 |       static RValue get(CodeGenFunction &, RValueTy V) { return V; } | 
 |     }; | 
 |  | 
 |     typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; | 
 |  | 
 |     DirectCleanup *Cleanup = CGF.EHStack | 
 |       .pushCleanupWithExtra<DirectCleanup>(EHCleanup, | 
 |                                            E->getNumPlacementArgs(), | 
 |                                            E->getOperatorDelete(), | 
 |                                            NewPtr.getPointer(), | 
 |                                            AllocSize, | 
 |                                            E->passAlignment(), | 
 |                                            AllocAlign); | 
 |     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { | 
 |       auto &Arg = NewArgs[I + NumNonPlacementArgs]; | 
 |       Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); | 
 |     } | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, we need to save all this stuff. | 
 |   DominatingValue<RValue>::saved_type SavedNewPtr = | 
 |     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); | 
 |   DominatingValue<RValue>::saved_type SavedAllocSize = | 
 |     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); | 
 |  | 
 |   struct ConditionalCleanupTraits { | 
 |     typedef DominatingValue<RValue>::saved_type ValueTy; | 
 |     typedef DominatingValue<RValue>::saved_type RValueTy; | 
 |     static RValue get(CodeGenFunction &CGF, ValueTy V) { | 
 |       return V.restore(CGF); | 
 |     } | 
 |   }; | 
 |   typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; | 
 |  | 
 |   ConditionalCleanup *Cleanup = CGF.EHStack | 
 |     .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, | 
 |                                               E->getNumPlacementArgs(), | 
 |                                               E->getOperatorDelete(), | 
 |                                               SavedNewPtr, | 
 |                                               SavedAllocSize, | 
 |                                               E->passAlignment(), | 
 |                                               AllocAlign); | 
 |   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { | 
 |     auto &Arg = NewArgs[I + NumNonPlacementArgs]; | 
 |     Cleanup->setPlacementArg( | 
 |         I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); | 
 |   } | 
 |  | 
 |   CGF.initFullExprCleanup(); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { | 
 |   // The element type being allocated. | 
 |   QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); | 
 |  | 
 |   // 1. Build a call to the allocation function. | 
 |   FunctionDecl *allocator = E->getOperatorNew(); | 
 |  | 
 |   // If there is a brace-initializer, cannot allocate fewer elements than inits. | 
 |   unsigned minElements = 0; | 
 |   if (E->isArray() && E->hasInitializer()) { | 
 |     const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); | 
 |     if (ILE && ILE->isStringLiteralInit()) | 
 |       minElements = | 
 |           cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) | 
 |               ->getSize().getZExtValue(); | 
 |     else if (ILE) | 
 |       minElements = ILE->getNumInits(); | 
 |   } | 
 |  | 
 |   llvm::Value *numElements = nullptr; | 
 |   llvm::Value *allocSizeWithoutCookie = nullptr; | 
 |   llvm::Value *allocSize = | 
 |     EmitCXXNewAllocSize(*this, E, minElements, numElements, | 
 |                         allocSizeWithoutCookie); | 
 |   CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); | 
 |  | 
 |   // Emit the allocation call.  If the allocator is a global placement | 
 |   // operator, just "inline" it directly. | 
 |   Address allocation = Address::invalid(); | 
 |   CallArgList allocatorArgs; | 
 |   if (allocator->isReservedGlobalPlacementOperator()) { | 
 |     assert(E->getNumPlacementArgs() == 1); | 
 |     const Expr *arg = *E->placement_arguments().begin(); | 
 |  | 
 |     LValueBaseInfo BaseInfo; | 
 |     allocation = EmitPointerWithAlignment(arg, &BaseInfo); | 
 |  | 
 |     // The pointer expression will, in many cases, be an opaque void*. | 
 |     // In these cases, discard the computed alignment and use the | 
 |     // formal alignment of the allocated type. | 
 |     if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) | 
 |       allocation = allocation.withAlignment(allocAlign); | 
 |  | 
 |     // Set up allocatorArgs for the call to operator delete if it's not | 
 |     // the reserved global operator. | 
 |     if (E->getOperatorDelete() && | 
 |         !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { | 
 |       allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); | 
 |       allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); | 
 |     } | 
 |  | 
 |   } else { | 
 |     const FunctionProtoType *allocatorType = | 
 |       allocator->getType()->castAs<FunctionProtoType>(); | 
 |     unsigned ParamsToSkip = 0; | 
 |  | 
 |     // The allocation size is the first argument. | 
 |     QualType sizeType = getContext().getSizeType(); | 
 |     allocatorArgs.add(RValue::get(allocSize), sizeType); | 
 |     ++ParamsToSkip; | 
 |  | 
 |     if (allocSize != allocSizeWithoutCookie) { | 
 |       CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. | 
 |       allocAlign = std::max(allocAlign, cookieAlign); | 
 |     } | 
 |  | 
 |     // The allocation alignment may be passed as the second argument. | 
 |     if (E->passAlignment()) { | 
 |       QualType AlignValT = sizeType; | 
 |       if (allocatorType->getNumParams() > 1) { | 
 |         AlignValT = allocatorType->getParamType(1); | 
 |         assert(getContext().hasSameUnqualifiedType( | 
 |                    AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), | 
 |                    sizeType) && | 
 |                "wrong type for alignment parameter"); | 
 |         ++ParamsToSkip; | 
 |       } else { | 
 |         // Corner case, passing alignment to 'operator new(size_t, ...)'. | 
 |         assert(allocator->isVariadic() && "can't pass alignment to allocator"); | 
 |       } | 
 |       allocatorArgs.add( | 
 |           RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), | 
 |           AlignValT); | 
 |     } | 
 |  | 
 |     // FIXME: Why do we not pass a CalleeDecl here? | 
 |     EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), | 
 |                  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); | 
 |  | 
 |     RValue RV = | 
 |       EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); | 
 |  | 
 |     // Set !heapallocsite metadata on the call to operator new. | 
 |     if (getDebugInfo()) | 
 |       if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) | 
 |         getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, | 
 |                                                  E->getExprLoc()); | 
 |  | 
 |     // If this was a call to a global replaceable allocation function that does | 
 |     // not take an alignment argument, the allocator is known to produce | 
 |     // storage that's suitably aligned for any object that fits, up to a known | 
 |     // threshold. Otherwise assume it's suitably aligned for the allocated type. | 
 |     CharUnits allocationAlign = allocAlign; | 
 |     if (!E->passAlignment() && | 
 |         allocator->isReplaceableGlobalAllocationFunction()) { | 
 |       unsigned AllocatorAlign = llvm::bit_floor(std::min<uint64_t>( | 
 |           Target.getNewAlign(), getContext().getTypeSize(allocType))); | 
 |       allocationAlign = std::max( | 
 |           allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); | 
 |     } | 
 |  | 
 |     allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); | 
 |   } | 
 |  | 
 |   // Emit a null check on the allocation result if the allocation | 
 |   // function is allowed to return null (because it has a non-throwing | 
 |   // exception spec or is the reserved placement new) and we have an | 
 |   // interesting initializer will be running sanitizers on the initialization. | 
 |   bool nullCheck = E->shouldNullCheckAllocation() && | 
 |                    (!allocType.isPODType(getContext()) || E->hasInitializer() || | 
 |                     sanitizePerformTypeCheck()); | 
 |  | 
 |   llvm::BasicBlock *nullCheckBB = nullptr; | 
 |   llvm::BasicBlock *contBB = nullptr; | 
 |  | 
 |   // The null-check means that the initializer is conditionally | 
 |   // evaluated. | 
 |   ConditionalEvaluation conditional(*this); | 
 |  | 
 |   if (nullCheck) { | 
 |     conditional.begin(*this); | 
 |  | 
 |     nullCheckBB = Builder.GetInsertBlock(); | 
 |     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); | 
 |     contBB = createBasicBlock("new.cont"); | 
 |  | 
 |     llvm::Value *isNull = | 
 |       Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); | 
 |     Builder.CreateCondBr(isNull, contBB, notNullBB); | 
 |     EmitBlock(notNullBB); | 
 |   } | 
 |  | 
 |   // If there's an operator delete, enter a cleanup to call it if an | 
 |   // exception is thrown. | 
 |   EHScopeStack::stable_iterator operatorDeleteCleanup; | 
 |   llvm::Instruction *cleanupDominator = nullptr; | 
 |   if (E->getOperatorDelete() && | 
 |       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { | 
 |     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, | 
 |                           allocatorArgs); | 
 |     operatorDeleteCleanup = EHStack.stable_begin(); | 
 |     cleanupDominator = Builder.CreateUnreachable(); | 
 |   } | 
 |  | 
 |   assert((allocSize == allocSizeWithoutCookie) == | 
 |          CalculateCookiePadding(*this, E).isZero()); | 
 |   if (allocSize != allocSizeWithoutCookie) { | 
 |     assert(E->isArray()); | 
 |     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, | 
 |                                                        numElements, | 
 |                                                        E, allocType); | 
 |   } | 
 |  | 
 |   llvm::Type *elementTy = ConvertTypeForMem(allocType); | 
 |   Address result = allocation.withElementType(elementTy); | 
 |  | 
 |   // Passing pointer through launder.invariant.group to avoid propagation of | 
 |   // vptrs information which may be included in previous type. | 
 |   // To not break LTO with different optimizations levels, we do it regardless | 
 |   // of optimization level. | 
 |   if (CGM.getCodeGenOpts().StrictVTablePointers && | 
 |       allocator->isReservedGlobalPlacementOperator()) | 
 |     result = Builder.CreateLaunderInvariantGroup(result); | 
 |  | 
 |   // Emit sanitizer checks for pointer value now, so that in the case of an | 
 |   // array it was checked only once and not at each constructor call. We may | 
 |   // have already checked that the pointer is non-null. | 
 |   // FIXME: If we have an array cookie and a potentially-throwing allocator, | 
 |   // we'll null check the wrong pointer here. | 
 |   SanitizerSet SkippedChecks; | 
 |   SkippedChecks.set(SanitizerKind::Null, nullCheck); | 
 |   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, | 
 |                 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), | 
 |                 result.getPointer(), allocType, result.getAlignment(), | 
 |                 SkippedChecks, numElements); | 
 |  | 
 |   EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, | 
 |                      allocSizeWithoutCookie); | 
 |   llvm::Value *resultPtr = result.getPointer(); | 
 |   if (E->isArray()) { | 
 |     // NewPtr is a pointer to the base element type.  If we're | 
 |     // allocating an array of arrays, we'll need to cast back to the | 
 |     // array pointer type. | 
 |     llvm::Type *resultType = ConvertTypeForMem(E->getType()); | 
 |     if (resultPtr->getType() != resultType) | 
 |       resultPtr = Builder.CreateBitCast(resultPtr, resultType); | 
 |   } | 
 |  | 
 |   // Deactivate the 'operator delete' cleanup if we finished | 
 |   // initialization. | 
 |   if (operatorDeleteCleanup.isValid()) { | 
 |     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); | 
 |     cleanupDominator->eraseFromParent(); | 
 |   } | 
 |  | 
 |   if (nullCheck) { | 
 |     conditional.end(*this); | 
 |  | 
 |     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); | 
 |     EmitBlock(contBB); | 
 |  | 
 |     llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); | 
 |     PHI->addIncoming(resultPtr, notNullBB); | 
 |     PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), | 
 |                      nullCheckBB); | 
 |  | 
 |     resultPtr = PHI; | 
 |   } | 
 |  | 
 |   return resultPtr; | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, | 
 |                                      llvm::Value *Ptr, QualType DeleteTy, | 
 |                                      llvm::Value *NumElements, | 
 |                                      CharUnits CookieSize) { | 
 |   assert((!NumElements && CookieSize.isZero()) || | 
 |          DeleteFD->getOverloadedOperator() == OO_Array_Delete); | 
 |  | 
 |   const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); | 
 |   CallArgList DeleteArgs; | 
 |  | 
 |   auto Params = getUsualDeleteParams(DeleteFD); | 
 |   auto ParamTypeIt = DeleteFTy->param_type_begin(); | 
 |  | 
 |   // Pass the pointer itself. | 
 |   QualType ArgTy = *ParamTypeIt++; | 
 |   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); | 
 |   DeleteArgs.add(RValue::get(DeletePtr), ArgTy); | 
 |  | 
 |   // Pass the std::destroying_delete tag if present. | 
 |   llvm::AllocaInst *DestroyingDeleteTag = nullptr; | 
 |   if (Params.DestroyingDelete) { | 
 |     QualType DDTag = *ParamTypeIt++; | 
 |     llvm::Type *Ty = getTypes().ConvertType(DDTag); | 
 |     CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); | 
 |     DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); | 
 |     DestroyingDeleteTag->setAlignment(Align.getAsAlign()); | 
 |     DeleteArgs.add( | 
 |         RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); | 
 |   } | 
 |  | 
 |   // Pass the size if the delete function has a size_t parameter. | 
 |   if (Params.Size) { | 
 |     QualType SizeType = *ParamTypeIt++; | 
 |     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); | 
 |     llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), | 
 |                                                DeleteTypeSize.getQuantity()); | 
 |  | 
 |     // For array new, multiply by the number of elements. | 
 |     if (NumElements) | 
 |       Size = Builder.CreateMul(Size, NumElements); | 
 |  | 
 |     // If there is a cookie, add the cookie size. | 
 |     if (!CookieSize.isZero()) | 
 |       Size = Builder.CreateAdd( | 
 |           Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); | 
 |  | 
 |     DeleteArgs.add(RValue::get(Size), SizeType); | 
 |   } | 
 |  | 
 |   // Pass the alignment if the delete function has an align_val_t parameter. | 
 |   if (Params.Alignment) { | 
 |     QualType AlignValType = *ParamTypeIt++; | 
 |     CharUnits DeleteTypeAlign = | 
 |         getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( | 
 |             DeleteTy, true /* NeedsPreferredAlignment */)); | 
 |     llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), | 
 |                                                 DeleteTypeAlign.getQuantity()); | 
 |     DeleteArgs.add(RValue::get(Align), AlignValType); | 
 |   } | 
 |  | 
 |   assert(ParamTypeIt == DeleteFTy->param_type_end() && | 
 |          "unknown parameter to usual delete function"); | 
 |  | 
 |   // Emit the call to delete. | 
 |   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); | 
 |  | 
 |   // If call argument lowering didn't use the destroying_delete_t alloca, | 
 |   // remove it again. | 
 |   if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) | 
 |     DestroyingDeleteTag->eraseFromParent(); | 
 | } | 
 |  | 
 | namespace { | 
 |   /// Calls the given 'operator delete' on a single object. | 
 |   struct CallObjectDelete final : EHScopeStack::Cleanup { | 
 |     llvm::Value *Ptr; | 
 |     const FunctionDecl *OperatorDelete; | 
 |     QualType ElementType; | 
 |  | 
 |     CallObjectDelete(llvm::Value *Ptr, | 
 |                      const FunctionDecl *OperatorDelete, | 
 |                      QualType ElementType) | 
 |       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} | 
 |  | 
 |     void Emit(CodeGenFunction &CGF, Flags flags) override { | 
 |       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | void | 
 | CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, | 
 |                                              llvm::Value *CompletePtr, | 
 |                                              QualType ElementType) { | 
 |   EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, | 
 |                                         OperatorDelete, ElementType); | 
 | } | 
 |  | 
 | /// Emit the code for deleting a single object with a destroying operator | 
 | /// delete. If the element type has a non-virtual destructor, Ptr has already | 
 | /// been converted to the type of the parameter of 'operator delete'. Otherwise | 
 | /// Ptr points to an object of the static type. | 
 | static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, | 
 |                                        const CXXDeleteExpr *DE, Address Ptr, | 
 |                                        QualType ElementType) { | 
 |   auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); | 
 |   if (Dtor && Dtor->isVirtual()) | 
 |     CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, | 
 |                                                 Dtor); | 
 |   else | 
 |     CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); | 
 | } | 
 |  | 
 | /// Emit the code for deleting a single object. | 
 | /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false | 
 | /// if not. | 
 | static bool EmitObjectDelete(CodeGenFunction &CGF, | 
 |                              const CXXDeleteExpr *DE, | 
 |                              Address Ptr, | 
 |                              QualType ElementType, | 
 |                              llvm::BasicBlock *UnconditionalDeleteBlock) { | 
 |   // C++11 [expr.delete]p3: | 
 |   //   If the static type of the object to be deleted is different from its | 
 |   //   dynamic type, the static type shall be a base class of the dynamic type | 
 |   //   of the object to be deleted and the static type shall have a virtual | 
 |   //   destructor or the behavior is undefined. | 
 |   CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, | 
 |                     DE->getExprLoc(), Ptr.getPointer(), | 
 |                     ElementType); | 
 |  | 
 |   const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); | 
 |   assert(!OperatorDelete->isDestroyingOperatorDelete()); | 
 |  | 
 |   // Find the destructor for the type, if applicable.  If the | 
 |   // destructor is virtual, we'll just emit the vcall and return. | 
 |   const CXXDestructorDecl *Dtor = nullptr; | 
 |   if (const RecordType *RT = ElementType->getAs<RecordType>()) { | 
 |     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); | 
 |     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { | 
 |       Dtor = RD->getDestructor(); | 
 |  | 
 |       if (Dtor->isVirtual()) { | 
 |         bool UseVirtualCall = true; | 
 |         const Expr *Base = DE->getArgument(); | 
 |         if (auto *DevirtualizedDtor = | 
 |                 dyn_cast_or_null<const CXXDestructorDecl>( | 
 |                     Dtor->getDevirtualizedMethod( | 
 |                         Base, CGF.CGM.getLangOpts().AppleKext))) { | 
 |           UseVirtualCall = false; | 
 |           const CXXRecordDecl *DevirtualizedClass = | 
 |               DevirtualizedDtor->getParent(); | 
 |           if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { | 
 |             // Devirtualized to the class of the base type (the type of the | 
 |             // whole expression). | 
 |             Dtor = DevirtualizedDtor; | 
 |           } else { | 
 |             // Devirtualized to some other type. Would need to cast the this | 
 |             // pointer to that type but we don't have support for that yet, so | 
 |             // do a virtual call. FIXME: handle the case where it is | 
 |             // devirtualized to the derived type (the type of the inner | 
 |             // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. | 
 |             UseVirtualCall = true; | 
 |           } | 
 |         } | 
 |         if (UseVirtualCall) { | 
 |           CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, | 
 |                                                       Dtor); | 
 |           return false; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Make sure that we call delete even if the dtor throws. | 
 |   // This doesn't have to a conditional cleanup because we're going | 
 |   // to pop it off in a second. | 
 |   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, | 
 |                                             Ptr.getPointer(), | 
 |                                             OperatorDelete, ElementType); | 
 |  | 
 |   if (Dtor) | 
 |     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, | 
 |                               /*ForVirtualBase=*/false, | 
 |                               /*Delegating=*/false, | 
 |                               Ptr, ElementType); | 
 |   else if (auto Lifetime = ElementType.getObjCLifetime()) { | 
 |     switch (Lifetime) { | 
 |     case Qualifiers::OCL_None: | 
 |     case Qualifiers::OCL_ExplicitNone: | 
 |     case Qualifiers::OCL_Autoreleasing: | 
 |       break; | 
 |  | 
 |     case Qualifiers::OCL_Strong: | 
 |       CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); | 
 |       break; | 
 |  | 
 |     case Qualifiers::OCL_Weak: | 
 |       CGF.EmitARCDestroyWeak(Ptr); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // When optimizing for size, call 'operator delete' unconditionally. | 
 |   if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { | 
 |     CGF.EmitBlock(UnconditionalDeleteBlock); | 
 |     CGF.PopCleanupBlock(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   CGF.PopCleanupBlock(); | 
 |   return false; | 
 | } | 
 |  | 
 | namespace { | 
 |   /// Calls the given 'operator delete' on an array of objects. | 
 |   struct CallArrayDelete final : EHScopeStack::Cleanup { | 
 |     llvm::Value *Ptr; | 
 |     const FunctionDecl *OperatorDelete; | 
 |     llvm::Value *NumElements; | 
 |     QualType ElementType; | 
 |     CharUnits CookieSize; | 
 |  | 
 |     CallArrayDelete(llvm::Value *Ptr, | 
 |                     const FunctionDecl *OperatorDelete, | 
 |                     llvm::Value *NumElements, | 
 |                     QualType ElementType, | 
 |                     CharUnits CookieSize) | 
 |       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), | 
 |         ElementType(ElementType), CookieSize(CookieSize) {} | 
 |  | 
 |     void Emit(CodeGenFunction &CGF, Flags flags) override { | 
 |       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, | 
 |                          CookieSize); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// Emit the code for deleting an array of objects. | 
 | static void EmitArrayDelete(CodeGenFunction &CGF, | 
 |                             const CXXDeleteExpr *E, | 
 |                             Address deletedPtr, | 
 |                             QualType elementType) { | 
 |   llvm::Value *numElements = nullptr; | 
 |   llvm::Value *allocatedPtr = nullptr; | 
 |   CharUnits cookieSize; | 
 |   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, | 
 |                                       numElements, allocatedPtr, cookieSize); | 
 |  | 
 |   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); | 
 |  | 
 |   // Make sure that we call delete even if one of the dtors throws. | 
 |   const FunctionDecl *operatorDelete = E->getOperatorDelete(); | 
 |   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, | 
 |                                            allocatedPtr, operatorDelete, | 
 |                                            numElements, elementType, | 
 |                                            cookieSize); | 
 |  | 
 |   // Destroy the elements. | 
 |   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { | 
 |     assert(numElements && "no element count for a type with a destructor!"); | 
 |  | 
 |     CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); | 
 |     CharUnits elementAlign = | 
 |       deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); | 
 |  | 
 |     llvm::Value *arrayBegin = deletedPtr.getPointer(); | 
 |     llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( | 
 |       deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); | 
 |  | 
 |     // Note that it is legal to allocate a zero-length array, and we | 
 |     // can never fold the check away because the length should always | 
 |     // come from a cookie. | 
 |     CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, | 
 |                          CGF.getDestroyer(dtorKind), | 
 |                          /*checkZeroLength*/ true, | 
 |                          CGF.needsEHCleanup(dtorKind)); | 
 |   } | 
 |  | 
 |   // Pop the cleanup block. | 
 |   CGF.PopCleanupBlock(); | 
 | } | 
 |  | 
 | void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { | 
 |   const Expr *Arg = E->getArgument(); | 
 |   Address Ptr = EmitPointerWithAlignment(Arg); | 
 |  | 
 |   // Null check the pointer. | 
 |   // | 
 |   // We could avoid this null check if we can determine that the object | 
 |   // destruction is trivial and doesn't require an array cookie; we can | 
 |   // unconditionally perform the operator delete call in that case. For now, we | 
 |   // assume that deleted pointers are null rarely enough that it's better to | 
 |   // keep the branch. This might be worth revisiting for a -O0 code size win. | 
 |   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); | 
 |   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); | 
 |  | 
 |   llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); | 
 |  | 
 |   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); | 
 |   EmitBlock(DeleteNotNull); | 
 |   Ptr.setKnownNonNull(); | 
 |  | 
 |   QualType DeleteTy = E->getDestroyedType(); | 
 |  | 
 |   // A destroying operator delete overrides the entire operation of the | 
 |   // delete expression. | 
 |   if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { | 
 |     EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); | 
 |     EmitBlock(DeleteEnd); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We might be deleting a pointer to array.  If so, GEP down to the | 
 |   // first non-array element. | 
 |   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) | 
 |   if (DeleteTy->isConstantArrayType()) { | 
 |     llvm::Value *Zero = Builder.getInt32(0); | 
 |     SmallVector<llvm::Value*,8> GEP; | 
 |  | 
 |     GEP.push_back(Zero); // point at the outermost array | 
 |  | 
 |     // For each layer of array type we're pointing at: | 
 |     while (const ConstantArrayType *Arr | 
 |              = getContext().getAsConstantArrayType(DeleteTy)) { | 
 |       // 1. Unpeel the array type. | 
 |       DeleteTy = Arr->getElementType(); | 
 |  | 
 |       // 2. GEP to the first element of the array. | 
 |       GEP.push_back(Zero); | 
 |     } | 
 |  | 
 |     Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), | 
 |                                             Ptr.getPointer(), GEP, "del.first"), | 
 |                   ConvertTypeForMem(DeleteTy), Ptr.getAlignment(), | 
 |                   Ptr.isKnownNonNull()); | 
 |   } | 
 |  | 
 |   assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); | 
 |  | 
 |   if (E->isArrayForm()) { | 
 |     EmitArrayDelete(*this, E, Ptr, DeleteTy); | 
 |     EmitBlock(DeleteEnd); | 
 |   } else { | 
 |     if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) | 
 |       EmitBlock(DeleteEnd); | 
 |   } | 
 | } | 
 |  | 
 | static bool isGLValueFromPointerDeref(const Expr *E) { | 
 |   E = E->IgnoreParens(); | 
 |  | 
 |   if (const auto *CE = dyn_cast<CastExpr>(E)) { | 
 |     if (!CE->getSubExpr()->isGLValue()) | 
 |       return false; | 
 |     return isGLValueFromPointerDeref(CE->getSubExpr()); | 
 |   } | 
 |  | 
 |   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) | 
 |     return isGLValueFromPointerDeref(OVE->getSourceExpr()); | 
 |  | 
 |   if (const auto *BO = dyn_cast<BinaryOperator>(E)) | 
 |     if (BO->getOpcode() == BO_Comma) | 
 |       return isGLValueFromPointerDeref(BO->getRHS()); | 
 |  | 
 |   if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) | 
 |     return isGLValueFromPointerDeref(ACO->getTrueExpr()) || | 
 |            isGLValueFromPointerDeref(ACO->getFalseExpr()); | 
 |  | 
 |   // C++11 [expr.sub]p1: | 
 |   //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)) | 
 |   if (isa<ArraySubscriptExpr>(E)) | 
 |     return true; | 
 |  | 
 |   if (const auto *UO = dyn_cast<UnaryOperator>(E)) | 
 |     if (UO->getOpcode() == UO_Deref) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, | 
 |                                          llvm::Type *StdTypeInfoPtrTy) { | 
 |   // Get the vtable pointer. | 
 |   Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); | 
 |  | 
 |   QualType SrcRecordTy = E->getType(); | 
 |  | 
 |   // C++ [class.cdtor]p4: | 
 |   //   If the operand of typeid refers to the object under construction or | 
 |   //   destruction and the static type of the operand is neither the constructor | 
 |   //   or destructor’s class nor one of its bases, the behavior is undefined. | 
 |   CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), | 
 |                     ThisPtr.getPointer(), SrcRecordTy); | 
 |  | 
 |   // C++ [expr.typeid]p2: | 
 |   //   If the glvalue expression is obtained by applying the unary * operator to | 
 |   //   a pointer and the pointer is a null pointer value, the typeid expression | 
 |   //   throws the std::bad_typeid exception. | 
 |   // | 
 |   // However, this paragraph's intent is not clear.  We choose a very generous | 
 |   // interpretation which implores us to consider comma operators, conditional | 
 |   // operators, parentheses and other such constructs. | 
 |   if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( | 
 |           isGLValueFromPointerDeref(E), SrcRecordTy)) { | 
 |     llvm::BasicBlock *BadTypeidBlock = | 
 |         CGF.createBasicBlock("typeid.bad_typeid"); | 
 |     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); | 
 |  | 
 |     llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); | 
 |     CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); | 
 |  | 
 |     CGF.EmitBlock(BadTypeidBlock); | 
 |     CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); | 
 |     CGF.EmitBlock(EndBlock); | 
 |   } | 
 |  | 
 |   return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, | 
 |                                         StdTypeInfoPtrTy); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { | 
 |   llvm::Type *PtrTy = llvm::PointerType::getUnqual(getLLVMContext()); | 
 |  | 
 |   if (E->isTypeOperand()) { | 
 |     llvm::Constant *TypeInfo = | 
 |         CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); | 
 |     return TypeInfo; | 
 |   } | 
 |  | 
 |   // C++ [expr.typeid]p2: | 
 |   //   When typeid is applied to a glvalue expression whose type is a | 
 |   //   polymorphic class type, the result refers to a std::type_info object | 
 |   //   representing the type of the most derived object (that is, the dynamic | 
 |   //   type) to which the glvalue refers. | 
 |   // If the operand is already most derived object, no need to look up vtable. | 
 |   if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) | 
 |     return EmitTypeidFromVTable(*this, E->getExprOperand(), PtrTy); | 
 |  | 
 |   QualType OperandTy = E->getExprOperand()->getType(); | 
 |   return CGM.GetAddrOfRTTIDescriptor(OperandTy); | 
 | } | 
 |  | 
 | static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, | 
 |                                           QualType DestTy) { | 
 |   llvm::Type *DestLTy = CGF.ConvertType(DestTy); | 
 |   if (DestTy->isPointerType()) | 
 |     return llvm::Constant::getNullValue(DestLTy); | 
 |  | 
 |   /// C++ [expr.dynamic.cast]p9: | 
 |   ///   A failed cast to reference type throws std::bad_cast | 
 |   if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) | 
 |     return nullptr; | 
 |  | 
 |   CGF.Builder.ClearInsertionPoint(); | 
 |   return llvm::PoisonValue::get(DestLTy); | 
 | } | 
 |  | 
 | llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, | 
 |                                               const CXXDynamicCastExpr *DCE) { | 
 |   CGM.EmitExplicitCastExprType(DCE, this); | 
 |   QualType DestTy = DCE->getTypeAsWritten(); | 
 |  | 
 |   QualType SrcTy = DCE->getSubExpr()->getType(); | 
 |  | 
 |   // C++ [expr.dynamic.cast]p7: | 
 |   //   If T is "pointer to cv void," then the result is a pointer to the most | 
 |   //   derived object pointed to by v. | 
 |   bool IsDynamicCastToVoid = DestTy->isVoidPointerType(); | 
 |   QualType SrcRecordTy; | 
 |   QualType DestRecordTy; | 
 |   if (IsDynamicCastToVoid) { | 
 |     SrcRecordTy = SrcTy->getPointeeType(); | 
 |     // No DestRecordTy. | 
 |   } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { | 
 |     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); | 
 |     DestRecordTy = DestPTy->getPointeeType(); | 
 |   } else { | 
 |     SrcRecordTy = SrcTy; | 
 |     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); | 
 |   } | 
 |  | 
 |   // C++ [class.cdtor]p5: | 
 |   //   If the operand of the dynamic_cast refers to the object under | 
 |   //   construction or destruction and the static type of the operand is not a | 
 |   //   pointer to or object of the constructor or destructor’s own class or one | 
 |   //   of its bases, the dynamic_cast results in undefined behavior. | 
 |   EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), | 
 |                 SrcRecordTy); | 
 |  | 
 |   if (DCE->isAlwaysNull()) { | 
 |     if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) { | 
 |       // Expression emission is expected to retain a valid insertion point. | 
 |       if (!Builder.GetInsertBlock()) | 
 |         EmitBlock(createBasicBlock("dynamic_cast.unreachable")); | 
 |       return T; | 
 |     } | 
 |   } | 
 |  | 
 |   assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); | 
 |  | 
 |   // If the destination is effectively final, the cast succeeds if and only | 
 |   // if the dynamic type of the pointer is exactly the destination type. | 
 |   bool IsExact = !IsDynamicCastToVoid && | 
 |                  CGM.getCodeGenOpts().OptimizationLevel > 0 && | 
 |                  DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() && | 
 |                  CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy); | 
 |  | 
 |   // C++ [expr.dynamic.cast]p4: | 
 |   //   If the value of v is a null pointer value in the pointer case, the result | 
 |   //   is the null pointer value of type T. | 
 |   bool ShouldNullCheckSrcValue = | 
 |       IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked( | 
 |                      SrcTy->isPointerType(), SrcRecordTy); | 
 |  | 
 |   llvm::BasicBlock *CastNull = nullptr; | 
 |   llvm::BasicBlock *CastNotNull = nullptr; | 
 |   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); | 
 |  | 
 |   if (ShouldNullCheckSrcValue) { | 
 |     CastNull = createBasicBlock("dynamic_cast.null"); | 
 |     CastNotNull = createBasicBlock("dynamic_cast.notnull"); | 
 |  | 
 |     llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); | 
 |     Builder.CreateCondBr(IsNull, CastNull, CastNotNull); | 
 |     EmitBlock(CastNotNull); | 
 |   } | 
 |  | 
 |   llvm::Value *Value; | 
 |   if (IsDynamicCastToVoid) { | 
 |     Value = CGM.getCXXABI().emitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy); | 
 |   } else if (IsExact) { | 
 |     // If the destination type is effectively final, this pointer points to the | 
 |     // right type if and only if its vptr has the right value. | 
 |     Value = CGM.getCXXABI().emitExactDynamicCast( | 
 |         *this, ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastEnd, CastNull); | 
 |   } else { | 
 |     assert(DestRecordTy->isRecordType() && | 
 |            "destination type must be a record type!"); | 
 |     Value = CGM.getCXXABI().emitDynamicCastCall(*this, ThisAddr, SrcRecordTy, | 
 |                                                 DestTy, DestRecordTy, CastEnd); | 
 |   } | 
 |   CastNotNull = Builder.GetInsertBlock(); | 
 |  | 
 |   llvm::Value *NullValue = nullptr; | 
 |   if (ShouldNullCheckSrcValue) { | 
 |     EmitBranch(CastEnd); | 
 |  | 
 |     EmitBlock(CastNull); | 
 |     NullValue = EmitDynamicCastToNull(*this, DestTy); | 
 |     CastNull = Builder.GetInsertBlock(); | 
 |  | 
 |     EmitBranch(CastEnd); | 
 |   } | 
 |  | 
 |   EmitBlock(CastEnd); | 
 |  | 
 |   if (CastNull) { | 
 |     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); | 
 |     PHI->addIncoming(Value, CastNotNull); | 
 |     PHI->addIncoming(NullValue, CastNull); | 
 |  | 
 |     Value = PHI; | 
 |   } | 
 |  | 
 |   return Value; | 
 | } |