| //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements the ASTContext interface. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "CXXABI.h" | 
 | #include "Interp/Context.h" | 
 | #include "clang/AST/APValue.h" | 
 | #include "clang/AST/ASTConcept.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/ASTTypeTraits.h" | 
 | #include "clang/AST/Attr.h" | 
 | #include "clang/AST/AttrIterator.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/Comment.h" | 
 | #include "clang/AST/Decl.h" | 
 | #include "clang/AST/DeclBase.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclContextInternals.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclOpenMP.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/DeclarationName.h" | 
 | #include "clang/AST/DependenceFlags.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/ExprConcepts.h" | 
 | #include "clang/AST/ExternalASTSource.h" | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/AST/MangleNumberingContext.h" | 
 | #include "clang/AST/NestedNameSpecifier.h" | 
 | #include "clang/AST/ParentMapContext.h" | 
 | #include "clang/AST/RawCommentList.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/AST/Stmt.h" | 
 | #include "clang/AST/TemplateBase.h" | 
 | #include "clang/AST/TemplateName.h" | 
 | #include "clang/AST/Type.h" | 
 | #include "clang/AST/TypeLoc.h" | 
 | #include "clang/AST/UnresolvedSet.h" | 
 | #include "clang/AST/VTableBuilder.h" | 
 | #include "clang/Basic/AddressSpaces.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/CommentOptions.h" | 
 | #include "clang/Basic/ExceptionSpecificationType.h" | 
 | #include "clang/Basic/IdentifierTable.h" | 
 | #include "clang/Basic/LLVM.h" | 
 | #include "clang/Basic/LangOptions.h" | 
 | #include "clang/Basic/Linkage.h" | 
 | #include "clang/Basic/Module.h" | 
 | #include "clang/Basic/NoSanitizeList.h" | 
 | #include "clang/Basic/ObjCRuntime.h" | 
 | #include "clang/Basic/SourceLocation.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/Specifiers.h" | 
 | #include "clang/Basic/TargetCXXABI.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/Basic/XRayLists.h" | 
 | #include "llvm/ADT/APFixedPoint.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/APSInt.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/FoldingSet.h" | 
 | #include "llvm/ADT/PointerUnion.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" | 
 | #include "llvm/Support/Capacity.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MD5.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/TargetParser/Triple.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <map> | 
 | #include <memory> | 
 | #include <optional> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <utility> | 
 |  | 
 | using namespace clang; | 
 |  | 
 | enum FloatingRank { | 
 |   BFloat16Rank, | 
 |   Float16Rank, | 
 |   HalfRank, | 
 |   FloatRank, | 
 |   DoubleRank, | 
 |   LongDoubleRank, | 
 |   Float128Rank, | 
 |   Ibm128Rank | 
 | }; | 
 |  | 
 | /// \returns location that is relevant when searching for Doc comments related | 
 | /// to \p D. | 
 | static SourceLocation getDeclLocForCommentSearch(const Decl *D, | 
 |                                                  SourceManager &SourceMgr) { | 
 |   assert(D); | 
 |  | 
 |   // User can not attach documentation to implicit declarations. | 
 |   if (D->isImplicit()) | 
 |     return {}; | 
 |  | 
 |   // User can not attach documentation to implicit instantiations. | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return {}; | 
 |   } | 
 |  | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->isStaticDataMember() && | 
 |         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return {}; | 
 |   } | 
 |  | 
 |   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
 |     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return {}; | 
 |   } | 
 |  | 
 |   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { | 
 |     TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); | 
 |     if (TSK == TSK_ImplicitInstantiation || | 
 |         TSK == TSK_Undeclared) | 
 |       return {}; | 
 |   } | 
 |  | 
 |   if (const auto *ED = dyn_cast<EnumDecl>(D)) { | 
 |     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
 |       return {}; | 
 |   } | 
 |   if (const auto *TD = dyn_cast<TagDecl>(D)) { | 
 |     // When tag declaration (but not definition!) is part of the | 
 |     // decl-specifier-seq of some other declaration, it doesn't get comment | 
 |     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) | 
 |       return {}; | 
 |   } | 
 |   // TODO: handle comments for function parameters properly. | 
 |   if (isa<ParmVarDecl>(D)) | 
 |     return {}; | 
 |  | 
 |   // TODO: we could look up template parameter documentation in the template | 
 |   // documentation. | 
 |   if (isa<TemplateTypeParmDecl>(D) || | 
 |       isa<NonTypeTemplateParmDecl>(D) || | 
 |       isa<TemplateTemplateParmDecl>(D)) | 
 |     return {}; | 
 |  | 
 |   // Find declaration location. | 
 |   // For Objective-C declarations we generally don't expect to have multiple | 
 |   // declarators, thus use declaration starting location as the "declaration | 
 |   // location". | 
 |   // For all other declarations multiple declarators are used quite frequently, | 
 |   // so we use the location of the identifier as the "declaration location". | 
 |   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || | 
 |       isa<ObjCPropertyDecl>(D) || | 
 |       isa<RedeclarableTemplateDecl>(D) || | 
 |       isa<ClassTemplateSpecializationDecl>(D) || | 
 |       // Allow association with Y across {} in `typedef struct X {} Y`. | 
 |       isa<TypedefDecl>(D)) | 
 |     return D->getBeginLoc(); | 
 |  | 
 |   const SourceLocation DeclLoc = D->getLocation(); | 
 |   if (DeclLoc.isMacroID()) { | 
 |     // There are (at least) three types of macros we care about here. | 
 |     // | 
 |     // 1. Macros that are used in the definition of a type outside the macro, | 
 |     //    with a comment attached at the macro call site. | 
 |     //    ``` | 
 |     //    #define MAKE_NAME(Foo) Name##Foo | 
 |     // | 
 |     //    /// Comment is here, where we use the macro. | 
 |     //    struct MAKE_NAME(Foo) { | 
 |     //        int a; | 
 |     //        int b; | 
 |     //    }; | 
 |     //    ``` | 
 |     // 2. Macros that define whole things along with the comment. | 
 |     //    ``` | 
 |     //    #define MAKE_METHOD(name) \ | 
 |     //      /** Comment is here, inside the macro. */ \ | 
 |     //      void name() {} | 
 |     // | 
 |     //    struct S { | 
 |     //      MAKE_METHOD(f) | 
 |     //    } | 
 |     //    ``` | 
 |     // 3. Macros that both declare a type and name a decl outside the macro. | 
 |     //    ``` | 
 |     //    /// Comment is here, where we use the macro. | 
 |     //    typedef NS_ENUM(NSInteger, Size) { | 
 |     //        SizeWidth, | 
 |     //        SizeHeight | 
 |     //    }; | 
 |     //    ``` | 
 |     //    In this case NS_ENUM declares am enum type, and uses the same name for | 
 |     //    the typedef declaration that appears outside the macro. The comment | 
 |     //    here should be applied to both declarations inside and outside the | 
 |     //    macro. | 
 |     // | 
 |     // We have found a Decl name that comes from inside a macro, but | 
 |     // Decl::getLocation() returns the place where the macro is being called. | 
 |     // If the declaration (and not just the name) resides inside the macro, | 
 |     // then we want to map Decl::getLocation() into the macro to where the | 
 |     // declaration and its attached comment (if any) were written. | 
 |     // | 
 |     // This mapping into the macro is done by mapping the location to its | 
 |     // spelling location, however even if the declaration is inside a macro, | 
 |     // the name's spelling can come from a macro argument (case 2 above). In | 
 |     // this case mapping the location to the spelling location finds the | 
 |     // argument's position (at `f` in MAKE_METHOD(`f`) above), which is not | 
 |     // where the declaration and its comment are located. | 
 |     // | 
 |     // To avoid this issue, we make use of Decl::getBeginLocation() instead. | 
 |     // While the declaration's position is where the name is written, the | 
 |     // comment is always attached to the begining of the declaration, not to | 
 |     // the name. | 
 |     // | 
 |     // In the first case, the begin location of the decl is outside the macro, | 
 |     // at the location of `typedef`. This is where the comment is found as | 
 |     // well. The begin location is not inside a macro, so it's spelling | 
 |     // location is the same. | 
 |     // | 
 |     // In the second case, the begin location of the decl is the call to the | 
 |     // macro, at `MAKE_METHOD`. However its spelling location is inside the | 
 |     // the macro at the location of `void`. This is where the comment is found | 
 |     // again. | 
 |     // | 
 |     // In the third case, there's no correct single behaviour. We want to use | 
 |     // the comment outside the macro for the definition that's inside the macro. | 
 |     // There is also a definition outside the macro, and we want the comment to | 
 |     // apply to both. The cases we care about here is NS_ENUM() and | 
 |     // NS_OPTIONS(). In general, if an enum is defined inside a macro, we should | 
 |     // try to find the comment there. | 
 |  | 
 |     // This is handling case 3 for NS_ENUM() and NS_OPTIONS(), which define | 
 |     // enum types inside the macro. | 
 |     if (isa<EnumDecl>(D)) { | 
 |       SourceLocation MacroCallLoc = SourceMgr.getExpansionLoc(DeclLoc); | 
 |       if (auto BufferRef = | 
 |               SourceMgr.getBufferOrNone(SourceMgr.getFileID(MacroCallLoc)); | 
 |           BufferRef.has_value()) { | 
 |         llvm::StringRef buffer = BufferRef->getBuffer().substr( | 
 |             SourceMgr.getFileOffset(MacroCallLoc)); | 
 |         if (buffer.starts_with("NS_ENUM(") || | 
 |             buffer.starts_with("NS_OPTIONS(")) { | 
 |           // We want to use the comment on the call to NS_ENUM and NS_OPTIONS | 
 |           // macros for the types defined inside the macros, which is at the | 
 |           // expansion location. | 
 |           return MacroCallLoc; | 
 |         } | 
 |       } | 
 |     } | 
 |     return SourceMgr.getSpellingLoc(D->getBeginLoc()); | 
 |   } | 
 |  | 
 |   return DeclLoc; | 
 | } | 
 |  | 
 | RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( | 
 |     const Decl *D, const SourceLocation RepresentativeLocForDecl, | 
 |     const std::map<unsigned, RawComment *> &CommentsInTheFile) const { | 
 |   // If the declaration doesn't map directly to a location in a file, we | 
 |   // can't find the comment. | 
 |   if (RepresentativeLocForDecl.isInvalid() || | 
 |       !RepresentativeLocForDecl.isFileID()) | 
 |     return nullptr; | 
 |  | 
 |   // If there are no comments anywhere, we won't find anything. | 
 |   if (CommentsInTheFile.empty()) | 
 |     return nullptr; | 
 |  | 
 |   // Decompose the location for the declaration and find the beginning of the | 
 |   // file buffer. | 
 |   const std::pair<FileID, unsigned> DeclLocDecomp = | 
 |       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); | 
 |  | 
 |   // Slow path. | 
 |   auto OffsetCommentBehindDecl = | 
 |       CommentsInTheFile.lower_bound(DeclLocDecomp.second); | 
 |  | 
 |   // First check whether we have a trailing comment. | 
 |   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { | 
 |     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; | 
 |     if ((CommentBehindDecl->isDocumentation() || | 
 |          LangOpts.CommentOpts.ParseAllComments) && | 
 |         CommentBehindDecl->isTrailingComment() && | 
 |         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || | 
 |          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
 |  | 
 |       // Check that Doxygen trailing comment comes after the declaration, starts | 
 |       // on the same line and in the same file as the declaration. | 
 |       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == | 
 |           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, | 
 |                                        OffsetCommentBehindDecl->first)) { | 
 |         return CommentBehindDecl; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // The comment just after the declaration was not a trailing comment. | 
 |   // Let's look at the previous comment. | 
 |   if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) | 
 |     return nullptr; | 
 |  | 
 |   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; | 
 |   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; | 
 |  | 
 |   // Check that we actually have a non-member Doxygen comment. | 
 |   if (!(CommentBeforeDecl->isDocumentation() || | 
 |         LangOpts.CommentOpts.ParseAllComments) || | 
 |       CommentBeforeDecl->isTrailingComment()) | 
 |     return nullptr; | 
 |  | 
 |   // Decompose the end of the comment. | 
 |   const unsigned CommentEndOffset = | 
 |       Comments.getCommentEndOffset(CommentBeforeDecl); | 
 |  | 
 |   // Get the corresponding buffer. | 
 |   bool Invalid = false; | 
 |   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, | 
 |                                                &Invalid).data(); | 
 |   if (Invalid) | 
 |     return nullptr; | 
 |  | 
 |   // Extract text between the comment and declaration. | 
 |   StringRef Text(Buffer + CommentEndOffset, | 
 |                  DeclLocDecomp.second - CommentEndOffset); | 
 |  | 
 |   // There should be no other declarations or preprocessor directives between | 
 |   // comment and declaration. | 
 |   if (Text.find_last_of(";{}#@") != StringRef::npos) | 
 |     return nullptr; | 
 |  | 
 |   return CommentBeforeDecl; | 
 | } | 
 |  | 
 | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { | 
 |   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); | 
 |  | 
 |   // If the declaration doesn't map directly to a location in a file, we | 
 |   // can't find the comment. | 
 |   if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
 |     return nullptr; | 
 |  | 
 |   if (ExternalSource && !CommentsLoaded) { | 
 |     ExternalSource->ReadComments(); | 
 |     CommentsLoaded = true; | 
 |   } | 
 |  | 
 |   if (Comments.empty()) | 
 |     return nullptr; | 
 |  | 
 |   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; | 
 |   if (!File.isValid()) { | 
 |     return nullptr; | 
 |   } | 
 |   const auto CommentsInThisFile = Comments.getCommentsInFile(File); | 
 |   if (!CommentsInThisFile || CommentsInThisFile->empty()) | 
 |     return nullptr; | 
 |  | 
 |   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile); | 
 | } | 
 |  | 
 | void ASTContext::addComment(const RawComment &RC) { | 
 |   assert(LangOpts.RetainCommentsFromSystemHeaders || | 
 |          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); | 
 |   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); | 
 | } | 
 |  | 
 | /// If we have a 'templated' declaration for a template, adjust 'D' to | 
 | /// refer to the actual template. | 
 | /// If we have an implicit instantiation, adjust 'D' to refer to template. | 
 | static const Decl &adjustDeclToTemplate(const Decl &D) { | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) { | 
 |     // Is this function declaration part of a function template? | 
 |     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) | 
 |       return *FTD; | 
 |  | 
 |     // Nothing to do if function is not an implicit instantiation. | 
 |     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) | 
 |       return D; | 
 |  | 
 |     // Function is an implicit instantiation of a function template? | 
 |     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) | 
 |       return *FTD; | 
 |  | 
 |     // Function is instantiated from a member definition of a class template? | 
 |     if (const FunctionDecl *MemberDecl = | 
 |             FD->getInstantiatedFromMemberFunction()) | 
 |       return *MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const auto *VD = dyn_cast<VarDecl>(&D)) { | 
 |     // Static data member is instantiated from a member definition of a class | 
 |     // template? | 
 |     if (VD->isStaticDataMember()) | 
 |       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) | 
 |         return *MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) { | 
 |     // Is this class declaration part of a class template? | 
 |     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) | 
 |       return *CTD; | 
 |  | 
 |     // Class is an implicit instantiation of a class template or partial | 
 |     // specialization? | 
 |     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { | 
 |       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) | 
 |         return D; | 
 |       llvm::PointerUnion<ClassTemplateDecl *, | 
 |                          ClassTemplatePartialSpecializationDecl *> | 
 |           PU = CTSD->getSpecializedTemplateOrPartial(); | 
 |       return PU.is<ClassTemplateDecl *>() | 
 |                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) | 
 |                  : *static_cast<const Decl *>( | 
 |                        PU.get<ClassTemplatePartialSpecializationDecl *>()); | 
 |     } | 
 |  | 
 |     // Class is instantiated from a member definition of a class template? | 
 |     if (const MemberSpecializationInfo *Info = | 
 |             CRD->getMemberSpecializationInfo()) | 
 |       return *Info->getInstantiatedFrom(); | 
 |  | 
 |     return D; | 
 |   } | 
 |   if (const auto *ED = dyn_cast<EnumDecl>(&D)) { | 
 |     // Enum is instantiated from a member definition of a class template? | 
 |     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) | 
 |       return *MemberDecl; | 
 |  | 
 |     return D; | 
 |   } | 
 |   // FIXME: Adjust alias templates? | 
 |   return D; | 
 | } | 
 |  | 
 | const RawComment *ASTContext::getRawCommentForAnyRedecl( | 
 |                                                 const Decl *D, | 
 |                                                 const Decl **OriginalDecl) const { | 
 |   if (!D) { | 
 |     if (OriginalDecl) | 
 |       OriginalDecl = nullptr; | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   D = &adjustDeclToTemplate(*D); | 
 |  | 
 |   // Any comment directly attached to D? | 
 |   { | 
 |     auto DeclComment = DeclRawComments.find(D); | 
 |     if (DeclComment != DeclRawComments.end()) { | 
 |       if (OriginalDecl) | 
 |         *OriginalDecl = D; | 
 |       return DeclComment->second; | 
 |     } | 
 |   } | 
 |  | 
 |   // Any comment attached to any redeclaration of D? | 
 |   const Decl *CanonicalD = D->getCanonicalDecl(); | 
 |   if (!CanonicalD) | 
 |     return nullptr; | 
 |  | 
 |   { | 
 |     auto RedeclComment = RedeclChainComments.find(CanonicalD); | 
 |     if (RedeclComment != RedeclChainComments.end()) { | 
 |       if (OriginalDecl) | 
 |         *OriginalDecl = RedeclComment->second; | 
 |       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); | 
 |       assert(CommentAtRedecl != DeclRawComments.end() && | 
 |              "This decl is supposed to have comment attached."); | 
 |       return CommentAtRedecl->second; | 
 |     } | 
 |   } | 
 |  | 
 |   // Any redeclarations of D that we haven't checked for comments yet? | 
 |   // We can't use DenseMap::iterator directly since it'd get invalid. | 
 |   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { | 
 |     return CommentlessRedeclChains.lookup(CanonicalD); | 
 |   }(); | 
 |  | 
 |   for (const auto Redecl : D->redecls()) { | 
 |     assert(Redecl); | 
 |     // Skip all redeclarations that have been checked previously. | 
 |     if (LastCheckedRedecl) { | 
 |       if (LastCheckedRedecl == Redecl) { | 
 |         LastCheckedRedecl = nullptr; | 
 |       } | 
 |       continue; | 
 |     } | 
 |     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); | 
 |     if (RedeclComment) { | 
 |       cacheRawCommentForDecl(*Redecl, *RedeclComment); | 
 |       if (OriginalDecl) | 
 |         *OriginalDecl = Redecl; | 
 |       return RedeclComment; | 
 |     } | 
 |     CommentlessRedeclChains[CanonicalD] = Redecl; | 
 |   } | 
 |  | 
 |   if (OriginalDecl) | 
 |     *OriginalDecl = nullptr; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, | 
 |                                         const RawComment &Comment) const { | 
 |   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); | 
 |   DeclRawComments.try_emplace(&OriginalD, &Comment); | 
 |   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); | 
 |   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); | 
 |   CommentlessRedeclChains.erase(CanonicalDecl); | 
 | } | 
 |  | 
 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, | 
 |                    SmallVectorImpl<const NamedDecl *> &Redeclared) { | 
 |   const DeclContext *DC = ObjCMethod->getDeclContext(); | 
 |   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { | 
 |     const ObjCInterfaceDecl *ID = IMD->getClassInterface(); | 
 |     if (!ID) | 
 |       return; | 
 |     // Add redeclared method here. | 
 |     for (const auto *Ext : ID->known_extensions()) { | 
 |       if (ObjCMethodDecl *RedeclaredMethod = | 
 |             Ext->getMethod(ObjCMethod->getSelector(), | 
 |                                   ObjCMethod->isInstanceMethod())) | 
 |         Redeclared.push_back(RedeclaredMethod); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, | 
 |                                                  const Preprocessor *PP) { | 
 |   if (Comments.empty() || Decls.empty()) | 
 |     return; | 
 |  | 
 |   FileID File; | 
 |   for (Decl *D : Decls) { | 
 |     SourceLocation Loc = D->getLocation(); | 
 |     if (Loc.isValid()) { | 
 |       // See if there are any new comments that are not attached to a decl. | 
 |       // The location doesn't have to be precise - we care only about the file. | 
 |       File = SourceMgr.getDecomposedLoc(Loc).first; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (File.isInvalid()) | 
 |     return; | 
 |  | 
 |   auto CommentsInThisFile = Comments.getCommentsInFile(File); | 
 |   if (!CommentsInThisFile || CommentsInThisFile->empty() || | 
 |       CommentsInThisFile->rbegin()->second->isAttached()) | 
 |     return; | 
 |  | 
 |   // There is at least one comment not attached to a decl. | 
 |   // Maybe it should be attached to one of Decls? | 
 |   // | 
 |   // Note that this way we pick up not only comments that precede the | 
 |   // declaration, but also comments that *follow* the declaration -- thanks to | 
 |   // the lookahead in the lexer: we've consumed the semicolon and looked | 
 |   // ahead through comments. | 
 |  | 
 |   for (const Decl *D : Decls) { | 
 |     assert(D); | 
 |     if (D->isInvalidDecl()) | 
 |       continue; | 
 |  | 
 |     D = &adjustDeclToTemplate(*D); | 
 |  | 
 |     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); | 
 |  | 
 |     if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
 |       continue; | 
 |  | 
 |     if (DeclRawComments.count(D) > 0) | 
 |       continue; | 
 |  | 
 |     if (RawComment *const DocComment = | 
 |             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) { | 
 |       cacheRawCommentForDecl(*D, *DocComment); | 
 |       comments::FullComment *FC = DocComment->parse(*this, PP, D); | 
 |       ParsedComments[D->getCanonicalDecl()] = FC; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, | 
 |                                                     const Decl *D) const { | 
 |   auto *ThisDeclInfo = new (*this) comments::DeclInfo; | 
 |   ThisDeclInfo->CommentDecl = D; | 
 |   ThisDeclInfo->IsFilled = false; | 
 |   ThisDeclInfo->fill(); | 
 |   ThisDeclInfo->CommentDecl = FC->getDecl(); | 
 |   if (!ThisDeclInfo->TemplateParameters) | 
 |     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; | 
 |   comments::FullComment *CFC = | 
 |     new (*this) comments::FullComment(FC->getBlocks(), | 
 |                                       ThisDeclInfo); | 
 |   return CFC; | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { | 
 |   const RawComment *RC = getRawCommentForDeclNoCache(D); | 
 |   return RC ? RC->parse(*this, nullptr, D) : nullptr; | 
 | } | 
 |  | 
 | comments::FullComment *ASTContext::getCommentForDecl( | 
 |                                               const Decl *D, | 
 |                                               const Preprocessor *PP) const { | 
 |   if (!D || D->isInvalidDecl()) | 
 |     return nullptr; | 
 |   D = &adjustDeclToTemplate(*D); | 
 |  | 
 |   const Decl *Canonical = D->getCanonicalDecl(); | 
 |   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = | 
 |       ParsedComments.find(Canonical); | 
 |  | 
 |   if (Pos != ParsedComments.end()) { | 
 |     if (Canonical != D) { | 
 |       comments::FullComment *FC = Pos->second; | 
 |       comments::FullComment *CFC = cloneFullComment(FC, D); | 
 |       return CFC; | 
 |     } | 
 |     return Pos->second; | 
 |   } | 
 |  | 
 |   const Decl *OriginalDecl = nullptr; | 
 |  | 
 |   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); | 
 |   if (!RC) { | 
 |     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { | 
 |       SmallVector<const NamedDecl*, 8> Overridden; | 
 |       const auto *OMD = dyn_cast<ObjCMethodDecl>(D); | 
 |       if (OMD && OMD->isPropertyAccessor()) | 
 |         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) | 
 |           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) | 
 |             return cloneFullComment(FC, D); | 
 |       if (OMD) | 
 |         addRedeclaredMethods(OMD, Overridden); | 
 |       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); | 
 |       for (unsigned i = 0, e = Overridden.size(); i < e; i++) | 
 |         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) | 
 |           return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |       // Attach any tag type's documentation to its typedef if latter | 
 |       // does not have one of its own. | 
 |       QualType QT = TD->getUnderlyingType(); | 
 |       if (const auto *TT = QT->getAs<TagType>()) | 
 |         if (const Decl *TD = TT->getDecl()) | 
 |           if (comments::FullComment *FC = getCommentForDecl(TD, PP)) | 
 |             return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { | 
 |       while (IC->getSuperClass()) { | 
 |         IC = IC->getSuperClass(); | 
 |         if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
 |           return cloneFullComment(FC, D); | 
 |       } | 
 |     } | 
 |     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { | 
 |       if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) | 
 |         if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
 |           return cloneFullComment(FC, D); | 
 |     } | 
 |     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
 |       if (!(RD = RD->getDefinition())) | 
 |         return nullptr; | 
 |       // Check non-virtual bases. | 
 |       for (const auto &I : RD->bases()) { | 
 |         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) | 
 |           continue; | 
 |         QualType Ty = I.getType(); | 
 |         if (Ty.isNull()) | 
 |           continue; | 
 |         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { | 
 |           if (!(NonVirtualBase= NonVirtualBase->getDefinition())) | 
 |             continue; | 
 |  | 
 |           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) | 
 |             return cloneFullComment(FC, D); | 
 |         } | 
 |       } | 
 |       // Check virtual bases. | 
 |       for (const auto &I : RD->vbases()) { | 
 |         if (I.getAccessSpecifier() != AS_public) | 
 |           continue; | 
 |         QualType Ty = I.getType(); | 
 |         if (Ty.isNull()) | 
 |           continue; | 
 |         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { | 
 |           if (!(VirtualBase= VirtualBase->getDefinition())) | 
 |             continue; | 
 |           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) | 
 |             return cloneFullComment(FC, D); | 
 |         } | 
 |       } | 
 |     } | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // If the RawComment was attached to other redeclaration of this Decl, we | 
 |   // should parse the comment in context of that other Decl.  This is important | 
 |   // because comments can contain references to parameter names which can be | 
 |   // different across redeclarations. | 
 |   if (D != OriginalDecl && OriginalDecl) | 
 |     return getCommentForDecl(OriginalDecl, PP); | 
 |  | 
 |   comments::FullComment *FC = RC->parse(*this, PP, D); | 
 |   ParsedComments[Canonical] = FC; | 
 |   return FC; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, | 
 |                                                    const ASTContext &C, | 
 |                                                TemplateTemplateParmDecl *Parm) { | 
 |   ID.AddInteger(Parm->getDepth()); | 
 |   ID.AddInteger(Parm->getPosition()); | 
 |   ID.AddBoolean(Parm->isParameterPack()); | 
 |  | 
 |   TemplateParameterList *Params = Parm->getTemplateParameters(); | 
 |   ID.AddInteger(Params->size()); | 
 |   for (TemplateParameterList::const_iterator P = Params->begin(), | 
 |                                           PEnd = Params->end(); | 
 |        P != PEnd; ++P) { | 
 |     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
 |       ID.AddInteger(0); | 
 |       ID.AddBoolean(TTP->isParameterPack()); | 
 |       if (TTP->isExpandedParameterPack()) { | 
 |         ID.AddBoolean(true); | 
 |         ID.AddInteger(TTP->getNumExpansionParameters()); | 
 |       } else | 
 |         ID.AddBoolean(false); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
 |       ID.AddInteger(1); | 
 |       ID.AddBoolean(NTTP->isParameterPack()); | 
 |       ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType())) | 
 |                         .getAsOpaquePtr()); | 
 |       if (NTTP->isExpandedParameterPack()) { | 
 |         ID.AddBoolean(true); | 
 |         ID.AddInteger(NTTP->getNumExpansionTypes()); | 
 |         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
 |           QualType T = NTTP->getExpansionType(I); | 
 |           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); | 
 |         } | 
 |       } else | 
 |         ID.AddBoolean(false); | 
 |       continue; | 
 |     } | 
 |  | 
 |     auto *TTP = cast<TemplateTemplateParmDecl>(*P); | 
 |     ID.AddInteger(2); | 
 |     Profile(ID, C, TTP); | 
 |   } | 
 | } | 
 |  | 
 | TemplateTemplateParmDecl * | 
 | ASTContext::getCanonicalTemplateTemplateParmDecl( | 
 |                                           TemplateTemplateParmDecl *TTP) const { | 
 |   // Check if we already have a canonical template template parameter. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); | 
 |   void *InsertPos = nullptr; | 
 |   CanonicalTemplateTemplateParm *Canonical | 
 |     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (Canonical) | 
 |     return Canonical->getParam(); | 
 |  | 
 |   // Build a canonical template parameter list. | 
 |   TemplateParameterList *Params = TTP->getTemplateParameters(); | 
 |   SmallVector<NamedDecl *, 4> CanonParams; | 
 |   CanonParams.reserve(Params->size()); | 
 |   for (TemplateParameterList::const_iterator P = Params->begin(), | 
 |                                           PEnd = Params->end(); | 
 |        P != PEnd; ++P) { | 
 |     // Note that, per C++20 [temp.over.link]/6, when determining whether | 
 |     // template-parameters are equivalent, constraints are ignored. | 
 |     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
 |       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( | 
 |           *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(), | 
 |           TTP->getDepth(), TTP->getIndex(), nullptr, false, | 
 |           TTP->isParameterPack(), /*HasTypeConstraint=*/false, | 
 |           TTP->isExpandedParameterPack() | 
 |               ? std::optional<unsigned>(TTP->getNumExpansionParameters()) | 
 |               : std::nullopt); | 
 |       CanonParams.push_back(NewTTP); | 
 |     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
 |       QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType())); | 
 |       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
 |       NonTypeTemplateParmDecl *Param; | 
 |       if (NTTP->isExpandedParameterPack()) { | 
 |         SmallVector<QualType, 2> ExpandedTypes; | 
 |         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; | 
 |         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
 |           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); | 
 |           ExpandedTInfos.push_back( | 
 |                                 getTrivialTypeSourceInfo(ExpandedTypes.back())); | 
 |         } | 
 |  | 
 |         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
 |                                                 SourceLocation(), | 
 |                                                 SourceLocation(), | 
 |                                                 NTTP->getDepth(), | 
 |                                                 NTTP->getPosition(), nullptr, | 
 |                                                 T, | 
 |                                                 TInfo, | 
 |                                                 ExpandedTypes, | 
 |                                                 ExpandedTInfos); | 
 |       } else { | 
 |         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
 |                                                 SourceLocation(), | 
 |                                                 SourceLocation(), | 
 |                                                 NTTP->getDepth(), | 
 |                                                 NTTP->getPosition(), nullptr, | 
 |                                                 T, | 
 |                                                 NTTP->isParameterPack(), | 
 |                                                 TInfo); | 
 |       } | 
 |       CanonParams.push_back(Param); | 
 |     } else | 
 |       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( | 
 |                                            cast<TemplateTemplateParmDecl>(*P))); | 
 |   } | 
 |  | 
 |   TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( | 
 |       *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(), | 
 |       TTP->getPosition(), TTP->isParameterPack(), nullptr, | 
 |       TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(), | 
 |                                     CanonParams, SourceLocation(), | 
 |                                     /*RequiresClause=*/nullptr)); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!Canonical && "Shouldn't be in the map!"); | 
 |   (void)Canonical; | 
 |  | 
 |   // Create the canonical template template parameter entry. | 
 |   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); | 
 |   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); | 
 |   return CanonTTP; | 
 | } | 
 |  | 
 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { | 
 |   auto Kind = getTargetInfo().getCXXABI().getKind(); | 
 |   return getLangOpts().CXXABI.value_or(Kind); | 
 | } | 
 |  | 
 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { | 
 |   if (!LangOpts.CPlusPlus) return nullptr; | 
 |  | 
 |   switch (getCXXABIKind()) { | 
 |   case TargetCXXABI::AppleARM64: | 
 |   case TargetCXXABI::Fuchsia: | 
 |   case TargetCXXABI::GenericARM: // Same as Itanium at this level | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::WatchOS: | 
 |   case TargetCXXABI::GenericAArch64: | 
 |   case TargetCXXABI::GenericMIPS: | 
 |   case TargetCXXABI::GenericItanium: | 
 |   case TargetCXXABI::WebAssembly: | 
 |   case TargetCXXABI::XL: | 
 |     return CreateItaniumCXXABI(*this); | 
 |   case TargetCXXABI::Microsoft: | 
 |     return CreateMicrosoftCXXABI(*this); | 
 |   } | 
 |   llvm_unreachable("Invalid CXXABI type!"); | 
 | } | 
 |  | 
 | interp::Context &ASTContext::getInterpContext() { | 
 |   if (!InterpContext) { | 
 |     InterpContext.reset(new interp::Context(*this)); | 
 |   } | 
 |   return *InterpContext.get(); | 
 | } | 
 |  | 
 | ParentMapContext &ASTContext::getParentMapContext() { | 
 |   if (!ParentMapCtx) | 
 |     ParentMapCtx.reset(new ParentMapContext(*this)); | 
 |   return *ParentMapCtx.get(); | 
 | } | 
 |  | 
 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, | 
 |                                           const LangOptions &LangOpts) { | 
 |   switch (LangOpts.getAddressSpaceMapMangling()) { | 
 |   case LangOptions::ASMM_Target: | 
 |     return TI.useAddressSpaceMapMangling(); | 
 |   case LangOptions::ASMM_On: | 
 |     return true; | 
 |   case LangOptions::ASMM_Off: | 
 |     return false; | 
 |   } | 
 |   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); | 
 | } | 
 |  | 
 | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, | 
 |                        IdentifierTable &idents, SelectorTable &sels, | 
 |                        Builtin::Context &builtins, TranslationUnitKind TUKind) | 
 |     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), | 
 |       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), | 
 |       TemplateSpecializationTypes(this_()), | 
 |       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), | 
 |       SubstTemplateTemplateParmPacks(this_()), | 
 |       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), | 
 |       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), | 
 |       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, | 
 |                                         LangOpts.XRayNeverInstrumentFiles, | 
 |                                         LangOpts.XRayAttrListFiles, SM)), | 
 |       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), | 
 |       PrintingPolicy(LOpts), Idents(idents), Selectors(sels), | 
 |       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), | 
 |       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), | 
 |       CompCategories(this_()), LastSDM(nullptr, 0) { | 
 |   addTranslationUnitDecl(); | 
 | } | 
 |  | 
 | void ASTContext::cleanup() { | 
 |   // Release the DenseMaps associated with DeclContext objects. | 
 |   // FIXME: Is this the ideal solution? | 
 |   ReleaseDeclContextMaps(); | 
 |  | 
 |   // Call all of the deallocation functions on all of their targets. | 
 |   for (auto &Pair : Deallocations) | 
 |     (Pair.first)(Pair.second); | 
 |   Deallocations.clear(); | 
 |  | 
 |   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed | 
 |   // because they can contain DenseMaps. | 
 |   for (llvm::DenseMap<const ObjCContainerDecl*, | 
 |        const ASTRecordLayout*>::iterator | 
 |        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) | 
 |     // Increment in loop to prevent using deallocated memory. | 
 |     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) | 
 |       R->Destroy(*this); | 
 |   ObjCLayouts.clear(); | 
 |  | 
 |   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator | 
 |        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { | 
 |     // Increment in loop to prevent using deallocated memory. | 
 |     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) | 
 |       R->Destroy(*this); | 
 |   } | 
 |   ASTRecordLayouts.clear(); | 
 |  | 
 |   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), | 
 |                                                     AEnd = DeclAttrs.end(); | 
 |        A != AEnd; ++A) | 
 |     A->second->~AttrVec(); | 
 |   DeclAttrs.clear(); | 
 |  | 
 |   for (const auto &Value : ModuleInitializers) | 
 |     Value.second->~PerModuleInitializers(); | 
 |   ModuleInitializers.clear(); | 
 | } | 
 |  | 
 | ASTContext::~ASTContext() { cleanup(); } | 
 |  | 
 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { | 
 |   TraversalScope = TopLevelDecls; | 
 |   getParentMapContext().clear(); | 
 | } | 
 |  | 
 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { | 
 |   Deallocations.push_back({Callback, Data}); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { | 
 |   ExternalSource = std::move(Source); | 
 | } | 
 |  | 
 | void ASTContext::PrintStats() const { | 
 |   llvm::errs() << "\n*** AST Context Stats:\n"; | 
 |   llvm::errs() << "  " << Types.size() << " types total.\n"; | 
 |  | 
 |   unsigned counts[] = { | 
 | #define TYPE(Name, Parent) 0, | 
 | #define ABSTRACT_TYPE(Name, Parent) | 
 | #include "clang/AST/TypeNodes.inc" | 
 |     0 // Extra | 
 |   }; | 
 |  | 
 |   for (unsigned i = 0, e = Types.size(); i != e; ++i) { | 
 |     Type *T = Types[i]; | 
 |     counts[(unsigned)T->getTypeClass()]++; | 
 |   } | 
 |  | 
 |   unsigned Idx = 0; | 
 |   unsigned TotalBytes = 0; | 
 | #define TYPE(Name, Parent)                                              \ | 
 |   if (counts[Idx])                                                      \ | 
 |     llvm::errs() << "    " << counts[Idx] << " " << #Name               \ | 
 |                  << " types, " << sizeof(Name##Type) << " each "        \ | 
 |                  << "(" << counts[Idx] * sizeof(Name##Type)             \ | 
 |                  << " bytes)\n";                                        \ | 
 |   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \ | 
 |   ++Idx; | 
 | #define ABSTRACT_TYPE(Name, Parent) | 
 | #include "clang/AST/TypeNodes.inc" | 
 |  | 
 |   llvm::errs() << "Total bytes = " << TotalBytes << "\n"; | 
 |  | 
 |   // Implicit special member functions. | 
 |   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" | 
 |                << NumImplicitDefaultConstructors | 
 |                << " implicit default constructors created\n"; | 
 |   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" | 
 |                << NumImplicitCopyConstructors | 
 |                << " implicit copy constructors created\n"; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" | 
 |                  << NumImplicitMoveConstructors | 
 |                  << " implicit move constructors created\n"; | 
 |   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" | 
 |                << NumImplicitCopyAssignmentOperators | 
 |                << " implicit copy assignment operators created\n"; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" | 
 |                  << NumImplicitMoveAssignmentOperators | 
 |                  << " implicit move assignment operators created\n"; | 
 |   llvm::errs() << NumImplicitDestructorsDeclared << "/" | 
 |                << NumImplicitDestructors | 
 |                << " implicit destructors created\n"; | 
 |  | 
 |   if (ExternalSource) { | 
 |     llvm::errs() << "\n"; | 
 |     ExternalSource->PrintStats(); | 
 |   } | 
 |  | 
 |   BumpAlloc.PrintStats(); | 
 | } | 
 |  | 
 | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, | 
 |                                            bool NotifyListeners) { | 
 |   if (NotifyListeners) | 
 |     if (auto *Listener = getASTMutationListener()) | 
 |       Listener->RedefinedHiddenDefinition(ND, M); | 
 |  | 
 |   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); | 
 | } | 
 |  | 
 | void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { | 
 |   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); | 
 |   if (It == MergedDefModules.end()) | 
 |     return; | 
 |  | 
 |   auto &Merged = It->second; | 
 |   llvm::DenseSet<Module*> Found; | 
 |   for (Module *&M : Merged) | 
 |     if (!Found.insert(M).second) | 
 |       M = nullptr; | 
 |   llvm::erase_value(Merged, nullptr); | 
 | } | 
 |  | 
 | ArrayRef<Module *> | 
 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { | 
 |   auto MergedIt = | 
 |       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); | 
 |   if (MergedIt == MergedDefModules.end()) | 
 |     return std::nullopt; | 
 |   return MergedIt->second; | 
 | } | 
 |  | 
 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { | 
 |   if (LazyInitializers.empty()) | 
 |     return; | 
 |  | 
 |   auto *Source = Ctx.getExternalSource(); | 
 |   assert(Source && "lazy initializers but no external source"); | 
 |  | 
 |   auto LazyInits = std::move(LazyInitializers); | 
 |   LazyInitializers.clear(); | 
 |  | 
 |   for (auto ID : LazyInits) | 
 |     Initializers.push_back(Source->GetExternalDecl(ID)); | 
 |  | 
 |   assert(LazyInitializers.empty() && | 
 |          "GetExternalDecl for lazy module initializer added more inits"); | 
 | } | 
 |  | 
 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { | 
 |   // One special case: if we add a module initializer that imports another | 
 |   // module, and that module's only initializer is an ImportDecl, simplify. | 
 |   if (const auto *ID = dyn_cast<ImportDecl>(D)) { | 
 |     auto It = ModuleInitializers.find(ID->getImportedModule()); | 
 |  | 
 |     // Maybe the ImportDecl does nothing at all. (Common case.) | 
 |     if (It == ModuleInitializers.end()) | 
 |       return; | 
 |  | 
 |     // Maybe the ImportDecl only imports another ImportDecl. | 
 |     auto &Imported = *It->second; | 
 |     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { | 
 |       Imported.resolve(*this); | 
 |       auto *OnlyDecl = Imported.Initializers.front(); | 
 |       if (isa<ImportDecl>(OnlyDecl)) | 
 |         D = OnlyDecl; | 
 |     } | 
 |   } | 
 |  | 
 |   auto *&Inits = ModuleInitializers[M]; | 
 |   if (!Inits) | 
 |     Inits = new (*this) PerModuleInitializers; | 
 |   Inits->Initializers.push_back(D); | 
 | } | 
 |  | 
 | void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { | 
 |   auto *&Inits = ModuleInitializers[M]; | 
 |   if (!Inits) | 
 |     Inits = new (*this) PerModuleInitializers; | 
 |   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), | 
 |                                  IDs.begin(), IDs.end()); | 
 | } | 
 |  | 
 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { | 
 |   auto It = ModuleInitializers.find(M); | 
 |   if (It == ModuleInitializers.end()) | 
 |     return std::nullopt; | 
 |  | 
 |   auto *Inits = It->second; | 
 |   Inits->resolve(*this); | 
 |   return Inits->Initializers; | 
 | } | 
 |  | 
 | void ASTContext::setCurrentNamedModule(Module *M) { | 
 |   assert(M->isModulePurview()); | 
 |   assert(!CurrentCXXNamedModule && | 
 |          "We should set named module for ASTContext for only once"); | 
 |   CurrentCXXNamedModule = M; | 
 | } | 
 |  | 
 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { | 
 |   if (!ExternCContext) | 
 |     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); | 
 |  | 
 |   return ExternCContext; | 
 | } | 
 |  | 
 | BuiltinTemplateDecl * | 
 | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, | 
 |                                      const IdentifierInfo *II) const { | 
 |   auto *BuiltinTemplate = | 
 |       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK); | 
 |   BuiltinTemplate->setImplicit(); | 
 |   getTranslationUnitDecl()->addDecl(BuiltinTemplate); | 
 |  | 
 |   return BuiltinTemplate; | 
 | } | 
 |  | 
 | BuiltinTemplateDecl * | 
 | ASTContext::getMakeIntegerSeqDecl() const { | 
 |   if (!MakeIntegerSeqDecl) | 
 |     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, | 
 |                                                   getMakeIntegerSeqName()); | 
 |   return MakeIntegerSeqDecl; | 
 | } | 
 |  | 
 | BuiltinTemplateDecl * | 
 | ASTContext::getTypePackElementDecl() const { | 
 |   if (!TypePackElementDecl) | 
 |     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, | 
 |                                                    getTypePackElementName()); | 
 |   return TypePackElementDecl; | 
 | } | 
 |  | 
 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, | 
 |                                             RecordDecl::TagKind TK) const { | 
 |   SourceLocation Loc; | 
 |   RecordDecl *NewDecl; | 
 |   if (getLangOpts().CPlusPlus) | 
 |     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, | 
 |                                     Loc, &Idents.get(Name)); | 
 |   else | 
 |     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, | 
 |                                  &Idents.get(Name)); | 
 |   NewDecl->setImplicit(); | 
 |   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( | 
 |       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); | 
 |   return NewDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, | 
 |                                               StringRef Name) const { | 
 |   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
 |   TypedefDecl *NewDecl = TypedefDecl::Create( | 
 |       const_cast<ASTContext &>(*this), getTranslationUnitDecl(), | 
 |       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); | 
 |   NewDecl->setImplicit(); | 
 |   return NewDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getInt128Decl() const { | 
 |   if (!Int128Decl) | 
 |     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); | 
 |   return Int128Decl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getUInt128Decl() const { | 
 |   if (!UInt128Decl) | 
 |     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); | 
 |   return UInt128Decl; | 
 | } | 
 |  | 
 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { | 
 |   auto *Ty = new (*this, TypeAlignment) BuiltinType(K); | 
 |   R = CanQualType::CreateUnsafe(QualType(Ty, 0)); | 
 |   Types.push_back(Ty); | 
 | } | 
 |  | 
 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, | 
 |                                   const TargetInfo *AuxTarget) { | 
 |   assert((!this->Target || this->Target == &Target) && | 
 |          "Incorrect target reinitialization"); | 
 |   assert(VoidTy.isNull() && "Context reinitialized?"); | 
 |  | 
 |   this->Target = &Target; | 
 |   this->AuxTarget = AuxTarget; | 
 |  | 
 |   ABI.reset(createCXXABI(Target)); | 
 |   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); | 
 |  | 
 |   // C99 6.2.5p19. | 
 |   InitBuiltinType(VoidTy,              BuiltinType::Void); | 
 |  | 
 |   // C99 6.2.5p2. | 
 |   InitBuiltinType(BoolTy,              BuiltinType::Bool); | 
 |   // C99 6.2.5p3. | 
 |   if (LangOpts.CharIsSigned) | 
 |     InitBuiltinType(CharTy,            BuiltinType::Char_S); | 
 |   else | 
 |     InitBuiltinType(CharTy,            BuiltinType::Char_U); | 
 |   // C99 6.2.5p4. | 
 |   InitBuiltinType(SignedCharTy,        BuiltinType::SChar); | 
 |   InitBuiltinType(ShortTy,             BuiltinType::Short); | 
 |   InitBuiltinType(IntTy,               BuiltinType::Int); | 
 |   InitBuiltinType(LongTy,              BuiltinType::Long); | 
 |   InitBuiltinType(LongLongTy,          BuiltinType::LongLong); | 
 |  | 
 |   // C99 6.2.5p6. | 
 |   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar); | 
 |   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort); | 
 |   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt); | 
 |   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong); | 
 |   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong); | 
 |  | 
 |   // C99 6.2.5p10. | 
 |   InitBuiltinType(FloatTy,             BuiltinType::Float); | 
 |   InitBuiltinType(DoubleTy,            BuiltinType::Double); | 
 |   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble); | 
 |  | 
 |   // GNU extension, __float128 for IEEE quadruple precision | 
 |   InitBuiltinType(Float128Ty,          BuiltinType::Float128); | 
 |  | 
 |   // __ibm128 for IBM extended precision | 
 |   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128); | 
 |  | 
 |   // C11 extension ISO/IEC TS 18661-3 | 
 |   InitBuiltinType(Float16Ty,           BuiltinType::Float16); | 
 |  | 
 |   // ISO/IEC JTC1 SC22 WG14 N1169 Extension | 
 |   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum); | 
 |   InitBuiltinType(AccumTy,                 BuiltinType::Accum); | 
 |   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum); | 
 |   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum); | 
 |   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum); | 
 |   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum); | 
 |   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract); | 
 |   InitBuiltinType(FractTy,                 BuiltinType::Fract); | 
 |   InitBuiltinType(LongFractTy,             BuiltinType::LongFract); | 
 |   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract); | 
 |   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract); | 
 |   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract); | 
 |   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum); | 
 |   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum); | 
 |   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum); | 
 |   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); | 
 |   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum); | 
 |   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum); | 
 |   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract); | 
 |   InitBuiltinType(SatFractTy,              BuiltinType::SatFract); | 
 |   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract); | 
 |   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); | 
 |   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract); | 
 |   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract); | 
 |  | 
 |   // GNU extension, 128-bit integers. | 
 |   InitBuiltinType(Int128Ty,            BuiltinType::Int128); | 
 |   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128); | 
 |  | 
 |   // C++ 3.9.1p5 | 
 |   if (TargetInfo::isTypeSigned(Target.getWCharType())) | 
 |     InitBuiltinType(WCharTy,           BuiltinType::WChar_S); | 
 |   else  // -fshort-wchar makes wchar_t be unsigned. | 
 |     InitBuiltinType(WCharTy,           BuiltinType::WChar_U); | 
 |   if (LangOpts.CPlusPlus && LangOpts.WChar) | 
 |     WideCharTy = WCharTy; | 
 |   else { | 
 |     // C99 (or C++ using -fno-wchar). | 
 |     WideCharTy = getFromTargetType(Target.getWCharType()); | 
 |   } | 
 |  | 
 |   WIntTy = getFromTargetType(Target.getWIntType()); | 
 |  | 
 |   // C++20 (proposed) | 
 |   InitBuiltinType(Char8Ty,              BuiltinType::Char8); | 
 |  | 
 |   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
 |     InitBuiltinType(Char16Ty,           BuiltinType::Char16); | 
 |   else // C99 | 
 |     Char16Ty = getFromTargetType(Target.getChar16Type()); | 
 |  | 
 |   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
 |     InitBuiltinType(Char32Ty,           BuiltinType::Char32); | 
 |   else // C99 | 
 |     Char32Ty = getFromTargetType(Target.getChar32Type()); | 
 |  | 
 |   // Placeholder type for type-dependent expressions whose type is | 
 |   // completely unknown. No code should ever check a type against | 
 |   // DependentTy and users should never see it; however, it is here to | 
 |   // help diagnose failures to properly check for type-dependent | 
 |   // expressions. | 
 |   InitBuiltinType(DependentTy,         BuiltinType::Dependent); | 
 |  | 
 |   // Placeholder type for functions. | 
 |   InitBuiltinType(OverloadTy,          BuiltinType::Overload); | 
 |  | 
 |   // Placeholder type for bound members. | 
 |   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember); | 
 |  | 
 |   // Placeholder type for pseudo-objects. | 
 |   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject); | 
 |  | 
 |   // "any" type; useful for debugger-like clients. | 
 |   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny); | 
 |  | 
 |   // Placeholder type for unbridged ARC casts. | 
 |   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast); | 
 |  | 
 |   // Placeholder type for builtin functions. | 
 |   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn); | 
 |  | 
 |   // Placeholder type for OMP array sections. | 
 |   if (LangOpts.OpenMP) { | 
 |     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); | 
 |     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); | 
 |     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); | 
 |   } | 
 |   if (LangOpts.MatrixTypes) | 
 |     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); | 
 |  | 
 |   // Builtin types for 'id', 'Class', and 'SEL'. | 
 |   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); | 
 |   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); | 
 |   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); | 
 |  | 
 |   if (LangOpts.OpenCL) { | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
 |     InitBuiltinType(SingletonId, BuiltinType::Id); | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 |  | 
 |     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); | 
 |     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); | 
 |     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); | 
 |     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); | 
 |     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); | 
 |  | 
 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
 |     InitBuiltinType(Id##Ty, BuiltinType::Id); | 
 | #include "clang/Basic/OpenCLExtensionTypes.def" | 
 |   } | 
 |  | 
 |   if (Target.hasAArch64SVETypes()) { | 
 | #define SVE_TYPE(Name, Id, SingletonId) \ | 
 |     InitBuiltinType(SingletonId, BuiltinType::Id); | 
 | #include "clang/Basic/AArch64SVEACLETypes.def" | 
 |   } | 
 |  | 
 |   if (Target.getTriple().isPPC64()) { | 
 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ | 
 |       InitBuiltinType(Id##Ty, BuiltinType::Id); | 
 | #include "clang/Basic/PPCTypes.def" | 
 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ | 
 |     InitBuiltinType(Id##Ty, BuiltinType::Id); | 
 | #include "clang/Basic/PPCTypes.def" | 
 |   } | 
 |  | 
 |   if (Target.hasRISCVVTypes()) { | 
 | #define RVV_TYPE(Name, Id, SingletonId)                                        \ | 
 |   InitBuiltinType(SingletonId, BuiltinType::Id); | 
 | #include "clang/Basic/RISCVVTypes.def" | 
 |   } | 
 |  | 
 |   if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) { | 
 | #define WASM_TYPE(Name, Id, SingletonId)                                       \ | 
 |   InitBuiltinType(SingletonId, BuiltinType::Id); | 
 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
 |   } | 
 |  | 
 |   // Builtin type for __objc_yes and __objc_no | 
 |   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? | 
 |                        SignedCharTy : BoolTy); | 
 |  | 
 |   ObjCConstantStringType = QualType(); | 
 |  | 
 |   ObjCSuperType = QualType(); | 
 |  | 
 |   // void * type | 
 |   if (LangOpts.OpenCLGenericAddressSpace) { | 
 |     auto Q = VoidTy.getQualifiers(); | 
 |     Q.setAddressSpace(LangAS::opencl_generic); | 
 |     VoidPtrTy = getPointerType(getCanonicalType( | 
 |         getQualifiedType(VoidTy.getUnqualifiedType(), Q))); | 
 |   } else { | 
 |     VoidPtrTy = getPointerType(VoidTy); | 
 |   } | 
 |  | 
 |   // nullptr type (C++0x 2.14.7) | 
 |   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr); | 
 |  | 
 |   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 | 
 |   InitBuiltinType(HalfTy, BuiltinType::Half); | 
 |  | 
 |   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); | 
 |  | 
 |   // Builtin type used to help define __builtin_va_list. | 
 |   VaListTagDecl = nullptr; | 
 |  | 
 |   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. | 
 |   if (LangOpts.MicrosoftExt || LangOpts.Borland) { | 
 |     MSGuidTagDecl = buildImplicitRecord("_GUID"); | 
 |     getTranslationUnitDecl()->addDecl(MSGuidTagDecl); | 
 |   } | 
 | } | 
 |  | 
 | DiagnosticsEngine &ASTContext::getDiagnostics() const { | 
 |   return SourceMgr.getDiagnostics(); | 
 | } | 
 |  | 
 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { | 
 |   AttrVec *&Result = DeclAttrs[D]; | 
 |   if (!Result) { | 
 |     void *Mem = Allocate(sizeof(AttrVec)); | 
 |     Result = new (Mem) AttrVec; | 
 |   } | 
 |  | 
 |   return *Result; | 
 | } | 
 |  | 
 | /// Erase the attributes corresponding to the given declaration. | 
 | void ASTContext::eraseDeclAttrs(const Decl *D) { | 
 |   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); | 
 |   if (Pos != DeclAttrs.end()) { | 
 |     Pos->second->~AttrVec(); | 
 |     DeclAttrs.erase(Pos); | 
 |   } | 
 | } | 
 |  | 
 | // FIXME: Remove ? | 
 | MemberSpecializationInfo * | 
 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { | 
 |   assert(Var->isStaticDataMember() && "Not a static data member"); | 
 |   return getTemplateOrSpecializationInfo(Var) | 
 |       .dyn_cast<MemberSpecializationInfo *>(); | 
 | } | 
 |  | 
 | ASTContext::TemplateOrSpecializationInfo | 
 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { | 
 |   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = | 
 |       TemplateOrInstantiation.find(Var); | 
 |   if (Pos == TemplateOrInstantiation.end()) | 
 |     return {}; | 
 |  | 
 |   return Pos->second; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, | 
 |                                                 TemplateSpecializationKind TSK, | 
 |                                           SourceLocation PointOfInstantiation) { | 
 |   assert(Inst->isStaticDataMember() && "Not a static data member"); | 
 |   assert(Tmpl->isStaticDataMember() && "Not a static data member"); | 
 |   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( | 
 |                                             Tmpl, TSK, PointOfInstantiation)); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, | 
 |                                             TemplateOrSpecializationInfo TSI) { | 
 |   assert(!TemplateOrInstantiation[Inst] && | 
 |          "Already noted what the variable was instantiated from"); | 
 |   TemplateOrInstantiation[Inst] = TSI; | 
 | } | 
 |  | 
 | NamedDecl * | 
 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { | 
 |   return InstantiatedFromUsingDecl.lookup(UUD); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { | 
 |   assert((isa<UsingDecl>(Pattern) || | 
 |           isa<UnresolvedUsingValueDecl>(Pattern) || | 
 |           isa<UnresolvedUsingTypenameDecl>(Pattern)) && | 
 |          "pattern decl is not a using decl"); | 
 |   assert((isa<UsingDecl>(Inst) || | 
 |           isa<UnresolvedUsingValueDecl>(Inst) || | 
 |           isa<UnresolvedUsingTypenameDecl>(Inst)) && | 
 |          "instantiation did not produce a using decl"); | 
 |   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); | 
 |   InstantiatedFromUsingDecl[Inst] = Pattern; | 
 | } | 
 |  | 
 | UsingEnumDecl * | 
 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { | 
 |   return InstantiatedFromUsingEnumDecl.lookup(UUD); | 
 | } | 
 |  | 
 | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, | 
 |                                                   UsingEnumDecl *Pattern) { | 
 |   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists"); | 
 |   InstantiatedFromUsingEnumDecl[Inst] = Pattern; | 
 | } | 
 |  | 
 | UsingShadowDecl * | 
 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { | 
 |   return InstantiatedFromUsingShadowDecl.lookup(Inst); | 
 | } | 
 |  | 
 | void | 
 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, | 
 |                                                UsingShadowDecl *Pattern) { | 
 |   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); | 
 |   InstantiatedFromUsingShadowDecl[Inst] = Pattern; | 
 | } | 
 |  | 
 | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { | 
 |   return InstantiatedFromUnnamedFieldDecl.lookup(Field); | 
 | } | 
 |  | 
 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, | 
 |                                                      FieldDecl *Tmpl) { | 
 |   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); | 
 |   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); | 
 |   assert(!InstantiatedFromUnnamedFieldDecl[Inst] && | 
 |          "Already noted what unnamed field was instantiated from"); | 
 |  | 
 |   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; | 
 | } | 
 |  | 
 | ASTContext::overridden_cxx_method_iterator | 
 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { | 
 |   return overridden_methods(Method).begin(); | 
 | } | 
 |  | 
 | ASTContext::overridden_cxx_method_iterator | 
 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { | 
 |   return overridden_methods(Method).end(); | 
 | } | 
 |  | 
 | unsigned | 
 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { | 
 |   auto Range = overridden_methods(Method); | 
 |   return Range.end() - Range.begin(); | 
 | } | 
 |  | 
 | ASTContext::overridden_method_range | 
 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { | 
 |   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = | 
 |       OverriddenMethods.find(Method->getCanonicalDecl()); | 
 |   if (Pos == OverriddenMethods.end()) | 
 |     return overridden_method_range(nullptr, nullptr); | 
 |   return overridden_method_range(Pos->second.begin(), Pos->second.end()); | 
 | } | 
 |  | 
 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, | 
 |                                      const CXXMethodDecl *Overridden) { | 
 |   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); | 
 |   OverriddenMethods[Method].push_back(Overridden); | 
 | } | 
 |  | 
 | void ASTContext::getOverriddenMethods( | 
 |                       const NamedDecl *D, | 
 |                       SmallVectorImpl<const NamedDecl *> &Overridden) const { | 
 |   assert(D); | 
 |  | 
 |   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { | 
 |     Overridden.append(overridden_methods_begin(CXXMethod), | 
 |                       overridden_methods_end(CXXMethod)); | 
 |     return; | 
 |   } | 
 |  | 
 |   const auto *Method = dyn_cast<ObjCMethodDecl>(D); | 
 |   if (!Method) | 
 |     return; | 
 |  | 
 |   SmallVector<const ObjCMethodDecl *, 8> OverDecls; | 
 |   Method->getOverriddenMethods(OverDecls); | 
 |   Overridden.append(OverDecls.begin(), OverDecls.end()); | 
 | } | 
 |  | 
 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { | 
 |   assert(!Import->getNextLocalImport() && | 
 |          "Import declaration already in the chain"); | 
 |   assert(!Import->isFromASTFile() && "Non-local import declaration"); | 
 |   if (!FirstLocalImport) { | 
 |     FirstLocalImport = Import; | 
 |     LastLocalImport = Import; | 
 |     return; | 
 |   } | 
 |  | 
 |   LastLocalImport->setNextLocalImport(Import); | 
 |   LastLocalImport = Import; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Type Sizing and Analysis | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified | 
 | /// scalar floating point type. | 
 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { | 
 |   switch (T->castAs<BuiltinType>()->getKind()) { | 
 |   default: | 
 |     llvm_unreachable("Not a floating point type!"); | 
 |   case BuiltinType::BFloat16: | 
 |     return Target->getBFloat16Format(); | 
 |   case BuiltinType::Float16: | 
 |     return Target->getHalfFormat(); | 
 |   case BuiltinType::Half: | 
 |     // For HLSL, when the native half type is disabled, half will be treat as | 
 |     // float. | 
 |     if (getLangOpts().HLSL) | 
 |       if (getLangOpts().NativeHalfType) | 
 |         return Target->getHalfFormat(); | 
 |       else | 
 |         return Target->getFloatFormat(); | 
 |     else | 
 |       return Target->getHalfFormat(); | 
 |   case BuiltinType::Float:      return Target->getFloatFormat(); | 
 |   case BuiltinType::Double:     return Target->getDoubleFormat(); | 
 |   case BuiltinType::Ibm128: | 
 |     return Target->getIbm128Format(); | 
 |   case BuiltinType::LongDouble: | 
 |     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) | 
 |       return AuxTarget->getLongDoubleFormat(); | 
 |     return Target->getLongDoubleFormat(); | 
 |   case BuiltinType::Float128: | 
 |     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) | 
 |       return AuxTarget->getFloat128Format(); | 
 |     return Target->getFloat128Format(); | 
 |   } | 
 | } | 
 |  | 
 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { | 
 |   unsigned Align = Target->getCharWidth(); | 
 |  | 
 |   bool UseAlignAttrOnly = false; | 
 |   if (unsigned AlignFromAttr = D->getMaxAlignment()) { | 
 |     Align = AlignFromAttr; | 
 |  | 
 |     // __attribute__((aligned)) can increase or decrease alignment | 
 |     // *except* on a struct or struct member, where it only increases | 
 |     // alignment unless 'packed' is also specified. | 
 |     // | 
 |     // It is an error for alignas to decrease alignment, so we can | 
 |     // ignore that possibility;  Sema should diagnose it. | 
 |     if (isa<FieldDecl>(D)) { | 
 |       UseAlignAttrOnly = D->hasAttr<PackedAttr>() || | 
 |         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
 |     } else { | 
 |       UseAlignAttrOnly = true; | 
 |     } | 
 |   } | 
 |   else if (isa<FieldDecl>(D)) | 
 |       UseAlignAttrOnly = | 
 |         D->hasAttr<PackedAttr>() || | 
 |         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); | 
 |  | 
 |   // If we're using the align attribute only, just ignore everything | 
 |   // else about the declaration and its type. | 
 |   if (UseAlignAttrOnly) { | 
 |     // do nothing | 
 |   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { | 
 |     QualType T = VD->getType(); | 
 |     if (const auto *RT = T->getAs<ReferenceType>()) { | 
 |       if (ForAlignof) | 
 |         T = RT->getPointeeType(); | 
 |       else | 
 |         T = getPointerType(RT->getPointeeType()); | 
 |     } | 
 |     QualType BaseT = getBaseElementType(T); | 
 |     if (T->isFunctionType()) | 
 |       Align = getTypeInfoImpl(T.getTypePtr()).Align; | 
 |     else if (!BaseT->isIncompleteType()) { | 
 |       // Adjust alignments of declarations with array type by the | 
 |       // large-array alignment on the target. | 
 |       if (const ArrayType *arrayType = getAsArrayType(T)) { | 
 |         unsigned MinWidth = Target->getLargeArrayMinWidth(); | 
 |         if (!ForAlignof && MinWidth) { | 
 |           if (isa<VariableArrayType>(arrayType)) | 
 |             Align = std::max(Align, Target->getLargeArrayAlign()); | 
 |           else if (isa<ConstantArrayType>(arrayType) && | 
 |                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) | 
 |             Align = std::max(Align, Target->getLargeArrayAlign()); | 
 |         } | 
 |       } | 
 |       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); | 
 |       if (BaseT.getQualifiers().hasUnaligned()) | 
 |         Align = Target->getCharWidth(); | 
 |       if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |         if (VD->hasGlobalStorage() && !ForAlignof) { | 
 |           uint64_t TypeSize = getTypeSize(T.getTypePtr()); | 
 |           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize)); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Fields can be subject to extra alignment constraints, like if | 
 |     // the field is packed, the struct is packed, or the struct has a | 
 |     // a max-field-alignment constraint (#pragma pack).  So calculate | 
 |     // the actual alignment of the field within the struct, and then | 
 |     // (as we're expected to) constrain that by the alignment of the type. | 
 |     if (const auto *Field = dyn_cast<FieldDecl>(VD)) { | 
 |       const RecordDecl *Parent = Field->getParent(); | 
 |       // We can only produce a sensible answer if the record is valid. | 
 |       if (!Parent->isInvalidDecl()) { | 
 |         const ASTRecordLayout &Layout = getASTRecordLayout(Parent); | 
 |  | 
 |         // Start with the record's overall alignment. | 
 |         unsigned FieldAlign = toBits(Layout.getAlignment()); | 
 |  | 
 |         // Use the GCD of that and the offset within the record. | 
 |         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); | 
 |         if (Offset > 0) { | 
 |           // Alignment is always a power of 2, so the GCD will be a power of 2, | 
 |           // which means we get to do this crazy thing instead of Euclid's. | 
 |           uint64_t LowBitOfOffset = Offset & (~Offset + 1); | 
 |           if (LowBitOfOffset < FieldAlign) | 
 |             FieldAlign = static_cast<unsigned>(LowBitOfOffset); | 
 |         } | 
 |  | 
 |         Align = std::min(Align, FieldAlign); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Some targets have hard limitation on the maximum requestable alignment in | 
 |   // aligned attribute for static variables. | 
 |   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); | 
 |   const auto *VD = dyn_cast<VarDecl>(D); | 
 |   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) | 
 |     Align = std::min(Align, MaxAlignedAttr); | 
 |  | 
 |   return toCharUnitsFromBits(Align); | 
 | } | 
 |  | 
 | CharUnits ASTContext::getExnObjectAlignment() const { | 
 |   return toCharUnitsFromBits(Target->getExnObjectAlignment()); | 
 | } | 
 |  | 
 | // getTypeInfoDataSizeInChars - Return the size of a type, in | 
 | // chars. If the type is a record, its data size is returned.  This is | 
 | // the size of the memcpy that's performed when assigning this type | 
 | // using a trivial copy/move assignment operator. | 
 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { | 
 |   TypeInfoChars Info = getTypeInfoInChars(T); | 
 |  | 
 |   // In C++, objects can sometimes be allocated into the tail padding | 
 |   // of a base-class subobject.  We decide whether that's possible | 
 |   // during class layout, so here we can just trust the layout results. | 
 |   if (getLangOpts().CPlusPlus) { | 
 |     if (const auto *RT = T->getAs<RecordType>()) { | 
 |       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); | 
 |       Info.Width = layout.getDataSize(); | 
 |     } | 
 |   } | 
 |  | 
 |   return Info; | 
 | } | 
 |  | 
 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits | 
 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. | 
 | TypeInfoChars | 
 | static getConstantArrayInfoInChars(const ASTContext &Context, | 
 |                                    const ConstantArrayType *CAT) { | 
 |   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); | 
 |   uint64_t Size = CAT->getSize().getZExtValue(); | 
 |   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= | 
 |               (uint64_t)(-1)/Size) && | 
 |          "Overflow in array type char size evaluation"); | 
 |   uint64_t Width = EltInfo.Width.getQuantity() * Size; | 
 |   unsigned Align = EltInfo.Align.getQuantity(); | 
 |   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
 |       Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64) | 
 |     Width = llvm::alignTo(Width, Align); | 
 |   return TypeInfoChars(CharUnits::fromQuantity(Width), | 
 |                        CharUnits::fromQuantity(Align), | 
 |                        EltInfo.AlignRequirement); | 
 | } | 
 |  | 
 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { | 
 |   if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) | 
 |     return getConstantArrayInfoInChars(*this, CAT); | 
 |   TypeInfo Info = getTypeInfo(T); | 
 |   return TypeInfoChars(toCharUnitsFromBits(Info.Width), | 
 |                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement); | 
 | } | 
 |  | 
 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { | 
 |   return getTypeInfoInChars(T.getTypePtr()); | 
 | } | 
 |  | 
 | bool ASTContext::isPromotableIntegerType(QualType T) const { | 
 |   // HLSL doesn't promote all small integer types to int, it | 
 |   // just uses the rank-based promotion rules for all types. | 
 |   if (getLangOpts().HLSL) | 
 |     return false; | 
 |  | 
 |   if (const auto *BT = T->getAs<BuiltinType>()) | 
 |     switch (BT->getKind()) { | 
 |     case BuiltinType::Bool: | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::SChar: | 
 |     case BuiltinType::UChar: | 
 |     case BuiltinType::Short: | 
 |     case BuiltinType::UShort: | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |     case BuiltinType::Char8: | 
 |     case BuiltinType::Char16: | 
 |     case BuiltinType::Char32: | 
 |       return true; | 
 |     default: | 
 |       return false; | 
 |     } | 
 |  | 
 |   // Enumerated types are promotable to their compatible integer types | 
 |   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). | 
 |   if (const auto *ET = T->getAs<EnumType>()) { | 
 |     if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() || | 
 |         ET->getDecl()->isScoped()) | 
 |       return false; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool ASTContext::isAlignmentRequired(const Type *T) const { | 
 |   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; | 
 | } | 
 |  | 
 | bool ASTContext::isAlignmentRequired(QualType T) const { | 
 |   return isAlignmentRequired(T.getTypePtr()); | 
 | } | 
 |  | 
 | unsigned ASTContext::getTypeAlignIfKnown(QualType T, | 
 |                                          bool NeedsPreferredAlignment) const { | 
 |   // An alignment on a typedef overrides anything else. | 
 |   if (const auto *TT = T->getAs<TypedefType>()) | 
 |     if (unsigned Align = TT->getDecl()->getMaxAlignment()) | 
 |       return Align; | 
 |  | 
 |   // If we have an (array of) complete type, we're done. | 
 |   T = getBaseElementType(T); | 
 |   if (!T->isIncompleteType()) | 
 |     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); | 
 |  | 
 |   // If we had an array type, its element type might be a typedef | 
 |   // type with an alignment attribute. | 
 |   if (const auto *TT = T->getAs<TypedefType>()) | 
 |     if (unsigned Align = TT->getDecl()->getMaxAlignment()) | 
 |       return Align; | 
 |  | 
 |   // Otherwise, see if the declaration of the type had an attribute. | 
 |   if (const auto *TT = T->getAs<TagType>()) | 
 |     return TT->getDecl()->getMaxAlignment(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | TypeInfo ASTContext::getTypeInfo(const Type *T) const { | 
 |   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); | 
 |   if (I != MemoizedTypeInfo.end()) | 
 |     return I->second; | 
 |  | 
 |   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. | 
 |   TypeInfo TI = getTypeInfoImpl(T); | 
 |   MemoizedTypeInfo[T] = TI; | 
 |   return TI; | 
 | } | 
 |  | 
 | /// getTypeInfoImpl - Return the size of the specified type, in bits.  This | 
 | /// method does not work on incomplete types. | 
 | /// | 
 | /// FIXME: Pointers into different addr spaces could have different sizes and | 
 | /// alignment requirements: getPointerInfo should take an AddrSpace, this | 
 | /// should take a QualType, &c. | 
 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { | 
 |   uint64_t Width = 0; | 
 |   unsigned Align = 8; | 
 |   AlignRequirementKind AlignRequirement = AlignRequirementKind::None; | 
 |   LangAS AS = LangAS::Default; | 
 |   switch (T->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_TYPE(Class, Base) | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \ | 
 |   case Type::Class:                                                            \ | 
 |   assert(!T->isDependentType() && "should not see dependent types here");      \ | 
 |   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); | 
 | #include "clang/AST/TypeNodes.inc" | 
 |     llvm_unreachable("Should not see dependent types"); | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     // GCC extension: alignof(function) = 32 bits | 
 |     Width = 0; | 
 |     Align = 32; | 
 |     break; | 
 |  | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |   case Type::ConstantArray: { | 
 |     // Model non-constant sized arrays as size zero, but track the alignment. | 
 |     uint64_t Size = 0; | 
 |     if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) | 
 |       Size = CAT->getSize().getZExtValue(); | 
 |  | 
 |     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); | 
 |     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && | 
 |            "Overflow in array type bit size evaluation"); | 
 |     Width = EltInfo.Width * Size; | 
 |     Align = EltInfo.Align; | 
 |     AlignRequirement = EltInfo.AlignRequirement; | 
 |     if (!getTargetInfo().getCXXABI().isMicrosoft() || | 
 |         getTargetInfo().getPointerWidth(LangAS::Default) == 64) | 
 |       Width = llvm::alignTo(Width, Align); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ExtVector: | 
 |   case Type::Vector: { | 
 |     const auto *VT = cast<VectorType>(T); | 
 |     TypeInfo EltInfo = getTypeInfo(VT->getElementType()); | 
 |     Width = VT->isExtVectorBoolType() ? VT->getNumElements() | 
 |                                       : EltInfo.Width * VT->getNumElements(); | 
 |     // Enforce at least byte size and alignment. | 
 |     Width = std::max<unsigned>(8, Width); | 
 |     Align = std::max<unsigned>(8, Width); | 
 |  | 
 |     // If the alignment is not a power of 2, round up to the next power of 2. | 
 |     // This happens for non-power-of-2 length vectors. | 
 |     if (Align & (Align-1)) { | 
 |       Align = llvm::bit_ceil(Align); | 
 |       Width = llvm::alignTo(Width, Align); | 
 |     } | 
 |     // Adjust the alignment based on the target max. | 
 |     uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); | 
 |     if (TargetVectorAlign && TargetVectorAlign < Align) | 
 |       Align = TargetVectorAlign; | 
 |     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) | 
 |       // Adjust the alignment for fixed-length SVE vectors. This is important | 
 |       // for non-power-of-2 vector lengths. | 
 |       Align = 128; | 
 |     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) | 
 |       // Adjust the alignment for fixed-length SVE predicates. | 
 |       Align = 16; | 
 |     else if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector) | 
 |       // Adjust the alignment for fixed-length RVV vectors. | 
 |       Align = std::min<unsigned>(64, Width); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ConstantMatrix: { | 
 |     const auto *MT = cast<ConstantMatrixType>(T); | 
 |     TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); | 
 |     // The internal layout of a matrix value is implementation defined. | 
 |     // Initially be ABI compatible with arrays with respect to alignment and | 
 |     // size. | 
 |     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); | 
 |     Align = ElementInfo.Align; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Builtin: | 
 |     switch (cast<BuiltinType>(T)->getKind()) { | 
 |     default: llvm_unreachable("Unknown builtin type!"); | 
 |     case BuiltinType::Void: | 
 |       // GCC extension: alignof(void) = 8 bits. | 
 |       Width = 0; | 
 |       Align = 8; | 
 |       break; | 
 |     case BuiltinType::Bool: | 
 |       Width = Target->getBoolWidth(); | 
 |       Align = Target->getBoolAlign(); | 
 |       break; | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::UChar: | 
 |     case BuiltinType::SChar: | 
 |     case BuiltinType::Char8: | 
 |       Width = Target->getCharWidth(); | 
 |       Align = Target->getCharAlign(); | 
 |       break; | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |       Width = Target->getWCharWidth(); | 
 |       Align = Target->getWCharAlign(); | 
 |       break; | 
 |     case BuiltinType::Char16: | 
 |       Width = Target->getChar16Width(); | 
 |       Align = Target->getChar16Align(); | 
 |       break; | 
 |     case BuiltinType::Char32: | 
 |       Width = Target->getChar32Width(); | 
 |       Align = Target->getChar32Align(); | 
 |       break; | 
 |     case BuiltinType::UShort: | 
 |     case BuiltinType::Short: | 
 |       Width = Target->getShortWidth(); | 
 |       Align = Target->getShortAlign(); | 
 |       break; | 
 |     case BuiltinType::UInt: | 
 |     case BuiltinType::Int: | 
 |       Width = Target->getIntWidth(); | 
 |       Align = Target->getIntAlign(); | 
 |       break; | 
 |     case BuiltinType::ULong: | 
 |     case BuiltinType::Long: | 
 |       Width = Target->getLongWidth(); | 
 |       Align = Target->getLongAlign(); | 
 |       break; | 
 |     case BuiltinType::ULongLong: | 
 |     case BuiltinType::LongLong: | 
 |       Width = Target->getLongLongWidth(); | 
 |       Align = Target->getLongLongAlign(); | 
 |       break; | 
 |     case BuiltinType::Int128: | 
 |     case BuiltinType::UInt128: | 
 |       Width = 128; | 
 |       Align = Target->getInt128Align(); | 
 |       break; | 
 |     case BuiltinType::ShortAccum: | 
 |     case BuiltinType::UShortAccum: | 
 |     case BuiltinType::SatShortAccum: | 
 |     case BuiltinType::SatUShortAccum: | 
 |       Width = Target->getShortAccumWidth(); | 
 |       Align = Target->getShortAccumAlign(); | 
 |       break; | 
 |     case BuiltinType::Accum: | 
 |     case BuiltinType::UAccum: | 
 |     case BuiltinType::SatAccum: | 
 |     case BuiltinType::SatUAccum: | 
 |       Width = Target->getAccumWidth(); | 
 |       Align = Target->getAccumAlign(); | 
 |       break; | 
 |     case BuiltinType::LongAccum: | 
 |     case BuiltinType::ULongAccum: | 
 |     case BuiltinType::SatLongAccum: | 
 |     case BuiltinType::SatULongAccum: | 
 |       Width = Target->getLongAccumWidth(); | 
 |       Align = Target->getLongAccumAlign(); | 
 |       break; | 
 |     case BuiltinType::ShortFract: | 
 |     case BuiltinType::UShortFract: | 
 |     case BuiltinType::SatShortFract: | 
 |     case BuiltinType::SatUShortFract: | 
 |       Width = Target->getShortFractWidth(); | 
 |       Align = Target->getShortFractAlign(); | 
 |       break; | 
 |     case BuiltinType::Fract: | 
 |     case BuiltinType::UFract: | 
 |     case BuiltinType::SatFract: | 
 |     case BuiltinType::SatUFract: | 
 |       Width = Target->getFractWidth(); | 
 |       Align = Target->getFractAlign(); | 
 |       break; | 
 |     case BuiltinType::LongFract: | 
 |     case BuiltinType::ULongFract: | 
 |     case BuiltinType::SatLongFract: | 
 |     case BuiltinType::SatULongFract: | 
 |       Width = Target->getLongFractWidth(); | 
 |       Align = Target->getLongFractAlign(); | 
 |       break; | 
 |     case BuiltinType::BFloat16: | 
 |       if (Target->hasBFloat16Type()) { | 
 |         Width = Target->getBFloat16Width(); | 
 |         Align = Target->getBFloat16Align(); | 
 |       } else if ((getLangOpts().SYCLIsDevice || | 
 |                   (getLangOpts().OpenMP && | 
 |                    getLangOpts().OpenMPIsTargetDevice)) && | 
 |                  AuxTarget->hasBFloat16Type()) { | 
 |         Width = AuxTarget->getBFloat16Width(); | 
 |         Align = AuxTarget->getBFloat16Align(); | 
 |       } | 
 |       break; | 
 |     case BuiltinType::Float16: | 
 |     case BuiltinType::Half: | 
 |       if (Target->hasFloat16Type() || !getLangOpts().OpenMP || | 
 |           !getLangOpts().OpenMPIsTargetDevice) { | 
 |         Width = Target->getHalfWidth(); | 
 |         Align = Target->getHalfAlign(); | 
 |       } else { | 
 |         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
 |                "Expected OpenMP device compilation."); | 
 |         Width = AuxTarget->getHalfWidth(); | 
 |         Align = AuxTarget->getHalfAlign(); | 
 |       } | 
 |       break; | 
 |     case BuiltinType::Float: | 
 |       Width = Target->getFloatWidth(); | 
 |       Align = Target->getFloatAlign(); | 
 |       break; | 
 |     case BuiltinType::Double: | 
 |       Width = Target->getDoubleWidth(); | 
 |       Align = Target->getDoubleAlign(); | 
 |       break; | 
 |     case BuiltinType::Ibm128: | 
 |       Width = Target->getIbm128Width(); | 
 |       Align = Target->getIbm128Align(); | 
 |       break; | 
 |     case BuiltinType::LongDouble: | 
 |       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
 |           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || | 
 |            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { | 
 |         Width = AuxTarget->getLongDoubleWidth(); | 
 |         Align = AuxTarget->getLongDoubleAlign(); | 
 |       } else { | 
 |         Width = Target->getLongDoubleWidth(); | 
 |         Align = Target->getLongDoubleAlign(); | 
 |       } | 
 |       break; | 
 |     case BuiltinType::Float128: | 
 |       if (Target->hasFloat128Type() || !getLangOpts().OpenMP || | 
 |           !getLangOpts().OpenMPIsTargetDevice) { | 
 |         Width = Target->getFloat128Width(); | 
 |         Align = Target->getFloat128Align(); | 
 |       } else { | 
 |         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
 |                "Expected OpenMP device compilation."); | 
 |         Width = AuxTarget->getFloat128Width(); | 
 |         Align = AuxTarget->getFloat128Align(); | 
 |       } | 
 |       break; | 
 |     case BuiltinType::NullPtr: | 
 |       // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) | 
 |       Width = Target->getPointerWidth(LangAS::Default); | 
 |       Align = Target->getPointerAlign(LangAS::Default); | 
 |       break; | 
 |     case BuiltinType::ObjCId: | 
 |     case BuiltinType::ObjCClass: | 
 |     case BuiltinType::ObjCSel: | 
 |       Width = Target->getPointerWidth(LangAS::Default); | 
 |       Align = Target->getPointerAlign(LangAS::Default); | 
 |       break; | 
 |     case BuiltinType::OCLSampler: | 
 |     case BuiltinType::OCLEvent: | 
 |     case BuiltinType::OCLClkEvent: | 
 |     case BuiltinType::OCLQueue: | 
 |     case BuiltinType::OCLReserveID: | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
 |   case BuiltinType::Id: | 
 | #include "clang/Basic/OpenCLExtensionTypes.def" | 
 |       AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); | 
 |       Width = Target->getPointerWidth(AS); | 
 |       Align = Target->getPointerAlign(AS); | 
 |       break; | 
 |     // The SVE types are effectively target-specific.  The length of an | 
 |     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple | 
 |     // of 128 bits.  There is one predicate bit for each vector byte, so the | 
 |     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. | 
 |     // | 
 |     // Because the length is only known at runtime, we use a dummy value | 
 |     // of 0 for the static length.  The alignment values are those defined | 
 |     // by the Procedure Call Standard for the Arm Architecture. | 
 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \ | 
 |                         IsSigned, IsFP, IsBF)                                  \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = 128;                                                               \ | 
 |     break; | 
 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = 16;                                                                \ | 
 |     break; | 
 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = 16;                                                                \ | 
 |     break; | 
 | #include "clang/Basic/AArch64SVEACLETypes.def" | 
 | #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = Size;                                                              \ | 
 |     Align = Size;                                                              \ | 
 |     break; | 
 | #include "clang/Basic/PPCTypes.def" | 
 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \ | 
 |                         IsFP)                                                  \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = ElBits;                                                            \ | 
 |     break; | 
 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = 8;                                                                 \ | 
 |     break; | 
 | #include "clang/Basic/RISCVVTypes.def" | 
 | #define WASM_TYPE(Name, Id, SingletonId)                                       \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     Width = 0;                                                                 \ | 
 |     Align = 8;                                                                 \ | 
 |     break; | 
 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
 |     } | 
 |     break; | 
 |   case Type::ObjCObjectPointer: | 
 |     Width = Target->getPointerWidth(LangAS::Default); | 
 |     Align = Target->getPointerAlign(LangAS::Default); | 
 |     break; | 
 |   case Type::BlockPointer: | 
 |     AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace(); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: | 
 |     // alignof and sizeof should never enter this code path here, so we go | 
 |     // the pointer route. | 
 |     AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace(); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   case Type::Pointer: | 
 |     AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); | 
 |     Width = Target->getPointerWidth(AS); | 
 |     Align = Target->getPointerAlign(AS); | 
 |     break; | 
 |   case Type::MemberPointer: { | 
 |     const auto *MPT = cast<MemberPointerType>(T); | 
 |     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); | 
 |     Width = MPI.Width; | 
 |     Align = MPI.Align; | 
 |     break; | 
 |   } | 
 |   case Type::Complex: { | 
 |     // Complex types have the same alignment as their elements, but twice the | 
 |     // size. | 
 |     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); | 
 |     Width = EltInfo.Width * 2; | 
 |     Align = EltInfo.Align; | 
 |     break; | 
 |   } | 
 |   case Type::ObjCObject: | 
 |     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); | 
 |   case Type::Adjusted: | 
 |   case Type::Decayed: | 
 |     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); | 
 |   case Type::ObjCInterface: { | 
 |     const auto *ObjCI = cast<ObjCInterfaceType>(T); | 
 |     if (ObjCI->getDecl()->isInvalidDecl()) { | 
 |       Width = 8; | 
 |       Align = 8; | 
 |       break; | 
 |     } | 
 |     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
 |     Width = toBits(Layout.getSize()); | 
 |     Align = toBits(Layout.getAlignment()); | 
 |     break; | 
 |   } | 
 |   case Type::BitInt: { | 
 |     const auto *EIT = cast<BitIntType>(T); | 
 |     Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()), | 
 |                                  getCharWidth(), Target->getLongLongAlign()); | 
 |     Width = llvm::alignTo(EIT->getNumBits(), Align); | 
 |     break; | 
 |   } | 
 |   case Type::Record: | 
 |   case Type::Enum: { | 
 |     const auto *TT = cast<TagType>(T); | 
 |  | 
 |     if (TT->getDecl()->isInvalidDecl()) { | 
 |       Width = 8; | 
 |       Align = 8; | 
 |       break; | 
 |     } | 
 |  | 
 |     if (const auto *ET = dyn_cast<EnumType>(TT)) { | 
 |       const EnumDecl *ED = ET->getDecl(); | 
 |       TypeInfo Info = | 
 |           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); | 
 |       if (unsigned AttrAlign = ED->getMaxAlignment()) { | 
 |         Info.Align = AttrAlign; | 
 |         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; | 
 |       } | 
 |       return Info; | 
 |     } | 
 |  | 
 |     const auto *RT = cast<RecordType>(TT); | 
 |     const RecordDecl *RD = RT->getDecl(); | 
 |     const ASTRecordLayout &Layout = getASTRecordLayout(RD); | 
 |     Width = toBits(Layout.getSize()); | 
 |     Align = toBits(Layout.getAlignment()); | 
 |     AlignRequirement = RD->hasAttr<AlignedAttr>() | 
 |                            ? AlignRequirementKind::RequiredByRecord | 
 |                            : AlignRequirementKind::None; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::SubstTemplateTypeParm: | 
 |     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> | 
 |                        getReplacementType().getTypePtr()); | 
 |  | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: { | 
 |     const auto *A = cast<DeducedType>(T); | 
 |     assert(!A->getDeducedType().isNull() && | 
 |            "cannot request the size of an undeduced or dependent auto type"); | 
 |     return getTypeInfo(A->getDeducedType().getTypePtr()); | 
 |   } | 
 |  | 
 |   case Type::Paren: | 
 |     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); | 
 |  | 
 |   case Type::MacroQualified: | 
 |     return getTypeInfo( | 
 |         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); | 
 |  | 
 |   case Type::ObjCTypeParam: | 
 |     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); | 
 |  | 
 |   case Type::Using: | 
 |     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr()); | 
 |  | 
 |   case Type::Typedef: { | 
 |     const auto *TT = cast<TypedefType>(T); | 
 |     TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr()); | 
 |     // If the typedef has an aligned attribute on it, it overrides any computed | 
 |     // alignment we have.  This violates the GCC documentation (which says that | 
 |     // attribute(aligned) can only round up) but matches its implementation. | 
 |     if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { | 
 |       Align = AttrAlign; | 
 |       AlignRequirement = AlignRequirementKind::RequiredByTypedef; | 
 |     } else { | 
 |       Align = Info.Align; | 
 |       AlignRequirement = Info.AlignRequirement; | 
 |     } | 
 |     Width = Info.Width; | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Elaborated: | 
 |     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); | 
 |  | 
 |   case Type::Attributed: | 
 |     return getTypeInfo( | 
 |                   cast<AttributedType>(T)->getEquivalentType().getTypePtr()); | 
 |  | 
 |   case Type::BTFTagAttributed: | 
 |     return getTypeInfo( | 
 |         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr()); | 
 |  | 
 |   case Type::Atomic: { | 
 |     // Start with the base type information. | 
 |     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); | 
 |     Width = Info.Width; | 
 |     Align = Info.Align; | 
 |  | 
 |     if (!Width) { | 
 |       // An otherwise zero-sized type should still generate an | 
 |       // atomic operation. | 
 |       Width = Target->getCharWidth(); | 
 |       assert(Align); | 
 |     } else if (Width <= Target->getMaxAtomicPromoteWidth()) { | 
 |       // If the size of the type doesn't exceed the platform's max | 
 |       // atomic promotion width, make the size and alignment more | 
 |       // favorable to atomic operations: | 
 |  | 
 |       // Round the size up to a power of 2. | 
 |       Width = llvm::bit_ceil(Width); | 
 |  | 
 |       // Set the alignment equal to the size. | 
 |       Align = static_cast<unsigned>(Width); | 
 |     } | 
 |   } | 
 |   break; | 
 |  | 
 |   case Type::Pipe: | 
 |     Width = Target->getPointerWidth(LangAS::opencl_global); | 
 |     Align = Target->getPointerAlign(LangAS::opencl_global); | 
 |     break; | 
 |   } | 
 |  | 
 |   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); | 
 |   return TypeInfo(Width, Align, AlignRequirement); | 
 | } | 
 |  | 
 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { | 
 |   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); | 
 |   if (I != MemoizedUnadjustedAlign.end()) | 
 |     return I->second; | 
 |  | 
 |   unsigned UnadjustedAlign; | 
 |   if (const auto *RT = T->getAs<RecordType>()) { | 
 |     const RecordDecl *RD = RT->getDecl(); | 
 |     const ASTRecordLayout &Layout = getASTRecordLayout(RD); | 
 |     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); | 
 |   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { | 
 |     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
 |     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); | 
 |   } else { | 
 |     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); | 
 |   } | 
 |  | 
 |   MemoizedUnadjustedAlign[T] = UnadjustedAlign; | 
 |   return UnadjustedAlign; | 
 | } | 
 |  | 
 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { | 
 |   unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( | 
 |       getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap); | 
 |   return SimdAlign; | 
 | } | 
 |  | 
 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. | 
 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { | 
 |   return CharUnits::fromQuantity(BitSize / getCharWidth()); | 
 | } | 
 |  | 
 | /// toBits - Convert a size in characters to a size in characters. | 
 | int64_t ASTContext::toBits(CharUnits CharSize) const { | 
 |   return CharSize.getQuantity() * getCharWidth(); | 
 | } | 
 |  | 
 | /// getTypeSizeInChars - Return the size of the specified type, in characters. | 
 | /// This method does not work on incomplete types. | 
 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { | 
 |   return getTypeInfoInChars(T).Width; | 
 | } | 
 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { | 
 |   return getTypeInfoInChars(T).Width; | 
 | } | 
 |  | 
 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in | 
 | /// characters. This method does not work on incomplete types. | 
 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { | 
 |   return toCharUnitsFromBits(getTypeAlign(T)); | 
 | } | 
 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { | 
 |   return toCharUnitsFromBits(getTypeAlign(T)); | 
 | } | 
 |  | 
 | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a | 
 | /// type, in characters, before alignment adjustments. This method does | 
 | /// not work on incomplete types. | 
 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { | 
 |   return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); | 
 | } | 
 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { | 
 |   return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); | 
 | } | 
 |  | 
 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified | 
 | /// type for the current target in bits.  This can be different than the ABI | 
 | /// alignment in cases where it is beneficial for performance or backwards | 
 | /// compatibility preserving to overalign a data type. (Note: despite the name, | 
 | /// the preferred alignment is ABI-impacting, and not an optimization.) | 
 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { | 
 |   TypeInfo TI = getTypeInfo(T); | 
 |   unsigned ABIAlign = TI.Align; | 
 |  | 
 |   T = T->getBaseElementTypeUnsafe(); | 
 |  | 
 |   // The preferred alignment of member pointers is that of a pointer. | 
 |   if (T->isMemberPointerType()) | 
 |     return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); | 
 |  | 
 |   if (!Target->allowsLargerPreferedTypeAlignment()) | 
 |     return ABIAlign; | 
 |  | 
 |   if (const auto *RT = T->getAs<RecordType>()) { | 
 |     const RecordDecl *RD = RT->getDecl(); | 
 |  | 
 |     // When used as part of a typedef, or together with a 'packed' attribute, | 
 |     // the 'aligned' attribute can be used to decrease alignment. Note that the | 
 |     // 'packed' case is already taken into consideration when computing the | 
 |     // alignment, we only need to handle the typedef case here. | 
 |     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || | 
 |         RD->isInvalidDecl()) | 
 |       return ABIAlign; | 
 |  | 
 |     unsigned PreferredAlign = static_cast<unsigned>( | 
 |         toBits(getASTRecordLayout(RD).PreferredAlignment)); | 
 |     assert(PreferredAlign >= ABIAlign && | 
 |            "PreferredAlign should be at least as large as ABIAlign."); | 
 |     return PreferredAlign; | 
 |   } | 
 |  | 
 |   // Double (and, for targets supporting AIX `power` alignment, long double) and | 
 |   // long long should be naturally aligned (despite requiring less alignment) if | 
 |   // possible. | 
 |   if (const auto *CT = T->getAs<ComplexType>()) | 
 |     T = CT->getElementType().getTypePtr(); | 
 |   if (const auto *ET = T->getAs<EnumType>()) | 
 |     T = ET->getDecl()->getIntegerType().getTypePtr(); | 
 |   if (T->isSpecificBuiltinType(BuiltinType::Double) || | 
 |       T->isSpecificBuiltinType(BuiltinType::LongLong) || | 
 |       T->isSpecificBuiltinType(BuiltinType::ULongLong) || | 
 |       (T->isSpecificBuiltinType(BuiltinType::LongDouble) && | 
 |        Target->defaultsToAIXPowerAlignment())) | 
 |     // Don't increase the alignment if an alignment attribute was specified on a | 
 |     // typedef declaration. | 
 |     if (!TI.isAlignRequired()) | 
 |       return std::max(ABIAlign, (unsigned)getTypeSize(T)); | 
 |  | 
 |   return ABIAlign; | 
 | } | 
 |  | 
 | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment | 
 | /// for __attribute__((aligned)) on this target, to be used if no alignment | 
 | /// value is specified. | 
 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { | 
 |   return getTargetInfo().getDefaultAlignForAttributeAligned(); | 
 | } | 
 |  | 
 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given | 
 | /// to a global variable of the specified type. | 
 | unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { | 
 |   uint64_t TypeSize = getTypeSize(T.getTypePtr()); | 
 |   return std::max(getPreferredTypeAlign(T), | 
 |                   getTargetInfo().getMinGlobalAlign(TypeSize)); | 
 | } | 
 |  | 
 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that | 
 | /// should be given to a global variable of the specified type. | 
 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { | 
 |   return toCharUnitsFromBits(getAlignOfGlobalVar(T)); | 
 | } | 
 |  | 
 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { | 
 |   CharUnits Offset = CharUnits::Zero(); | 
 |   const ASTRecordLayout *Layout = &getASTRecordLayout(RD); | 
 |   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { | 
 |     Offset += Layout->getBaseClassOffset(Base); | 
 |     Layout = &getASTRecordLayout(Base); | 
 |   } | 
 |   return Offset; | 
 | } | 
 |  | 
 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { | 
 |   const ValueDecl *MPD = MP.getMemberPointerDecl(); | 
 |   CharUnits ThisAdjustment = CharUnits::Zero(); | 
 |   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); | 
 |   bool DerivedMember = MP.isMemberPointerToDerivedMember(); | 
 |   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); | 
 |   for (unsigned I = 0, N = Path.size(); I != N; ++I) { | 
 |     const CXXRecordDecl *Base = RD; | 
 |     const CXXRecordDecl *Derived = Path[I]; | 
 |     if (DerivedMember) | 
 |       std::swap(Base, Derived); | 
 |     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); | 
 |     RD = Path[I]; | 
 |   } | 
 |   if (DerivedMember) | 
 |     ThisAdjustment = -ThisAdjustment; | 
 |   return ThisAdjustment; | 
 | } | 
 |  | 
 | /// DeepCollectObjCIvars - | 
 | /// This routine first collects all declared, but not synthesized, ivars in | 
 | /// super class and then collects all ivars, including those synthesized for | 
 | /// current class. This routine is used for implementation of current class | 
 | /// when all ivars, declared and synthesized are known. | 
 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, | 
 |                                       bool leafClass, | 
 |                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { | 
 |   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) | 
 |     DeepCollectObjCIvars(SuperClass, false, Ivars); | 
 |   if (!leafClass) { | 
 |     llvm::append_range(Ivars, OI->ivars()); | 
 |   } else { | 
 |     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); | 
 |     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; | 
 |          Iv= Iv->getNextIvar()) | 
 |       Ivars.push_back(Iv); | 
 |   } | 
 | } | 
 |  | 
 | /// CollectInheritedProtocols - Collect all protocols in current class and | 
 | /// those inherited by it. | 
 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, | 
 |                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { | 
 |   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { | 
 |     // We can use protocol_iterator here instead of | 
 |     // all_referenced_protocol_iterator since we are walking all categories. | 
 |     for (auto *Proto : OI->all_referenced_protocols()) { | 
 |       CollectInheritedProtocols(Proto, Protocols); | 
 |     } | 
 |  | 
 |     // Categories of this Interface. | 
 |     for (const auto *Cat : OI->visible_categories()) | 
 |       CollectInheritedProtocols(Cat, Protocols); | 
 |  | 
 |     if (ObjCInterfaceDecl *SD = OI->getSuperClass()) | 
 |       while (SD) { | 
 |         CollectInheritedProtocols(SD, Protocols); | 
 |         SD = SD->getSuperClass(); | 
 |       } | 
 |   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { | 
 |     for (auto *Proto : OC->protocols()) { | 
 |       CollectInheritedProtocols(Proto, Protocols); | 
 |     } | 
 |   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { | 
 |     // Insert the protocol. | 
 |     if (!Protocols.insert( | 
 |           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) | 
 |       return; | 
 |  | 
 |     for (auto *Proto : OP->protocols()) | 
 |       CollectInheritedProtocols(Proto, Protocols); | 
 |   } | 
 | } | 
 |  | 
 | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, | 
 |                                                 const RecordDecl *RD, | 
 |                                                 bool CheckIfTriviallyCopyable) { | 
 |   assert(RD->isUnion() && "Must be union type"); | 
 |   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); | 
 |  | 
 |   for (const auto *Field : RD->fields()) { | 
 |     if (!Context.hasUniqueObjectRepresentations(Field->getType(), | 
 |                                                 CheckIfTriviallyCopyable)) | 
 |       return false; | 
 |     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); | 
 |     if (FieldSize != UnionSize) | 
 |       return false; | 
 |   } | 
 |   return !RD->field_empty(); | 
 | } | 
 |  | 
 | static int64_t getSubobjectOffset(const FieldDecl *Field, | 
 |                                   const ASTContext &Context, | 
 |                                   const clang::ASTRecordLayout & /*Layout*/) { | 
 |   return Context.getFieldOffset(Field); | 
 | } | 
 |  | 
 | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, | 
 |                                   const ASTContext &Context, | 
 |                                   const clang::ASTRecordLayout &Layout) { | 
 |   return Context.toBits(Layout.getBaseClassOffset(RD)); | 
 | } | 
 |  | 
 | static std::optional<int64_t> | 
 | structHasUniqueObjectRepresentations(const ASTContext &Context, | 
 |                                      const RecordDecl *RD, | 
 |                                      bool CheckIfTriviallyCopyable); | 
 |  | 
 | static std::optional<int64_t> | 
 | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, | 
 |                        bool CheckIfTriviallyCopyable) { | 
 |   if (Field->getType()->isRecordType()) { | 
 |     const RecordDecl *RD = Field->getType()->getAsRecordDecl(); | 
 |     if (!RD->isUnion()) | 
 |       return structHasUniqueObjectRepresentations(Context, RD, | 
 |                                                   CheckIfTriviallyCopyable); | 
 |   } | 
 |  | 
 |   // A _BitInt type may not be unique if it has padding bits | 
 |   // but if it is a bitfield the padding bits are not used. | 
 |   bool IsBitIntType = Field->getType()->isBitIntType(); | 
 |   if (!Field->getType()->isReferenceType() && !IsBitIntType && | 
 |       !Context.hasUniqueObjectRepresentations(Field->getType(), | 
 |                                               CheckIfTriviallyCopyable)) | 
 |     return std::nullopt; | 
 |  | 
 |   int64_t FieldSizeInBits = | 
 |       Context.toBits(Context.getTypeSizeInChars(Field->getType())); | 
 |   if (Field->isBitField()) { | 
 |     // If we have explicit padding bits, they don't contribute bits | 
 |     // to the actual object representation, so return 0. | 
 |     if (Field->isUnnamedBitfield()) | 
 |       return 0; | 
 |  | 
 |     int64_t BitfieldSize = Field->getBitWidthValue(Context); | 
 |     if (IsBitIntType) { | 
 |       if ((unsigned)BitfieldSize > | 
 |           cast<BitIntType>(Field->getType())->getNumBits()) | 
 |         return std::nullopt; | 
 |     } else if (BitfieldSize > FieldSizeInBits) { | 
 |       return std::nullopt; | 
 |     } | 
 |     FieldSizeInBits = BitfieldSize; | 
 |   } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( | 
 |                                  Field->getType(), CheckIfTriviallyCopyable)) { | 
 |     return std::nullopt; | 
 |   } | 
 |   return FieldSizeInBits; | 
 | } | 
 |  | 
 | static std::optional<int64_t> | 
 | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, | 
 |                        bool CheckIfTriviallyCopyable) { | 
 |   return structHasUniqueObjectRepresentations(Context, RD, | 
 |                                               CheckIfTriviallyCopyable); | 
 | } | 
 |  | 
 | template <typename RangeT> | 
 | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( | 
 |     const RangeT &Subobjects, int64_t CurOffsetInBits, | 
 |     const ASTContext &Context, const clang::ASTRecordLayout &Layout, | 
 |     bool CheckIfTriviallyCopyable) { | 
 |   for (const auto *Subobject : Subobjects) { | 
 |     std::optional<int64_t> SizeInBits = | 
 |         getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); | 
 |     if (!SizeInBits) | 
 |       return std::nullopt; | 
 |     if (*SizeInBits != 0) { | 
 |       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); | 
 |       if (Offset != CurOffsetInBits) | 
 |         return std::nullopt; | 
 |       CurOffsetInBits += *SizeInBits; | 
 |     } | 
 |   } | 
 |   return CurOffsetInBits; | 
 | } | 
 |  | 
 | static std::optional<int64_t> | 
 | structHasUniqueObjectRepresentations(const ASTContext &Context, | 
 |                                      const RecordDecl *RD, | 
 |                                      bool CheckIfTriviallyCopyable) { | 
 |   assert(!RD->isUnion() && "Must be struct/class type"); | 
 |   const auto &Layout = Context.getASTRecordLayout(RD); | 
 |  | 
 |   int64_t CurOffsetInBits = 0; | 
 |   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { | 
 |     if (ClassDecl->isDynamicClass()) | 
 |       return std::nullopt; | 
 |  | 
 |     SmallVector<CXXRecordDecl *, 4> Bases; | 
 |     for (const auto &Base : ClassDecl->bases()) { | 
 |       // Empty types can be inherited from, and non-empty types can potentially | 
 |       // have tail padding, so just make sure there isn't an error. | 
 |       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl()); | 
 |     } | 
 |  | 
 |     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { | 
 |       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); | 
 |     }); | 
 |  | 
 |     std::optional<int64_t> OffsetAfterBases = | 
 |         structSubobjectsHaveUniqueObjectRepresentations( | 
 |             Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); | 
 |     if (!OffsetAfterBases) | 
 |       return std::nullopt; | 
 |     CurOffsetInBits = *OffsetAfterBases; | 
 |   } | 
 |  | 
 |   std::optional<int64_t> OffsetAfterFields = | 
 |       structSubobjectsHaveUniqueObjectRepresentations( | 
 |           RD->fields(), CurOffsetInBits, Context, Layout, | 
 |           CheckIfTriviallyCopyable); | 
 |   if (!OffsetAfterFields) | 
 |     return std::nullopt; | 
 |   CurOffsetInBits = *OffsetAfterFields; | 
 |  | 
 |   return CurOffsetInBits; | 
 | } | 
 |  | 
 | bool ASTContext::hasUniqueObjectRepresentations( | 
 |     QualType Ty, bool CheckIfTriviallyCopyable) const { | 
 |   // C++17 [meta.unary.prop]: | 
 |   //   The predicate condition for a template specialization | 
 |   //   has_unique_object_representations<T> shall be | 
 |   //   satisfied if and only if: | 
 |   //     (9.1) - T is trivially copyable, and | 
 |   //     (9.2) - any two objects of type T with the same value have the same | 
 |   //     object representation, where two objects | 
 |   //   of array or non-union class type are considered to have the same value | 
 |   //   if their respective sequences of | 
 |   //   direct subobjects have the same values, and two objects of union type | 
 |   //   are considered to have the same | 
 |   //   value if they have the same active member and the corresponding members | 
 |   //   have the same value. | 
 |   //   The set of scalar types for which this condition holds is | 
 |   //   implementation-defined. [ Note: If a type has padding | 
 |   //   bits, the condition does not hold; otherwise, the condition holds true | 
 |   //   for unsigned integral types. -- end note ] | 
 |   assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); | 
 |  | 
 |   // Arrays are unique only if their element type is unique. | 
 |   if (Ty->isArrayType()) | 
 |     return hasUniqueObjectRepresentations(getBaseElementType(Ty), | 
 |                                           CheckIfTriviallyCopyable); | 
 |  | 
 |   // (9.1) - T is trivially copyable... | 
 |   if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this)) | 
 |     return false; | 
 |  | 
 |   // All integrals and enums are unique. | 
 |   if (Ty->isIntegralOrEnumerationType()) { | 
 |     // Except _BitInt types that have padding bits. | 
 |     if (const auto *BIT = Ty->getAs<BitIntType>()) | 
 |       return getTypeSize(BIT) == BIT->getNumBits(); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // All other pointers are unique. | 
 |   if (Ty->isPointerType()) | 
 |     return true; | 
 |  | 
 |   if (const auto *MPT = Ty->getAs<MemberPointerType>()) | 
 |     return !ABI->getMemberPointerInfo(MPT).HasPadding; | 
 |  | 
 |   if (Ty->isRecordType()) { | 
 |     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); | 
 |  | 
 |     if (Record->isInvalidDecl()) | 
 |       return false; | 
 |  | 
 |     if (Record->isUnion()) | 
 |       return unionHasUniqueObjectRepresentations(*this, Record, | 
 |                                                  CheckIfTriviallyCopyable); | 
 |  | 
 |     std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( | 
 |         *this, Record, CheckIfTriviallyCopyable); | 
 |  | 
 |     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty)); | 
 |   } | 
 |  | 
 |   // FIXME: More cases to handle here (list by rsmith): | 
 |   // vectors (careful about, eg, vector of 3 foo) | 
 |   // _Complex int and friends | 
 |   // _Atomic T | 
 |   // Obj-C block pointers | 
 |   // Obj-C object pointers | 
 |   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, | 
 |   // clk_event_t, queue_t, reserve_id_t) | 
 |   // There're also Obj-C class types and the Obj-C selector type, but I think it | 
 |   // makes sense for those to return false here. | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { | 
 |   unsigned count = 0; | 
 |   // Count ivars declared in class extension. | 
 |   for (const auto *Ext : OI->known_extensions()) | 
 |     count += Ext->ivar_size(); | 
 |  | 
 |   // Count ivar defined in this class's implementation.  This | 
 |   // includes synthesized ivars. | 
 |   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) | 
 |     count += ImplDecl->ivar_size(); | 
 |  | 
 |   return count; | 
 | } | 
 |  | 
 | bool ASTContext::isSentinelNullExpr(const Expr *E) { | 
 |   if (!E) | 
 |     return false; | 
 |  | 
 |   // nullptr_t is always treated as null. | 
 |   if (E->getType()->isNullPtrType()) return true; | 
 |  | 
 |   if (E->getType()->isAnyPointerType() && | 
 |       E->IgnoreParenCasts()->isNullPointerConstant(*this, | 
 |                                                 Expr::NPC_ValueDependentIsNull)) | 
 |     return true; | 
 |  | 
 |   // Unfortunately, __null has type 'int'. | 
 |   if (isa<GNUNullExpr>(E)) return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none | 
 | /// exists. | 
 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { | 
 |   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
 |     I = ObjCImpls.find(D); | 
 |   if (I != ObjCImpls.end()) | 
 |     return cast<ObjCImplementationDecl>(I->second); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Get the implementation of ObjCCategoryDecl, or nullptr if none | 
 | /// exists. | 
 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { | 
 |   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
 |     I = ObjCImpls.find(D); | 
 |   if (I != ObjCImpls.end()) | 
 |     return cast<ObjCCategoryImplDecl>(I->second); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Set the implementation of ObjCInterfaceDecl. | 
 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, | 
 |                            ObjCImplementationDecl *ImplD) { | 
 |   assert(IFaceD && ImplD && "Passed null params"); | 
 |   ObjCImpls[IFaceD] = ImplD; | 
 | } | 
 |  | 
 | /// Set the implementation of ObjCCategoryDecl. | 
 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, | 
 |                            ObjCCategoryImplDecl *ImplD) { | 
 |   assert(CatD && ImplD && "Passed null params"); | 
 |   ObjCImpls[CatD] = ImplD; | 
 | } | 
 |  | 
 | const ObjCMethodDecl * | 
 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { | 
 |   return ObjCMethodRedecls.lookup(MD); | 
 | } | 
 |  | 
 | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, | 
 |                                             const ObjCMethodDecl *Redecl) { | 
 |   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); | 
 |   ObjCMethodRedecls[MD] = Redecl; | 
 | } | 
 |  | 
 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( | 
 |                                               const NamedDecl *ND) const { | 
 |   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) | 
 |     return ID; | 
 |   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) | 
 |     return CD->getClassInterface(); | 
 |   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) | 
 |     return IMD->getClassInterface(); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// Get the copy initialization expression of VarDecl, or nullptr if | 
 | /// none exists. | 
 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { | 
 |   assert(VD && "Passed null params"); | 
 |   assert(VD->hasAttr<BlocksAttr>() && | 
 |          "getBlockVarCopyInits - not __block var"); | 
 |   auto I = BlockVarCopyInits.find(VD); | 
 |   if (I != BlockVarCopyInits.end()) | 
 |     return I->second; | 
 |   return {nullptr, false}; | 
 | } | 
 |  | 
 | /// Set the copy initialization expression of a block var decl. | 
 | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, | 
 |                                      bool CanThrow) { | 
 |   assert(VD && CopyExpr && "Passed null params"); | 
 |   assert(VD->hasAttr<BlocksAttr>() && | 
 |          "setBlockVarCopyInits - not __block var"); | 
 |   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); | 
 | } | 
 |  | 
 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, | 
 |                                                  unsigned DataSize) const { | 
 |   if (!DataSize) | 
 |     DataSize = TypeLoc::getFullDataSizeForType(T); | 
 |   else | 
 |     assert(DataSize == TypeLoc::getFullDataSizeForType(T) && | 
 |            "incorrect data size provided to CreateTypeSourceInfo!"); | 
 |  | 
 |   auto *TInfo = | 
 |     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); | 
 |   new (TInfo) TypeSourceInfo(T, DataSize); | 
 |   return TInfo; | 
 | } | 
 |  | 
 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, | 
 |                                                      SourceLocation L) const { | 
 |   TypeSourceInfo *DI = CreateTypeSourceInfo(T); | 
 |   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); | 
 |   return DI; | 
 | } | 
 |  | 
 | const ASTRecordLayout & | 
 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { | 
 |   return getObjCLayout(D, nullptr); | 
 | } | 
 |  | 
 | const ASTRecordLayout & | 
 | ASTContext::getASTObjCImplementationLayout( | 
 |                                         const ObjCImplementationDecl *D) const { | 
 |   return getObjCLayout(D->getClassInterface(), D); | 
 | } | 
 |  | 
 | static auto getCanonicalTemplateArguments(const ASTContext &C, | 
 |                                           ArrayRef<TemplateArgument> Args, | 
 |                                           bool &AnyNonCanonArgs) { | 
 |   SmallVector<TemplateArgument, 16> CanonArgs(Args); | 
 |   for (auto &Arg : CanonArgs) { | 
 |     TemplateArgument OrigArg = Arg; | 
 |     Arg = C.getCanonicalTemplateArgument(Arg); | 
 |     AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg); | 
 |   } | 
 |   return CanonArgs; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   Type creation/memoization methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | QualType | 
 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { | 
 |   unsigned fastQuals = quals.getFastQualifiers(); | 
 |   quals.removeFastQualifiers(); | 
 |  | 
 |   // Check if we've already instantiated this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ExtQuals::Profile(ID, baseType, quals); | 
 |   void *insertPos = nullptr; | 
 |   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { | 
 |     assert(eq->getQualifiers() == quals); | 
 |     return QualType(eq, fastQuals); | 
 |   } | 
 |  | 
 |   // If the base type is not canonical, make the appropriate canonical type. | 
 |   QualType canon; | 
 |   if (!baseType->isCanonicalUnqualified()) { | 
 |     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); | 
 |     canonSplit.Quals.addConsistentQualifiers(quals); | 
 |     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); | 
 |  | 
 |     // Re-find the insert position. | 
 |     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); | 
 |   } | 
 |  | 
 |   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); | 
 |   ExtQualNodes.InsertNode(eq, insertPos); | 
 |   return QualType(eq, fastQuals); | 
 | } | 
 |  | 
 | QualType ASTContext::getAddrSpaceQualType(QualType T, | 
 |                                           LangAS AddressSpace) const { | 
 |   QualType CanT = getCanonicalType(T); | 
 |   if (CanT.getAddressSpace() == AddressSpace) | 
 |     return T; | 
 |  | 
 |   // If we are composing extended qualifiers together, merge together | 
 |   // into one ExtQuals node. | 
 |   QualifierCollector Quals; | 
 |   const Type *TypeNode = Quals.strip(T); | 
 |  | 
 |   // If this type already has an address space specified, it cannot get | 
 |   // another one. | 
 |   assert(!Quals.hasAddressSpace() && | 
 |          "Type cannot be in multiple addr spaces!"); | 
 |   Quals.addAddressSpace(AddressSpace); | 
 |  | 
 |   return getExtQualType(TypeNode, Quals); | 
 | } | 
 |  | 
 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { | 
 |   // If the type is not qualified with an address space, just return it | 
 |   // immediately. | 
 |   if (!T.hasAddressSpace()) | 
 |     return T; | 
 |  | 
 |   // If we are composing extended qualifiers together, merge together | 
 |   // into one ExtQuals node. | 
 |   QualifierCollector Quals; | 
 |   const Type *TypeNode; | 
 |  | 
 |   while (T.hasAddressSpace()) { | 
 |     TypeNode = Quals.strip(T); | 
 |  | 
 |     // If the type no longer has an address space after stripping qualifiers, | 
 |     // jump out. | 
 |     if (!QualType(TypeNode, 0).hasAddressSpace()) | 
 |       break; | 
 |  | 
 |     // There might be sugar in the way. Strip it and try again. | 
 |     T = T.getSingleStepDesugaredType(*this); | 
 |   } | 
 |  | 
 |   Quals.removeAddressSpace(); | 
 |  | 
 |   // Removal of the address space can mean there are no longer any | 
 |   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) | 
 |   // or required. | 
 |   if (Quals.hasNonFastQualifiers()) | 
 |     return getExtQualType(TypeNode, Quals); | 
 |   else | 
 |     return QualType(TypeNode, Quals.getFastQualifiers()); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCGCQualType(QualType T, | 
 |                                        Qualifiers::GC GCAttr) const { | 
 |   QualType CanT = getCanonicalType(T); | 
 |   if (CanT.getObjCGCAttr() == GCAttr) | 
 |     return T; | 
 |  | 
 |   if (const auto *ptr = T->getAs<PointerType>()) { | 
 |     QualType Pointee = ptr->getPointeeType(); | 
 |     if (Pointee->isAnyPointerType()) { | 
 |       QualType ResultType = getObjCGCQualType(Pointee, GCAttr); | 
 |       return getPointerType(ResultType); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we are composing extended qualifiers together, merge together | 
 |   // into one ExtQuals node. | 
 |   QualifierCollector Quals; | 
 |   const Type *TypeNode = Quals.strip(T); | 
 |  | 
 |   // If this type already has an ObjCGC specified, it cannot get | 
 |   // another one. | 
 |   assert(!Quals.hasObjCGCAttr() && | 
 |          "Type cannot have multiple ObjCGCs!"); | 
 |   Quals.addObjCGCAttr(GCAttr); | 
 |  | 
 |   return getExtQualType(TypeNode, Quals); | 
 | } | 
 |  | 
 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { | 
 |   if (const PointerType *Ptr = T->getAs<PointerType>()) { | 
 |     QualType Pointee = Ptr->getPointeeType(); | 
 |     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { | 
 |       return getPointerType(removeAddrSpaceQualType(Pointee)); | 
 |     } | 
 |   } | 
 |   return T; | 
 | } | 
 |  | 
 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, | 
 |                                                    FunctionType::ExtInfo Info) { | 
 |   if (T->getExtInfo() == Info) | 
 |     return T; | 
 |  | 
 |   QualType Result; | 
 |   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { | 
 |     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); | 
 |   } else { | 
 |     const auto *FPT = cast<FunctionProtoType>(T); | 
 |     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |     EPI.ExtInfo = Info; | 
 |     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); | 
 |   } | 
 |  | 
 |   return cast<FunctionType>(Result.getTypePtr()); | 
 | } | 
 |  | 
 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, | 
 |                                                  QualType ResultType) { | 
 |   FD = FD->getMostRecentDecl(); | 
 |   while (true) { | 
 |     const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); | 
 |     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); | 
 |     if (FunctionDecl *Next = FD->getPreviousDecl()) | 
 |       FD = Next; | 
 |     else | 
 |       break; | 
 |   } | 
 |   if (ASTMutationListener *L = getASTMutationListener()) | 
 |     L->DeducedReturnType(FD, ResultType); | 
 | } | 
 |  | 
 | /// Get a function type and produce the equivalent function type with the | 
 | /// specified exception specification. Type sugar that can be present on a | 
 | /// declaration of a function with an exception specification is permitted | 
 | /// and preserved. Other type sugar (for instance, typedefs) is not. | 
 | QualType ASTContext::getFunctionTypeWithExceptionSpec( | 
 |     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { | 
 |   // Might have some parens. | 
 |   if (const auto *PT = dyn_cast<ParenType>(Orig)) | 
 |     return getParenType( | 
 |         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); | 
 |  | 
 |   // Might be wrapped in a macro qualified type. | 
 |   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig)) | 
 |     return getMacroQualifiedType( | 
 |         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI), | 
 |         MQT->getMacroIdentifier()); | 
 |  | 
 |   // Might have a calling-convention attribute. | 
 |   if (const auto *AT = dyn_cast<AttributedType>(Orig)) | 
 |     return getAttributedType( | 
 |         AT->getAttrKind(), | 
 |         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), | 
 |         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); | 
 |  | 
 |   // Anything else must be a function type. Rebuild it with the new exception | 
 |   // specification. | 
 |   const auto *Proto = Orig->castAs<FunctionProtoType>(); | 
 |   return getFunctionType( | 
 |       Proto->getReturnType(), Proto->getParamTypes(), | 
 |       Proto->getExtProtoInfo().withExceptionSpec(ESI)); | 
 | } | 
 |  | 
 | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, | 
 |                                                           QualType U) const { | 
 |   return hasSameType(T, U) || | 
 |          (getLangOpts().CPlusPlus17 && | 
 |           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), | 
 |                       getFunctionTypeWithExceptionSpec(U, EST_None))); | 
 | } | 
 |  | 
 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { | 
 |   if (const auto *Proto = T->getAs<FunctionProtoType>()) { | 
 |     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); | 
 |     SmallVector<QualType, 16> Args(Proto->param_types().size()); | 
 |     for (unsigned i = 0, n = Args.size(); i != n; ++i) | 
 |       Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]); | 
 |     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); | 
 |   } | 
 |  | 
 |   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { | 
 |     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); | 
 |     return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); | 
 |   } | 
 |  | 
 |   return T; | 
 | } | 
 |  | 
 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { | 
 |   return hasSameType(T, U) || | 
 |          hasSameType(getFunctionTypeWithoutPtrSizes(T), | 
 |                      getFunctionTypeWithoutPtrSizes(U)); | 
 | } | 
 |  | 
 | void ASTContext::adjustExceptionSpec( | 
 |     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, | 
 |     bool AsWritten) { | 
 |   // Update the type. | 
 |   QualType Updated = | 
 |       getFunctionTypeWithExceptionSpec(FD->getType(), ESI); | 
 |   FD->setType(Updated); | 
 |  | 
 |   if (!AsWritten) | 
 |     return; | 
 |  | 
 |   // Update the type in the type source information too. | 
 |   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { | 
 |     // If the type and the type-as-written differ, we may need to update | 
 |     // the type-as-written too. | 
 |     if (TSInfo->getType() != FD->getType()) | 
 |       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); | 
 |  | 
 |     // FIXME: When we get proper type location information for exceptions, | 
 |     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch | 
 |     // up the TypeSourceInfo; | 
 |     assert(TypeLoc::getFullDataSizeForType(Updated) == | 
 |                TypeLoc::getFullDataSizeForType(TSInfo->getType()) && | 
 |            "TypeLoc size mismatch from updating exception specification"); | 
 |     TSInfo->overrideType(Updated); | 
 |   } | 
 | } | 
 |  | 
 | /// getComplexType - Return the uniqued reference to the type for a complex | 
 | /// number with the specified element type. | 
 | QualType ASTContext::getComplexType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ComplexType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(CT, 0); | 
 |  | 
 |   // If the pointee type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getComplexType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   ComplexTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getPointerType - Return the uniqued reference to the type for a pointer to | 
 | /// the specified type. | 
 | QualType ASTContext::getPointerType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   PointerType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the pointee type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getPointerType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   PointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AdjustedType::Profile(ID, Orig, New); | 
 |   void *InsertPos = nullptr; | 
 |   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (AT) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   QualType Canonical = getCanonicalType(New); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!AT && "Shouldn't be in the map!"); | 
 |  | 
 |   AT = new (*this, TypeAlignment) | 
 |       AdjustedType(Type::Adjusted, Orig, New, Canonical); | 
 |   Types.push_back(AT); | 
 |   AdjustedTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AdjustedType::Profile(ID, Orig, Decayed); | 
 |   void *InsertPos = nullptr; | 
 |   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (AT) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   QualType Canonical = getCanonicalType(Decayed); | 
 |  | 
 |   // Get the new insert position for the node we care about. | 
 |   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   assert(!AT && "Shouldn't be in the map!"); | 
 |  | 
 |   AT = new (*this, TypeAlignment) DecayedType(Orig, Decayed, Canonical); | 
 |   Types.push_back(AT); | 
 |   AdjustedTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDecayedType(QualType T) const { | 
 |   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); | 
 |  | 
 |   QualType Decayed; | 
 |  | 
 |   // C99 6.7.5.3p7: | 
 |   //   A declaration of a parameter as "array of type" shall be | 
 |   //   adjusted to "qualified pointer to type", where the type | 
 |   //   qualifiers (if any) are those specified within the [ and ] of | 
 |   //   the array type derivation. | 
 |   if (T->isArrayType()) | 
 |     Decayed = getArrayDecayedType(T); | 
 |  | 
 |   // C99 6.7.5.3p8: | 
 |   //   A declaration of a parameter as "function returning type" | 
 |   //   shall be adjusted to "pointer to function returning type", as | 
 |   //   in 6.3.2.1. | 
 |   if (T->isFunctionType()) | 
 |     Decayed = getPointerType(T); | 
 |  | 
 |   return getDecayedType(T, Decayed); | 
 | } | 
 |  | 
 | /// getBlockPointerType - Return the uniqued reference to the type for | 
 | /// a pointer to the specified block. | 
 | QualType ASTContext::getBlockPointerType(QualType T) const { | 
 |   assert(T->isFunctionType() && "block of function types only"); | 
 |   // Unique pointers, to guarantee there is only one block of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   BlockPointerType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (BlockPointerType *PT = | 
 |         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the block pointee type isn't canonical, this won't be a canonical | 
 |   // type either so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getBlockPointerType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     BlockPointerType *NewIP = | 
 |       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   BlockPointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getLValueReferenceType - Return the uniqued reference to the type for an | 
 | /// lvalue reference to the specified type. | 
 | QualType | 
 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { | 
 |   assert((!T->isPlaceholderType() || | 
 |           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && | 
 |          "Unresolved placeholder type"); | 
 |  | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ReferenceType::Profile(ID, T, SpelledAsLValue); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (LValueReferenceType *RT = | 
 |         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(RT, 0); | 
 |  | 
 |   const auto *InnerRef = T->getAs<ReferenceType>(); | 
 |  | 
 |   // If the referencee type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { | 
 |     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
 |     Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     LValueReferenceType *NewIP = | 
 |       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, | 
 |                                                              SpelledAsLValue); | 
 |   Types.push_back(New); | 
 |   LValueReferenceTypes.InsertNode(New, InsertPos); | 
 |  | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getRValueReferenceType - Return the uniqued reference to the type for an | 
 | /// rvalue reference to the specified type. | 
 | QualType ASTContext::getRValueReferenceType(QualType T) const { | 
 |   assert((!T->isPlaceholderType() || | 
 |           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && | 
 |          "Unresolved placeholder type"); | 
 |  | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ReferenceType::Profile(ID, T, false); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (RValueReferenceType *RT = | 
 |         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(RT, 0); | 
 |  | 
 |   const auto *InnerRef = T->getAs<ReferenceType>(); | 
 |  | 
 |   // If the referencee type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (InnerRef || !T.isCanonical()) { | 
 |     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
 |     Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     RValueReferenceType *NewIP = | 
 |       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   RValueReferenceTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getMemberPointerType - Return the uniqued reference to the type for a | 
 | /// member pointer to the specified type, in the specified class. | 
 | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   MemberPointerType::Profile(ID, T, Cls); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (MemberPointerType *PT = | 
 |       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the pointee or class type isn't canonical, this won't be a canonical | 
 |   // type either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { | 
 |     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     MemberPointerType *NewIP = | 
 |       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); | 
 |   Types.push_back(New); | 
 |   MemberPointerTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getConstantArrayType - Return the unique reference to the type for an | 
 | /// array of the specified element type. | 
 | QualType ASTContext::getConstantArrayType(QualType EltTy, | 
 |                                           const llvm::APInt &ArySizeIn, | 
 |                                           const Expr *SizeExpr, | 
 |                                           ArrayType::ArraySizeModifier ASM, | 
 |                                           unsigned IndexTypeQuals) const { | 
 |   assert((EltTy->isDependentType() || | 
 |           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && | 
 |          "Constant array of VLAs is illegal!"); | 
 |  | 
 |   // We only need the size as part of the type if it's instantiation-dependent. | 
 |   if (SizeExpr && !SizeExpr->isInstantiationDependent()) | 
 |     SizeExpr = nullptr; | 
 |  | 
 |   // Convert the array size into a canonical width matching the pointer size for | 
 |   // the target. | 
 |   llvm::APInt ArySize(ArySizeIn); | 
 |   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM, | 
 |                              IndexTypeQuals); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ConstantArrayType *ATP = | 
 |       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(ATP, 0); | 
 |  | 
 |   // If the element type isn't canonical or has qualifiers, or the array bound | 
 |   // is instantiation-dependent, this won't be a canonical type either, so fill | 
 |   // in the canonical type field. | 
 |   QualType Canon; | 
 |   // FIXME: Check below should look for qualifiers behind sugar. | 
 |   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { | 
 |     SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
 |     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, | 
 |                                  ASM, IndexTypeQuals); | 
 |     Canon = getQualifiedType(Canon, canonSplit.Quals); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     ConstantArrayType *NewIP = | 
 |       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   void *Mem = Allocate( | 
 |       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0), | 
 |       TypeAlignment); | 
 |   auto *New = new (Mem) | 
 |     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals); | 
 |   ConstantArrayTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getVariableArrayDecayedType - Turns the given type, which may be | 
 | /// variably-modified, into the corresponding type with all the known | 
 | /// sizes replaced with [*]. | 
 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { | 
 |   // Vastly most common case. | 
 |   if (!type->isVariablyModifiedType()) return type; | 
 |  | 
 |   QualType result; | 
 |  | 
 |   SplitQualType split = type.getSplitDesugaredType(); | 
 |   const Type *ty = split.Ty; | 
 |   switch (ty->getTypeClass()) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.inc" | 
 |     llvm_unreachable("didn't desugar past all non-canonical types?"); | 
 |  | 
 |   // These types should never be variably-modified. | 
 |   case Type::Builtin: | 
 |   case Type::Complex: | 
 |   case Type::Vector: | 
 |   case Type::DependentVector: | 
 |   case Type::ExtVector: | 
 |   case Type::DependentSizedExtVector: | 
 |   case Type::ConstantMatrix: | 
 |   case Type::DependentSizedMatrix: | 
 |   case Type::DependentAddressSpace: | 
 |   case Type::ObjCObject: | 
 |   case Type::ObjCInterface: | 
 |   case Type::ObjCObjectPointer: | 
 |   case Type::Record: | 
 |   case Type::Enum: | 
 |   case Type::UnresolvedUsing: | 
 |   case Type::TypeOfExpr: | 
 |   case Type::TypeOf: | 
 |   case Type::Decltype: | 
 |   case Type::UnaryTransform: | 
 |   case Type::DependentName: | 
 |   case Type::InjectedClassName: | 
 |   case Type::TemplateSpecialization: | 
 |   case Type::DependentTemplateSpecialization: | 
 |   case Type::TemplateTypeParm: | 
 |   case Type::SubstTemplateTypeParmPack: | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: | 
 |   case Type::PackExpansion: | 
 |   case Type::BitInt: | 
 |   case Type::DependentBitInt: | 
 |     llvm_unreachable("type should never be variably-modified"); | 
 |  | 
 |   // These types can be variably-modified but should never need to | 
 |   // further decay. | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |   case Type::BlockPointer: | 
 |   case Type::MemberPointer: | 
 |   case Type::Pipe: | 
 |     return type; | 
 |  | 
 |   // These types can be variably-modified.  All these modifications | 
 |   // preserve structure except as noted by comments. | 
 |   // TODO: if we ever care about optimizing VLAs, there are no-op | 
 |   // optimizations available here. | 
 |   case Type::Pointer: | 
 |     result = getPointerType(getVariableArrayDecayedType( | 
 |                               cast<PointerType>(ty)->getPointeeType())); | 
 |     break; | 
 |  | 
 |   case Type::LValueReference: { | 
 |     const auto *lv = cast<LValueReferenceType>(ty); | 
 |     result = getLValueReferenceType( | 
 |                  getVariableArrayDecayedType(lv->getPointeeType()), | 
 |                                     lv->isSpelledAsLValue()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::RValueReference: { | 
 |     const auto *lv = cast<RValueReferenceType>(ty); | 
 |     result = getRValueReferenceType( | 
 |                  getVariableArrayDecayedType(lv->getPointeeType())); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::Atomic: { | 
 |     const auto *at = cast<AtomicType>(ty); | 
 |     result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::ConstantArray: { | 
 |     const auto *cat = cast<ConstantArrayType>(ty); | 
 |     result = getConstantArrayType( | 
 |                  getVariableArrayDecayedType(cat->getElementType()), | 
 |                                   cat->getSize(), | 
 |                                   cat->getSizeExpr(), | 
 |                                   cat->getSizeModifier(), | 
 |                                   cat->getIndexTypeCVRQualifiers()); | 
 |     break; | 
 |   } | 
 |  | 
 |   case Type::DependentSizedArray: { | 
 |     const auto *dat = cast<DependentSizedArrayType>(ty); | 
 |     result = getDependentSizedArrayType( | 
 |                  getVariableArrayDecayedType(dat->getElementType()), | 
 |                                         dat->getSizeExpr(), | 
 |                                         dat->getSizeModifier(), | 
 |                                         dat->getIndexTypeCVRQualifiers(), | 
 |                                         dat->getBracketsRange()); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Turn incomplete types into [*] types. | 
 |   case Type::IncompleteArray: { | 
 |     const auto *iat = cast<IncompleteArrayType>(ty); | 
 |     result = getVariableArrayType( | 
 |                  getVariableArrayDecayedType(iat->getElementType()), | 
 |                                   /*size*/ nullptr, | 
 |                                   ArrayType::Normal, | 
 |                                   iat->getIndexTypeCVRQualifiers(), | 
 |                                   SourceRange()); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Turn VLA types into [*] types. | 
 |   case Type::VariableArray: { | 
 |     const auto *vat = cast<VariableArrayType>(ty); | 
 |     result = getVariableArrayType( | 
 |                  getVariableArrayDecayedType(vat->getElementType()), | 
 |                                   /*size*/ nullptr, | 
 |                                   ArrayType::Star, | 
 |                                   vat->getIndexTypeCVRQualifiers(), | 
 |                                   vat->getBracketsRange()); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   // Apply the top-level qualifiers from the original. | 
 |   return getQualifiedType(result, split.Quals); | 
 | } | 
 |  | 
 | /// getVariableArrayType - Returns a non-unique reference to the type for a | 
 | /// variable array of the specified element type. | 
 | QualType ASTContext::getVariableArrayType(QualType EltTy, | 
 |                                           Expr *NumElts, | 
 |                                           ArrayType::ArraySizeModifier ASM, | 
 |                                           unsigned IndexTypeQuals, | 
 |                                           SourceRange Brackets) const { | 
 |   // Since we don't unique expressions, it isn't possible to unique VLA's | 
 |   // that have an expression provided for their size. | 
 |   QualType Canon; | 
 |  | 
 |   // Be sure to pull qualifiers off the element type. | 
 |   // FIXME: Check below should look for qualifiers behind sugar. | 
 |   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
 |     SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
 |     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, | 
 |                                  IndexTypeQuals, Brackets); | 
 |     Canon = getQualifiedType(Canon, canonSplit.Quals); | 
 |   } | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) | 
 |     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); | 
 |  | 
 |   VariableArrayTypes.push_back(New); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getDependentSizedArrayType - Returns a non-unique reference to | 
 | /// the type for a dependently-sized array of the specified element | 
 | /// type. | 
 | QualType ASTContext::getDependentSizedArrayType(QualType elementType, | 
 |                                                 Expr *numElements, | 
 |                                                 ArrayType::ArraySizeModifier ASM, | 
 |                                                 unsigned elementTypeQuals, | 
 |                                                 SourceRange brackets) const { | 
 |   assert((!numElements || numElements->isTypeDependent() || | 
 |           numElements->isValueDependent()) && | 
 |          "Size must be type- or value-dependent!"); | 
 |  | 
 |   // Dependently-sized array types that do not have a specified number | 
 |   // of elements will have their sizes deduced from a dependent | 
 |   // initializer.  We do no canonicalization here at all, which is okay | 
 |   // because they can't be used in most locations. | 
 |   if (!numElements) { | 
 |     auto *newType | 
 |       = new (*this, TypeAlignment) | 
 |           DependentSizedArrayType(*this, elementType, QualType(), | 
 |                                   numElements, ASM, elementTypeQuals, | 
 |                                   brackets); | 
 |     Types.push_back(newType); | 
 |     return QualType(newType, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, we actually build a new type every time, but we | 
 |   // also build a canonical type. | 
 |  | 
 |   SplitQualType canonElementType = getCanonicalType(elementType).split(); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentSizedArrayType::Profile(ID, *this, | 
 |                                    QualType(canonElementType.Ty, 0), | 
 |                                    ASM, elementTypeQuals, numElements); | 
 |  | 
 |   // Look for an existing type with these properties. | 
 |   DependentSizedArrayType *canonTy = | 
 |     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
 |  | 
 |   // If we don't have one, build one. | 
 |   if (!canonTy) { | 
 |     canonTy = new (*this, TypeAlignment) | 
 |       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), | 
 |                               QualType(), numElements, ASM, elementTypeQuals, | 
 |                               brackets); | 
 |     DependentSizedArrayTypes.InsertNode(canonTy, insertPos); | 
 |     Types.push_back(canonTy); | 
 |   } | 
 |  | 
 |   // Apply qualifiers from the element type to the array. | 
 |   QualType canon = getQualifiedType(QualType(canonTy,0), | 
 |                                     canonElementType.Quals); | 
 |  | 
 |   // If we didn't need extra canonicalization for the element type or the size | 
 |   // expression, then just use that as our result. | 
 |   if (QualType(canonElementType.Ty, 0) == elementType && | 
 |       canonTy->getSizeExpr() == numElements) | 
 |     return canon; | 
 |  | 
 |   // Otherwise, we need to build a type which follows the spelling | 
 |   // of the element type. | 
 |   auto *sugaredType | 
 |     = new (*this, TypeAlignment) | 
 |         DependentSizedArrayType(*this, elementType, canon, numElements, | 
 |                                 ASM, elementTypeQuals, brackets); | 
 |   Types.push_back(sugaredType); | 
 |   return QualType(sugaredType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getIncompleteArrayType(QualType elementType, | 
 |                                             ArrayType::ArraySizeModifier ASM, | 
 |                                             unsigned elementTypeQuals) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   if (IncompleteArrayType *iat = | 
 |        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) | 
 |     return QualType(iat, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field.  We also have to pull | 
 |   // qualifiers off the element type. | 
 |   QualType canon; | 
 |  | 
 |   // FIXME: Check below should look for qualifiers behind sugar. | 
 |   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { | 
 |     SplitQualType canonSplit = getCanonicalType(elementType).split(); | 
 |     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), | 
 |                                    ASM, elementTypeQuals); | 
 |     canon = getQualifiedType(canon, canonSplit.Quals); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     IncompleteArrayType *existing = | 
 |       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
 |     assert(!existing && "Shouldn't be in the map!"); (void) existing; | 
 |   } | 
 |  | 
 |   auto *newType = new (*this, TypeAlignment) | 
 |     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); | 
 |  | 
 |   IncompleteArrayTypes.InsertNode(newType, insertPos); | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | ASTContext::BuiltinVectorTypeInfo | 
 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { | 
 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \ | 
 |   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ | 
 |    NUMVECTORS}; | 
 |  | 
 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \ | 
 |   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; | 
 |  | 
 |   switch (Ty->getKind()) { | 
 |   default: | 
 |     llvm_unreachable("Unsupported builtin vector type"); | 
 |   case BuiltinType::SveInt8: | 
 |     return SVE_INT_ELTTY(8, 16, true, 1); | 
 |   case BuiltinType::SveUint8: | 
 |     return SVE_INT_ELTTY(8, 16, false, 1); | 
 |   case BuiltinType::SveInt8x2: | 
 |     return SVE_INT_ELTTY(8, 16, true, 2); | 
 |   case BuiltinType::SveUint8x2: | 
 |     return SVE_INT_ELTTY(8, 16, false, 2); | 
 |   case BuiltinType::SveInt8x3: | 
 |     return SVE_INT_ELTTY(8, 16, true, 3); | 
 |   case BuiltinType::SveUint8x3: | 
 |     return SVE_INT_ELTTY(8, 16, false, 3); | 
 |   case BuiltinType::SveInt8x4: | 
 |     return SVE_INT_ELTTY(8, 16, true, 4); | 
 |   case BuiltinType::SveUint8x4: | 
 |     return SVE_INT_ELTTY(8, 16, false, 4); | 
 |   case BuiltinType::SveInt16: | 
 |     return SVE_INT_ELTTY(16, 8, true, 1); | 
 |   case BuiltinType::SveUint16: | 
 |     return SVE_INT_ELTTY(16, 8, false, 1); | 
 |   case BuiltinType::SveInt16x2: | 
 |     return SVE_INT_ELTTY(16, 8, true, 2); | 
 |   case BuiltinType::SveUint16x2: | 
 |     return SVE_INT_ELTTY(16, 8, false, 2); | 
 |   case BuiltinType::SveInt16x3: | 
 |     return SVE_INT_ELTTY(16, 8, true, 3); | 
 |   case BuiltinType::SveUint16x3: | 
 |     return SVE_INT_ELTTY(16, 8, false, 3); | 
 |   case BuiltinType::SveInt16x4: | 
 |     return SVE_INT_ELTTY(16, 8, true, 4); | 
 |   case BuiltinType::SveUint16x4: | 
 |     return SVE_INT_ELTTY(16, 8, false, 4); | 
 |   case BuiltinType::SveInt32: | 
 |     return SVE_INT_ELTTY(32, 4, true, 1); | 
 |   case BuiltinType::SveUint32: | 
 |     return SVE_INT_ELTTY(32, 4, false, 1); | 
 |   case BuiltinType::SveInt32x2: | 
 |     return SVE_INT_ELTTY(32, 4, true, 2); | 
 |   case BuiltinType::SveUint32x2: | 
 |     return SVE_INT_ELTTY(32, 4, false, 2); | 
 |   case BuiltinType::SveInt32x3: | 
 |     return SVE_INT_ELTTY(32, 4, true, 3); | 
 |   case BuiltinType::SveUint32x3: | 
 |     return SVE_INT_ELTTY(32, 4, false, 3); | 
 |   case BuiltinType::SveInt32x4: | 
 |     return SVE_INT_ELTTY(32, 4, true, 4); | 
 |   case BuiltinType::SveUint32x4: | 
 |     return SVE_INT_ELTTY(32, 4, false, 4); | 
 |   case BuiltinType::SveInt64: | 
 |     return SVE_INT_ELTTY(64, 2, true, 1); | 
 |   case BuiltinType::SveUint64: | 
 |     return SVE_INT_ELTTY(64, 2, false, 1); | 
 |   case BuiltinType::SveInt64x2: | 
 |     return SVE_INT_ELTTY(64, 2, true, 2); | 
 |   case BuiltinType::SveUint64x2: | 
 |     return SVE_INT_ELTTY(64, 2, false, 2); | 
 |   case BuiltinType::SveInt64x3: | 
 |     return SVE_INT_ELTTY(64, 2, true, 3); | 
 |   case BuiltinType::SveUint64x3: | 
 |     return SVE_INT_ELTTY(64, 2, false, 3); | 
 |   case BuiltinType::SveInt64x4: | 
 |     return SVE_INT_ELTTY(64, 2, true, 4); | 
 |   case BuiltinType::SveUint64x4: | 
 |     return SVE_INT_ELTTY(64, 2, false, 4); | 
 |   case BuiltinType::SveBool: | 
 |     return SVE_ELTTY(BoolTy, 16, 1); | 
 |   case BuiltinType::SveBoolx2: | 
 |     return SVE_ELTTY(BoolTy, 16, 2); | 
 |   case BuiltinType::SveBoolx4: | 
 |     return SVE_ELTTY(BoolTy, 16, 4); | 
 |   case BuiltinType::SveFloat16: | 
 |     return SVE_ELTTY(HalfTy, 8, 1); | 
 |   case BuiltinType::SveFloat16x2: | 
 |     return SVE_ELTTY(HalfTy, 8, 2); | 
 |   case BuiltinType::SveFloat16x3: | 
 |     return SVE_ELTTY(HalfTy, 8, 3); | 
 |   case BuiltinType::SveFloat16x4: | 
 |     return SVE_ELTTY(HalfTy, 8, 4); | 
 |   case BuiltinType::SveFloat32: | 
 |     return SVE_ELTTY(FloatTy, 4, 1); | 
 |   case BuiltinType::SveFloat32x2: | 
 |     return SVE_ELTTY(FloatTy, 4, 2); | 
 |   case BuiltinType::SveFloat32x3: | 
 |     return SVE_ELTTY(FloatTy, 4, 3); | 
 |   case BuiltinType::SveFloat32x4: | 
 |     return SVE_ELTTY(FloatTy, 4, 4); | 
 |   case BuiltinType::SveFloat64: | 
 |     return SVE_ELTTY(DoubleTy, 2, 1); | 
 |   case BuiltinType::SveFloat64x2: | 
 |     return SVE_ELTTY(DoubleTy, 2, 2); | 
 |   case BuiltinType::SveFloat64x3: | 
 |     return SVE_ELTTY(DoubleTy, 2, 3); | 
 |   case BuiltinType::SveFloat64x4: | 
 |     return SVE_ELTTY(DoubleTy, 2, 4); | 
 |   case BuiltinType::SveBFloat16: | 
 |     return SVE_ELTTY(BFloat16Ty, 8, 1); | 
 |   case BuiltinType::SveBFloat16x2: | 
 |     return SVE_ELTTY(BFloat16Ty, 8, 2); | 
 |   case BuiltinType::SveBFloat16x3: | 
 |     return SVE_ELTTY(BFloat16Ty, 8, 3); | 
 |   case BuiltinType::SveBFloat16x4: | 
 |     return SVE_ELTTY(BFloat16Ty, 8, 4); | 
 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \ | 
 |                             IsSigned)                                          \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \ | 
 |             llvm::ElementCount::getScalable(NumEls), NF}; | 
 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \ | 
 |             llvm::ElementCount::getScalable(NumEls), NF}; | 
 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; | 
 | #include "clang/Basic/RISCVVTypes.def" | 
 |   } | 
 | } | 
 |  | 
 | /// getExternrefType - Return a WebAssembly externref type, which represents an | 
 | /// opaque reference to a host value. | 
 | QualType ASTContext::getWebAssemblyExternrefType() const { | 
 |   if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) { | 
 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \ | 
 |   if (BuiltinType::Id == BuiltinType::WasmExternRef)                           \ | 
 |     return SingletonId; | 
 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
 |   } | 
 |   llvm_unreachable( | 
 |       "shouldn't try to generate type externref outside WebAssembly target"); | 
 | } | 
 |  | 
 | /// getScalableVectorType - Return the unique reference to a scalable vector | 
 | /// type of the specified element type and size. VectorType must be a built-in | 
 | /// type. | 
 | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, | 
 |                                            unsigned NumFields) const { | 
 |   if (Target->hasAArch64SVETypes()) { | 
 |     uint64_t EltTySize = getTypeSize(EltTy); | 
 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \ | 
 |                         IsSigned, IsFP, IsBF)                                  \ | 
 |   if (!EltTy->isBooleanType() &&                                               \ | 
 |       ((EltTy->hasIntegerRepresentation() &&                                   \ | 
 |         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \ | 
 |        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \ | 
 |         IsFP && !IsBF) ||                                                      \ | 
 |        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \ | 
 |         IsBF && !IsFP)) &&                                                     \ | 
 |       EltTySize == ElBits && NumElts == NumEls) {                              \ | 
 |     return SingletonId;                                                        \ | 
 |   } | 
 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \ | 
 |   if (EltTy->isBooleanType() && NumElts == NumEls)                             \ | 
 |     return SingletonId; | 
 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId) | 
 | #include "clang/Basic/AArch64SVEACLETypes.def" | 
 |   } else if (Target->hasRISCVVTypes()) { | 
 |     uint64_t EltTySize = getTypeSize(EltTy); | 
 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \ | 
 |                         IsFP)                                                  \ | 
 |   if (!EltTy->isBooleanType() &&                                               \ | 
 |       ((EltTy->hasIntegerRepresentation() &&                                   \ | 
 |         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \ | 
 |        (EltTy->hasFloatingRepresentation() && IsFP)) &&                        \ | 
 |       EltTySize == ElBits && NumElts == NumEls && NumFields == NF)             \ | 
 |     return SingletonId; | 
 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
 |   if (EltTy->isBooleanType() && NumElts == NumEls)                             \ | 
 |     return SingletonId; | 
 | #include "clang/Basic/RISCVVTypes.def" | 
 |   } | 
 |   return QualType(); | 
 | } | 
 |  | 
 | /// getVectorType - Return the unique reference to a vector type of | 
 | /// the specified element type and size. VectorType must be a built-in type. | 
 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, | 
 |                                    VectorType::VectorKind VecKind) const { | 
 |   assert(vecType->isBuiltinType() || | 
 |          (vecType->isBitIntType() && | 
 |           // Only support _BitInt elements with byte-sized power of 2 NumBits. | 
 |           llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && | 
 |           vecType->getAs<BitIntType>()->getNumBits() >= 8)); | 
 |  | 
 |   // Check if we've already instantiated a vector of this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(VTP, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!vecType.isCanonical()) { | 
 |     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) | 
 |     VectorType(vecType, NumElts, Canonical, VecKind); | 
 |   VectorTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, | 
 |                                    SourceLocation AttrLoc, | 
 |                                    VectorType::VectorKind VecKind) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, | 
 |                                VecKind); | 
 |   void *InsertPos = nullptr; | 
 |   DependentVectorType *Canon = | 
 |       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   DependentVectorType *New; | 
 |  | 
 |   if (Canon) { | 
 |     New = new (*this, TypeAlignment) DependentVectorType( | 
 |         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); | 
 |   } else { | 
 |     QualType CanonVecTy = getCanonicalType(VecType); | 
 |     if (CanonVecTy == VecType) { | 
 |       New = new (*this, TypeAlignment) DependentVectorType( | 
 |           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind); | 
 |  | 
 |       DependentVectorType *CanonCheck = | 
 |           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |       assert(!CanonCheck && | 
 |              "Dependent-sized vector_size canonical type broken"); | 
 |       (void)CanonCheck; | 
 |       DependentVectorTypes.InsertNode(New, InsertPos); | 
 |     } else { | 
 |       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, | 
 |                                                 SourceLocation(), VecKind); | 
 |       New = new (*this, TypeAlignment) DependentVectorType( | 
 |           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind); | 
 |     } | 
 |   } | 
 |  | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getExtVectorType - Return the unique reference to an extended vector type of | 
 | /// the specified element type and size. VectorType must be a built-in type. | 
 | QualType ASTContext::getExtVectorType(QualType vecType, | 
 |                                       unsigned NumElts) const { | 
 |   assert(vecType->isBuiltinType() || vecType->isDependentType() || | 
 |          (vecType->isBitIntType() && | 
 |           // Only support _BitInt elements with byte-sized power of 2 NumBits. | 
 |           llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) && | 
 |           vecType->castAs<BitIntType>()->getNumBits() >= 8)); | 
 |  | 
 |   // Check if we've already instantiated a vector of this type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, | 
 |                       VectorType::GenericVector); | 
 |   void *InsertPos = nullptr; | 
 |   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(VTP, 0); | 
 |  | 
 |   // If the element type isn't canonical, this won't be a canonical type either, | 
 |   // so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!vecType.isCanonical()) { | 
 |     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) | 
 |     ExtVectorType(vecType, NumElts, Canonical); | 
 |   VectorTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentSizedExtVectorType(QualType vecType, | 
 |                                            Expr *SizeExpr, | 
 |                                            SourceLocation AttrLoc) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), | 
 |                                        SizeExpr); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentSizedExtVectorType *Canon | 
 |     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   DependentSizedExtVectorType *New; | 
 |   if (Canon) { | 
 |     // We already have a canonical version of this array type; use it as | 
 |     // the canonical type for a newly-built type. | 
 |     New = new (*this, TypeAlignment) | 
 |       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), | 
 |                                   SizeExpr, AttrLoc); | 
 |   } else { | 
 |     QualType CanonVecTy = getCanonicalType(vecType); | 
 |     if (CanonVecTy == vecType) { | 
 |       New = new (*this, TypeAlignment) | 
 |         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, | 
 |                                     AttrLoc); | 
 |  | 
 |       DependentSizedExtVectorType *CanonCheck | 
 |         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); | 
 |       (void)CanonCheck; | 
 |       DependentSizedExtVectorTypes.InsertNode(New, InsertPos); | 
 |     } else { | 
 |       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, | 
 |                                                            SourceLocation()); | 
 |       New = new (*this, TypeAlignment) DependentSizedExtVectorType( | 
 |           *this, vecType, CanonExtTy, SizeExpr, AttrLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, | 
 |                                            unsigned NumColumns) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, | 
 |                               Type::ConstantMatrix); | 
 |  | 
 |   assert(MatrixType::isValidElementType(ElementTy) && | 
 |          "need a valid element type"); | 
 |   assert(ConstantMatrixType::isDimensionValid(NumRows) && | 
 |          ConstantMatrixType::isDimensionValid(NumColumns) && | 
 |          "need valid matrix dimensions"); | 
 |   void *InsertPos = nullptr; | 
 |   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(MTP, 0); | 
 |  | 
 |   QualType Canonical; | 
 |   if (!ElementTy.isCanonical()) { | 
 |     Canonical = | 
 |         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); | 
 |  | 
 |     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Matrix type shouldn't already exist in the map"); | 
 |     (void)NewIP; | 
 |   } | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) | 
 |       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); | 
 |   MatrixTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, | 
 |                                                  Expr *RowExpr, | 
 |                                                  Expr *ColumnExpr, | 
 |                                                  SourceLocation AttrLoc) const { | 
 |   QualType CanonElementTy = getCanonicalType(ElementTy); | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, | 
 |                                     ColumnExpr); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentSizedMatrixType *Canon = | 
 |       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!Canon) { | 
 |     Canon = new (*this, TypeAlignment) DependentSizedMatrixType( | 
 |         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc); | 
 | #ifndef NDEBUG | 
 |     DependentSizedMatrixType *CanonCheck = | 
 |         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CanonCheck && "Dependent-sized matrix canonical type broken"); | 
 | #endif | 
 |     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); | 
 |     Types.push_back(Canon); | 
 |   } | 
 |  | 
 |   // Already have a canonical version of the matrix type | 
 |   // | 
 |   // If it exactly matches the requested type, use it directly. | 
 |   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && | 
 |       Canon->getRowExpr() == ColumnExpr) | 
 |     return QualType(Canon, 0); | 
 |  | 
 |   // Use Canon as the canonical type for newly-built type. | 
 |   DependentSizedMatrixType *New = new (*this, TypeAlignment) | 
 |       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr, | 
 |                                ColumnExpr, AttrLoc); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, | 
 |                                                   Expr *AddrSpaceExpr, | 
 |                                                   SourceLocation AttrLoc) const { | 
 |   assert(AddrSpaceExpr->isInstantiationDependent()); | 
 |  | 
 |   QualType canonPointeeType = getCanonicalType(PointeeType); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, | 
 |                                      AddrSpaceExpr); | 
 |  | 
 |   DependentAddressSpaceType *canonTy = | 
 |     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); | 
 |  | 
 |   if (!canonTy) { | 
 |     canonTy = new (*this, TypeAlignment) | 
 |       DependentAddressSpaceType(*this, canonPointeeType, | 
 |                                 QualType(), AddrSpaceExpr, AttrLoc); | 
 |     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); | 
 |     Types.push_back(canonTy); | 
 |   } | 
 |  | 
 |   if (canonPointeeType == PointeeType && | 
 |       canonTy->getAddrSpaceExpr() == AddrSpaceExpr) | 
 |     return QualType(canonTy, 0); | 
 |  | 
 |   auto *sugaredType | 
 |     = new (*this, TypeAlignment) | 
 |         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0), | 
 |                                   AddrSpaceExpr, AttrLoc); | 
 |   Types.push_back(sugaredType); | 
 |   return QualType(sugaredType, 0); | 
 | } | 
 |  | 
 | /// Determine whether \p T is canonical as the result type of a function. | 
 | static bool isCanonicalResultType(QualType T) { | 
 |   return T.isCanonical() && | 
 |          (T.getObjCLifetime() == Qualifiers::OCL_None || | 
 |           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); | 
 | } | 
 |  | 
 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. | 
 | QualType | 
 | ASTContext::getFunctionNoProtoType(QualType ResultTy, | 
 |                                    const FunctionType::ExtInfo &Info) const { | 
 |   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter | 
 |   // functionality creates a function without a prototype regardless of | 
 |   // language mode (so it makes them even in C++). Once the rewriter has been | 
 |   // fixed, this assertion can be enabled again. | 
 |   //assert(!LangOpts.requiresStrictPrototypes() && | 
 |   //       "strict prototypes are disabled"); | 
 |  | 
 |   // Unique functions, to guarantee there is only one function of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   FunctionNoProtoType::Profile(ID, ResultTy, Info); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (FunctionNoProtoType *FT = | 
 |         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(FT, 0); | 
 |  | 
 |   QualType Canonical; | 
 |   if (!isCanonicalResultType(ResultTy)) { | 
 |     Canonical = | 
 |       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     FunctionNoProtoType *NewIP = | 
 |       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) | 
 |     FunctionNoProtoType(ResultTy, Canonical, Info); | 
 |   Types.push_back(New); | 
 |   FunctionNoProtoTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | CanQualType | 
 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { | 
 |   CanQualType CanResultType = getCanonicalType(ResultType); | 
 |  | 
 |   // Canonical result types do not have ARC lifetime qualifiers. | 
 |   if (CanResultType.getQualifiers().hasObjCLifetime()) { | 
 |     Qualifiers Qs = CanResultType.getQualifiers(); | 
 |     Qs.removeObjCLifetime(); | 
 |     return CanQualType::CreateUnsafe( | 
 |              getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); | 
 |   } | 
 |  | 
 |   return CanResultType; | 
 | } | 
 |  | 
 | static bool isCanonicalExceptionSpecification( | 
 |     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { | 
 |   if (ESI.Type == EST_None) | 
 |     return true; | 
 |   if (!NoexceptInType) | 
 |     return false; | 
 |  | 
 |   // C++17 onwards: exception specification is part of the type, as a simple | 
 |   // boolean "can this function type throw". | 
 |   if (ESI.Type == EST_BasicNoexcept) | 
 |     return true; | 
 |  | 
 |   // A noexcept(expr) specification is (possibly) canonical if expr is | 
 |   // value-dependent. | 
 |   if (ESI.Type == EST_DependentNoexcept) | 
 |     return true; | 
 |  | 
 |   // A dynamic exception specification is canonical if it only contains pack | 
 |   // expansions (so we can't tell whether it's non-throwing) and all its | 
 |   // contained types are canonical. | 
 |   if (ESI.Type == EST_Dynamic) { | 
 |     bool AnyPackExpansions = false; | 
 |     for (QualType ET : ESI.Exceptions) { | 
 |       if (!ET.isCanonical()) | 
 |         return false; | 
 |       if (ET->getAs<PackExpansionType>()) | 
 |         AnyPackExpansions = true; | 
 |     } | 
 |     return AnyPackExpansions; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | QualType ASTContext::getFunctionTypeInternal( | 
 |     QualType ResultTy, ArrayRef<QualType> ArgArray, | 
 |     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { | 
 |   size_t NumArgs = ArgArray.size(); | 
 |  | 
 |   // Unique functions, to guarantee there is only one function of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, | 
 |                              *this, true); | 
 |  | 
 |   QualType Canonical; | 
 |   bool Unique = false; | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (FunctionProtoType *FPT = | 
 |         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { | 
 |     QualType Existing = QualType(FPT, 0); | 
 |  | 
 |     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse | 
 |     // it so long as our exception specification doesn't contain a dependent | 
 |     // noexcept expression, or we're just looking for a canonical type. | 
 |     // Otherwise, we're going to need to create a type | 
 |     // sugar node to hold the concrete expression. | 
 |     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || | 
 |         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) | 
 |       return Existing; | 
 |  | 
 |     // We need a new type sugar node for this one, to hold the new noexcept | 
 |     // expression. We do no canonicalization here, but that's OK since we don't | 
 |     // expect to see the same noexcept expression much more than once. | 
 |     Canonical = getCanonicalType(Existing); | 
 |     Unique = true; | 
 |   } | 
 |  | 
 |   bool NoexceptInType = getLangOpts().CPlusPlus17; | 
 |   bool IsCanonicalExceptionSpec = | 
 |       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); | 
 |  | 
 |   // Determine whether the type being created is already canonical or not. | 
 |   bool isCanonical = !Unique && IsCanonicalExceptionSpec && | 
 |                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; | 
 |   for (unsigned i = 0; i != NumArgs && isCanonical; ++i) | 
 |     if (!ArgArray[i].isCanonicalAsParam()) | 
 |       isCanonical = false; | 
 |  | 
 |   if (OnlyWantCanonical) | 
 |     assert(isCanonical && | 
 |            "given non-canonical parameters constructing canonical type"); | 
 |  | 
 |   // If this type isn't canonical, get the canonical version of it if we don't | 
 |   // already have it. The exception spec is only partially part of the | 
 |   // canonical type, and only in C++17 onwards. | 
 |   if (!isCanonical && Canonical.isNull()) { | 
 |     SmallVector<QualType, 16> CanonicalArgs; | 
 |     CanonicalArgs.reserve(NumArgs); | 
 |     for (unsigned i = 0; i != NumArgs; ++i) | 
 |       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); | 
 |  | 
 |     llvm::SmallVector<QualType, 8> ExceptionTypeStorage; | 
 |     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; | 
 |     CanonicalEPI.HasTrailingReturn = false; | 
 |  | 
 |     if (IsCanonicalExceptionSpec) { | 
 |       // Exception spec is already OK. | 
 |     } else if (NoexceptInType) { | 
 |       switch (EPI.ExceptionSpec.Type) { | 
 |       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: | 
 |         // We don't know yet. It shouldn't matter what we pick here; no-one | 
 |         // should ever look at this. | 
 |         [[fallthrough]]; | 
 |       case EST_None: case EST_MSAny: case EST_NoexceptFalse: | 
 |         CanonicalEPI.ExceptionSpec.Type = EST_None; | 
 |         break; | 
 |  | 
 |         // A dynamic exception specification is almost always "not noexcept", | 
 |         // with the exception that a pack expansion might expand to no types. | 
 |       case EST_Dynamic: { | 
 |         bool AnyPacks = false; | 
 |         for (QualType ET : EPI.ExceptionSpec.Exceptions) { | 
 |           if (ET->getAs<PackExpansionType>()) | 
 |             AnyPacks = true; | 
 |           ExceptionTypeStorage.push_back(getCanonicalType(ET)); | 
 |         } | 
 |         if (!AnyPacks) | 
 |           CanonicalEPI.ExceptionSpec.Type = EST_None; | 
 |         else { | 
 |           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; | 
 |           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; | 
 |         } | 
 |         break; | 
 |       } | 
 |  | 
 |       case EST_DynamicNone: | 
 |       case EST_BasicNoexcept: | 
 |       case EST_NoexceptTrue: | 
 |       case EST_NoThrow: | 
 |         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; | 
 |         break; | 
 |  | 
 |       case EST_DependentNoexcept: | 
 |         llvm_unreachable("dependent noexcept is already canonical"); | 
 |       } | 
 |     } else { | 
 |       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); | 
 |     } | 
 |  | 
 |     // Adjust the canonical function result type. | 
 |     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); | 
 |     Canonical = | 
 |         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     FunctionProtoType *NewIP = | 
 |       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |  | 
 |   // Compute the needed size to hold this FunctionProtoType and the | 
 |   // various trailing objects. | 
 |   auto ESH = FunctionProtoType::getExceptionSpecSize( | 
 |       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); | 
 |   size_t Size = FunctionProtoType::totalSizeToAlloc< | 
 |       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, | 
 |       FunctionType::ExceptionType, Expr *, FunctionDecl *, | 
 |       FunctionProtoType::ExtParameterInfo, Qualifiers>( | 
 |       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(), | 
 |       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr, | 
 |       EPI.ExtParameterInfos ? NumArgs : 0, | 
 |       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0); | 
 |  | 
 |   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment); | 
 |   FunctionProtoType::ExtProtoInfo newEPI = EPI; | 
 |   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); | 
 |   Types.push_back(FTP); | 
 |   if (!Unique) | 
 |     FunctionProtoTypes.InsertNode(FTP, InsertPos); | 
 |   return QualType(FTP, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   PipeType::Profile(ID, T, ReadOnly); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(PT, 0); | 
 |  | 
 |   // If the pipe element type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getPipeType(getCanonicalType(T), ReadOnly); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); | 
 |     (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly); | 
 |   Types.push_back(New); | 
 |   PipeTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { | 
 |   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. | 
 |   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) | 
 |                          : Ty; | 
 | } | 
 |  | 
 | QualType ASTContext::getReadPipeType(QualType T) const { | 
 |   return getPipeType(T, true); | 
 | } | 
 |  | 
 | QualType ASTContext::getWritePipeType(QualType T) const { | 
 |   return getPipeType(T, false); | 
 | } | 
 |  | 
 | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   BitIntType::Profile(ID, IsUnsigned, NumBits); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(EIT, 0); | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits); | 
 |   BitIntTypes.InsertNode(New, InsertPos); | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, | 
 |                                             Expr *NumBitsExpr) const { | 
 |   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent"); | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (DependentBitIntType *Existing = | 
 |           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(Existing, 0); | 
 |  | 
 |   auto *New = new (*this, TypeAlignment) | 
 |       DependentBitIntType(*this, IsUnsigned, NumBitsExpr); | 
 |   DependentBitIntTypes.InsertNode(New, InsertPos); | 
 |  | 
 |   Types.push_back(New); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { | 
 |   if (!isa<CXXRecordDecl>(D)) return false; | 
 |   const auto *RD = cast<CXXRecordDecl>(D); | 
 |   if (isa<ClassTemplatePartialSpecializationDecl>(RD)) | 
 |     return true; | 
 |   if (RD->getDescribedClassTemplate() && | 
 |       !isa<ClassTemplateSpecializationDecl>(RD)) | 
 |     return true; | 
 |   return false; | 
 | } | 
 | #endif | 
 |  | 
 | /// getInjectedClassNameType - Return the unique reference to the | 
 | /// injected class name type for the specified templated declaration. | 
 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, | 
 |                                               QualType TST) const { | 
 |   assert(NeedsInjectedClassNameType(Decl)); | 
 |   if (Decl->TypeForDecl) { | 
 |     assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
 |   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { | 
 |     assert(PrevDecl->TypeForDecl && "previous declaration has no type"); | 
 |     Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
 |     assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); | 
 |   } else { | 
 |     Type *newType = | 
 |       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); | 
 |     Decl->TypeForDecl = newType; | 
 |     Types.push_back(newType); | 
 |   } | 
 |   return QualType(Decl->TypeForDecl, 0); | 
 | } | 
 |  | 
 | /// getTypeDeclType - Return the unique reference to the type for the | 
 | /// specified type declaration. | 
 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { | 
 |   assert(Decl && "Passed null for Decl param"); | 
 |   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); | 
 |  | 
 |   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) | 
 |     return getTypedefType(Typedef); | 
 |  | 
 |   assert(!isa<TemplateTypeParmDecl>(Decl) && | 
 |          "Template type parameter types are always available."); | 
 |  | 
 |   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { | 
 |     assert(Record->isFirstDecl() && "struct/union has previous declaration"); | 
 |     assert(!NeedsInjectedClassNameType(Record)); | 
 |     return getRecordType(Record); | 
 |   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { | 
 |     assert(Enum->isFirstDecl() && "enum has previous declaration"); | 
 |     return getEnumType(Enum); | 
 |   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { | 
 |     return getUnresolvedUsingType(Using); | 
 |   } else | 
 |     llvm_unreachable("TypeDecl without a type?"); | 
 |  | 
 |   return QualType(Decl->TypeForDecl, 0); | 
 | } | 
 |  | 
 | /// getTypedefType - Return the unique reference to the type for the | 
 | /// specified typedef name decl. | 
 | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, | 
 |                                     QualType Underlying) const { | 
 |   if (!Decl->TypeForDecl) { | 
 |     if (Underlying.isNull()) | 
 |       Underlying = Decl->getUnderlyingType(); | 
 |     auto *NewType = new (*this, TypeAlignment) TypedefType( | 
 |         Type::Typedef, Decl, QualType(), getCanonicalType(Underlying)); | 
 |     Decl->TypeForDecl = NewType; | 
 |     Types.push_back(NewType); | 
 |     return QualType(NewType, 0); | 
 |   } | 
 |   if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying) | 
 |     return QualType(Decl->TypeForDecl, 0); | 
 |   assert(hasSameType(Decl->getUnderlyingType(), Underlying)); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TypedefType::Profile(ID, Decl, Underlying); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) { | 
 |     assert(!T->typeMatchesDecl() && | 
 |            "non-divergent case should be handled with TypeDecl"); | 
 |     return QualType(T, 0); | 
 |   } | 
 |  | 
 |   void *Mem = | 
 |       Allocate(TypedefType::totalSizeToAlloc<QualType>(true), TypeAlignment); | 
 |   auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying, | 
 |                                         getCanonicalType(Underlying)); | 
 |   TypedefTypes.InsertNode(NewType, InsertPos); | 
 |   Types.push_back(NewType); | 
 |   return QualType(NewType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getUsingType(const UsingShadowDecl *Found, | 
 |                                   QualType Underlying) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   UsingType::Profile(ID, Found, Underlying); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(T, 0); | 
 |  | 
 |   const Type *TypeForDecl = | 
 |       cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl(); | 
 |  | 
 |   assert(!Underlying.hasLocalQualifiers()); | 
 |   QualType Canon = Underlying->getCanonicalTypeInternal(); | 
 |   assert(TypeForDecl->getCanonicalTypeInternal() == Canon); | 
 |  | 
 |   if (Underlying.getTypePtr() == TypeForDecl) | 
 |     Underlying = QualType(); | 
 |   void *Mem = | 
 |       Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()), | 
 |                TypeAlignment); | 
 |   UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon); | 
 |   Types.push_back(NewType); | 
 |   UsingTypes.InsertNode(NewType, InsertPos); | 
 |   return QualType(NewType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { | 
 |   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) | 
 |     if (PrevDecl->TypeForDecl) | 
 |       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); | 
 |  | 
 |   auto *newType = new (*this, TypeAlignment) RecordType(Decl); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { | 
 |   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) | 
 |     if (PrevDecl->TypeForDecl) | 
 |       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); | 
 |  | 
 |   auto *newType = new (*this, TypeAlignment) EnumType(Decl); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getUnresolvedUsingType( | 
 |     const UnresolvedUsingTypenameDecl *Decl) const { | 
 |   if (Decl->TypeForDecl) | 
 |     return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (const UnresolvedUsingTypenameDecl *CanonicalDecl = | 
 |           Decl->getCanonicalDecl()) | 
 |     if (CanonicalDecl->TypeForDecl) | 
 |       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0); | 
 |  | 
 |   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl); | 
 |   Decl->TypeForDecl = newType; | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getAttributedType(attr::Kind attrKind, | 
 |                                        QualType modifiedType, | 
 |                                        QualType equivalentType) const { | 
 |   llvm::FoldingSetNodeID id; | 
 |   AttributedType::Profile(id, attrKind, modifiedType, equivalentType); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); | 
 |   if (type) return QualType(type, 0); | 
 |  | 
 |   QualType canon = getCanonicalType(equivalentType); | 
 |   type = new (*this, TypeAlignment) | 
 |       AttributedType(canon, attrKind, modifiedType, equivalentType); | 
 |  | 
 |   Types.push_back(type); | 
 |   AttributedTypes.InsertNode(type, insertPos); | 
 |  | 
 |   return QualType(type, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, | 
 |                                              QualType Wrapped) { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   BTFTagAttributedType *Ty = | 
 |       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (Ty) | 
 |     return QualType(Ty, 0); | 
 |  | 
 |   QualType Canon = getCanonicalType(Wrapped); | 
 |   Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr); | 
 |  | 
 |   Types.push_back(Ty); | 
 |   BTFTagAttributedTypes.InsertNode(Ty, InsertPos); | 
 |  | 
 |   return QualType(Ty, 0); | 
 | } | 
 |  | 
 | /// Retrieve a substitution-result type. | 
 | QualType ASTContext::getSubstTemplateTypeParmType( | 
 |     QualType Replacement, Decl *AssociatedDecl, unsigned Index, | 
 |     std::optional<unsigned> PackIndex) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, | 
 |                                      PackIndex); | 
 |   void *InsertPos = nullptr; | 
 |   SubstTemplateTypeParmType *SubstParm = | 
 |       SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!SubstParm) { | 
 |     void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( | 
 |                              !Replacement.isCanonical()), | 
 |                          TypeAlignment); | 
 |     SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, | 
 |                                                     Index, PackIndex); | 
 |     Types.push_back(SubstParm); | 
 |     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
 |   } | 
 |  | 
 |   return QualType(SubstParm, 0); | 
 | } | 
 |  | 
 | /// Retrieve a | 
 | QualType | 
 | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, | 
 |                                              unsigned Index, bool Final, | 
 |                                              const TemplateArgument &ArgPack) { | 
 | #ifndef NDEBUG | 
 |   for (const auto &P : ArgPack.pack_elements()) | 
 |     assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type"); | 
 | #endif | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, | 
 |                                          ArgPack); | 
 |   void *InsertPos = nullptr; | 
 |   if (SubstTemplateTypeParmPackType *SubstParm = | 
 |           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(SubstParm, 0); | 
 |  | 
 |   QualType Canon; | 
 |   { | 
 |     TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack); | 
 |     if (!AssociatedDecl->isCanonicalDecl() || | 
 |         !CanonArgPack.structurallyEquals(ArgPack)) { | 
 |       Canon = getSubstTemplateTypeParmPackType( | 
 |           AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack); | 
 |       [[maybe_unused]] const auto *Nothing = | 
 |           SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |       assert(!Nothing); | 
 |     } | 
 |   } | 
 |  | 
 |   auto *SubstParm = new (*this, TypeAlignment) SubstTemplateTypeParmPackType( | 
 |       Canon, AssociatedDecl, Index, Final, ArgPack); | 
 |   Types.push_back(SubstParm); | 
 |   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); | 
 |   return QualType(SubstParm, 0); | 
 | } | 
 |  | 
 | /// Retrieve the template type parameter type for a template | 
 | /// parameter or parameter pack with the given depth, index, and (optionally) | 
 | /// name. | 
 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, | 
 |                                              bool ParameterPack, | 
 |                                              TemplateTypeParmDecl *TTPDecl) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); | 
 |   void *InsertPos = nullptr; | 
 |   TemplateTypeParmType *TypeParm | 
 |     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (TypeParm) | 
 |     return QualType(TypeParm, 0); | 
 |  | 
 |   if (TTPDecl) { | 
 |     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); | 
 |     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); | 
 |  | 
 |     TemplateTypeParmType *TypeCheck | 
 |       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!TypeCheck && "Template type parameter canonical type broken"); | 
 |     (void)TypeCheck; | 
 |   } else | 
 |     TypeParm = new (*this, TypeAlignment) | 
 |       TemplateTypeParmType(Depth, Index, ParameterPack); | 
 |  | 
 |   Types.push_back(TypeParm); | 
 |   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); | 
 |  | 
 |   return QualType(TypeParm, 0); | 
 | } | 
 |  | 
 | TypeSourceInfo * | 
 | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, | 
 |                                               SourceLocation NameLoc, | 
 |                                         const TemplateArgumentListInfo &Args, | 
 |                                               QualType Underlying) const { | 
 |   assert(!Name.getAsDependentTemplateName() && | 
 |          "No dependent template names here!"); | 
 |   QualType TST = | 
 |       getTemplateSpecializationType(Name, Args.arguments(), Underlying); | 
 |  | 
 |   TypeSourceInfo *DI = CreateTypeSourceInfo(TST); | 
 |   TemplateSpecializationTypeLoc TL = | 
 |       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); | 
 |   TL.setTemplateKeywordLoc(SourceLocation()); | 
 |   TL.setTemplateNameLoc(NameLoc); | 
 |   TL.setLAngleLoc(Args.getLAngleLoc()); | 
 |   TL.setRAngleLoc(Args.getRAngleLoc()); | 
 |   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) | 
 |     TL.setArgLocInfo(i, Args[i].getLocInfo()); | 
 |   return DI; | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
 |                                           ArrayRef<TemplateArgumentLoc> Args, | 
 |                                           QualType Underlying) const { | 
 |   assert(!Template.getAsDependentTemplateName() && | 
 |          "No dependent template names here!"); | 
 |  | 
 |   SmallVector<TemplateArgument, 4> ArgVec; | 
 |   ArgVec.reserve(Args.size()); | 
 |   for (const TemplateArgumentLoc &Arg : Args) | 
 |     ArgVec.push_back(Arg.getArgument()); | 
 |  | 
 |   return getTemplateSpecializationType(Template, ArgVec, Underlying); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { | 
 |   for (const TemplateArgument &Arg : Args) | 
 |     if (Arg.isPackExpansion()) | 
 |       return true; | 
 |  | 
 |   return true; | 
 | } | 
 | #endif | 
 |  | 
 | QualType | 
 | ASTContext::getTemplateSpecializationType(TemplateName Template, | 
 |                                           ArrayRef<TemplateArgument> Args, | 
 |                                           QualType Underlying) const { | 
 |   assert(!Template.getAsDependentTemplateName() && | 
 |          "No dependent template names here!"); | 
 |   // Look through qualified template names. | 
 |   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
 |     Template = QTN->getUnderlyingTemplate(); | 
 |  | 
 |   const auto *TD = Template.getAsTemplateDecl(); | 
 |   bool IsTypeAlias = TD && TD->isTypeAlias(); | 
 |   QualType CanonType; | 
 |   if (!Underlying.isNull()) | 
 |     CanonType = getCanonicalType(Underlying); | 
 |   else { | 
 |     // We can get here with an alias template when the specialization contains | 
 |     // a pack expansion that does not match up with a parameter pack. | 
 |     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && | 
 |            "Caller must compute aliased type"); | 
 |     IsTypeAlias = false; | 
 |     CanonType = getCanonicalTemplateSpecializationType(Template, Args); | 
 |   } | 
 |  | 
 |   // Allocate the (non-canonical) template specialization type, but don't | 
 |   // try to unique it: these types typically have location information that | 
 |   // we don't unique and don't want to lose. | 
 |   void *Mem = Allocate(sizeof(TemplateSpecializationType) + | 
 |                        sizeof(TemplateArgument) * Args.size() + | 
 |                        (IsTypeAlias? sizeof(QualType) : 0), | 
 |                        TypeAlignment); | 
 |   auto *Spec | 
 |     = new (Mem) TemplateSpecializationType(Template, Args, CanonType, | 
 |                                          IsTypeAlias ? Underlying : QualType()); | 
 |  | 
 |   Types.push_back(Spec); | 
 |   return QualType(Spec, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getCanonicalTemplateSpecializationType( | 
 |     TemplateName Template, ArrayRef<TemplateArgument> Args) const { | 
 |   assert(!Template.getAsDependentTemplateName() && | 
 |          "No dependent template names here!"); | 
 |  | 
 |   // Look through qualified template names. | 
 |   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) | 
 |     Template = TemplateName(QTN->getUnderlyingTemplate()); | 
 |  | 
 |   // Build the canonical template specialization type. | 
 |   TemplateName CanonTemplate = getCanonicalTemplateName(Template); | 
 |   bool AnyNonCanonArgs = false; | 
 |   auto CanonArgs = | 
 |       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs); | 
 |  | 
 |   // Determine whether this canonical template specialization type already | 
 |   // exists. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TemplateSpecializationType::Profile(ID, CanonTemplate, | 
 |                                       CanonArgs, *this); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   TemplateSpecializationType *Spec | 
 |     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!Spec) { | 
 |     // Allocate a new canonical template specialization type. | 
 |     void *Mem = Allocate((sizeof(TemplateSpecializationType) + | 
 |                           sizeof(TemplateArgument) * CanonArgs.size()), | 
 |                          TypeAlignment); | 
 |     Spec = new (Mem) TemplateSpecializationType(CanonTemplate, | 
 |                                                 CanonArgs, | 
 |                                                 QualType(), QualType()); | 
 |     Types.push_back(Spec); | 
 |     TemplateSpecializationTypes.InsertNode(Spec, InsertPos); | 
 |   } | 
 |  | 
 |   assert(Spec->isDependentType() && | 
 |          "Non-dependent template-id type must have a canonical type"); | 
 |   return QualType(Spec, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, | 
 |                                        NestedNameSpecifier *NNS, | 
 |                                        QualType NamedType, | 
 |                                        TagDecl *OwnedTagDecl) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon = NamedType; | 
 |   if (!Canon.isCanonical()) { | 
 |     Canon = getCanonicalType(NamedType); | 
 |     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckT && "Elaborated canonical type broken"); | 
 |     (void)CheckT; | 
 |   } | 
 |  | 
 |   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), | 
 |                        TypeAlignment); | 
 |   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); | 
 |  | 
 |   Types.push_back(T); | 
 |   ElaboratedTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getParenType(QualType InnerType) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ParenType::Profile(ID, InnerType); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon = InnerType; | 
 |   if (!Canon.isCanonical()) { | 
 |     Canon = getCanonicalType(InnerType); | 
 |     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckT && "Paren canonical type broken"); | 
 |     (void)CheckT; | 
 |   } | 
 |  | 
 |   T = new (*this, TypeAlignment) ParenType(InnerType, Canon); | 
 |   Types.push_back(T); | 
 |   ParenTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, | 
 |                                   const IdentifierInfo *MacroII) const { | 
 |   QualType Canon = UnderlyingTy; | 
 |   if (!Canon.isCanonical()) | 
 |     Canon = getCanonicalType(UnderlyingTy); | 
 |  | 
 |   auto *newType = new (*this, TypeAlignment) | 
 |       MacroQualifiedType(UnderlyingTy, Canon, MacroII); | 
 |   Types.push_back(newType); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, | 
 |                                           NestedNameSpecifier *NNS, | 
 |                                           const IdentifierInfo *Name, | 
 |                                           QualType Canon) const { | 
 |   if (Canon.isNull()) { | 
 |     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |     if (CanonNNS != NNS) | 
 |       Canon = getDependentNameType(Keyword, CanonNNS, Name); | 
 |   } | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentNameType::Profile(ID, Keyword, NNS, Name); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentNameType *T | 
 |     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); | 
 |   Types.push_back(T); | 
 |   DependentNameTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getDependentTemplateSpecializationType( | 
 |     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, | 
 |     const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const { | 
 |   // TODO: avoid this copy | 
 |   SmallVector<TemplateArgument, 16> ArgCopy; | 
 |   for (unsigned I = 0, E = Args.size(); I != E; ++I) | 
 |     ArgCopy.push_back(Args[I].getArgument()); | 
 |   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getDependentTemplateSpecializationType( | 
 |                                  ElaboratedTypeKeyword Keyword, | 
 |                                  NestedNameSpecifier *NNS, | 
 |                                  const IdentifierInfo *Name, | 
 |                                  ArrayRef<TemplateArgument> Args) const { | 
 |   assert((!NNS || NNS->isDependent()) && | 
 |          "nested-name-specifier must be dependent"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, | 
 |                                                Name, Args); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateSpecializationType *T | 
 |     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |  | 
 |   ElaboratedTypeKeyword CanonKeyword = Keyword; | 
 |   if (Keyword == ETK_None) CanonKeyword = ETK_Typename; | 
 |  | 
 |   bool AnyNonCanonArgs = false; | 
 |   auto CanonArgs = | 
 |       ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs); | 
 |  | 
 |   QualType Canon; | 
 |   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { | 
 |     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, | 
 |                                                    Name, | 
 |                                                    CanonArgs); | 
 |  | 
 |     // Find the insert position again. | 
 |     [[maybe_unused]] auto *Nothing = | 
 |         DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!Nothing && "canonical type broken"); | 
 |   } | 
 |  | 
 |   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + | 
 |                         sizeof(TemplateArgument) * Args.size()), | 
 |                        TypeAlignment); | 
 |   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, | 
 |                                                     Name, Args, Canon); | 
 |   Types.push_back(T); | 
 |   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { | 
 |   TemplateArgument Arg; | 
 |   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { | 
 |     QualType ArgType = getTypeDeclType(TTP); | 
 |     if (TTP->isParameterPack()) | 
 |       ArgType = getPackExpansionType(ArgType, std::nullopt); | 
 |  | 
 |     Arg = TemplateArgument(ArgType); | 
 |   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
 |     QualType T = | 
 |         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); | 
 |     // For class NTTPs, ensure we include the 'const' so the type matches that | 
 |     // of a real template argument. | 
 |     // FIXME: It would be more faithful to model this as something like an | 
 |     // lvalue-to-rvalue conversion applied to a const-qualified lvalue. | 
 |     if (T->isRecordType()) | 
 |       T.addConst(); | 
 |     Expr *E = new (*this) DeclRefExpr( | 
 |         *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T, | 
 |         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); | 
 |  | 
 |     if (NTTP->isParameterPack()) | 
 |       E = new (*this) | 
 |           PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt); | 
 |     Arg = TemplateArgument(E); | 
 |   } else { | 
 |     auto *TTP = cast<TemplateTemplateParmDecl>(Param); | 
 |     if (TTP->isParameterPack()) | 
 |       Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>()); | 
 |     else | 
 |       Arg = TemplateArgument(TemplateName(TTP)); | 
 |   } | 
 |  | 
 |   if (Param->isTemplateParameterPack()) | 
 |     Arg = TemplateArgument::CreatePackCopy(*this, Arg); | 
 |  | 
 |   return Arg; | 
 | } | 
 |  | 
 | void | 
 | ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, | 
 |                                     SmallVectorImpl<TemplateArgument> &Args) { | 
 |   Args.reserve(Args.size() + Params->size()); | 
 |  | 
 |   for (NamedDecl *Param : *Params) | 
 |     Args.push_back(getInjectedTemplateArg(Param)); | 
 | } | 
 |  | 
 | QualType ASTContext::getPackExpansionType(QualType Pattern, | 
 |                                           std::optional<unsigned> NumExpansions, | 
 |                                           bool ExpectPackInType) { | 
 |   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && | 
 |          "Pack expansions must expand one or more parameter packs"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   PackExpansionType::Profile(ID, Pattern, NumExpansions); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (T) | 
 |     return QualType(T, 0); | 
 |  | 
 |   QualType Canon; | 
 |   if (!Pattern.isCanonical()) { | 
 |     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, | 
 |                                  /*ExpectPackInType=*/false); | 
 |  | 
 |     // Find the insert position again, in case we inserted an element into | 
 |     // PackExpansionTypes and invalidated our insert position. | 
 |     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   T = new (*this, TypeAlignment) | 
 |       PackExpansionType(Pattern, Canon, NumExpansions); | 
 |   Types.push_back(T); | 
 |   PackExpansionTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// CmpProtocolNames - Comparison predicate for sorting protocols | 
 | /// alphabetically. | 
 | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, | 
 |                             ObjCProtocolDecl *const *RHS) { | 
 |   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); | 
 | } | 
 |  | 
 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { | 
 |   if (Protocols.empty()) return true; | 
 |  | 
 |   if (Protocols[0]->getCanonicalDecl() != Protocols[0]) | 
 |     return false; | 
 |  | 
 |   for (unsigned i = 1; i != Protocols.size(); ++i) | 
 |     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || | 
 |         Protocols[i]->getCanonicalDecl() != Protocols[i]) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | static void | 
 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { | 
 |   // Sort protocols, keyed by name. | 
 |   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); | 
 |  | 
 |   // Canonicalize. | 
 |   for (ObjCProtocolDecl *&P : Protocols) | 
 |     P = P->getCanonicalDecl(); | 
 |  | 
 |   // Remove duplicates. | 
 |   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); | 
 |   Protocols.erase(ProtocolsEnd, Protocols.end()); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCObjectType(QualType BaseType, | 
 |                                        ObjCProtocolDecl * const *Protocols, | 
 |                                        unsigned NumProtocols) const { | 
 |   return getObjCObjectType(BaseType, {}, | 
 |                            llvm::ArrayRef(Protocols, NumProtocols), | 
 |                            /*isKindOf=*/false); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCObjectType( | 
 |            QualType baseType, | 
 |            ArrayRef<QualType> typeArgs, | 
 |            ArrayRef<ObjCProtocolDecl *> protocols, | 
 |            bool isKindOf) const { | 
 |   // If the base type is an interface and there aren't any protocols or | 
 |   // type arguments to add, then the interface type will do just fine. | 
 |   if (typeArgs.empty() && protocols.empty() && !isKindOf && | 
 |       isa<ObjCInterfaceType>(baseType)) | 
 |     return baseType; | 
 |  | 
 |   // Look in the folding set for an existing type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); | 
 |   void *InsertPos = nullptr; | 
 |   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(QT, 0); | 
 |  | 
 |   // Determine the type arguments to be used for canonicalization, | 
 |   // which may be explicitly specified here or written on the base | 
 |   // type. | 
 |   ArrayRef<QualType> effectiveTypeArgs = typeArgs; | 
 |   if (effectiveTypeArgs.empty()) { | 
 |     if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) | 
 |       effectiveTypeArgs = baseObject->getTypeArgs(); | 
 |   } | 
 |  | 
 |   // Build the canonical type, which has the canonical base type and a | 
 |   // sorted-and-uniqued list of protocols and the type arguments | 
 |   // canonicalized. | 
 |   QualType canonical; | 
 |   bool typeArgsAreCanonical = llvm::all_of( | 
 |       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); }); | 
 |   bool protocolsSorted = areSortedAndUniqued(protocols); | 
 |   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { | 
 |     // Determine the canonical type arguments. | 
 |     ArrayRef<QualType> canonTypeArgs; | 
 |     SmallVector<QualType, 4> canonTypeArgsVec; | 
 |     if (!typeArgsAreCanonical) { | 
 |       canonTypeArgsVec.reserve(effectiveTypeArgs.size()); | 
 |       for (auto typeArg : effectiveTypeArgs) | 
 |         canonTypeArgsVec.push_back(getCanonicalType(typeArg)); | 
 |       canonTypeArgs = canonTypeArgsVec; | 
 |     } else { | 
 |       canonTypeArgs = effectiveTypeArgs; | 
 |     } | 
 |  | 
 |     ArrayRef<ObjCProtocolDecl *> canonProtocols; | 
 |     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; | 
 |     if (!protocolsSorted) { | 
 |       canonProtocolsVec.append(protocols.begin(), protocols.end()); | 
 |       SortAndUniqueProtocols(canonProtocolsVec); | 
 |       canonProtocols = canonProtocolsVec; | 
 |     } else { | 
 |       canonProtocols = protocols; | 
 |     } | 
 |  | 
 |     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, | 
 |                                   canonProtocols, isKindOf); | 
 |  | 
 |     // Regenerate InsertPos. | 
 |     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   unsigned size = sizeof(ObjCObjectTypeImpl); | 
 |   size += typeArgs.size() * sizeof(QualType); | 
 |   size += protocols.size() * sizeof(ObjCProtocolDecl *); | 
 |   void *mem = Allocate(size, TypeAlignment); | 
 |   auto *T = | 
 |     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, | 
 |                                  isKindOf); | 
 |  | 
 |   Types.push_back(T); | 
 |   ObjCObjectTypes.InsertNode(T, InsertPos); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// Apply Objective-C protocol qualifiers to the given type. | 
 | /// If this is for the canonical type of a type parameter, we can apply | 
 | /// protocol qualifiers on the ObjCObjectPointerType. | 
 | QualType | 
 | ASTContext::applyObjCProtocolQualifiers(QualType type, | 
 |                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, | 
 |                   bool allowOnPointerType) const { | 
 |   hasError = false; | 
 |  | 
 |   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { | 
 |     return getObjCTypeParamType(objT->getDecl(), protocols); | 
 |   } | 
 |  | 
 |   // Apply protocol qualifiers to ObjCObjectPointerType. | 
 |   if (allowOnPointerType) { | 
 |     if (const auto *objPtr = | 
 |             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { | 
 |       const ObjCObjectType *objT = objPtr->getObjectType(); | 
 |       // Merge protocol lists and construct ObjCObjectType. | 
 |       SmallVector<ObjCProtocolDecl*, 8> protocolsVec; | 
 |       protocolsVec.append(objT->qual_begin(), | 
 |                           objT->qual_end()); | 
 |       protocolsVec.append(protocols.begin(), protocols.end()); | 
 |       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; | 
 |       type = getObjCObjectType( | 
 |              objT->getBaseType(), | 
 |              objT->getTypeArgsAsWritten(), | 
 |              protocols, | 
 |              objT->isKindOfTypeAsWritten()); | 
 |       return getObjCObjectPointerType(type); | 
 |     } | 
 |   } | 
 |  | 
 |   // Apply protocol qualifiers to ObjCObjectType. | 
 |   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ | 
 |     // FIXME: Check for protocols to which the class type is already | 
 |     // known to conform. | 
 |  | 
 |     return getObjCObjectType(objT->getBaseType(), | 
 |                              objT->getTypeArgsAsWritten(), | 
 |                              protocols, | 
 |                              objT->isKindOfTypeAsWritten()); | 
 |   } | 
 |  | 
 |   // If the canonical type is ObjCObjectType, ... | 
 |   if (type->isObjCObjectType()) { | 
 |     // Silently overwrite any existing protocol qualifiers. | 
 |     // TODO: determine whether that's the right thing to do. | 
 |  | 
 |     // FIXME: Check for protocols to which the class type is already | 
 |     // known to conform. | 
 |     return getObjCObjectType(type, {}, protocols, false); | 
 |   } | 
 |  | 
 |   // id<protocol-list> | 
 |   if (type->isObjCIdType()) { | 
 |     const auto *objPtr = type->castAs<ObjCObjectPointerType>(); | 
 |     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, | 
 |                                  objPtr->isKindOfType()); | 
 |     return getObjCObjectPointerType(type); | 
 |   } | 
 |  | 
 |   // Class<protocol-list> | 
 |   if (type->isObjCClassType()) { | 
 |     const auto *objPtr = type->castAs<ObjCObjectPointerType>(); | 
 |     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, | 
 |                                  objPtr->isKindOfType()); | 
 |     return getObjCObjectPointerType(type); | 
 |   } | 
 |  | 
 |   hasError = true; | 
 |   return type; | 
 | } | 
 |  | 
 | QualType | 
 | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, | 
 |                                  ArrayRef<ObjCProtocolDecl *> protocols) const { | 
 |   // Look in the folding set for an existing type. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); | 
 |   void *InsertPos = nullptr; | 
 |   if (ObjCTypeParamType *TypeParam = | 
 |       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(TypeParam, 0); | 
 |  | 
 |   // We canonicalize to the underlying type. | 
 |   QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); | 
 |   if (!protocols.empty()) { | 
 |     // Apply the protocol qualifers. | 
 |     bool hasError; | 
 |     Canonical = getCanonicalType(applyObjCProtocolQualifiers( | 
 |         Canonical, protocols, hasError, true /*allowOnPointerType*/)); | 
 |     assert(!hasError && "Error when apply protocol qualifier to bound type"); | 
 |   } | 
 |  | 
 |   unsigned size = sizeof(ObjCTypeParamType); | 
 |   size += protocols.size() * sizeof(ObjCProtocolDecl *); | 
 |   void *mem = Allocate(size, TypeAlignment); | 
 |   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); | 
 |  | 
 |   Types.push_back(newType); | 
 |   ObjCTypeParamTypes.InsertNode(newType, InsertPos); | 
 |   return QualType(newType, 0); | 
 | } | 
 |  | 
 | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, | 
 |                                               ObjCTypeParamDecl *New) const { | 
 |   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); | 
 |   // Update TypeForDecl after updating TypeSourceInfo. | 
 |   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); | 
 |   SmallVector<ObjCProtocolDecl *, 8> protocols; | 
 |   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); | 
 |   QualType UpdatedTy = getObjCTypeParamType(New, protocols); | 
 |   New->setTypeForDecl(UpdatedTy.getTypePtr()); | 
 | } | 
 |  | 
 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's | 
 | /// protocol list adopt all protocols in QT's qualified-id protocol | 
 | /// list. | 
 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, | 
 |                                                 ObjCInterfaceDecl *IC) { | 
 |   if (!QT->isObjCQualifiedIdType()) | 
 |     return false; | 
 |  | 
 |   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     for (auto *Proto : OPT->quals()) { | 
 |       if (!IC->ClassImplementsProtocol(Proto, false)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in | 
 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list | 
 | /// of protocols. | 
 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, | 
 |                                                 ObjCInterfaceDecl *IDecl) { | 
 |   if (!QT->isObjCQualifiedIdType()) | 
 |     return false; | 
 |   const auto *OPT = QT->getAs<ObjCObjectPointerType>(); | 
 |   if (!OPT) | 
 |     return false; | 
 |   if (!IDecl->hasDefinition()) | 
 |     return false; | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; | 
 |   CollectInheritedProtocols(IDecl, InheritedProtocols); | 
 |   if (InheritedProtocols.empty()) | 
 |     return false; | 
 |   // Check that if every protocol in list of id<plist> conforms to a protocol | 
 |   // of IDecl's, then bridge casting is ok. | 
 |   bool Conforms = false; | 
 |   for (auto *Proto : OPT->quals()) { | 
 |     Conforms = false; | 
 |     for (auto *PI : InheritedProtocols) { | 
 |       if (ProtocolCompatibleWithProtocol(Proto, PI)) { | 
 |         Conforms = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!Conforms) | 
 |       break; | 
 |   } | 
 |   if (Conforms) | 
 |     return true; | 
 |  | 
 |   for (auto *PI : InheritedProtocols) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     bool Adopts = false; | 
 |     for (auto *Proto : OPT->quals()) { | 
 |       // return 'true' if 'PI' is in the inheritance hierarchy of Proto | 
 |       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) | 
 |         break; | 
 |     } | 
 |     if (!Adopts) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for | 
 | /// the given object type. | 
 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   ObjCObjectPointerType::Profile(ID, ObjectT); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (ObjCObjectPointerType *QT = | 
 |               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(QT, 0); | 
 |  | 
 |   // Find the canonical object type. | 
 |   QualType Canonical; | 
 |   if (!ObjectT.isCanonical()) { | 
 |     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); | 
 |  | 
 |     // Regenerate InsertPos. | 
 |     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |   } | 
 |  | 
 |   // No match. | 
 |   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); | 
 |   auto *QType = | 
 |     new (Mem) ObjCObjectPointerType(Canonical, ObjectT); | 
 |  | 
 |   Types.push_back(QType); | 
 |   ObjCObjectPointerTypes.InsertNode(QType, InsertPos); | 
 |   return QualType(QType, 0); | 
 | } | 
 |  | 
 | /// getObjCInterfaceType - Return the unique reference to the type for the | 
 | /// specified ObjC interface decl. The list of protocols is optional. | 
 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, | 
 |                                           ObjCInterfaceDecl *PrevDecl) const { | 
 |   if (Decl->TypeForDecl) | 
 |     return QualType(Decl->TypeForDecl, 0); | 
 |  | 
 |   if (PrevDecl) { | 
 |     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); | 
 |     Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
 |     return QualType(PrevDecl->TypeForDecl, 0); | 
 |   } | 
 |  | 
 |   // Prefer the definition, if there is one. | 
 |   if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) | 
 |     Decl = Def; | 
 |  | 
 |   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); | 
 |   auto *T = new (Mem) ObjCInterfaceType(Decl); | 
 |   Decl->TypeForDecl = T; | 
 |   Types.push_back(T); | 
 |   return QualType(T, 0); | 
 | } | 
 |  | 
 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique | 
 | /// TypeOfExprType AST's (since expression's are never shared). For example, | 
 | /// multiple declarations that refer to "typeof(x)" all contain different | 
 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates | 
 | /// on canonical type's (which are always unique). | 
 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { | 
 |   TypeOfExprType *toe; | 
 |   if (tofExpr->isTypeDependent()) { | 
 |     llvm::FoldingSetNodeID ID; | 
 |     DependentTypeOfExprType::Profile(ID, *this, tofExpr, | 
 |                                      Kind == TypeOfKind::Unqualified); | 
 |  | 
 |     void *InsertPos = nullptr; | 
 |     DependentTypeOfExprType *Canon = | 
 |         DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     if (Canon) { | 
 |       // We already have a "canonical" version of an identical, dependent | 
 |       // typeof(expr) type. Use that as our canonical type. | 
 |       toe = new (*this, TypeAlignment) | 
 |           TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); | 
 |     } else { | 
 |       // Build a new, canonical typeof(expr) type. | 
 |       Canon = new (*this, TypeAlignment) | 
 |           DependentTypeOfExprType(*this, tofExpr, Kind); | 
 |       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); | 
 |       toe = Canon; | 
 |     } | 
 |   } else { | 
 |     QualType Canonical = getCanonicalType(tofExpr->getType()); | 
 |     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Kind, Canonical); | 
 |   } | 
 |   Types.push_back(toe); | 
 |   return QualType(toe, 0); | 
 | } | 
 |  | 
 | /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique | 
 | /// TypeOfType nodes. The only motivation to unique these nodes would be | 
 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be | 
 | /// an issue. This doesn't affect the type checker, since it operates | 
 | /// on canonical types (which are always unique). | 
 | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { | 
 |   QualType Canonical = getCanonicalType(tofType); | 
 |   auto *tot = | 
 |       new (*this, TypeAlignment) TypeOfType(tofType, Canonical, Kind); | 
 |   Types.push_back(tot); | 
 |   return QualType(tot, 0); | 
 | } | 
 |  | 
 | /// getReferenceQualifiedType - Given an expr, will return the type for | 
 | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions | 
 | /// and class member access into account. | 
 | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { | 
 |   // C++11 [dcl.type.simple]p4: | 
 |   //   [...] | 
 |   QualType T = E->getType(); | 
 |   switch (E->getValueKind()) { | 
 |   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the | 
 |   //       type of e; | 
 |   case VK_XValue: | 
 |     return getRValueReferenceType(T); | 
 |   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the | 
 |   //       type of e; | 
 |   case VK_LValue: | 
 |     return getLValueReferenceType(T); | 
 |   //  - otherwise, decltype(e) is the type of e. | 
 |   case VK_PRValue: | 
 |     return T; | 
 |   } | 
 |   llvm_unreachable("Unknown value kind"); | 
 | } | 
 |  | 
 | /// Unlike many "get<Type>" functions, we don't unique DecltypeType | 
 | /// nodes. This would never be helpful, since each such type has its own | 
 | /// expression, and would not give a significant memory saving, since there | 
 | /// is an Expr tree under each such type. | 
 | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { | 
 |   DecltypeType *dt; | 
 |  | 
 |   // C++11 [temp.type]p2: | 
 |   //   If an expression e involves a template parameter, decltype(e) denotes a | 
 |   //   unique dependent type. Two such decltype-specifiers refer to the same | 
 |   //   type only if their expressions are equivalent (14.5.6.1). | 
 |   if (e->isInstantiationDependent()) { | 
 |     llvm::FoldingSetNodeID ID; | 
 |     DependentDecltypeType::Profile(ID, *this, e); | 
 |  | 
 |     void *InsertPos = nullptr; | 
 |     DependentDecltypeType *Canon | 
 |       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     if (!Canon) { | 
 |       // Build a new, canonical decltype(expr) type. | 
 |       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); | 
 |       DependentDecltypeTypes.InsertNode(Canon, InsertPos); | 
 |     } | 
 |     dt = new (*this, TypeAlignment) | 
 |         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); | 
 |   } else { | 
 |     dt = new (*this, TypeAlignment) | 
 |         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); | 
 |   } | 
 |   Types.push_back(dt); | 
 |   return QualType(dt, 0); | 
 | } | 
 |  | 
 | /// getUnaryTransformationType - We don't unique these, since the memory | 
 | /// savings are minimal and these are rare. | 
 | QualType ASTContext::getUnaryTransformType(QualType BaseType, | 
 |                                            QualType UnderlyingType, | 
 |                                            UnaryTransformType::UTTKind Kind) | 
 |     const { | 
 |   UnaryTransformType *ut = nullptr; | 
 |  | 
 |   if (BaseType->isDependentType()) { | 
 |     // Look in the folding set for an existing type. | 
 |     llvm::FoldingSetNodeID ID; | 
 |     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); | 
 |  | 
 |     void *InsertPos = nullptr; | 
 |     DependentUnaryTransformType *Canon | 
 |       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |     if (!Canon) { | 
 |       // Build a new, canonical __underlying_type(type) type. | 
 |       Canon = new (*this, TypeAlignment) | 
 |              DependentUnaryTransformType(*this, getCanonicalType(BaseType), | 
 |                                          Kind); | 
 |       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); | 
 |     } | 
 |     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, | 
 |                                                         QualType(), Kind, | 
 |                                                         QualType(Canon, 0)); | 
 |   } else { | 
 |     QualType CanonType = getCanonicalType(UnderlyingType); | 
 |     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, | 
 |                                                         UnderlyingType, Kind, | 
 |                                                         CanonType); | 
 |   } | 
 |   Types.push_back(ut); | 
 |   return QualType(ut, 0); | 
 | } | 
 |  | 
 | QualType ASTContext::getAutoTypeInternal( | 
 |     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, | 
 |     bool IsPack, ConceptDecl *TypeConstraintConcept, | 
 |     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { | 
 |   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && | 
 |       !TypeConstraintConcept && !IsDependent) | 
 |     return getAutoDeductType(); | 
 |  | 
 |   // Look in the folding set for an existing type. | 
 |   void *InsertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent, | 
 |                     TypeConstraintConcept, TypeConstraintArgs); | 
 |   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   QualType Canon; | 
 |   if (!IsCanon) { | 
 |     if (!DeducedType.isNull()) { | 
 |       Canon = DeducedType.getCanonicalType(); | 
 |     } else if (TypeConstraintConcept) { | 
 |       bool AnyNonCanonArgs = false; | 
 |       ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl(); | 
 |       auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( | 
 |           *this, TypeConstraintArgs, AnyNonCanonArgs); | 
 |       if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { | 
 |         Canon = | 
 |             getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack, | 
 |                                 CanonicalConcept, CanonicalConceptArgs, true); | 
 |         // Find the insert position again. | 
 |         [[maybe_unused]] auto *Nothing = | 
 |             AutoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |         assert(!Nothing && "canonical type broken"); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   void *Mem = Allocate(sizeof(AutoType) + | 
 |                            sizeof(TemplateArgument) * TypeConstraintArgs.size(), | 
 |                        TypeAlignment); | 
 |   auto *AT = new (Mem) AutoType( | 
 |       DeducedType, Keyword, | 
 |       (IsDependent ? TypeDependence::DependentInstantiation | 
 |                    : TypeDependence::None) | | 
 |           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), | 
 |       Canon, TypeConstraintConcept, TypeConstraintArgs); | 
 |   Types.push_back(AT); | 
 |   AutoTypes.InsertNode(AT, InsertPos); | 
 |   return QualType(AT, 0); | 
 | } | 
 |  | 
 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been | 
 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the | 
 | /// canonical deduced-but-dependent 'auto' type. | 
 | QualType | 
 | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, | 
 |                         bool IsDependent, bool IsPack, | 
 |                         ConceptDecl *TypeConstraintConcept, | 
 |                         ArrayRef<TemplateArgument> TypeConstraintArgs) const { | 
 |   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack"); | 
 |   assert((!IsDependent || DeducedType.isNull()) && | 
 |          "A dependent auto should be undeduced"); | 
 |   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, | 
 |                              TypeConstraintConcept, TypeConstraintArgs); | 
 | } | 
 |  | 
 | QualType ASTContext::getUnconstrainedType(QualType T) const { | 
 |   QualType CanonT = T.getCanonicalType(); | 
 |  | 
 |   // Remove a type-constraint from a top-level auto or decltype(auto). | 
 |   if (auto *AT = CanonT->getAs<AutoType>()) { | 
 |     if (!AT->isConstrained()) | 
 |       return T; | 
 |     return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false, | 
 |                                         AT->containsUnexpandedParameterPack()), | 
 |                             T.getQualifiers()); | 
 |   } | 
 |  | 
 |   // FIXME: We only support constrained auto at the top level in the type of a | 
 |   // non-type template parameter at the moment. Once we lift that restriction, | 
 |   // we'll need to recursively build types containing auto here. | 
 |   assert(!CanonT->getContainedAutoType() || | 
 |          !CanonT->getContainedAutoType()->isConstrained()); | 
 |   return T; | 
 | } | 
 |  | 
 | /// Return the uniqued reference to the deduced template specialization type | 
 | /// which has been deduced to the given type, or to the canonical undeduced | 
 | /// such type, or the canonical deduced-but-dependent such type. | 
 | QualType ASTContext::getDeducedTemplateSpecializationType( | 
 |     TemplateName Template, QualType DeducedType, bool IsDependent) const { | 
 |   // Look in the folding set for an existing type. | 
 |   void *InsertPos = nullptr; | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, | 
 |                                              IsDependent); | 
 |   if (DeducedTemplateSpecializationType *DTST = | 
 |           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(DTST, 0); | 
 |  | 
 |   auto *DTST = new (*this, TypeAlignment) | 
 |       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); | 
 |   llvm::FoldingSetNodeID TempID; | 
 |   DTST->Profile(TempID); | 
 |   assert(ID == TempID && "ID does not match"); | 
 |   Types.push_back(DTST); | 
 |   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); | 
 |   return QualType(DTST, 0); | 
 | } | 
 |  | 
 | /// getAtomicType - Return the uniqued reference to the atomic type for | 
 | /// the given value type. | 
 | QualType ASTContext::getAtomicType(QualType T) const { | 
 |   // Unique pointers, to guarantee there is only one pointer of a particular | 
 |   // structure. | 
 |   llvm::FoldingSetNodeID ID; | 
 |   AtomicType::Profile(ID, T); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return QualType(AT, 0); | 
 |  | 
 |   // If the atomic value type isn't canonical, this won't be a canonical type | 
 |   // either, so fill in the canonical type field. | 
 |   QualType Canonical; | 
 |   if (!T.isCanonical()) { | 
 |     Canonical = getAtomicType(getCanonicalType(T)); | 
 |  | 
 |     // Get the new insert position for the node we care about. | 
 |     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
 |   } | 
 |   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical); | 
 |   Types.push_back(New); | 
 |   AtomicTypes.InsertNode(New, InsertPos); | 
 |   return QualType(New, 0); | 
 | } | 
 |  | 
 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. | 
 | QualType ASTContext::getAutoDeductType() const { | 
 |   if (AutoDeductTy.isNull()) | 
 |     AutoDeductTy = QualType(new (*this, TypeAlignment) | 
 |                                 AutoType(QualType(), AutoTypeKeyword::Auto, | 
 |                                          TypeDependence::None, QualType(), | 
 |                                          /*concept*/ nullptr, /*args*/ {}), | 
 |                             0); | 
 |   return AutoDeductTy; | 
 | } | 
 |  | 
 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. | 
 | QualType ASTContext::getAutoRRefDeductType() const { | 
 |   if (AutoRRefDeductTy.isNull()) | 
 |     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); | 
 |   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); | 
 |   return AutoRRefDeductTy; | 
 | } | 
 |  | 
 | /// getTagDeclType - Return the unique reference to the type for the | 
 | /// specified TagDecl (struct/union/class/enum) decl. | 
 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { | 
 |   assert(Decl); | 
 |   // FIXME: What is the design on getTagDeclType when it requires casting | 
 |   // away const?  mutable? | 
 |   return getTypeDeclType(const_cast<TagDecl*>(Decl)); | 
 | } | 
 |  | 
 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result | 
 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and | 
 | /// needs to agree with the definition in <stddef.h>. | 
 | CanQualType ASTContext::getSizeType() const { | 
 |   return getFromTargetType(Target->getSizeType()); | 
 | } | 
 |  | 
 | /// Return the unique signed counterpart of the integer type | 
 | /// corresponding to size_t. | 
 | CanQualType ASTContext::getSignedSizeType() const { | 
 |   return getFromTargetType(Target->getSignedSizeType()); | 
 | } | 
 |  | 
 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). | 
 | CanQualType ASTContext::getIntMaxType() const { | 
 |   return getFromTargetType(Target->getIntMaxType()); | 
 | } | 
 |  | 
 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). | 
 | CanQualType ASTContext::getUIntMaxType() const { | 
 |   return getFromTargetType(Target->getUIntMaxType()); | 
 | } | 
 |  | 
 | /// getSignedWCharType - Return the type of "signed wchar_t". | 
 | /// Used when in C++, as a GCC extension. | 
 | QualType ASTContext::getSignedWCharType() const { | 
 |   // FIXME: derive from "Target" ? | 
 |   return WCharTy; | 
 | } | 
 |  | 
 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". | 
 | /// Used when in C++, as a GCC extension. | 
 | QualType ASTContext::getUnsignedWCharType() const { | 
 |   // FIXME: derive from "Target" ? | 
 |   return UnsignedIntTy; | 
 | } | 
 |  | 
 | QualType ASTContext::getIntPtrType() const { | 
 |   return getFromTargetType(Target->getIntPtrType()); | 
 | } | 
 |  | 
 | QualType ASTContext::getUIntPtrType() const { | 
 |   return getCorrespondingUnsignedType(getIntPtrType()); | 
 | } | 
 |  | 
 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) | 
 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). | 
 | QualType ASTContext::getPointerDiffType() const { | 
 |   return getFromTargetType(Target->getPtrDiffType(LangAS::Default)); | 
 | } | 
 |  | 
 | /// Return the unique unsigned counterpart of "ptrdiff_t" | 
 | /// integer type. The standard (C11 7.21.6.1p7) refers to this type | 
 | /// in the definition of %tu format specifier. | 
 | QualType ASTContext::getUnsignedPointerDiffType() const { | 
 |   return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default)); | 
 | } | 
 |  | 
 | /// Return the unique type for "pid_t" defined in | 
 | /// <sys/types.h>. We need this to compute the correct type for vfork(). | 
 | QualType ASTContext::getProcessIDType() const { | 
 |   return getFromTargetType(Target->getProcessIDType()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Type Operators | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { | 
 |   // Push qualifiers into arrays, and then discard any remaining | 
 |   // qualifiers. | 
 |   T = getCanonicalType(T); | 
 |   T = getVariableArrayDecayedType(T); | 
 |   const Type *Ty = T.getTypePtr(); | 
 |   QualType Result; | 
 |   if (isa<ArrayType>(Ty)) { | 
 |     Result = getArrayDecayedType(QualType(Ty,0)); | 
 |   } else if (isa<FunctionType>(Ty)) { | 
 |     Result = getPointerType(QualType(Ty, 0)); | 
 |   } else { | 
 |     Result = QualType(Ty, 0); | 
 |   } | 
 |  | 
 |   return CanQualType::CreateUnsafe(Result); | 
 | } | 
 |  | 
 | QualType ASTContext::getUnqualifiedArrayType(QualType type, | 
 |                                              Qualifiers &quals) { | 
 |   SplitQualType splitType = type.getSplitUnqualifiedType(); | 
 |  | 
 |   // FIXME: getSplitUnqualifiedType() actually walks all the way to | 
 |   // the unqualified desugared type and then drops it on the floor. | 
 |   // We then have to strip that sugar back off with | 
 |   // getUnqualifiedDesugaredType(), which is silly. | 
 |   const auto *AT = | 
 |       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); | 
 |  | 
 |   // If we don't have an array, just use the results in splitType. | 
 |   if (!AT) { | 
 |     quals = splitType.Quals; | 
 |     return QualType(splitType.Ty, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, recurse on the array's element type. | 
 |   QualType elementType = AT->getElementType(); | 
 |   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); | 
 |  | 
 |   // If that didn't change the element type, AT has no qualifiers, so we | 
 |   // can just use the results in splitType. | 
 |   if (elementType == unqualElementType) { | 
 |     assert(quals.empty()); // from the recursive call | 
 |     quals = splitType.Quals; | 
 |     return QualType(splitType.Ty, 0); | 
 |   } | 
 |  | 
 |   // Otherwise, add in the qualifiers from the outermost type, then | 
 |   // build the type back up. | 
 |   quals.addConsistentQualifiers(splitType.Quals); | 
 |  | 
 |   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
 |     return getConstantArrayType(unqualElementType, CAT->getSize(), | 
 |                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0); | 
 |   } | 
 |  | 
 |   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { | 
 |     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); | 
 |   } | 
 |  | 
 |   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { | 
 |     return getVariableArrayType(unqualElementType, | 
 |                                 VAT->getSizeExpr(), | 
 |                                 VAT->getSizeModifier(), | 
 |                                 VAT->getIndexTypeCVRQualifiers(), | 
 |                                 VAT->getBracketsRange()); | 
 |   } | 
 |  | 
 |   const auto *DSAT = cast<DependentSizedArrayType>(AT); | 
 |   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), | 
 |                                     DSAT->getSizeModifier(), 0, | 
 |                                     SourceRange()); | 
 | } | 
 |  | 
 | /// Attempt to unwrap two types that may both be array types with the same bound | 
 | /// (or both be array types of unknown bound) for the purpose of comparing the | 
 | /// cv-decomposition of two types per C++ [conv.qual]. | 
 | /// | 
 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in | 
 | ///        C++20 [conv.qual], if permitted by the current language mode. | 
 | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, | 
 |                                          bool AllowPiMismatch) { | 
 |   while (true) { | 
 |     auto *AT1 = getAsArrayType(T1); | 
 |     if (!AT1) | 
 |       return; | 
 |  | 
 |     auto *AT2 = getAsArrayType(T2); | 
 |     if (!AT2) | 
 |       return; | 
 |  | 
 |     // If we don't have two array types with the same constant bound nor two | 
 |     // incomplete array types, we've unwrapped everything we can. | 
 |     // C++20 also permits one type to be a constant array type and the other | 
 |     // to be an incomplete array type. | 
 |     // FIXME: Consider also unwrapping array of unknown bound and VLA. | 
 |     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { | 
 |       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); | 
 |       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || | 
 |             (AllowPiMismatch && getLangOpts().CPlusPlus20 && | 
 |              isa<IncompleteArrayType>(AT2)))) | 
 |         return; | 
 |     } else if (isa<IncompleteArrayType>(AT1)) { | 
 |       if (!(isa<IncompleteArrayType>(AT2) || | 
 |             (AllowPiMismatch && getLangOpts().CPlusPlus20 && | 
 |              isa<ConstantArrayType>(AT2)))) | 
 |         return; | 
 |     } else { | 
 |       return; | 
 |     } | 
 |  | 
 |     T1 = AT1->getElementType(); | 
 |     T2 = AT2->getElementType(); | 
 |   } | 
 | } | 
 |  | 
 | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). | 
 | /// | 
 | /// If T1 and T2 are both pointer types of the same kind, or both array types | 
 | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is | 
 | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. | 
 | /// | 
 | /// This function will typically be called in a loop that successively | 
 | /// "unwraps" pointer and pointer-to-member types to compare them at each | 
 | /// level. | 
 | /// | 
 | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in | 
 | ///        C++20 [conv.qual], if permitted by the current language mode. | 
 | /// | 
 | /// \return \c true if a pointer type was unwrapped, \c false if we reached a | 
 | /// pair of types that can't be unwrapped further. | 
 | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, | 
 |                                     bool AllowPiMismatch) { | 
 |   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); | 
 |  | 
 |   const auto *T1PtrType = T1->getAs<PointerType>(); | 
 |   const auto *T2PtrType = T2->getAs<PointerType>(); | 
 |   if (T1PtrType && T2PtrType) { | 
 |     T1 = T1PtrType->getPointeeType(); | 
 |     T2 = T2PtrType->getPointeeType(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   const auto *T1MPType = T1->getAs<MemberPointerType>(); | 
 |   const auto *T2MPType = T2->getAs<MemberPointerType>(); | 
 |   if (T1MPType && T2MPType && | 
 |       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), | 
 |                              QualType(T2MPType->getClass(), 0))) { | 
 |     T1 = T1MPType->getPointeeType(); | 
 |     T2 = T2MPType->getPointeeType(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (getLangOpts().ObjC) { | 
 |     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); | 
 |     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); | 
 |     if (T1OPType && T2OPType) { | 
 |       T1 = T1OPType->getPointeeType(); | 
 |       T2 = T2OPType->getPointeeType(); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // FIXME: Block pointers, too? | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) { | 
 |   while (true) { | 
 |     Qualifiers Quals; | 
 |     T1 = getUnqualifiedArrayType(T1, Quals); | 
 |     T2 = getUnqualifiedArrayType(T2, Quals); | 
 |     if (hasSameType(T1, T2)) | 
 |       return true; | 
 |     if (!UnwrapSimilarTypes(T1, T2)) | 
 |       return false; | 
 |   } | 
 | } | 
 |  | 
 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { | 
 |   while (true) { | 
 |     Qualifiers Quals1, Quals2; | 
 |     T1 = getUnqualifiedArrayType(T1, Quals1); | 
 |     T2 = getUnqualifiedArrayType(T2, Quals2); | 
 |  | 
 |     Quals1.removeCVRQualifiers(); | 
 |     Quals2.removeCVRQualifiers(); | 
 |     if (Quals1 != Quals2) | 
 |       return false; | 
 |  | 
 |     if (hasSameType(T1, T2)) | 
 |       return true; | 
 |  | 
 |     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) | 
 |       return false; | 
 |   } | 
 | } | 
 |  | 
 | DeclarationNameInfo | 
 | ASTContext::getNameForTemplate(TemplateName Name, | 
 |                                SourceLocation NameLoc) const { | 
 |   switch (Name.getKind()) { | 
 |   case TemplateName::QualifiedTemplate: | 
 |   case TemplateName::Template: | 
 |     // DNInfo work in progress: CHECKME: what about DNLoc? | 
 |     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), | 
 |                                NameLoc); | 
 |  | 
 |   case TemplateName::OverloadedTemplate: { | 
 |     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); | 
 |     // DNInfo work in progress: CHECKME: what about DNLoc? | 
 |     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); | 
 |   } | 
 |  | 
 |   case TemplateName::AssumedTemplate: { | 
 |     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); | 
 |     return DeclarationNameInfo(Storage->getDeclName(), NameLoc); | 
 |   } | 
 |  | 
 |   case TemplateName::DependentTemplate: { | 
 |     DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
 |     DeclarationName DName; | 
 |     if (DTN->isIdentifier()) { | 
 |       DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); | 
 |       return DeclarationNameInfo(DName, NameLoc); | 
 |     } else { | 
 |       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); | 
 |       // DNInfo work in progress: FIXME: source locations? | 
 |       DeclarationNameLoc DNLoc = | 
 |           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange()); | 
 |       return DeclarationNameInfo(DName, NameLoc, DNLoc); | 
 |     } | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParm: { | 
 |     SubstTemplateTemplateParmStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParm(); | 
 |     return DeclarationNameInfo(subst->getParameter()->getDeclName(), | 
 |                                NameLoc); | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParmPack: { | 
 |     SubstTemplateTemplateParmPackStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParmPack(); | 
 |     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), | 
 |                                NameLoc); | 
 |   } | 
 |   case TemplateName::UsingTemplate: | 
 |     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), | 
 |                                NameLoc); | 
 |   } | 
 |  | 
 |   llvm_unreachable("bad template name kind!"); | 
 | } | 
 |  | 
 | TemplateName | 
 | ASTContext::getCanonicalTemplateName(const TemplateName &Name) const { | 
 |   switch (Name.getKind()) { | 
 |   case TemplateName::UsingTemplate: | 
 |   case TemplateName::QualifiedTemplate: | 
 |   case TemplateName::Template: { | 
 |     TemplateDecl *Template = Name.getAsTemplateDecl(); | 
 |     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template)) | 
 |       Template = getCanonicalTemplateTemplateParmDecl(TTP); | 
 |  | 
 |     // The canonical template name is the canonical template declaration. | 
 |     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); | 
 |   } | 
 |  | 
 |   case TemplateName::OverloadedTemplate: | 
 |   case TemplateName::AssumedTemplate: | 
 |     llvm_unreachable("cannot canonicalize unresolved template"); | 
 |  | 
 |   case TemplateName::DependentTemplate: { | 
 |     DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
 |     assert(DTN && "Non-dependent template names must refer to template decls."); | 
 |     return DTN->CanonicalTemplateName; | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParm: { | 
 |     SubstTemplateTemplateParmStorage *subst | 
 |       = Name.getAsSubstTemplateTemplateParm(); | 
 |     return getCanonicalTemplateName(subst->getReplacement()); | 
 |   } | 
 |  | 
 |   case TemplateName::SubstTemplateTemplateParmPack: { | 
 |     SubstTemplateTemplateParmPackStorage *subst = | 
 |         Name.getAsSubstTemplateTemplateParmPack(); | 
 |     TemplateArgument canonArgPack = | 
 |         getCanonicalTemplateArgument(subst->getArgumentPack()); | 
 |     return getSubstTemplateTemplateParmPack( | 
 |         canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(), | 
 |         subst->getFinal(), subst->getIndex()); | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("bad template name!"); | 
 | } | 
 |  | 
 | bool ASTContext::hasSameTemplateName(const TemplateName &X, | 
 |                                      const TemplateName &Y) const { | 
 |   return getCanonicalTemplateName(X).getAsVoidPointer() == | 
 |          getCanonicalTemplateName(Y).getAsVoidPointer(); | 
 | } | 
 |  | 
 | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { | 
 |   if (!XCE != !YCE) | 
 |     return false; | 
 |  | 
 |   if (!XCE) | 
 |     return true; | 
 |  | 
 |   llvm::FoldingSetNodeID XCEID, YCEID; | 
 |   XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); | 
 |   YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); | 
 |   return XCEID == YCEID; | 
 | } | 
 |  | 
 | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, | 
 |                                       const TypeConstraint *YTC) const { | 
 |   if (!XTC != !YTC) | 
 |     return false; | 
 |  | 
 |   if (!XTC) | 
 |     return true; | 
 |  | 
 |   auto *NCX = XTC->getNamedConcept(); | 
 |   auto *NCY = YTC->getNamedConcept(); | 
 |   if (!NCX || !NCY || !isSameEntity(NCX, NCY)) | 
 |     return false; | 
 |   if (XTC->hasExplicitTemplateArgs() != YTC->hasExplicitTemplateArgs()) | 
 |     return false; | 
 |   if (XTC->hasExplicitTemplateArgs()) | 
 |     if (XTC->getTemplateArgsAsWritten()->NumTemplateArgs != | 
 |         YTC->getTemplateArgsAsWritten()->NumTemplateArgs) | 
 |       return false; | 
 |  | 
 |   // Compare slowly by profiling. | 
 |   // | 
 |   // We couldn't compare the profiling result for the template | 
 |   // args here. Consider the following example in different modules: | 
 |   // | 
 |   // template <__integer_like _Tp, C<_Tp> Sentinel> | 
 |   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { | 
 |   //   return __t; | 
 |   // } | 
 |   // | 
 |   // When we compare the profiling result for `C<_Tp>` in different | 
 |   // modules, it will compare the type of `_Tp` in different modules. | 
 |   // However, the type of `_Tp` in different modules refer to different | 
 |   // types here naturally. So we couldn't compare the profiling result | 
 |   // for the template args directly. | 
 |   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(), | 
 |                               YTC->getImmediatelyDeclaredConstraint()); | 
 | } | 
 |  | 
 | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, | 
 |                                          const NamedDecl *Y) const { | 
 |   if (X->getKind() != Y->getKind()) | 
 |     return false; | 
 |  | 
 |   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) { | 
 |     auto *TY = cast<TemplateTypeParmDecl>(Y); | 
 |     if (TX->isParameterPack() != TY->isParameterPack()) | 
 |       return false; | 
 |     if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) | 
 |       return false; | 
 |     return isSameTypeConstraint(TX->getTypeConstraint(), | 
 |                                 TY->getTypeConstraint()); | 
 |   } | 
 |  | 
 |   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) { | 
 |     auto *TY = cast<NonTypeTemplateParmDecl>(Y); | 
 |     return TX->isParameterPack() == TY->isParameterPack() && | 
 |            TX->getASTContext().hasSameType(TX->getType(), TY->getType()) && | 
 |            isSameConstraintExpr(TX->getPlaceholderTypeConstraint(), | 
 |                                 TY->getPlaceholderTypeConstraint()); | 
 |   } | 
 |  | 
 |   auto *TX = cast<TemplateTemplateParmDecl>(X); | 
 |   auto *TY = cast<TemplateTemplateParmDecl>(Y); | 
 |   return TX->isParameterPack() == TY->isParameterPack() && | 
 |          isSameTemplateParameterList(TX->getTemplateParameters(), | 
 |                                      TY->getTemplateParameters()); | 
 | } | 
 |  | 
 | bool ASTContext::isSameTemplateParameterList( | 
 |     const TemplateParameterList *X, const TemplateParameterList *Y) const { | 
 |   if (X->size() != Y->size()) | 
 |     return false; | 
 |  | 
 |   for (unsigned I = 0, N = X->size(); I != N; ++I) | 
 |     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I))) | 
 |       return false; | 
 |  | 
 |   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause()); | 
 | } | 
 |  | 
 | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, | 
 |                                                const NamedDecl *Y) const { | 
 |   // If the type parameter isn't the same already, we don't need to check the | 
 |   // default argument further. | 
 |   if (!isSameTemplateParameter(X, Y)) | 
 |     return false; | 
 |  | 
 |   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) { | 
 |     auto *TTPY = cast<TemplateTypeParmDecl>(Y); | 
 |     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) | 
 |       return false; | 
 |  | 
 |     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument()); | 
 |   } | 
 |  | 
 |   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) { | 
 |     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y); | 
 |     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) | 
 |       return false; | 
 |  | 
 |     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts(); | 
 |     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts(); | 
 |     llvm::FoldingSetNodeID XID, YID; | 
 |     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true); | 
 |     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true); | 
 |     return XID == YID; | 
 |   } | 
 |  | 
 |   auto *TTPX = cast<TemplateTemplateParmDecl>(X); | 
 |   auto *TTPY = cast<TemplateTemplateParmDecl>(Y); | 
 |  | 
 |   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) | 
 |     return false; | 
 |  | 
 |   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); | 
 |   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); | 
 |   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate()); | 
 | } | 
 |  | 
 | static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { | 
 |   if (auto *NS = X->getAsNamespace()) | 
 |     return NS; | 
 |   if (auto *NAS = X->getAsNamespaceAlias()) | 
 |     return NAS->getNamespace(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static bool isSameQualifier(const NestedNameSpecifier *X, | 
 |                             const NestedNameSpecifier *Y) { | 
 |   if (auto *NSX = getNamespace(X)) { | 
 |     auto *NSY = getNamespace(Y); | 
 |     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) | 
 |       return false; | 
 |   } else if (X->getKind() != Y->getKind()) | 
 |     return false; | 
 |  | 
 |   // FIXME: For namespaces and types, we're permitted to check that the entity | 
 |   // is named via the same tokens. We should probably do so. | 
 |   switch (X->getKind()) { | 
 |   case NestedNameSpecifier::Identifier: | 
 |     if (X->getAsIdentifier() != Y->getAsIdentifier()) | 
 |       return false; | 
 |     break; | 
 |   case NestedNameSpecifier::Namespace: | 
 |   case NestedNameSpecifier::NamespaceAlias: | 
 |     // We've already checked that we named the same namespace. | 
 |     break; | 
 |   case NestedNameSpecifier::TypeSpec: | 
 |   case NestedNameSpecifier::TypeSpecWithTemplate: | 
 |     if (X->getAsType()->getCanonicalTypeInternal() != | 
 |         Y->getAsType()->getCanonicalTypeInternal()) | 
 |       return false; | 
 |     break; | 
 |   case NestedNameSpecifier::Global: | 
 |   case NestedNameSpecifier::Super: | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Recurse into earlier portion of NNS, if any. | 
 |   auto *PX = X->getPrefix(); | 
 |   auto *PY = Y->getPrefix(); | 
 |   if (PX && PY) | 
 |     return isSameQualifier(PX, PY); | 
 |   return !PX && !PY; | 
 | } | 
 |  | 
 | /// Determine whether the attributes we can overload on are identical for A and | 
 | /// B. Will ignore any overloadable attrs represented in the type of A and B. | 
 | static bool hasSameOverloadableAttrs(const FunctionDecl *A, | 
 |                                      const FunctionDecl *B) { | 
 |   // Note that pass_object_size attributes are represented in the function's | 
 |   // ExtParameterInfo, so we don't need to check them here. | 
 |  | 
 |   llvm::FoldingSetNodeID Cand1ID, Cand2ID; | 
 |   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); | 
 |   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); | 
 |  | 
 |   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) { | 
 |     std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); | 
 |     std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); | 
 |  | 
 |     // Return false if the number of enable_if attributes is different. | 
 |     if (!Cand1A || !Cand2A) | 
 |       return false; | 
 |  | 
 |     Cand1ID.clear(); | 
 |     Cand2ID.clear(); | 
 |  | 
 |     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true); | 
 |     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true); | 
 |  | 
 |     // Return false if any of the enable_if expressions of A and B are | 
 |     // different. | 
 |     if (Cand1ID != Cand2ID) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { | 
 |   // Caution: this function is called by the AST reader during deserialization, | 
 |   // so it cannot rely on AST invariants being met. Non-trivial accessors | 
 |   // should be avoided, along with any traversal of redeclaration chains. | 
 |  | 
 |   if (X == Y) | 
 |     return true; | 
 |  | 
 |   if (X->getDeclName() != Y->getDeclName()) | 
 |     return false; | 
 |  | 
 |   // Must be in the same context. | 
 |   // | 
 |   // Note that we can't use DeclContext::Equals here, because the DeclContexts | 
 |   // could be two different declarations of the same function. (We will fix the | 
 |   // semantic DC to refer to the primary definition after merging.) | 
 |   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()), | 
 |                           cast<Decl>(Y->getDeclContext()->getRedeclContext()))) | 
 |     return false; | 
 |  | 
 |   // Two typedefs refer to the same entity if they have the same underlying | 
 |   // type. | 
 |   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X)) | 
 |     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y)) | 
 |       return hasSameType(TypedefX->getUnderlyingType(), | 
 |                          TypedefY->getUnderlyingType()); | 
 |  | 
 |   // Must have the same kind. | 
 |   if (X->getKind() != Y->getKind()) | 
 |     return false; | 
 |  | 
 |   // Objective-C classes and protocols with the same name always match. | 
 |   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X)) | 
 |     return true; | 
 |  | 
 |   if (isa<ClassTemplateSpecializationDecl>(X)) { | 
 |     // No need to handle these here: we merge them when adding them to the | 
 |     // template. | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Compatible tags match. | 
 |   if (const auto *TagX = dyn_cast<TagDecl>(X)) { | 
 |     const auto *TagY = cast<TagDecl>(Y); | 
 |     return (TagX->getTagKind() == TagY->getTagKind()) || | 
 |            ((TagX->getTagKind() == TTK_Struct || | 
 |              TagX->getTagKind() == TTK_Class || | 
 |              TagX->getTagKind() == TTK_Interface) && | 
 |             (TagY->getTagKind() == TTK_Struct || | 
 |              TagY->getTagKind() == TTK_Class || | 
 |              TagY->getTagKind() == TTK_Interface)); | 
 |   } | 
 |  | 
 |   // Functions with the same type and linkage match. | 
 |   // FIXME: This needs to cope with merging of prototyped/non-prototyped | 
 |   // functions, etc. | 
 |   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) { | 
 |     const auto *FuncY = cast<FunctionDecl>(Y); | 
 |     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) { | 
 |       const auto *CtorY = cast<CXXConstructorDecl>(Y); | 
 |       if (CtorX->getInheritedConstructor() && | 
 |           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(), | 
 |                         CtorY->getInheritedConstructor().getConstructor())) | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) | 
 |       return false; | 
 |  | 
 |     // Multiversioned functions with different feature strings are represented | 
 |     // as separate declarations. | 
 |     if (FuncX->isMultiVersion()) { | 
 |       const auto *TAX = FuncX->getAttr<TargetAttr>(); | 
 |       const auto *TAY = FuncY->getAttr<TargetAttr>(); | 
 |       assert(TAX && TAY && "Multiversion Function without target attribute"); | 
 |  | 
 |       if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Per C++20 [temp.over.link]/4, friends in different classes are sometimes | 
 |     // not the same entity if they are constrained. | 
 |     if ((FuncX->isMemberLikeConstrainedFriend() || | 
 |          FuncY->isMemberLikeConstrainedFriend()) && | 
 |         !FuncX->getLexicalDeclContext()->Equals( | 
 |             FuncY->getLexicalDeclContext())) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(), | 
 |                               FuncY->getTrailingRequiresClause())) | 
 |       return false; | 
 |  | 
 |     auto GetTypeAsWritten = [](const FunctionDecl *FD) { | 
 |       // Map to the first declaration that we've already merged into this one. | 
 |       // The TSI of redeclarations might not match (due to calling conventions | 
 |       // being inherited onto the type but not the TSI), but the TSI type of | 
 |       // the first declaration of the function should match across modules. | 
 |       FD = FD->getCanonicalDecl(); | 
 |       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() | 
 |                                      : FD->getType(); | 
 |     }; | 
 |     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); | 
 |     if (!hasSameType(XT, YT)) { | 
 |       // We can get functions with different types on the redecl chain in C++17 | 
 |       // if they have differing exception specifications and at least one of | 
 |       // the excpetion specs is unresolved. | 
 |       auto *XFPT = XT->getAs<FunctionProtoType>(); | 
 |       auto *YFPT = YT->getAs<FunctionProtoType>(); | 
 |       if (getLangOpts().CPlusPlus17 && XFPT && YFPT && | 
 |           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) || | 
 |            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) && | 
 |           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT)) | 
 |         return true; | 
 |       return false; | 
 |     } | 
 |  | 
 |     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && | 
 |            hasSameOverloadableAttrs(FuncX, FuncY); | 
 |   } | 
 |  | 
 |   // Variables with the same type and linkage match. | 
 |   if (const auto *VarX = dyn_cast<VarDecl>(X)) { | 
 |     const auto *VarY = cast<VarDecl>(Y); | 
 |     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { | 
 |       // During deserialization, we might compare variables before we load | 
 |       // their types. Assume the types will end up being the same. | 
 |       if (VarX->getType().isNull() || VarY->getType().isNull()) | 
 |         return true; | 
 |  | 
 |       if (hasSameType(VarX->getType(), VarY->getType())) | 
 |         return true; | 
 |  | 
 |       // We can get decls with different types on the redecl chain. Eg. | 
 |       // template <typename T> struct S { static T Var[]; }; // #1 | 
 |       // template <typename T> T S<T>::Var[sizeof(T)]; // #2 | 
 |       // Only? happens when completing an incomplete array type. In this case | 
 |       // when comparing #1 and #2 we should go through their element type. | 
 |       const ArrayType *VarXTy = getAsArrayType(VarX->getType()); | 
 |       const ArrayType *VarYTy = getAsArrayType(VarY->getType()); | 
 |       if (!VarXTy || !VarYTy) | 
 |         return false; | 
 |       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) | 
 |         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType()); | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Namespaces with the same name and inlinedness match. | 
 |   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) { | 
 |     const auto *NamespaceY = cast<NamespaceDecl>(Y); | 
 |     return NamespaceX->isInline() == NamespaceY->isInline(); | 
 |   } | 
 |  | 
 |   // Identical template names and kinds match if their template parameter lists | 
 |   // and patterns match. | 
 |   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) { | 
 |     const auto *TemplateY = cast<TemplateDecl>(Y); | 
 |  | 
 |     // ConceptDecl wouldn't be the same if their constraint expression differs. | 
 |     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) { | 
 |       const auto *ConceptY = cast<ConceptDecl>(Y); | 
 |       if (!isSameConstraintExpr(ConceptX->getConstraintExpr(), | 
 |                                 ConceptY->getConstraintExpr())) | 
 |         return false; | 
 |     } | 
 |  | 
 |     return isSameEntity(TemplateX->getTemplatedDecl(), | 
 |                         TemplateY->getTemplatedDecl()) && | 
 |            isSameTemplateParameterList(TemplateX->getTemplateParameters(), | 
 |                                        TemplateY->getTemplateParameters()); | 
 |   } | 
 |  | 
 |   // Fields with the same name and the same type match. | 
 |   if (const auto *FDX = dyn_cast<FieldDecl>(X)) { | 
 |     const auto *FDY = cast<FieldDecl>(Y); | 
 |     // FIXME: Also check the bitwidth is odr-equivalent, if any. | 
 |     return hasSameType(FDX->getType(), FDY->getType()); | 
 |   } | 
 |  | 
 |   // Indirect fields with the same target field match. | 
 |   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) { | 
 |     const auto *IFDY = cast<IndirectFieldDecl>(Y); | 
 |     return IFDX->getAnonField()->getCanonicalDecl() == | 
 |            IFDY->getAnonField()->getCanonicalDecl(); | 
 |   } | 
 |  | 
 |   // Enumerators with the same name match. | 
 |   if (isa<EnumConstantDecl>(X)) | 
 |     // FIXME: Also check the value is odr-equivalent. | 
 |     return true; | 
 |  | 
 |   // Using shadow declarations with the same target match. | 
 |   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) { | 
 |     const auto *USY = cast<UsingShadowDecl>(Y); | 
 |     return USX->getTargetDecl() == USY->getTargetDecl(); | 
 |   } | 
 |  | 
 |   // Using declarations with the same qualifier match. (We already know that | 
 |   // the name matches.) | 
 |   if (const auto *UX = dyn_cast<UsingDecl>(X)) { | 
 |     const auto *UY = cast<UsingDecl>(Y); | 
 |     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && | 
 |            UX->hasTypename() == UY->hasTypename() && | 
 |            UX->isAccessDeclaration() == UY->isAccessDeclaration(); | 
 |   } | 
 |   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) { | 
 |     const auto *UY = cast<UnresolvedUsingValueDecl>(Y); | 
 |     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && | 
 |            UX->isAccessDeclaration() == UY->isAccessDeclaration(); | 
 |   } | 
 |   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) { | 
 |     return isSameQualifier( | 
 |         UX->getQualifier(), | 
 |         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier()); | 
 |   } | 
 |  | 
 |   // Using-pack declarations are only created by instantiation, and match if | 
 |   // they're instantiated from matching UnresolvedUsing...Decls. | 
 |   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) { | 
 |     return declaresSameEntity( | 
 |         UX->getInstantiatedFromUsingDecl(), | 
 |         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl()); | 
 |   } | 
 |  | 
 |   // Namespace alias definitions with the same target match. | 
 |   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) { | 
 |     const auto *NAY = cast<NamespaceAliasDecl>(Y); | 
 |     return NAX->getNamespace()->Equals(NAY->getNamespace()); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | TemplateArgument | 
 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { | 
 |   switch (Arg.getKind()) { | 
 |     case TemplateArgument::Null: | 
 |       return Arg; | 
 |  | 
 |     case TemplateArgument::Expression: | 
 |       return Arg; | 
 |  | 
 |     case TemplateArgument::Declaration: { | 
 |       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); | 
 |       return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()), | 
 |                               Arg.getIsDefaulted()); | 
 |     } | 
 |  | 
 |     case TemplateArgument::NullPtr: | 
 |       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), | 
 |                               /*isNullPtr*/ true, Arg.getIsDefaulted()); | 
 |  | 
 |     case TemplateArgument::Template: | 
 |       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()), | 
 |                               Arg.getIsDefaulted()); | 
 |  | 
 |     case TemplateArgument::TemplateExpansion: | 
 |       return TemplateArgument( | 
 |           getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()), | 
 |           Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); | 
 |  | 
 |     case TemplateArgument::Integral: | 
 |       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); | 
 |  | 
 |     case TemplateArgument::Type: | 
 |       return TemplateArgument(getCanonicalType(Arg.getAsType()), | 
 |                               /*isNullPtr*/ false, Arg.getIsDefaulted()); | 
 |  | 
 |     case TemplateArgument::Pack: { | 
 |       bool AnyNonCanonArgs = false; | 
 |       auto CanonArgs = ::getCanonicalTemplateArguments( | 
 |           *this, Arg.pack_elements(), AnyNonCanonArgs); | 
 |       if (!AnyNonCanonArgs) | 
 |         return Arg; | 
 |       return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this), | 
 |                                               CanonArgs); | 
 |     } | 
 |   } | 
 |  | 
 |   // Silence GCC warning | 
 |   llvm_unreachable("Unhandled template argument kind"); | 
 | } | 
 |  | 
 | NestedNameSpecifier * | 
 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { | 
 |   if (!NNS) | 
 |     return nullptr; | 
 |  | 
 |   switch (NNS->getKind()) { | 
 |   case NestedNameSpecifier::Identifier: | 
 |     // Canonicalize the prefix but keep the identifier the same. | 
 |     return NestedNameSpecifier::Create(*this, | 
 |                          getCanonicalNestedNameSpecifier(NNS->getPrefix()), | 
 |                                        NNS->getAsIdentifier()); | 
 |  | 
 |   case NestedNameSpecifier::Namespace: | 
 |     // A namespace is canonical; build a nested-name-specifier with | 
 |     // this namespace and no prefix. | 
 |     return NestedNameSpecifier::Create(*this, nullptr, | 
 |                                  NNS->getAsNamespace()->getOriginalNamespace()); | 
 |  | 
 |   case NestedNameSpecifier::NamespaceAlias: | 
 |     // A namespace is canonical; build a nested-name-specifier with | 
 |     // this namespace and no prefix. | 
 |     return NestedNameSpecifier::Create(*this, nullptr, | 
 |                                     NNS->getAsNamespaceAlias()->getNamespace() | 
 |                                                       ->getOriginalNamespace()); | 
 |  | 
 |   // The difference between TypeSpec and TypeSpecWithTemplate is that the | 
 |   // latter will have the 'template' keyword when printed. | 
 |   case NestedNameSpecifier::TypeSpec: | 
 |   case NestedNameSpecifier::TypeSpecWithTemplate: { | 
 |     const Type *T = getCanonicalType(NNS->getAsType()); | 
 |  | 
 |     // If we have some kind of dependent-named type (e.g., "typename T::type"), | 
 |     // break it apart into its prefix and identifier, then reconsititute those | 
 |     // as the canonical nested-name-specifier. This is required to canonicalize | 
 |     // a dependent nested-name-specifier involving typedefs of dependent-name | 
 |     // types, e.g., | 
 |     //   typedef typename T::type T1; | 
 |     //   typedef typename T1::type T2; | 
 |     if (const auto *DNT = T->getAs<DependentNameType>()) | 
 |       return NestedNameSpecifier::Create( | 
 |           *this, DNT->getQualifier(), | 
 |           const_cast<IdentifierInfo *>(DNT->getIdentifier())); | 
 |     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) | 
 |       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true, | 
 |                                          const_cast<Type *>(T)); | 
 |  | 
 |     // TODO: Set 'Template' parameter to true for other template types. | 
 |     return NestedNameSpecifier::Create(*this, nullptr, false, | 
 |                                        const_cast<Type *>(T)); | 
 |   } | 
 |  | 
 |   case NestedNameSpecifier::Global: | 
 |   case NestedNameSpecifier::Super: | 
 |     // The global specifier and __super specifer are canonical and unique. | 
 |     return NNS; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); | 
 | } | 
 |  | 
 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { | 
 |   // Handle the non-qualified case efficiently. | 
 |   if (!T.hasLocalQualifiers()) { | 
 |     // Handle the common positive case fast. | 
 |     if (const auto *AT = dyn_cast<ArrayType>(T)) | 
 |       return AT; | 
 |   } | 
 |  | 
 |   // Handle the common negative case fast. | 
 |   if (!isa<ArrayType>(T.getCanonicalType())) | 
 |     return nullptr; | 
 |  | 
 |   // Apply any qualifiers from the array type to the element type.  This | 
 |   // implements C99 6.7.3p8: "If the specification of an array type includes | 
 |   // any type qualifiers, the element type is so qualified, not the array type." | 
 |  | 
 |   // If we get here, we either have type qualifiers on the type, or we have | 
 |   // sugar such as a typedef in the way.  If we have type qualifiers on the type | 
 |   // we must propagate them down into the element type. | 
 |  | 
 |   SplitQualType split = T.getSplitDesugaredType(); | 
 |   Qualifiers qs = split.Quals; | 
 |  | 
 |   // If we have a simple case, just return now. | 
 |   const auto *ATy = dyn_cast<ArrayType>(split.Ty); | 
 |   if (!ATy || qs.empty()) | 
 |     return ATy; | 
 |  | 
 |   // Otherwise, we have an array and we have qualifiers on it.  Push the | 
 |   // qualifiers into the array element type and return a new array type. | 
 |   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); | 
 |  | 
 |   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) | 
 |     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), | 
 |                                                 CAT->getSizeExpr(), | 
 |                                                 CAT->getSizeModifier(), | 
 |                                            CAT->getIndexTypeCVRQualifiers())); | 
 |   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) | 
 |     return cast<ArrayType>(getIncompleteArrayType(NewEltTy, | 
 |                                                   IAT->getSizeModifier(), | 
 |                                            IAT->getIndexTypeCVRQualifiers())); | 
 |  | 
 |   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) | 
 |     return cast<ArrayType>( | 
 |                      getDependentSizedArrayType(NewEltTy, | 
 |                                                 DSAT->getSizeExpr(), | 
 |                                                 DSAT->getSizeModifier(), | 
 |                                               DSAT->getIndexTypeCVRQualifiers(), | 
 |                                                 DSAT->getBracketsRange())); | 
 |  | 
 |   const auto *VAT = cast<VariableArrayType>(ATy); | 
 |   return cast<ArrayType>(getVariableArrayType(NewEltTy, | 
 |                                               VAT->getSizeExpr(), | 
 |                                               VAT->getSizeModifier(), | 
 |                                               VAT->getIndexTypeCVRQualifiers(), | 
 |                                               VAT->getBracketsRange())); | 
 | } | 
 |  | 
 | QualType ASTContext::getAdjustedParameterType(QualType T) const { | 
 |   if (T->isArrayType() || T->isFunctionType()) | 
 |     return getDecayedType(T); | 
 |   return T; | 
 | } | 
 |  | 
 | QualType ASTContext::getSignatureParameterType(QualType T) const { | 
 |   T = getVariableArrayDecayedType(T); | 
 |   T = getAdjustedParameterType(T); | 
 |   return T.getUnqualifiedType(); | 
 | } | 
 |  | 
 | QualType ASTContext::getExceptionObjectType(QualType T) const { | 
 |   // C++ [except.throw]p3: | 
 |   //   A throw-expression initializes a temporary object, called the exception | 
 |   //   object, the type of which is determined by removing any top-level | 
 |   //   cv-qualifiers from the static type of the operand of throw and adjusting | 
 |   //   the type from "array of T" or "function returning T" to "pointer to T" | 
 |   //   or "pointer to function returning T", [...] | 
 |   T = getVariableArrayDecayedType(T); | 
 |   if (T->isArrayType() || T->isFunctionType()) | 
 |     T = getDecayedType(T); | 
 |   return T.getUnqualifiedType(); | 
 | } | 
 |  | 
 | /// getArrayDecayedType - Return the properly qualified result of decaying the | 
 | /// specified array type to a pointer.  This operation is non-trivial when | 
 | /// handling typedefs etc.  The canonical type of "T" must be an array type, | 
 | /// this returns a pointer to a properly qualified element of the array. | 
 | /// | 
 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. | 
 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { | 
 |   // Get the element type with 'getAsArrayType' so that we don't lose any | 
 |   // typedefs in the element type of the array.  This also handles propagation | 
 |   // of type qualifiers from the array type into the element type if present | 
 |   // (C99 6.7.3p8). | 
 |   const ArrayType *PrettyArrayType = getAsArrayType(Ty); | 
 |   assert(PrettyArrayType && "Not an array type!"); | 
 |  | 
 |   QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); | 
 |  | 
 |   // int x[restrict 4] ->  int *restrict | 
 |   QualType Result = getQualifiedType(PtrTy, | 
 |                                      PrettyArrayType->getIndexTypeQualifiers()); | 
 |  | 
 |   // int x[_Nullable] -> int * _Nullable | 
 |   if (auto Nullability = Ty->getNullability()) { | 
 |     Result = const_cast<ASTContext *>(this)->getAttributedType( | 
 |         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { | 
 |   return getBaseElementType(array->getElementType()); | 
 | } | 
 |  | 
 | QualType ASTContext::getBaseElementType(QualType type) const { | 
 |   Qualifiers qs; | 
 |   while (true) { | 
 |     SplitQualType split = type.getSplitDesugaredType(); | 
 |     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); | 
 |     if (!array) break; | 
 |  | 
 |     type = array->getElementType(); | 
 |     qs.addConsistentQualifiers(split.Quals); | 
 |   } | 
 |  | 
 |   return getQualifiedType(type, qs); | 
 | } | 
 |  | 
 | /// getConstantArrayElementCount - Returns number of constant array elements. | 
 | uint64_t | 
 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const { | 
 |   uint64_t ElementCount = 1; | 
 |   do { | 
 |     ElementCount *= CA->getSize().getZExtValue(); | 
 |     CA = dyn_cast_or_null<ConstantArrayType>( | 
 |       CA->getElementType()->getAsArrayTypeUnsafe()); | 
 |   } while (CA); | 
 |   return ElementCount; | 
 | } | 
 |  | 
 | uint64_t ASTContext::getArrayInitLoopExprElementCount( | 
 |     const ArrayInitLoopExpr *AILE) const { | 
 |   if (!AILE) | 
 |     return 0; | 
 |  | 
 |   uint64_t ElementCount = 1; | 
 |  | 
 |   do { | 
 |     ElementCount *= AILE->getArraySize().getZExtValue(); | 
 |     AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr()); | 
 |   } while (AILE); | 
 |  | 
 |   return ElementCount; | 
 | } | 
 |  | 
 | /// getFloatingRank - Return a relative rank for floating point types. | 
 | /// This routine will assert if passed a built-in type that isn't a float. | 
 | static FloatingRank getFloatingRank(QualType T) { | 
 |   if (const auto *CT = T->getAs<ComplexType>()) | 
 |     return getFloatingRank(CT->getElementType()); | 
 |  | 
 |   switch (T->castAs<BuiltinType>()->getKind()) { | 
 |   default: llvm_unreachable("getFloatingRank(): not a floating type"); | 
 |   case BuiltinType::Float16:    return Float16Rank; | 
 |   case BuiltinType::Half:       return HalfRank; | 
 |   case BuiltinType::Float:      return FloatRank; | 
 |   case BuiltinType::Double:     return DoubleRank; | 
 |   case BuiltinType::LongDouble: return LongDoubleRank; | 
 |   case BuiltinType::Float128:   return Float128Rank; | 
 |   case BuiltinType::BFloat16:   return BFloat16Rank; | 
 |   case BuiltinType::Ibm128:     return Ibm128Rank; | 
 |   } | 
 | } | 
 |  | 
 | /// getFloatingTypeOrder - Compare the rank of the two specified floating | 
 | /// point types, ignoring the domain of the type (i.e. 'double' == | 
 | /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
 | /// LHS < RHS, return -1. | 
 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { | 
 |   FloatingRank LHSR = getFloatingRank(LHS); | 
 |   FloatingRank RHSR = getFloatingRank(RHS); | 
 |  | 
 |   if (LHSR == RHSR) | 
 |     return 0; | 
 |   if (LHSR > RHSR) | 
 |     return 1; | 
 |   return -1; | 
 | } | 
 |  | 
 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { | 
 |   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) | 
 |     return 0; | 
 |   return getFloatingTypeOrder(LHS, RHS); | 
 | } | 
 |  | 
 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This | 
 | /// routine will assert if passed a built-in type that isn't an integer or enum, | 
 | /// or if it is not canonicalized. | 
 | unsigned ASTContext::getIntegerRank(const Type *T) const { | 
 |   assert(T->isCanonicalUnqualified() && "T should be canonicalized"); | 
 |  | 
 |   // Results in this 'losing' to any type of the same size, but winning if | 
 |   // larger. | 
 |   if (const auto *EIT = dyn_cast<BitIntType>(T)) | 
 |     return 0 + (EIT->getNumBits() << 3); | 
 |  | 
 |   switch (cast<BuiltinType>(T)->getKind()) { | 
 |   default: llvm_unreachable("getIntegerRank(): not a built-in integer"); | 
 |   case BuiltinType::Bool: | 
 |     return 1 + (getIntWidth(BoolTy) << 3); | 
 |   case BuiltinType::Char_S: | 
 |   case BuiltinType::Char_U: | 
 |   case BuiltinType::SChar: | 
 |   case BuiltinType::UChar: | 
 |     return 2 + (getIntWidth(CharTy) << 3); | 
 |   case BuiltinType::Short: | 
 |   case BuiltinType::UShort: | 
 |     return 3 + (getIntWidth(ShortTy) << 3); | 
 |   case BuiltinType::Int: | 
 |   case BuiltinType::UInt: | 
 |     return 4 + (getIntWidth(IntTy) << 3); | 
 |   case BuiltinType::Long: | 
 |   case BuiltinType::ULong: | 
 |     return 5 + (getIntWidth(LongTy) << 3); | 
 |   case BuiltinType::LongLong: | 
 |   case BuiltinType::ULongLong: | 
 |     return 6 + (getIntWidth(LongLongTy) << 3); | 
 |   case BuiltinType::Int128: | 
 |   case BuiltinType::UInt128: | 
 |     return 7 + (getIntWidth(Int128Ty) << 3); | 
 |  | 
 |   // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of | 
 |   // their underlying types" [c++20 conv.rank] | 
 |   case BuiltinType::Char8: | 
 |     return getIntegerRank(UnsignedCharTy.getTypePtr()); | 
 |   case BuiltinType::Char16: | 
 |     return getIntegerRank( | 
 |         getFromTargetType(Target->getChar16Type()).getTypePtr()); | 
 |   case BuiltinType::Char32: | 
 |     return getIntegerRank( | 
 |         getFromTargetType(Target->getChar32Type()).getTypePtr()); | 
 |   case BuiltinType::WChar_S: | 
 |   case BuiltinType::WChar_U: | 
 |     return getIntegerRank( | 
 |         getFromTargetType(Target->getWCharType()).getTypePtr()); | 
 |   } | 
 | } | 
 |  | 
 | /// Whether this is a promotable bitfield reference according | 
 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). | 
 | /// | 
 | /// \returns the type this bit-field will promote to, or NULL if no | 
 | /// promotion occurs. | 
 | QualType ASTContext::isPromotableBitField(Expr *E) const { | 
 |   if (E->isTypeDependent() || E->isValueDependent()) | 
 |     return {}; | 
 |  | 
 |   // C++ [conv.prom]p5: | 
 |   //    If the bit-field has an enumerated type, it is treated as any other | 
 |   //    value of that type for promotion purposes. | 
 |   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) | 
 |     return {}; | 
 |  | 
 |   // FIXME: We should not do this unless E->refersToBitField() is true. This | 
 |   // matters in C where getSourceBitField() will find bit-fields for various | 
 |   // cases where the source expression is not a bit-field designator. | 
 |  | 
 |   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? | 
 |   if (!Field) | 
 |     return {}; | 
 |  | 
 |   QualType FT = Field->getType(); | 
 |  | 
 |   uint64_t BitWidth = Field->getBitWidthValue(*this); | 
 |   uint64_t IntSize = getTypeSize(IntTy); | 
 |   // C++ [conv.prom]p5: | 
 |   //   A prvalue for an integral bit-field can be converted to a prvalue of type | 
 |   //   int if int can represent all the values of the bit-field; otherwise, it | 
 |   //   can be converted to unsigned int if unsigned int can represent all the | 
 |   //   values of the bit-field. If the bit-field is larger yet, no integral | 
 |   //   promotion applies to it. | 
 |   // C11 6.3.1.1/2: | 
 |   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:] | 
 |   //   If an int can represent all values of the original type (as restricted by | 
 |   //   the width, for a bit-field), the value is converted to an int; otherwise, | 
 |   //   it is converted to an unsigned int. | 
 |   // | 
 |   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. | 
 |   //        We perform that promotion here to match GCC and C++. | 
 |   // FIXME: C does not permit promotion of an enum bit-field whose rank is | 
 |   //        greater than that of 'int'. We perform that promotion to match GCC. | 
 |   if (BitWidth < IntSize) | 
 |     return IntTy; | 
 |  | 
 |   if (BitWidth == IntSize) | 
 |     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; | 
 |  | 
 |   // Bit-fields wider than int are not subject to promotions, and therefore act | 
 |   // like the base type. GCC has some weird bugs in this area that we | 
 |   // deliberately do not follow (GCC follows a pre-standard resolution to | 
 |   // C's DR315 which treats bit-width as being part of the type, and this leaks | 
 |   // into their semantics in some cases). | 
 |   return {}; | 
 | } | 
 |  | 
 | /// getPromotedIntegerType - Returns the type that Promotable will | 
 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable | 
 | /// integer type. | 
 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { | 
 |   assert(!Promotable.isNull()); | 
 |   assert(isPromotableIntegerType(Promotable)); | 
 |   if (const auto *ET = Promotable->getAs<EnumType>()) | 
 |     return ET->getDecl()->getPromotionType(); | 
 |  | 
 |   if (const auto *BT = Promotable->getAs<BuiltinType>()) { | 
 |     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t | 
 |     // (3.9.1) can be converted to a prvalue of the first of the following | 
 |     // types that can represent all the values of its underlying type: | 
 |     // int, unsigned int, long int, unsigned long int, long long int, or | 
 |     // unsigned long long int [...] | 
 |     // FIXME: Is there some better way to compute this? | 
 |     if (BT->getKind() == BuiltinType::WChar_S || | 
 |         BT->getKind() == BuiltinType::WChar_U || | 
 |         BT->getKind() == BuiltinType::Char8 || | 
 |         BT->getKind() == BuiltinType::Char16 || | 
 |         BT->getKind() == BuiltinType::Char32) { | 
 |       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; | 
 |       uint64_t FromSize = getTypeSize(BT); | 
 |       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, | 
 |                                   LongLongTy, UnsignedLongLongTy }; | 
 |       for (const auto &PT : PromoteTypes) { | 
 |         uint64_t ToSize = getTypeSize(PT); | 
 |         if (FromSize < ToSize || | 
 |             (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) | 
 |           return PT; | 
 |       } | 
 |       llvm_unreachable("char type should fit into long long"); | 
 |     } | 
 |   } | 
 |  | 
 |   // At this point, we should have a signed or unsigned integer type. | 
 |   if (Promotable->isSignedIntegerType()) | 
 |     return IntTy; | 
 |   uint64_t PromotableSize = getIntWidth(Promotable); | 
 |   uint64_t IntSize = getIntWidth(IntTy); | 
 |   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); | 
 |   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; | 
 | } | 
 |  | 
 | /// Recurses in pointer/array types until it finds an objc retainable | 
 | /// type and returns its ownership. | 
 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { | 
 |   while (!T.isNull()) { | 
 |     if (T.getObjCLifetime() != Qualifiers::OCL_None) | 
 |       return T.getObjCLifetime(); | 
 |     if (T->isArrayType()) | 
 |       T = getBaseElementType(T); | 
 |     else if (const auto *PT = T->getAs<PointerType>()) | 
 |       T = PT->getPointeeType(); | 
 |     else if (const auto *RT = T->getAs<ReferenceType>()) | 
 |       T = RT->getPointeeType(); | 
 |     else | 
 |       break; | 
 |   } | 
 |  | 
 |   return Qualifiers::OCL_None; | 
 | } | 
 |  | 
 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { | 
 |   // Incomplete enum types are not treated as integer types. | 
 |   // FIXME: In C++, enum types are never integer types. | 
 |   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) | 
 |     return ET->getDecl()->getIntegerType().getTypePtr(); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// getIntegerTypeOrder - Returns the highest ranked integer type: | 
 | /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
 | /// LHS < RHS, return -1. | 
 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { | 
 |   const Type *LHSC = getCanonicalType(LHS).getTypePtr(); | 
 |   const Type *RHSC = getCanonicalType(RHS).getTypePtr(); | 
 |  | 
 |   // Unwrap enums to their underlying type. | 
 |   if (const auto *ET = dyn_cast<EnumType>(LHSC)) | 
 |     LHSC = getIntegerTypeForEnum(ET); | 
 |   if (const auto *ET = dyn_cast<EnumType>(RHSC)) | 
 |     RHSC = getIntegerTypeForEnum(ET); | 
 |  | 
 |   if (LHSC == RHSC) return 0; | 
 |  | 
 |   bool LHSUnsigned = LHSC->isUnsignedIntegerType(); | 
 |   bool RHSUnsigned = RHSC->isUnsignedIntegerType(); | 
 |  | 
 |   unsigned LHSRank = getIntegerRank(LHSC); | 
 |   unsigned RHSRank = getIntegerRank(RHSC); | 
 |  | 
 |   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned. | 
 |     if (LHSRank == RHSRank) return 0; | 
 |     return LHSRank > RHSRank ? 1 : -1; | 
 |   } | 
 |  | 
 |   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. | 
 |   if (LHSUnsigned) { | 
 |     // If the unsigned [LHS] type is larger, return it. | 
 |     if (LHSRank >= RHSRank) | 
 |       return 1; | 
 |  | 
 |     // If the signed type can represent all values of the unsigned type, it | 
 |     // wins.  Because we are dealing with 2's complement and types that are | 
 |     // powers of two larger than each other, this is always safe. | 
 |     return -1; | 
 |   } | 
 |  | 
 |   // If the unsigned [RHS] type is larger, return it. | 
 |   if (RHSRank >= LHSRank) | 
 |     return -1; | 
 |  | 
 |   // If the signed type can represent all values of the unsigned type, it | 
 |   // wins.  Because we are dealing with 2's complement and types that are | 
 |   // powers of two larger than each other, this is always safe. | 
 |   return 1; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { | 
 |   if (CFConstantStringTypeDecl) | 
 |     return CFConstantStringTypeDecl; | 
 |  | 
 |   assert(!CFConstantStringTagDecl && | 
 |          "tag and typedef should be initialized together"); | 
 |   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); | 
 |   CFConstantStringTagDecl->startDefinition(); | 
 |  | 
 |   struct { | 
 |     QualType Type; | 
 |     const char *Name; | 
 |   } Fields[5]; | 
 |   unsigned Count = 0; | 
 |  | 
 |   /// Objective-C ABI | 
 |   /// | 
 |   ///    typedef struct __NSConstantString_tag { | 
 |   ///      const int *isa; | 
 |   ///      int flags; | 
 |   ///      const char *str; | 
 |   ///      long length; | 
 |   ///    } __NSConstantString; | 
 |   /// | 
 |   /// Swift ABI (4.1, 4.2) | 
 |   /// | 
 |   ///    typedef struct __NSConstantString_tag { | 
 |   ///      uintptr_t _cfisa; | 
 |   ///      uintptr_t _swift_rc; | 
 |   ///      _Atomic(uint64_t) _cfinfoa; | 
 |   ///      const char *_ptr; | 
 |   ///      uint32_t _length; | 
 |   ///    } __NSConstantString; | 
 |   /// | 
 |   /// Swift ABI (5.0) | 
 |   /// | 
 |   ///    typedef struct __NSConstantString_tag { | 
 |   ///      uintptr_t _cfisa; | 
 |   ///      uintptr_t _swift_rc; | 
 |   ///      _Atomic(uint64_t) _cfinfoa; | 
 |   ///      const char *_ptr; | 
 |   ///      uintptr_t _length; | 
 |   ///    } __NSConstantString; | 
 |  | 
 |   const auto CFRuntime = getLangOpts().CFRuntime; | 
 |   if (static_cast<unsigned>(CFRuntime) < | 
 |       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { | 
 |     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; | 
 |     Fields[Count++] = { IntTy, "flags" }; | 
 |     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; | 
 |     Fields[Count++] = { LongTy, "length" }; | 
 |   } else { | 
 |     Fields[Count++] = { getUIntPtrType(), "_cfisa" }; | 
 |     Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; | 
 |     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; | 
 |     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; | 
 |     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || | 
 |         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) | 
 |       Fields[Count++] = { IntTy, "_ptr" }; | 
 |     else | 
 |       Fields[Count++] = { getUIntPtrType(), "_ptr" }; | 
 |   } | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < Count; ++i) { | 
 |     FieldDecl *Field = | 
 |         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), | 
 |                           SourceLocation(), &Idents.get(Fields[i].Name), | 
 |                           Fields[i].Type, /*TInfo=*/nullptr, | 
 |                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     CFConstantStringTagDecl->addDecl(Field); | 
 |   } | 
 |  | 
 |   CFConstantStringTagDecl->completeDefinition(); | 
 |   // This type is designed to be compatible with NSConstantString, but cannot | 
 |   // use the same name, since NSConstantString is an interface. | 
 |   auto tagType = getTagDeclType(CFConstantStringTagDecl); | 
 |   CFConstantStringTypeDecl = | 
 |       buildImplicitTypedef(tagType, "__NSConstantString"); | 
 |  | 
 |   return CFConstantStringTypeDecl; | 
 | } | 
 |  | 
 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { | 
 |   if (!CFConstantStringTagDecl) | 
 |     getCFConstantStringDecl(); // Build the tag and the typedef. | 
 |   return CFConstantStringTagDecl; | 
 | } | 
 |  | 
 | // getCFConstantStringType - Return the type used for constant CFStrings. | 
 | QualType ASTContext::getCFConstantStringType() const { | 
 |   return getTypedefType(getCFConstantStringDecl()); | 
 | } | 
 |  | 
 | QualType ASTContext::getObjCSuperType() const { | 
 |   if (ObjCSuperType.isNull()) { | 
 |     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); | 
 |     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl); | 
 |     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); | 
 |   } | 
 |   return ObjCSuperType; | 
 | } | 
 |  | 
 | void ASTContext::setCFConstantStringType(QualType T) { | 
 |   const auto *TD = T->castAs<TypedefType>(); | 
 |   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); | 
 |   const auto *TagType = | 
 |       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); | 
 |   CFConstantStringTagDecl = TagType->getDecl(); | 
 | } | 
 |  | 
 | QualType ASTContext::getBlockDescriptorType() const { | 
 |   if (BlockDescriptorType) | 
 |     return getTagDeclType(BlockDescriptorType); | 
 |  | 
 |   RecordDecl *RD; | 
 |   // FIXME: Needs the FlagAppleBlock bit. | 
 |   RD = buildImplicitRecord("__block_descriptor"); | 
 |   RD->startDefinition(); | 
 |  | 
 |   QualType FieldTypes[] = { | 
 |     UnsignedLongTy, | 
 |     UnsignedLongTy, | 
 |   }; | 
 |  | 
 |   static const char *const FieldNames[] = { | 
 |     "reserved", | 
 |     "Size" | 
 |   }; | 
 |  | 
 |   for (size_t i = 0; i < 2; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create( | 
 |         *this, RD, SourceLocation(), SourceLocation(), | 
 |         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
 |         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     RD->addDecl(Field); | 
 |   } | 
 |  | 
 |   RD->completeDefinition(); | 
 |  | 
 |   BlockDescriptorType = RD; | 
 |  | 
 |   return getTagDeclType(BlockDescriptorType); | 
 | } | 
 |  | 
 | QualType ASTContext::getBlockDescriptorExtendedType() const { | 
 |   if (BlockDescriptorExtendedType) | 
 |     return getTagDeclType(BlockDescriptorExtendedType); | 
 |  | 
 |   RecordDecl *RD; | 
 |   // FIXME: Needs the FlagAppleBlock bit. | 
 |   RD = buildImplicitRecord("__block_descriptor_withcopydispose"); | 
 |   RD->startDefinition(); | 
 |  | 
 |   QualType FieldTypes[] = { | 
 |     UnsignedLongTy, | 
 |     UnsignedLongTy, | 
 |     getPointerType(VoidPtrTy), | 
 |     getPointerType(VoidPtrTy) | 
 |   }; | 
 |  | 
 |   static const char *const FieldNames[] = { | 
 |     "reserved", | 
 |     "Size", | 
 |     "CopyFuncPtr", | 
 |     "DestroyFuncPtr" | 
 |   }; | 
 |  | 
 |   for (size_t i = 0; i < 4; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create( | 
 |         *this, RD, SourceLocation(), SourceLocation(), | 
 |         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
 |         /*BitWidth=*/nullptr, | 
 |         /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     RD->addDecl(Field); | 
 |   } | 
 |  | 
 |   RD->completeDefinition(); | 
 |  | 
 |   BlockDescriptorExtendedType = RD; | 
 |   return getTagDeclType(BlockDescriptorExtendedType); | 
 | } | 
 |  | 
 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { | 
 |   const auto *BT = dyn_cast<BuiltinType>(T); | 
 |  | 
 |   if (!BT) { | 
 |     if (isa<PipeType>(T)) | 
 |       return OCLTK_Pipe; | 
 |  | 
 |     return OCLTK_Default; | 
 |   } | 
 |  | 
 |   switch (BT->getKind()) { | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \ | 
 |   case BuiltinType::Id:                                                        \ | 
 |     return OCLTK_Image; | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 |  | 
 |   case BuiltinType::OCLClkEvent: | 
 |     return OCLTK_ClkEvent; | 
 |  | 
 |   case BuiltinType::OCLEvent: | 
 |     return OCLTK_Event; | 
 |  | 
 |   case BuiltinType::OCLQueue: | 
 |     return OCLTK_Queue; | 
 |  | 
 |   case BuiltinType::OCLReserveID: | 
 |     return OCLTK_ReserveID; | 
 |  | 
 |   case BuiltinType::OCLSampler: | 
 |     return OCLTK_Sampler; | 
 |  | 
 |   default: | 
 |     return OCLTK_Default; | 
 |   } | 
 | } | 
 |  | 
 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { | 
 |   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); | 
 | } | 
 |  | 
 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" | 
 | /// requires copy/dispose. Note that this must match the logic | 
 | /// in buildByrefHelpers. | 
 | bool ASTContext::BlockRequiresCopying(QualType Ty, | 
 |                                       const VarDecl *D) { | 
 |   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { | 
 |     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); | 
 |     if (!copyExpr && record->hasTrivialDestructor()) return false; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // The block needs copy/destroy helpers if Ty is non-trivial to destructively | 
 |   // move or destroy. | 
 |   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) | 
 |     return true; | 
 |  | 
 |   if (!Ty->isObjCRetainableType()) return false; | 
 |  | 
 |   Qualifiers qs = Ty.getQualifiers(); | 
 |  | 
 |   // If we have lifetime, that dominates. | 
 |   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { | 
 |     switch (lifetime) { | 
 |       case Qualifiers::OCL_None: llvm_unreachable("impossible"); | 
 |  | 
 |       // These are just bits as far as the runtime is concerned. | 
 |       case Qualifiers::OCL_ExplicitNone: | 
 |       case Qualifiers::OCL_Autoreleasing: | 
 |         return false; | 
 |  | 
 |       // These cases should have been taken care of when checking the type's | 
 |       // non-triviality. | 
 |       case Qualifiers::OCL_Weak: | 
 |       case Qualifiers::OCL_Strong: | 
 |         llvm_unreachable("impossible"); | 
 |     } | 
 |     llvm_unreachable("fell out of lifetime switch!"); | 
 |   } | 
 |   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || | 
 |           Ty->isObjCObjectPointerType()); | 
 | } | 
 |  | 
 | bool ASTContext::getByrefLifetime(QualType Ty, | 
 |                               Qualifiers::ObjCLifetime &LifeTime, | 
 |                               bool &HasByrefExtendedLayout) const { | 
 |   if (!getLangOpts().ObjC || | 
 |       getLangOpts().getGC() != LangOptions::NonGC) | 
 |     return false; | 
 |  | 
 |   HasByrefExtendedLayout = false; | 
 |   if (Ty->isRecordType()) { | 
 |     HasByrefExtendedLayout = true; | 
 |     LifeTime = Qualifiers::OCL_None; | 
 |   } else if ((LifeTime = Ty.getObjCLifetime())) { | 
 |     // Honor the ARC qualifiers. | 
 |   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { | 
 |     // The MRR rule. | 
 |     LifeTime = Qualifiers::OCL_ExplicitNone; | 
 |   } else { | 
 |     LifeTime = Qualifiers::OCL_None; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | CanQualType ASTContext::getNSUIntegerType() const { | 
 |   assert(Target && "Expected target to be initialized"); | 
 |   const llvm::Triple &T = Target->getTriple(); | 
 |   // Windows is LLP64 rather than LP64 | 
 |   if (T.isOSWindows() && T.isArch64Bit()) | 
 |     return UnsignedLongLongTy; | 
 |   return UnsignedLongTy; | 
 | } | 
 |  | 
 | CanQualType ASTContext::getNSIntegerType() const { | 
 |   assert(Target && "Expected target to be initialized"); | 
 |   const llvm::Triple &T = Target->getTriple(); | 
 |   // Windows is LLP64 rather than LP64 | 
 |   if (T.isOSWindows() && T.isArch64Bit()) | 
 |     return LongLongTy; | 
 |   return LongTy; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { | 
 |   if (!ObjCInstanceTypeDecl) | 
 |     ObjCInstanceTypeDecl = | 
 |         buildImplicitTypedef(getObjCIdType(), "instancetype"); | 
 |   return ObjCInstanceTypeDecl; | 
 | } | 
 |  | 
 | // This returns true if a type has been typedefed to BOOL: | 
 | // typedef <type> BOOL; | 
 | static bool isTypeTypedefedAsBOOL(QualType T) { | 
 |   if (const auto *TT = dyn_cast<TypedefType>(T)) | 
 |     if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) | 
 |       return II->isStr("BOOL"); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding | 
 | /// purpose. | 
 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { | 
 |   if (!type->isIncompleteArrayType() && type->isIncompleteType()) | 
 |     return CharUnits::Zero(); | 
 |  | 
 |   CharUnits sz = getTypeSizeInChars(type); | 
 |  | 
 |   // Make all integer and enum types at least as large as an int | 
 |   if (sz.isPositive() && type->isIntegralOrEnumerationType()) | 
 |     sz = std::max(sz, getTypeSizeInChars(IntTy)); | 
 |   // Treat arrays as pointers, since that's how they're passed in. | 
 |   else if (type->isArrayType()) | 
 |     sz = getTypeSizeInChars(VoidPtrTy); | 
 |   return sz; | 
 | } | 
 |  | 
 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { | 
 |   return getTargetInfo().getCXXABI().isMicrosoft() && | 
 |          VD->isStaticDataMember() && | 
 |          VD->getType()->isIntegralOrEnumerationType() && | 
 |          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); | 
 | } | 
 |  | 
 | ASTContext::InlineVariableDefinitionKind | 
 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { | 
 |   if (!VD->isInline()) | 
 |     return InlineVariableDefinitionKind::None; | 
 |  | 
 |   // In almost all cases, it's a weak definition. | 
 |   auto *First = VD->getFirstDecl(); | 
 |   if (First->isInlineSpecified() || !First->isStaticDataMember()) | 
 |     return InlineVariableDefinitionKind::Weak; | 
 |  | 
 |   // If there's a file-context declaration in this translation unit, it's a | 
 |   // non-discardable definition. | 
 |   for (auto *D : VD->redecls()) | 
 |     if (D->getLexicalDeclContext()->isFileContext() && | 
 |         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) | 
 |       return InlineVariableDefinitionKind::Strong; | 
 |  | 
 |   // If we've not seen one yet, we don't know. | 
 |   return InlineVariableDefinitionKind::WeakUnknown; | 
 | } | 
 |  | 
 | static std::string charUnitsToString(const CharUnits &CU) { | 
 |   return llvm::itostr(CU.getQuantity()); | 
 | } | 
 |  | 
 | /// getObjCEncodingForBlock - Return the encoded type for this block | 
 | /// declaration. | 
 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { | 
 |   std::string S; | 
 |  | 
 |   const BlockDecl *Decl = Expr->getBlockDecl(); | 
 |   QualType BlockTy = | 
 |       Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); | 
 |   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); | 
 |   // Encode result type. | 
 |   if (getLangOpts().EncodeExtendedBlockSig) | 
 |     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, | 
 |                                       true /*Extended*/); | 
 |   else | 
 |     getObjCEncodingForType(BlockReturnTy, S); | 
 |   // Compute size of all parameters. | 
 |   // Start with computing size of a pointer in number of bytes. | 
 |   // FIXME: There might(should) be a better way of doing this computation! | 
 |   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
 |   CharUnits ParmOffset = PtrSize; | 
 |   for (auto *PI : Decl->parameters()) { | 
 |     QualType PType = PI->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |     assert(sz.isPositive() && "BlockExpr - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   // Size of the argument frame | 
 |   S += charUnitsToString(ParmOffset); | 
 |   // Block pointer and offset. | 
 |   S += "@?0"; | 
 |  | 
 |   // Argument types. | 
 |   ParmOffset = PtrSize; | 
 |   for (auto *PVDecl : Decl->parameters()) { | 
 |     QualType PType = PVDecl->getOriginalType(); | 
 |     if (const auto *AT = | 
 |             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     if (getLangOpts().EncodeExtendedBlockSig) | 
 |       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, | 
 |                                       S, true /*Extended*/); | 
 |     else | 
 |       getObjCEncodingForType(PType, S); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |  | 
 |   return S; | 
 | } | 
 |  | 
 | std::string | 
 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { | 
 |   std::string S; | 
 |   // Encode result type. | 
 |   getObjCEncodingForType(Decl->getReturnType(), S); | 
 |   CharUnits ParmOffset; | 
 |   // Compute size of all parameters. | 
 |   for (auto *PI : Decl->parameters()) { | 
 |     QualType PType = PI->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |  | 
 |     assert(sz.isPositive() && | 
 |            "getObjCEncodingForFunctionDecl - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   S += charUnitsToString(ParmOffset); | 
 |   ParmOffset = CharUnits::Zero(); | 
 |  | 
 |   // Argument types. | 
 |   for (auto *PVDecl : Decl->parameters()) { | 
 |     QualType PType = PVDecl->getOriginalType(); | 
 |     if (const auto *AT = | 
 |             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     getObjCEncodingForType(PType, S); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |  | 
 |   return S; | 
 | } | 
 |  | 
 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single | 
 | /// method parameter or return type. If Extended, include class names and | 
 | /// block object types. | 
 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, | 
 |                                                    QualType T, std::string& S, | 
 |                                                    bool Extended) const { | 
 |   // Encode type qualifier, 'in', 'inout', etc. for the parameter. | 
 |   getObjCEncodingForTypeQualifier(QT, S); | 
 |   // Encode parameter type. | 
 |   ObjCEncOptions Options = ObjCEncOptions() | 
 |                                .setExpandPointedToStructures() | 
 |                                .setExpandStructures() | 
 |                                .setIsOutermostType(); | 
 |   if (Extended) | 
 |     Options.setEncodeBlockParameters().setEncodeClassNames(); | 
 |   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); | 
 | } | 
 |  | 
 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method | 
 | /// declaration. | 
 | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, | 
 |                                                      bool Extended) const { | 
 |   // FIXME: This is not very efficient. | 
 |   // Encode return type. | 
 |   std::string S; | 
 |   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), | 
 |                                     Decl->getReturnType(), S, Extended); | 
 |   // Compute size of all parameters. | 
 |   // Start with computing size of a pointer in number of bytes. | 
 |   // FIXME: There might(should) be a better way of doing this computation! | 
 |   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
 |   // The first two arguments (self and _cmd) are pointers; account for | 
 |   // their size. | 
 |   CharUnits ParmOffset = 2 * PtrSize; | 
 |   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
 |        E = Decl->sel_param_end(); PI != E; ++PI) { | 
 |     QualType PType = (*PI)->getType(); | 
 |     CharUnits sz = getObjCEncodingTypeSize(PType); | 
 |     if (sz.isZero()) | 
 |       continue; | 
 |  | 
 |     assert(sz.isPositive() && | 
 |            "getObjCEncodingForMethodDecl - Incomplete param type"); | 
 |     ParmOffset += sz; | 
 |   } | 
 |   S += charUnitsToString(ParmOffset); | 
 |   S += "@0:"; | 
 |   S += charUnitsToString(PtrSize); | 
 |  | 
 |   // Argument types. | 
 |   ParmOffset = 2 * PtrSize; | 
 |   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
 |        E = Decl->sel_param_end(); PI != E; ++PI) { | 
 |     const ParmVarDecl *PVDecl = *PI; | 
 |     QualType PType = PVDecl->getOriginalType(); | 
 |     if (const auto *AT = | 
 |             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
 |       // Use array's original type only if it has known number of | 
 |       // elements. | 
 |       if (!isa<ConstantArrayType>(AT)) | 
 |         PType = PVDecl->getType(); | 
 |     } else if (PType->isFunctionType()) | 
 |       PType = PVDecl->getType(); | 
 |     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), | 
 |                                       PType, S, Extended); | 
 |     S += charUnitsToString(ParmOffset); | 
 |     ParmOffset += getObjCEncodingTypeSize(PType); | 
 |   } | 
 |  | 
 |   return S; | 
 | } | 
 |  | 
 | ObjCPropertyImplDecl * | 
 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( | 
 |                                       const ObjCPropertyDecl *PD, | 
 |                                       const Decl *Container) const { | 
 |   if (!Container) | 
 |     return nullptr; | 
 |   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { | 
 |     for (auto *PID : CID->property_impls()) | 
 |       if (PID->getPropertyDecl() == PD) | 
 |         return PID; | 
 |   } else { | 
 |     const auto *OID = cast<ObjCImplementationDecl>(Container); | 
 |     for (auto *PID : OID->property_impls()) | 
 |       if (PID->getPropertyDecl() == PD) | 
 |         return PID; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this | 
 | /// property declaration. If non-NULL, Container must be either an | 
 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be | 
 | /// NULL when getting encodings for protocol properties. | 
 | /// Property attributes are stored as a comma-delimited C string. The simple | 
 | /// attributes readonly and bycopy are encoded as single characters. The | 
 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are | 
 | /// encoded as single characters, followed by an identifier. Property types | 
 | /// are also encoded as a parametrized attribute. The characters used to encode | 
 | /// these attributes are defined by the following enumeration: | 
 | /// @code | 
 | /// enum PropertyAttributes { | 
 | /// kPropertyReadOnly = 'R',   // property is read-only. | 
 | /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned | 
 | /// kPropertyByref = '&',  // property is a reference to the value last assigned | 
 | /// kPropertyDynamic = 'D',    // property is dynamic | 
 | /// kPropertyGetter = 'G',     // followed by getter selector name | 
 | /// kPropertySetter = 'S',     // followed by setter selector name | 
 | /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name | 
 | /// kPropertyType = 'T'              // followed by old-style type encoding. | 
 | /// kPropertyWeak = 'W'              // 'weak' property | 
 | /// kPropertyStrong = 'P'            // property GC'able | 
 | /// kPropertyNonAtomic = 'N'         // property non-atomic | 
 | /// }; | 
 | /// @endcode | 
 | std::string | 
 | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, | 
 |                                            const Decl *Container) const { | 
 |   // Collect information from the property implementation decl(s). | 
 |   bool Dynamic = false; | 
 |   ObjCPropertyImplDecl *SynthesizePID = nullptr; | 
 |  | 
 |   if (ObjCPropertyImplDecl *PropertyImpDecl = | 
 |       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { | 
 |     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) | 
 |       Dynamic = true; | 
 |     else | 
 |       SynthesizePID = PropertyImpDecl; | 
 |   } | 
 |  | 
 |   // FIXME: This is not very efficient. | 
 |   std::string S = "T"; | 
 |  | 
 |   // Encode result type. | 
 |   // GCC has some special rules regarding encoding of properties which | 
 |   // closely resembles encoding of ivars. | 
 |   getObjCEncodingForPropertyType(PD->getType(), S); | 
 |  | 
 |   if (PD->isReadOnly()) { | 
 |     S += ",R"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) | 
 |       S += ",C"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) | 
 |       S += ",&"; | 
 |     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) | 
 |       S += ",W"; | 
 |   } else { | 
 |     switch (PD->getSetterKind()) { | 
 |     case ObjCPropertyDecl::Assign: break; | 
 |     case ObjCPropertyDecl::Copy:   S += ",C"; break; | 
 |     case ObjCPropertyDecl::Retain: S += ",&"; break; | 
 |     case ObjCPropertyDecl::Weak:   S += ",W"; break; | 
 |     } | 
 |   } | 
 |  | 
 |   // It really isn't clear at all what this means, since properties | 
 |   // are "dynamic by default". | 
 |   if (Dynamic) | 
 |     S += ",D"; | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) | 
 |     S += ",N"; | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { | 
 |     S += ",G"; | 
 |     S += PD->getGetterName().getAsString(); | 
 |   } | 
 |  | 
 |   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { | 
 |     S += ",S"; | 
 |     S += PD->getSetterName().getAsString(); | 
 |   } | 
 |  | 
 |   if (SynthesizePID) { | 
 |     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); | 
 |     S += ",V"; | 
 |     S += OID->getNameAsString(); | 
 |   } | 
 |  | 
 |   // FIXME: OBJCGC: weak & strong | 
 |   return S; | 
 | } | 
 |  | 
 | /// getLegacyIntegralTypeEncoding - | 
 | /// Another legacy compatibility encoding: 32-bit longs are encoded as | 
 | /// 'l' or 'L' , but not always.  For typedefs, we need to use | 
 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! | 
 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { | 
 |   if (PointeeTy->getAs<TypedefType>()) { | 
 |     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { | 
 |       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) | 
 |         PointeeTy = UnsignedIntTy; | 
 |       else | 
 |         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) | 
 |           PointeeTy = IntTy; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, | 
 |                                         const FieldDecl *Field, | 
 |                                         QualType *NotEncodedT) const { | 
 |   // We follow the behavior of gcc, expanding structures which are | 
 |   // directly pointed to, and expanding embedded structures. Note that | 
 |   // these rules are sufficient to prevent recursive encoding of the | 
 |   // same type. | 
 |   getObjCEncodingForTypeImpl(T, S, | 
 |                              ObjCEncOptions() | 
 |                                  .setExpandPointedToStructures() | 
 |                                  .setExpandStructures() | 
 |                                  .setIsOutermostType(), | 
 |                              Field, NotEncodedT); | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForPropertyType(QualType T, | 
 |                                                 std::string& S) const { | 
 |   // Encode result type. | 
 |   // GCC has some special rules regarding encoding of properties which | 
 |   // closely resembles encoding of ivars. | 
 |   getObjCEncodingForTypeImpl(T, S, | 
 |                              ObjCEncOptions() | 
 |                                  .setExpandPointedToStructures() | 
 |                                  .setExpandStructures() | 
 |                                  .setIsOutermostType() | 
 |                                  .setEncodingProperty(), | 
 |                              /*Field=*/nullptr); | 
 | } | 
 |  | 
 | static char getObjCEncodingForPrimitiveType(const ASTContext *C, | 
 |                                             const BuiltinType *BT) { | 
 |     BuiltinType::Kind kind = BT->getKind(); | 
 |     switch (kind) { | 
 |     case BuiltinType::Void:       return 'v'; | 
 |     case BuiltinType::Bool:       return 'B'; | 
 |     case BuiltinType::Char8: | 
 |     case BuiltinType::Char_U: | 
 |     case BuiltinType::UChar:      return 'C'; | 
 |     case BuiltinType::Char16: | 
 |     case BuiltinType::UShort:     return 'S'; | 
 |     case BuiltinType::Char32: | 
 |     case BuiltinType::UInt:       return 'I'; | 
 |     case BuiltinType::ULong: | 
 |         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; | 
 |     case BuiltinType::UInt128:    return 'T'; | 
 |     case BuiltinType::ULongLong:  return 'Q'; | 
 |     case BuiltinType::Char_S: | 
 |     case BuiltinType::SChar:      return 'c'; | 
 |     case BuiltinType::Short:      return 's'; | 
 |     case BuiltinType::WChar_S: | 
 |     case BuiltinType::WChar_U: | 
 |     case BuiltinType::Int:        return 'i'; | 
 |     case BuiltinType::Long: | 
 |       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; | 
 |     case BuiltinType::LongLong:   return 'q'; | 
 |     case BuiltinType::Int128:     return 't'; | 
 |     case BuiltinType::Float:      return 'f'; | 
 |     case BuiltinType::Double:     return 'd'; | 
 |     case BuiltinType::LongDouble: return 'D'; | 
 |     case BuiltinType::NullPtr:    return '*'; // like char* | 
 |  | 
 |     case BuiltinType::BFloat16: | 
 |     case BuiltinType::Float16: | 
 |     case BuiltinType::Float128: | 
 |     case BuiltinType::Ibm128: | 
 |     case BuiltinType::Half: | 
 |     case BuiltinType::ShortAccum: | 
 |     case BuiltinType::Accum: | 
 |     case BuiltinType::LongAccum: | 
 |     case BuiltinType::UShortAccum: | 
 |     case BuiltinType::UAccum: | 
 |     case BuiltinType::ULongAccum: | 
 |     case BuiltinType::ShortFract: | 
 |     case BuiltinType::Fract: | 
 |     case BuiltinType::LongFract: | 
 |     case BuiltinType::UShortFract: | 
 |     case BuiltinType::UFract: | 
 |     case BuiltinType::ULongFract: | 
 |     case BuiltinType::SatShortAccum: | 
 |     case BuiltinType::SatAccum: | 
 |     case BuiltinType::SatLongAccum: | 
 |     case BuiltinType::SatUShortAccum: | 
 |     case BuiltinType::SatUAccum: | 
 |     case BuiltinType::SatULongAccum: | 
 |     case BuiltinType::SatShortFract: | 
 |     case BuiltinType::SatFract: | 
 |     case BuiltinType::SatLongFract: | 
 |     case BuiltinType::SatUShortFract: | 
 |     case BuiltinType::SatUFract: | 
 |     case BuiltinType::SatULongFract: | 
 |       // FIXME: potentially need @encodes for these! | 
 |       return ' '; | 
 |  | 
 | #define SVE_TYPE(Name, Id, SingletonId) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/AArch64SVEACLETypes.def" | 
 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
 | #include "clang/Basic/RISCVVTypes.def" | 
 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
 | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
 |       { | 
 |         DiagnosticsEngine &Diags = C->getDiagnostics(); | 
 |         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
 |                                                 "cannot yet @encode type %0"); | 
 |         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); | 
 |         return ' '; | 
 |       } | 
 |  | 
 |     case BuiltinType::ObjCId: | 
 |     case BuiltinType::ObjCClass: | 
 |     case BuiltinType::ObjCSel: | 
 |       llvm_unreachable("@encoding ObjC primitive type"); | 
 |  | 
 |     // OpenCL and placeholder types don't need @encodings. | 
 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/OpenCLImageTypes.def" | 
 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/OpenCLExtensionTypes.def" | 
 |     case BuiltinType::OCLEvent: | 
 |     case BuiltinType::OCLClkEvent: | 
 |     case BuiltinType::OCLQueue: | 
 |     case BuiltinType::OCLReserveID: | 
 |     case BuiltinType::OCLSampler: | 
 |     case BuiltinType::Dependent: | 
 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | 
 |     case BuiltinType::Id: | 
 | #include "clang/Basic/PPCTypes.def" | 
 | #define BUILTIN_TYPE(KIND, ID) | 
 | #define PLACEHOLDER_TYPE(KIND, ID) \ | 
 |     case BuiltinType::KIND: | 
 | #include "clang/AST/BuiltinTypes.def" | 
 |       llvm_unreachable("invalid builtin type for @encode"); | 
 |     } | 
 |     llvm_unreachable("invalid BuiltinType::Kind value"); | 
 | } | 
 |  | 
 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { | 
 |   EnumDecl *Enum = ET->getDecl(); | 
 |  | 
 |   // The encoding of an non-fixed enum type is always 'i', regardless of size. | 
 |   if (!Enum->isFixed()) | 
 |     return 'i'; | 
 |  | 
 |   // The encoding of a fixed enum type matches its fixed underlying type. | 
 |   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); | 
 |   return getObjCEncodingForPrimitiveType(C, BT); | 
 | } | 
 |  | 
 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, | 
 |                            QualType T, const FieldDecl *FD) { | 
 |   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); | 
 |   S += 'b'; | 
 |   // The NeXT runtime encodes bit fields as b followed by the number of bits. | 
 |   // The GNU runtime requires more information; bitfields are encoded as b, | 
 |   // then the offset (in bits) of the first element, then the type of the | 
 |   // bitfield, then the size in bits.  For example, in this structure: | 
 |   // | 
 |   // struct | 
 |   // { | 
 |   //    int integer; | 
 |   //    int flags:2; | 
 |   // }; | 
 |   // On a 32-bit system, the encoding for flags would be b2 for the NeXT | 
 |   // runtime, but b32i2 for the GNU runtime.  The reason for this extra | 
 |   // information is not especially sensible, but we're stuck with it for | 
 |   // compatibility with GCC, although providing it breaks anything that | 
 |   // actually uses runtime introspection and wants to work on both runtimes... | 
 |   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { | 
 |     uint64_t Offset; | 
 |  | 
 |     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { | 
 |       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, | 
 |                                          IVD); | 
 |     } else { | 
 |       const RecordDecl *RD = FD->getParent(); | 
 |       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); | 
 |       Offset = RL.getFieldOffset(FD->getFieldIndex()); | 
 |     } | 
 |  | 
 |     S += llvm::utostr(Offset); | 
 |  | 
 |     if (const auto *ET = T->getAs<EnumType>()) | 
 |       S += ObjCEncodingForEnumType(Ctx, ET); | 
 |     else { | 
 |       const auto *BT = T->castAs<BuiltinType>(); | 
 |       S += getObjCEncodingForPrimitiveType(Ctx, BT); | 
 |     } | 
 |   } | 
 |   S += llvm::utostr(FD->getBitWidthValue(*Ctx)); | 
 | } | 
 |  | 
 | // Helper function for determining whether the encoded type string would include | 
 | // a template specialization type. | 
 | static bool hasTemplateSpecializationInEncodedString(const Type *T, | 
 |                                                      bool VisitBasesAndFields) { | 
 |   T = T->getBaseElementTypeUnsafe(); | 
 |  | 
 |   if (auto *PT = T->getAs<PointerType>()) | 
 |     return hasTemplateSpecializationInEncodedString( | 
 |         PT->getPointeeType().getTypePtr(), false); | 
 |  | 
 |   auto *CXXRD = T->getAsCXXRecordDecl(); | 
 |  | 
 |   if (!CXXRD) | 
 |     return false; | 
 |  | 
 |   if (isa<ClassTemplateSpecializationDecl>(CXXRD)) | 
 |     return true; | 
 |  | 
 |   if (!CXXRD->hasDefinition() || !VisitBasesAndFields) | 
 |     return false; | 
 |  | 
 |   for (const auto &B : CXXRD->bases()) | 
 |     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(), | 
 |                                                  true)) | 
 |       return true; | 
 |  | 
 |   for (auto *FD : CXXRD->fields()) | 
 |     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), | 
 |                                                  true)) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // FIXME: Use SmallString for accumulating string. | 
 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, | 
 |                                             const ObjCEncOptions Options, | 
 |                                             const FieldDecl *FD, | 
 |                                             QualType *NotEncodedT) const { | 
 |   CanQualType CT = getCanonicalType(T); | 
 |   switch (CT->getTypeClass()) { | 
 |   case Type::Builtin: | 
 |   case Type::Enum: | 
 |     if (FD && FD->isBitField()) | 
 |       return EncodeBitField(this, S, T, FD); | 
 |     if (const auto *BT = dyn_cast<BuiltinType>(CT)) | 
 |       S += getObjCEncodingForPrimitiveType(this, BT); | 
 |     else | 
 |       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); | 
 |     return; | 
 |  | 
 |   case Type::Complex: | 
 |     S += 'j'; | 
 |     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, | 
 |                                ObjCEncOptions(), | 
 |                                /*Field=*/nullptr); | 
 |     return; | 
 |  | 
 |   case Type::Atomic: | 
 |     S += 'A'; | 
 |     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, | 
 |                                ObjCEncOptions(), | 
 |                                /*Field=*/nullptr); | 
 |     return; | 
 |  | 
 |   // encoding for pointer or reference types. | 
 |   case Type::Pointer: | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: { | 
 |     QualType PointeeTy; | 
 |     if (isa<PointerType>(CT)) { | 
 |       const auto *PT = T->castAs<PointerType>(); | 
 |       if (PT->isObjCSelType()) { | 
 |         S += ':'; | 
 |         return; | 
 |       } | 
 |       PointeeTy = PT->getPointeeType(); | 
 |     } else { | 
 |       PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); | 
 |     } | 
 |  | 
 |     bool isReadOnly = false; | 
 |     // For historical/compatibility reasons, the read-only qualifier of the | 
 |     // pointee gets emitted _before_ the '^'.  The read-only qualifier of | 
 |     // the pointer itself gets ignored, _unless_ we are looking at a typedef! | 
 |     // Also, do not emit the 'r' for anything but the outermost type! | 
 |     if (T->getAs<TypedefType>()) { | 
 |       if (Options.IsOutermostType() && T.isConstQualified()) { | 
 |         isReadOnly = true; | 
 |         S += 'r'; | 
 |       } | 
 |     } else if (Options.IsOutermostType()) { | 
 |       QualType P = PointeeTy; | 
 |       while (auto PT = P->getAs<PointerType>()) | 
 |         P = PT->getPointeeType(); | 
 |       if (P.isConstQualified()) { | 
 |         isReadOnly = true; | 
 |         S += 'r'; | 
 |       } | 
 |     } | 
 |     if (isReadOnly) { | 
 |       // Another legacy compatibility encoding. Some ObjC qualifier and type | 
 |       // combinations need to be rearranged. | 
 |       // Rewrite "in const" from "nr" to "rn" | 
 |       if (StringRef(S).endswith("nr")) | 
 |         S.replace(S.end()-2, S.end(), "rn"); | 
 |     } | 
 |  | 
 |     if (PointeeTy->isCharType()) { | 
 |       // char pointer types should be encoded as '*' unless it is a | 
 |       // type that has been typedef'd to 'BOOL'. | 
 |       if (!isTypeTypedefedAsBOOL(PointeeTy)) { | 
 |         S += '*'; | 
 |         return; | 
 |       } | 
 |     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { | 
 |       // GCC binary compat: Need to convert "struct objc_class *" to "#". | 
 |       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { | 
 |         S += '#'; | 
 |         return; | 
 |       } | 
 |       // GCC binary compat: Need to convert "struct objc_object *" to "@". | 
 |       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { | 
 |         S += '@'; | 
 |         return; | 
 |       } | 
 |       // If the encoded string for the class includes template names, just emit | 
 |       // "^v" for pointers to the class. | 
 |       if (getLangOpts().CPlusPlus && | 
 |           (!getLangOpts().EncodeCXXClassTemplateSpec && | 
 |            hasTemplateSpecializationInEncodedString( | 
 |                RTy, Options.ExpandPointedToStructures()))) { | 
 |         S += "^v"; | 
 |         return; | 
 |       } | 
 |       // fall through... | 
 |     } | 
 |     S += '^'; | 
 |     getLegacyIntegralTypeEncoding(PointeeTy); | 
 |  | 
 |     ObjCEncOptions NewOptions; | 
 |     if (Options.ExpandPointedToStructures()) | 
 |       NewOptions.setExpandStructures(); | 
 |     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, | 
 |                                /*Field=*/nullptr, NotEncodedT); | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ConstantArray: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: { | 
 |     const auto *AT = cast<ArrayType>(CT); | 
 |  | 
 |     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { | 
 |       // Incomplete arrays are encoded as a pointer to the array element. | 
 |       S += '^'; | 
 |  | 
 |       getObjCEncodingForTypeImpl( | 
 |           AT->getElementType(), S, | 
 |           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); | 
 |     } else { | 
 |       S += '['; | 
 |  | 
 |       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) | 
 |         S += llvm::utostr(CAT->getSize().getZExtValue()); | 
 |       else { | 
 |         //Variable length arrays are encoded as a regular array with 0 elements. | 
 |         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && | 
 |                "Unknown array type!"); | 
 |         S += '0'; | 
 |       } | 
 |  | 
 |       getObjCEncodingForTypeImpl( | 
 |           AT->getElementType(), S, | 
 |           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, | 
 |           NotEncodedT); | 
 |       S += ']'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::FunctionNoProto: | 
 |   case Type::FunctionProto: | 
 |     S += '?'; | 
 |     return; | 
 |  | 
 |   case Type::Record: { | 
 |     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); | 
 |     S += RDecl->isUnion() ? '(' : '{'; | 
 |     // Anonymous structures print as '?' | 
 |     if (const IdentifierInfo *II = RDecl->getIdentifier()) { | 
 |       S += II->getName(); | 
 |       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { | 
 |         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
 |         llvm::raw_string_ostream OS(S); | 
 |         printTemplateArgumentList(OS, TemplateArgs.asArray(), | 
 |                                   getPrintingPolicy()); | 
 |       } | 
 |     } else { | 
 |       S += '?'; | 
 |     } | 
 |     if (Options.ExpandStructures()) { | 
 |       S += '='; | 
 |       if (!RDecl->isUnion()) { | 
 |         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); | 
 |       } else { | 
 |         for (const auto *Field : RDecl->fields()) { | 
 |           if (FD) { | 
 |             S += '"'; | 
 |             S += Field->getNameAsString(); | 
 |             S += '"'; | 
 |           } | 
 |  | 
 |           // Special case bit-fields. | 
 |           if (Field->isBitField()) { | 
 |             getObjCEncodingForTypeImpl(Field->getType(), S, | 
 |                                        ObjCEncOptions().setExpandStructures(), | 
 |                                        Field); | 
 |           } else { | 
 |             QualType qt = Field->getType(); | 
 |             getLegacyIntegralTypeEncoding(qt); | 
 |             getObjCEncodingForTypeImpl( | 
 |                 qt, S, | 
 |                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD, | 
 |                 NotEncodedT); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     S += RDecl->isUnion() ? ')' : '}'; | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::BlockPointer: { | 
 |     const auto *BT = T->castAs<BlockPointerType>(); | 
 |     S += "@?"; // Unlike a pointer-to-function, which is "^?". | 
 |     if (Options.EncodeBlockParameters()) { | 
 |       const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); | 
 |  | 
 |       S += '<'; | 
 |       // Block return type | 
 |       getObjCEncodingForTypeImpl(FT->getReturnType(), S, | 
 |                                  Options.forComponentType(), FD, NotEncodedT); | 
 |       // Block self | 
 |       S += "@?"; | 
 |       // Block parameters | 
 |       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { | 
 |         for (const auto &I : FPT->param_types()) | 
 |           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, | 
 |                                      NotEncodedT); | 
 |       } | 
 |       S += '>'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ObjCObject: { | 
 |     // hack to match legacy encoding of *id and *Class | 
 |     QualType Ty = getObjCObjectPointerType(CT); | 
 |     if (Ty->isObjCIdType()) { | 
 |       S += "{objc_object=}"; | 
 |       return; | 
 |     } | 
 |     else if (Ty->isObjCClassType()) { | 
 |       S += "{objc_class=}"; | 
 |       return; | 
 |     } | 
 |     // TODO: Double check to make sure this intentionally falls through. | 
 |     [[fallthrough]]; | 
 |   } | 
 |  | 
 |   case Type::ObjCInterface: { | 
 |     // Ignore protocol qualifiers when mangling at this level. | 
 |     // @encode(class_name) | 
 |     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); | 
 |     S += '{'; | 
 |     S += OI->getObjCRuntimeNameAsString(); | 
 |     if (Options.ExpandStructures()) { | 
 |       S += '='; | 
 |       SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
 |       DeepCollectObjCIvars(OI, true, Ivars); | 
 |       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
 |         const FieldDecl *Field = Ivars[i]; | 
 |         if (Field->isBitField()) | 
 |           getObjCEncodingForTypeImpl(Field->getType(), S, | 
 |                                      ObjCEncOptions().setExpandStructures(), | 
 |                                      Field); | 
 |         else | 
 |           getObjCEncodingForTypeImpl(Field->getType(), S, | 
 |                                      ObjCEncOptions().setExpandStructures(), FD, | 
 |                                      NotEncodedT); | 
 |       } | 
 |     } | 
 |     S += '}'; | 
 |     return; | 
 |   } | 
 |  | 
 |   case Type::ObjCObjectPointer: { | 
 |     const auto *OPT = T->castAs<ObjCObjectPointerType>(); | 
 |     if (OPT->isObjCIdType()) { | 
 |       S += '@'; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { | 
 |       // FIXME: Consider if we need to output qualifiers for 'Class<p>'. | 
 |       // Since this is a binary compatibility issue, need to consult with | 
 |       // runtime folks. Fortunately, this is a *very* obscure construct. | 
 |       S += '#'; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (OPT->isObjCQualifiedIdType()) { | 
 |       getObjCEncodingForTypeImpl( | 
 |           getObjCIdType(), S, | 
 |           Options.keepingOnly(ObjCEncOptions() | 
 |                                   .setExpandPointedToStructures() | 
 |                                   .setExpandStructures()), | 
 |           FD); | 
 |       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { | 
 |         // Note that we do extended encoding of protocol qualifier list | 
 |         // Only when doing ivar or property encoding. | 
 |         S += '"'; | 
 |         for (const auto *I : OPT->quals()) { | 
 |           S += '<'; | 
 |           S += I->getObjCRuntimeNameAsString(); | 
 |           S += '>'; | 
 |         } | 
 |         S += '"'; | 
 |       } | 
 |       return; | 
 |     } | 
 |  | 
 |     S += '@'; | 
 |     if (OPT->getInterfaceDecl() && | 
 |         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { | 
 |       S += '"'; | 
 |       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); | 
 |       for (const auto *I : OPT->quals()) { | 
 |         S += '<'; | 
 |         S += I->getObjCRuntimeNameAsString(); | 
 |         S += '>'; | 
 |       } | 
 |       S += '"'; | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // gcc just blithely ignores member pointers. | 
 |   // FIXME: we should do better than that.  'M' is available. | 
 |   case Type::MemberPointer: | 
 |   // This matches gcc's encoding, even though technically it is insufficient. | 
 |   //FIXME. We should do a better job than gcc. | 
 |   case Type::Vector: | 
 |   case Type::ExtVector: | 
 |   // Until we have a coherent encoding of these three types, issue warning. | 
 |     if (NotEncodedT) | 
 |       *NotEncodedT = T; | 
 |     return; | 
 |  | 
 |   case Type::ConstantMatrix: | 
 |     if (NotEncodedT) | 
 |       *NotEncodedT = T; | 
 |     return; | 
 |  | 
 |   case Type::BitInt: | 
 |     if (NotEncodedT) | 
 |       *NotEncodedT = T; | 
 |     return; | 
 |  | 
 |   // We could see an undeduced auto type here during error recovery. | 
 |   // Just ignore it. | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: | 
 |     return; | 
 |  | 
 |   case Type::Pipe: | 
 | #define ABSTRACT_TYPE(KIND, BASE) | 
 | #define TYPE(KIND, BASE) | 
 | #define DEPENDENT_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #define NON_CANONICAL_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ | 
 |   case Type::KIND: | 
 | #include "clang/AST/TypeNodes.inc" | 
 |     llvm_unreachable("@encode for dependent type!"); | 
 |   } | 
 |   llvm_unreachable("bad type kind!"); | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, | 
 |                                                  std::string &S, | 
 |                                                  const FieldDecl *FD, | 
 |                                                  bool includeVBases, | 
 |                                                  QualType *NotEncodedT) const { | 
 |   assert(RDecl && "Expected non-null RecordDecl"); | 
 |   assert(!RDecl->isUnion() && "Should not be called for unions"); | 
 |   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); | 
 |   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; | 
 |   const ASTRecordLayout &layout = getASTRecordLayout(RDecl); | 
 |  | 
 |   if (CXXRec) { | 
 |     for (const auto &BI : CXXRec->bases()) { | 
 |       if (!BI.isVirtual()) { | 
 |         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
 |         if (base->isEmpty()) | 
 |           continue; | 
 |         uint64_t offs = toBits(layout.getBaseClassOffset(base)); | 
 |         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                                   std::make_pair(offs, base)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned i = 0; | 
 |   for (FieldDecl *Field : RDecl->fields()) { | 
 |     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this)) | 
 |       continue; | 
 |     uint64_t offs = layout.getFieldOffset(i); | 
 |     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                               std::make_pair(offs, Field)); | 
 |     ++i; | 
 |   } | 
 |  | 
 |   if (CXXRec && includeVBases) { | 
 |     for (const auto &BI : CXXRec->vbases()) { | 
 |       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
 |       if (base->isEmpty()) | 
 |         continue; | 
 |       uint64_t offs = toBits(layout.getVBaseClassOffset(base)); | 
 |       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && | 
 |           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) | 
 |         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), | 
 |                                   std::make_pair(offs, base)); | 
 |     } | 
 |   } | 
 |  | 
 |   CharUnits size; | 
 |   if (CXXRec) { | 
 |     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); | 
 |   } else { | 
 |     size = layout.getSize(); | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   uint64_t CurOffs = 0; | 
 | #endif | 
 |   std::multimap<uint64_t, NamedDecl *>::iterator | 
 |     CurLayObj = FieldOrBaseOffsets.begin(); | 
 |  | 
 |   if (CXXRec && CXXRec->isDynamicClass() && | 
 |       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { | 
 |     if (FD) { | 
 |       S += "\"_vptr$"; | 
 |       std::string recname = CXXRec->getNameAsString(); | 
 |       if (recname.empty()) recname = "?"; | 
 |       S += recname; | 
 |       S += '"'; | 
 |     } | 
 |     S += "^^?"; | 
 | #ifndef NDEBUG | 
 |     CurOffs += getTypeSize(VoidPtrTy); | 
 | #endif | 
 |   } | 
 |  | 
 |   if (!RDecl->hasFlexibleArrayMember()) { | 
 |     // Mark the end of the structure. | 
 |     uint64_t offs = toBits(size); | 
 |     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
 |                               std::make_pair(offs, nullptr)); | 
 |   } | 
 |  | 
 |   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { | 
 | #ifndef NDEBUG | 
 |     assert(CurOffs <= CurLayObj->first); | 
 |     if (CurOffs < CurLayObj->first) { | 
 |       uint64_t padding = CurLayObj->first - CurOffs; | 
 |       // FIXME: There doesn't seem to be a way to indicate in the encoding that | 
 |       // packing/alignment of members is different that normal, in which case | 
 |       // the encoding will be out-of-sync with the real layout. | 
 |       // If the runtime switches to just consider the size of types without | 
 |       // taking into account alignment, we could make padding explicit in the | 
 |       // encoding (e.g. using arrays of chars). The encoding strings would be | 
 |       // longer then though. | 
 |       CurOffs += padding; | 
 |     } | 
 | #endif | 
 |  | 
 |     NamedDecl *dcl = CurLayObj->second; | 
 |     if (!dcl) | 
 |       break; // reached end of structure. | 
 |  | 
 |     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { | 
 |       // We expand the bases without their virtual bases since those are going | 
 |       // in the initial structure. Note that this differs from gcc which | 
 |       // expands virtual bases each time one is encountered in the hierarchy, | 
 |       // making the encoding type bigger than it really is. | 
 |       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, | 
 |                                       NotEncodedT); | 
 |       assert(!base->isEmpty()); | 
 | #ifndef NDEBUG | 
 |       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); | 
 | #endif | 
 |     } else { | 
 |       const auto *field = cast<FieldDecl>(dcl); | 
 |       if (FD) { | 
 |         S += '"'; | 
 |         S += field->getNameAsString(); | 
 |         S += '"'; | 
 |       } | 
 |  | 
 |       if (field->isBitField()) { | 
 |         EncodeBitField(this, S, field->getType(), field); | 
 | #ifndef NDEBUG | 
 |         CurOffs += field->getBitWidthValue(*this); | 
 | #endif | 
 |       } else { | 
 |         QualType qt = field->getType(); | 
 |         getLegacyIntegralTypeEncoding(qt); | 
 |         getObjCEncodingForTypeImpl( | 
 |             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), | 
 |             FD, NotEncodedT); | 
 | #ifndef NDEBUG | 
 |         CurOffs += getTypeSize(field->getType()); | 
 | #endif | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, | 
 |                                                  std::string& S) const { | 
 |   if (QT & Decl::OBJC_TQ_In) | 
 |     S += 'n'; | 
 |   if (QT & Decl::OBJC_TQ_Inout) | 
 |     S += 'N'; | 
 |   if (QT & Decl::OBJC_TQ_Out) | 
 |     S += 'o'; | 
 |   if (QT & Decl::OBJC_TQ_Bycopy) | 
 |     S += 'O'; | 
 |   if (QT & Decl::OBJC_TQ_Byref) | 
 |     S += 'R'; | 
 |   if (QT & Decl::OBJC_TQ_Oneway) | 
 |     S += 'V'; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCIdDecl() const { | 
 |   if (!ObjCIdDecl) { | 
 |     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); | 
 |     T = getObjCObjectPointerType(T); | 
 |     ObjCIdDecl = buildImplicitTypedef(T, "id"); | 
 |   } | 
 |   return ObjCIdDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCSelDecl() const { | 
 |   if (!ObjCSelDecl) { | 
 |     QualType T = getPointerType(ObjCBuiltinSelTy); | 
 |     ObjCSelDecl = buildImplicitTypedef(T, "SEL"); | 
 |   } | 
 |   return ObjCSelDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getObjCClassDecl() const { | 
 |   if (!ObjCClassDecl) { | 
 |     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); | 
 |     T = getObjCObjectPointerType(T); | 
 |     ObjCClassDecl = buildImplicitTypedef(T, "Class"); | 
 |   } | 
 |   return ObjCClassDecl; | 
 | } | 
 |  | 
 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { | 
 |   if (!ObjCProtocolClassDecl) { | 
 |     ObjCProtocolClassDecl | 
 |       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), | 
 |                                   SourceLocation(), | 
 |                                   &Idents.get("Protocol"), | 
 |                                   /*typeParamList=*/nullptr, | 
 |                                   /*PrevDecl=*/nullptr, | 
 |                                   SourceLocation(), true); | 
 |   } | 
 |  | 
 |   return ObjCProtocolClassDecl; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // __builtin_va_list Construction Functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, | 
 |                                                  StringRef Name) { | 
 |   // typedef char* __builtin[_ms]_va_list; | 
 |   QualType T = Context->getPointerType(Context->CharTy); | 
 |   return Context->buildImplicitTypedef(T, Name); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { | 
 |   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { | 
 |   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef void* __builtin_va_list; | 
 |   QualType T = Context->getPointerType(Context->VoidTy); | 
 |   return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list | 
 |   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); | 
 |   if (Context->getLangOpts().CPlusPlus) { | 
 |     // namespace std { struct __va_list { | 
 |     auto *NS = NamespaceDecl::Create( | 
 |         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(), | 
 |         /*Inline=*/false, SourceLocation(), SourceLocation(), | 
 |         &Context->Idents.get("std"), | 
 |         /*PrevDecl=*/nullptr, /*Nested=*/false); | 
 |     NS->setImplicit(); | 
 |     VaListTagDecl->setDeclContext(NS); | 
 |   } | 
 |  | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 5; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   // void *__stack; | 
 |   FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[0] = "__stack"; | 
 |  | 
 |   // void *__gr_top; | 
 |   FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[1] = "__gr_top"; | 
 |  | 
 |   // void *__vr_top; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "__vr_top"; | 
 |  | 
 |   // int __gr_offs; | 
 |   FieldTypes[3] = Context->IntTy; | 
 |   FieldNames[3] = "__gr_offs"; | 
 |  | 
 |   // int __vr_offs; | 
 |   FieldTypes[4] = Context->IntTy; | 
 |   FieldNames[4] = "__vr_offs"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListTagDecl; | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |  | 
 |   // } __builtin_va_list; | 
 |   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |  | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 5; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   unsigned char gpr; | 
 |   FieldTypes[0] = Context->UnsignedCharTy; | 
 |   FieldNames[0] = "gpr"; | 
 |  | 
 |   //   unsigned char fpr; | 
 |   FieldTypes[1] = Context->UnsignedCharTy; | 
 |   FieldNames[1] = "fpr"; | 
 |  | 
 |   //   unsigned short reserved; | 
 |   FieldTypes[2] = Context->UnsignedShortTy; | 
 |   FieldNames[2] = "reserved"; | 
 |  | 
 |   //   void* overflow_arg_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "overflow_arg_area"; | 
 |  | 
 |   //   void* reg_save_area; | 
 |   FieldTypes[4] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[4] = "reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListTagDecl; | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |  | 
 |   // } __va_list_tag; | 
 |   TypedefDecl *VaListTagTypedefDecl = | 
 |       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
 |  | 
 |   QualType VaListTagTypedefType = | 
 |     Context->getTypedefType(VaListTagTypedefDecl); | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType | 
 |     = Context->getConstantArrayType(VaListTagTypedefType, | 
 |                                     Size, nullptr, ArrayType::Normal, 0); | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 4; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   unsigned gp_offset; | 
 |   FieldTypes[0] = Context->UnsignedIntTy; | 
 |   FieldNames[0] = "gp_offset"; | 
 |  | 
 |   //   unsigned fp_offset; | 
 |   FieldTypes[1] = Context->UnsignedIntTy; | 
 |   FieldNames[1] = "fp_offset"; | 
 |  | 
 |   //   void* overflow_arg_area; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "overflow_arg_area"; | 
 |  | 
 |   //   void* reg_save_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListTagDecl; | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |  | 
 |   // }; | 
 |  | 
 |   // typedef struct __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType = Context->getConstantArrayType( | 
 |       VaListTagType, Size, nullptr, ArrayType::Normal, 0); | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef int __builtin_va_list[4]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); | 
 |   QualType IntArrayType = Context->getConstantArrayType( | 
 |       Context->IntTy, Size, nullptr, ArrayType::Normal, 0); | 
 |   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list | 
 |   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); | 
 |   if (Context->getLangOpts().CPlusPlus) { | 
 |     // namespace std { struct __va_list { | 
 |     NamespaceDecl *NS; | 
 |     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                Context->getTranslationUnitDecl(), | 
 |                                /*Inline=*/false, SourceLocation(), | 
 |                                SourceLocation(), &Context->Idents.get("std"), | 
 |                                /*PrevDecl=*/nullptr, /*Nested=*/false); | 
 |     NS->setImplicit(); | 
 |     VaListDecl->setDeclContext(NS); | 
 |   } | 
 |  | 
 |   VaListDecl->startDefinition(); | 
 |  | 
 |   // void * __ap; | 
 |   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                        VaListDecl, | 
 |                                        SourceLocation(), | 
 |                                        SourceLocation(), | 
 |                                        &Context->Idents.get("__ap"), | 
 |                                        Context->getPointerType(Context->VoidTy), | 
 |                                        /*TInfo=*/nullptr, | 
 |                                        /*BitWidth=*/nullptr, | 
 |                                        /*Mutable=*/false, | 
 |                                        ICIS_NoInit); | 
 |   Field->setAccess(AS_public); | 
 |   VaListDecl->addDecl(Field); | 
 |  | 
 |   // }; | 
 |   VaListDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListDecl; | 
 |  | 
 |   // typedef struct __va_list __builtin_va_list; | 
 |   QualType T = Context->getRecordType(VaListDecl); | 
 |   return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl * | 
 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 4; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   long __gpr; | 
 |   FieldTypes[0] = Context->LongTy; | 
 |   FieldNames[0] = "__gpr"; | 
 |  | 
 |   //   long __fpr; | 
 |   FieldTypes[1] = Context->LongTy; | 
 |   FieldNames[1] = "__fpr"; | 
 |  | 
 |   //   void *__overflow_arg_area; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "__overflow_arg_area"; | 
 |  | 
 |   //   void *__reg_save_area; | 
 |   FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[3] = "__reg_save_area"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
 |                                          VaListTagDecl, | 
 |                                          SourceLocation(), | 
 |                                          SourceLocation(), | 
 |                                          &Context->Idents.get(FieldNames[i]), | 
 |                                          FieldTypes[i], /*TInfo=*/nullptr, | 
 |                                          /*BitWidth=*/nullptr, | 
 |                                          /*Mutable=*/false, | 
 |                                          ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListTagDecl; | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |  | 
 |   // }; | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType = Context->getConstantArrayType( | 
 |       VaListTagType, Size, nullptr, ArrayType::Normal, 0); | 
 |  | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { | 
 |   // typedef struct __va_list_tag { | 
 |   RecordDecl *VaListTagDecl; | 
 |   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
 |   VaListTagDecl->startDefinition(); | 
 |  | 
 |   const size_t NumFields = 3; | 
 |   QualType FieldTypes[NumFields]; | 
 |   const char *FieldNames[NumFields]; | 
 |  | 
 |   //   void *CurrentSavedRegisterArea; | 
 |   FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[0] = "__current_saved_reg_area_pointer"; | 
 |  | 
 |   //   void *SavedRegAreaEnd; | 
 |   FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[1] = "__saved_reg_area_end_pointer"; | 
 |  | 
 |   //   void *OverflowArea; | 
 |   FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
 |   FieldNames[2] = "__overflow_area_pointer"; | 
 |  | 
 |   // Create fields | 
 |   for (unsigned i = 0; i < NumFields; ++i) { | 
 |     FieldDecl *Field = FieldDecl::Create( | 
 |         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), | 
 |         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], | 
 |         /*TInfo=*/nullptr, | 
 |         /*BitWidth=*/nullptr, | 
 |         /*Mutable=*/false, ICIS_NoInit); | 
 |     Field->setAccess(AS_public); | 
 |     VaListTagDecl->addDecl(Field); | 
 |   } | 
 |   VaListTagDecl->completeDefinition(); | 
 |   Context->VaListTagDecl = VaListTagDecl; | 
 |   QualType VaListTagType = Context->getRecordType(VaListTagDecl); | 
 |  | 
 |   // } __va_list_tag; | 
 |   TypedefDecl *VaListTagTypedefDecl = | 
 |       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
 |  | 
 |   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); | 
 |  | 
 |   // typedef __va_list_tag __builtin_va_list[1]; | 
 |   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
 |   QualType VaListTagArrayType = Context->getConstantArrayType( | 
 |       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0); | 
 |  | 
 |   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
 | } | 
 |  | 
 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, | 
 |                                      TargetInfo::BuiltinVaListKind Kind) { | 
 |   switch (Kind) { | 
 |   case TargetInfo::CharPtrBuiltinVaList: | 
 |     return CreateCharPtrBuiltinVaListDecl(Context); | 
 |   case TargetInfo::VoidPtrBuiltinVaList: | 
 |     return CreateVoidPtrBuiltinVaListDecl(Context); | 
 |   case TargetInfo::AArch64ABIBuiltinVaList: | 
 |     return CreateAArch64ABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::PowerABIBuiltinVaList: | 
 |     return CreatePowerABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::X86_64ABIBuiltinVaList: | 
 |     return CreateX86_64ABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::PNaClABIBuiltinVaList: | 
 |     return CreatePNaClABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::AAPCSABIBuiltinVaList: | 
 |     return CreateAAPCSABIBuiltinVaListDecl(Context); | 
 |   case TargetInfo::SystemZBuiltinVaList: | 
 |     return CreateSystemZBuiltinVaListDecl(Context); | 
 |   case TargetInfo::HexagonBuiltinVaList: | 
 |     return CreateHexagonBuiltinVaListDecl(Context); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled __builtin_va_list type kind"); | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { | 
 |   if (!BuiltinVaListDecl) { | 
 |     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); | 
 |     assert(BuiltinVaListDecl->isImplicit()); | 
 |   } | 
 |  | 
 |   return BuiltinVaListDecl; | 
 | } | 
 |  | 
 | Decl *ASTContext::getVaListTagDecl() const { | 
 |   // Force the creation of VaListTagDecl by building the __builtin_va_list | 
 |   // declaration. | 
 |   if (!VaListTagDecl) | 
 |     (void)getBuiltinVaListDecl(); | 
 |  | 
 |   return VaListTagDecl; | 
 | } | 
 |  | 
 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { | 
 |   if (!BuiltinMSVaListDecl) | 
 |     BuiltinMSVaListDecl = CreateMSVaListDecl(this); | 
 |  | 
 |   return BuiltinMSVaListDecl; | 
 | } | 
 |  | 
 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { | 
 |   // Allow redecl custom type checking builtin for HLSL. | 
 |   if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && | 
 |       BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID())) | 
 |     return true; | 
 |   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); | 
 | } | 
 |  | 
 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { | 
 |   assert(ObjCConstantStringType.isNull() && | 
 |          "'NSConstantString' type already set!"); | 
 |  | 
 |   ObjCConstantStringType = getObjCInterfaceType(Decl); | 
 | } | 
 |  | 
 | /// Retrieve the template name that corresponds to a non-empty | 
 | /// lookup. | 
 | TemplateName | 
 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, | 
 |                                       UnresolvedSetIterator End) const { | 
 |   unsigned size = End - Begin; | 
 |   assert(size > 1 && "set is not overloaded!"); | 
 |  | 
 |   void *memory = Allocate(sizeof(OverloadedTemplateStorage) + | 
 |                           size * sizeof(FunctionTemplateDecl*)); | 
 |   auto *OT = new (memory) OverloadedTemplateStorage(size); | 
 |  | 
 |   NamedDecl **Storage = OT->getStorage(); | 
 |   for (UnresolvedSetIterator I = Begin; I != End; ++I) { | 
 |     NamedDecl *D = *I; | 
 |     assert(isa<FunctionTemplateDecl>(D) || | 
 |            isa<UnresolvedUsingValueDecl>(D) || | 
 |            (isa<UsingShadowDecl>(D) && | 
 |             isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); | 
 |     *Storage++ = D; | 
 |   } | 
 |  | 
 |   return TemplateName(OT); | 
 | } | 
 |  | 
 | /// Retrieve a template name representing an unqualified-id that has been | 
 | /// assumed to name a template for ADL purposes. | 
 | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { | 
 |   auto *OT = new (*this) AssumedTemplateStorage(Name); | 
 |   return TemplateName(OT); | 
 | } | 
 |  | 
 | /// Retrieve the template name that represents a qualified | 
 | /// template name such as \c std::vector. | 
 | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, | 
 |                                                   bool TemplateKeyword, | 
 |                                                   TemplateName Template) const { | 
 |   assert(NNS && "Missing nested-name-specifier in qualified template name"); | 
 |  | 
 |   // FIXME: Canonicalization? | 
 |   llvm::FoldingSetNodeID ID; | 
 |   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   QualifiedTemplateName *QTN = | 
 |     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |   if (!QTN) { | 
 |     QTN = new (*this, alignof(QualifiedTemplateName)) | 
 |         QualifiedTemplateName(NNS, TemplateKeyword, Template); | 
 |     QualifiedTemplateNames.InsertNode(QTN, InsertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | /// Retrieve the template name that represents a dependent | 
 | /// template name such as \c MetaFun::template apply. | 
 | TemplateName | 
 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
 |                                      const IdentifierInfo *Name) const { | 
 |   assert((!NNS || NNS->isDependent()) && | 
 |          "Nested name specifier must be dependent"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateName::Profile(ID, NNS, Name); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateName *QTN = | 
 |     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (QTN) | 
 |     return TemplateName(QTN); | 
 |  | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |   if (CanonNNS == NNS) { | 
 |     QTN = new (*this, alignof(DependentTemplateName)) | 
 |         DependentTemplateName(NNS, Name); | 
 |   } else { | 
 |     TemplateName Canon = getDependentTemplateName(CanonNNS, Name); | 
 |     QTN = new (*this, alignof(DependentTemplateName)) | 
 |         DependentTemplateName(NNS, Name, Canon); | 
 |     DependentTemplateName *CheckQTN = | 
 |       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckQTN && "Dependent type name canonicalization broken"); | 
 |     (void)CheckQTN; | 
 |   } | 
 |  | 
 |   DependentTemplateNames.InsertNode(QTN, InsertPos); | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | /// Retrieve the template name that represents a dependent | 
 | /// template name such as \c MetaFun::template operator+. | 
 | TemplateName | 
 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, | 
 |                                      OverloadedOperatorKind Operator) const { | 
 |   assert((!NNS || NNS->isDependent()) && | 
 |          "Nested name specifier must be dependent"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   DependentTemplateName::Profile(ID, NNS, Operator); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   DependentTemplateName *QTN | 
 |     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (QTN) | 
 |     return TemplateName(QTN); | 
 |  | 
 |   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); | 
 |   if (CanonNNS == NNS) { | 
 |     QTN = new (*this, alignof(DependentTemplateName)) | 
 |         DependentTemplateName(NNS, Operator); | 
 |   } else { | 
 |     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); | 
 |     QTN = new (*this, alignof(DependentTemplateName)) | 
 |         DependentTemplateName(NNS, Operator, Canon); | 
 |  | 
 |     DependentTemplateName *CheckQTN | 
 |       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
 |     assert(!CheckQTN && "Dependent template name canonicalization broken"); | 
 |     (void)CheckQTN; | 
 |   } | 
 |  | 
 |   DependentTemplateNames.InsertNode(QTN, InsertPos); | 
 |   return TemplateName(QTN); | 
 | } | 
 |  | 
 | TemplateName ASTContext::getSubstTemplateTemplateParm( | 
 |     TemplateName Replacement, Decl *AssociatedDecl, unsigned Index, | 
 |     std::optional<unsigned> PackIndex) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, | 
 |                                             Index, PackIndex); | 
 |  | 
 |   void *insertPos = nullptr; | 
 |   SubstTemplateTemplateParmStorage *subst | 
 |     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); | 
 |  | 
 |   if (!subst) { | 
 |     subst = new (*this) SubstTemplateTemplateParmStorage( | 
 |         Replacement, AssociatedDecl, Index, PackIndex); | 
 |     SubstTemplateTemplateParms.InsertNode(subst, insertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(subst); | 
 | } | 
 |  | 
 | TemplateName | 
 | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, | 
 |                                              Decl *AssociatedDecl, | 
 |                                              unsigned Index, bool Final) const { | 
 |   auto &Self = const_cast<ASTContext &>(*this); | 
 |   llvm::FoldingSetNodeID ID; | 
 |   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack, | 
 |                                                 AssociatedDecl, Index, Final); | 
 |  | 
 |   void *InsertPos = nullptr; | 
 |   SubstTemplateTemplateParmPackStorage *Subst | 
 |     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!Subst) { | 
 |     Subst = new (*this) SubstTemplateTemplateParmPackStorage( | 
 |         ArgPack.pack_elements(), AssociatedDecl, Index, Final); | 
 |     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); | 
 |   } | 
 |  | 
 |   return TemplateName(Subst); | 
 | } | 
 |  | 
 | /// getFromTargetType - Given one of the integer types provided by | 
 | /// TargetInfo, produce the corresponding type. The unsigned @p Type | 
 | /// is actually a value of type @c TargetInfo::IntType. | 
 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { | 
 |   switch (Type) { | 
 |   case TargetInfo::NoInt: return {}; | 
 |   case TargetInfo::SignedChar: return SignedCharTy; | 
 |   case TargetInfo::UnsignedChar: return UnsignedCharTy; | 
 |   case TargetInfo::SignedShort: return ShortTy; | 
 |   case TargetInfo::UnsignedShort: return UnsignedShortTy; | 
 |   case TargetInfo::SignedInt: return IntTy; | 
 |   case TargetInfo::UnsignedInt: return UnsignedIntTy; | 
 |   case TargetInfo::SignedLong: return LongTy; | 
 |   case TargetInfo::UnsignedLong: return UnsignedLongTy; | 
 |   case TargetInfo::SignedLongLong: return LongLongTy; | 
 |   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled TargetInfo::IntType value"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Type Predicates. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's | 
 | /// garbage collection attribute. | 
 | /// | 
 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { | 
 |   if (getLangOpts().getGC() == LangOptions::NonGC) | 
 |     return Qualifiers::GCNone; | 
 |  | 
 |   assert(getLangOpts().ObjC); | 
 |   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); | 
 |  | 
 |   // Default behaviour under objective-C's gc is for ObjC pointers | 
 |   // (or pointers to them) be treated as though they were declared | 
 |   // as __strong. | 
 |   if (GCAttrs == Qualifiers::GCNone) { | 
 |     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
 |       return Qualifiers::Strong; | 
 |     else if (Ty->isPointerType()) | 
 |       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); | 
 |   } else { | 
 |     // It's not valid to set GC attributes on anything that isn't a | 
 |     // pointer. | 
 | #ifndef NDEBUG | 
 |     QualType CT = Ty->getCanonicalTypeInternal(); | 
 |     while (const auto *AT = dyn_cast<ArrayType>(CT)) | 
 |       CT = AT->getElementType(); | 
 |     assert(CT->isAnyPointerType() || CT->isBlockPointerType()); | 
 | #endif | 
 |   } | 
 |   return GCAttrs; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                        Type Compatibility Testing | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// areCompatVectorTypes - Return true if the two specified vector types are | 
 | /// compatible. | 
 | static bool areCompatVectorTypes(const VectorType *LHS, | 
 |                                  const VectorType *RHS) { | 
 |   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
 |   return LHS->getElementType() == RHS->getElementType() && | 
 |          LHS->getNumElements() == RHS->getNumElements(); | 
 | } | 
 |  | 
 | /// areCompatMatrixTypes - Return true if the two specified matrix types are | 
 | /// compatible. | 
 | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, | 
 |                                  const ConstantMatrixType *RHS) { | 
 |   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
 |   return LHS->getElementType() == RHS->getElementType() && | 
 |          LHS->getNumRows() == RHS->getNumRows() && | 
 |          LHS->getNumColumns() == RHS->getNumColumns(); | 
 | } | 
 |  | 
 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, | 
 |                                           QualType SecondVec) { | 
 |   assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); | 
 |   assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); | 
 |  | 
 |   if (hasSameUnqualifiedType(FirstVec, SecondVec)) | 
 |     return true; | 
 |  | 
 |   // Treat Neon vector types and most AltiVec vector types as if they are the | 
 |   // equivalent GCC vector types. | 
 |   const auto *First = FirstVec->castAs<VectorType>(); | 
 |   const auto *Second = SecondVec->castAs<VectorType>(); | 
 |   if (First->getNumElements() == Second->getNumElements() && | 
 |       hasSameType(First->getElementType(), Second->getElementType()) && | 
 |       First->getVectorKind() != VectorType::AltiVecPixel && | 
 |       First->getVectorKind() != VectorType::AltiVecBool && | 
 |       Second->getVectorKind() != VectorType::AltiVecPixel && | 
 |       Second->getVectorKind() != VectorType::AltiVecBool && | 
 |       First->getVectorKind() != VectorType::SveFixedLengthDataVector && | 
 |       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector && | 
 |       Second->getVectorKind() != VectorType::SveFixedLengthDataVector && | 
 |       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector && | 
 |       First->getVectorKind() != VectorType::RVVFixedLengthDataVector && | 
 |       Second->getVectorKind() != VectorType::RVVFixedLengthDataVector) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getSVETypeSize - Return SVE vector or predicate register size. | 
 | static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) { | 
 |   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type"); | 
 |   if (Ty->getKind() == BuiltinType::SveBool || | 
 |       Ty->getKind() == BuiltinType::SveCount) | 
 |     return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth(); | 
 |   return Context.getLangOpts().VScaleMin * 128; | 
 | } | 
 |  | 
 | bool ASTContext::areCompatibleSveTypes(QualType FirstType, | 
 |                                        QualType SecondType) { | 
 |   assert( | 
 |       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || | 
 |        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && | 
 |       "Expected SVE builtin type and vector type!"); | 
 |  | 
 |   auto IsValidCast = [this](QualType FirstType, QualType SecondType) { | 
 |     if (const auto *BT = FirstType->getAs<BuiltinType>()) { | 
 |       if (const auto *VT = SecondType->getAs<VectorType>()) { | 
 |         // Predicates have the same representation as uint8 so we also have to | 
 |         // check the kind to make these types incompatible. | 
 |         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) | 
 |           return BT->getKind() == BuiltinType::SveBool; | 
 |         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) | 
 |           return VT->getElementType().getCanonicalType() == | 
 |                  FirstType->getSveEltType(*this); | 
 |         else if (VT->getVectorKind() == VectorType::GenericVector) | 
 |           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) && | 
 |                  hasSameType(VT->getElementType(), | 
 |                              getBuiltinVectorTypeInfo(BT).ElementType); | 
 |       } | 
 |     } | 
 |     return false; | 
 |   }; | 
 |  | 
 |   return IsValidCast(FirstType, SecondType) || | 
 |          IsValidCast(SecondType, FirstType); | 
 | } | 
 |  | 
 | bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, | 
 |                                           QualType SecondType) { | 
 |   assert( | 
 |       ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || | 
 |        (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && | 
 |       "Expected SVE builtin type and vector type!"); | 
 |  | 
 |   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { | 
 |     const auto *BT = FirstType->getAs<BuiltinType>(); | 
 |     if (!BT) | 
 |       return false; | 
 |  | 
 |     const auto *VecTy = SecondType->getAs<VectorType>(); | 
 |     if (VecTy && | 
 |         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector || | 
 |          VecTy->getVectorKind() == VectorType::GenericVector)) { | 
 |       const LangOptions::LaxVectorConversionKind LVCKind = | 
 |           getLangOpts().getLaxVectorConversions(); | 
 |  | 
 |       // Can not convert between sve predicates and sve vectors because of | 
 |       // different size. | 
 |       if (BT->getKind() == BuiltinType::SveBool && | 
 |           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector) | 
 |         return false; | 
 |  | 
 |       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. | 
 |       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly | 
 |       // converts to VLAT and VLAT implicitly converts to GNUT." | 
 |       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and | 
 |       // predicates. | 
 |       if (VecTy->getVectorKind() == VectorType::GenericVector && | 
 |           getTypeSize(SecondType) != getSVETypeSize(*this, BT)) | 
 |         return false; | 
 |  | 
 |       // If -flax-vector-conversions=all is specified, the types are | 
 |       // certainly compatible. | 
 |       if (LVCKind == LangOptions::LaxVectorConversionKind::All) | 
 |         return true; | 
 |  | 
 |       // If -flax-vector-conversions=integer is specified, the types are | 
 |       // compatible if the elements are integer types. | 
 |       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) | 
 |         return VecTy->getElementType().getCanonicalType()->isIntegerType() && | 
 |                FirstType->getSveEltType(*this)->isIntegerType(); | 
 |     } | 
 |  | 
 |     return false; | 
 |   }; | 
 |  | 
 |   return IsLaxCompatible(FirstType, SecondType) || | 
 |          IsLaxCompatible(SecondType, FirstType); | 
 | } | 
 |  | 
 | /// getRVVTypeSize - Return RVV vector register size. | 
 | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { | 
 |   assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type"); | 
 |   auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts()); | 
 |   if (!VScale) | 
 |     return 0; | 
 |  | 
 |   ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); | 
 |  | 
 |   uint64_t EltSize = Context.getTypeSize(Info.ElementType); | 
 |   uint64_t MinElts = Info.EC.getKnownMinValue(); | 
 |   return VScale->first * MinElts * EltSize; | 
 | } | 
 |  | 
 | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, | 
 |                                        QualType SecondType) { | 
 |   assert( | 
 |       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || | 
 |        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && | 
 |       "Expected RVV builtin type and vector type!"); | 
 |  | 
 |   auto IsValidCast = [this](QualType FirstType, QualType SecondType) { | 
 |     if (const auto *BT = FirstType->getAs<BuiltinType>()) { | 
 |       if (const auto *VT = SecondType->getAs<VectorType>()) { | 
 |         if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector || | 
 |             VT->getVectorKind() == VectorType::GenericVector) | 
 |           return FirstType->isRVVVLSBuiltinType() && | 
 |                  getTypeSize(SecondType) == getRVVTypeSize(*this, BT) && | 
 |                  hasSameType(VT->getElementType(), | 
 |                              getBuiltinVectorTypeInfo(BT).ElementType); | 
 |       } | 
 |     } | 
 |     return false; | 
 |   }; | 
 |  | 
 |   return IsValidCast(FirstType, SecondType) || | 
 |          IsValidCast(SecondType, FirstType); | 
 | } | 
 |  | 
 | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, | 
 |                                           QualType SecondType) { | 
 |   assert( | 
 |       ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || | 
 |        (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && | 
 |       "Expected RVV builtin type and vector type!"); | 
 |  | 
 |   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { | 
 |     const auto *BT = FirstType->getAs<BuiltinType>(); | 
 |     if (!BT) | 
 |       return false; | 
 |  | 
 |     if (!BT->isRVVVLSBuiltinType()) | 
 |       return false; | 
 |  | 
 |     const auto *VecTy = SecondType->getAs<VectorType>(); | 
 |     if (VecTy && | 
 |         (VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector || | 
 |          VecTy->getVectorKind() == VectorType::GenericVector)) { | 
 |       const LangOptions::LaxVectorConversionKind LVCKind = | 
 |           getLangOpts().getLaxVectorConversions(); | 
 |  | 
 |       // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. | 
 |       if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT)) | 
 |         return false; | 
 |  | 
 |       // If -flax-vector-conversions=all is specified, the types are | 
 |       // certainly compatible. | 
 |       if (LVCKind == LangOptions::LaxVectorConversionKind::All) | 
 |         return true; | 
 |  | 
 |       // If -flax-vector-conversions=integer is specified, the types are | 
 |       // compatible if the elements are integer types. | 
 |       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) | 
 |         return VecTy->getElementType().getCanonicalType()->isIntegerType() && | 
 |                FirstType->getRVVEltType(*this)->isIntegerType(); | 
 |     } | 
 |  | 
 |     return false; | 
 |   }; | 
 |  | 
 |   return IsLaxCompatible(FirstType, SecondType) || | 
 |          IsLaxCompatible(SecondType, FirstType); | 
 | } | 
 |  | 
 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { | 
 |   while (true) { | 
 |     // __strong id | 
 |     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { | 
 |       if (Attr->getAttrKind() == attr::ObjCOwnership) | 
 |         return true; | 
 |  | 
 |       Ty = Attr->getModifiedType(); | 
 |  | 
 |     // X *__strong (...) | 
 |     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { | 
 |       Ty = Paren->getInnerType(); | 
 |  | 
 |     // We do not want to look through typedefs, typeof(expr), | 
 |     // typeof(type), or any other way that the type is somehow | 
 |     // abstracted. | 
 |     } else { | 
 |       return false; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the | 
 | /// inheritance hierarchy of 'rProto'. | 
 | bool | 
 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, | 
 |                                            ObjCProtocolDecl *rProto) const { | 
 |   if (declaresSameEntity(lProto, rProto)) | 
 |     return true; | 
 |   for (auto *PI : rProto->protocols()) | 
 |     if (ProtocolCompatibleWithProtocol(lProto, PI)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and | 
 | /// Class<pr1, ...>. | 
 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( | 
 |     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { | 
 |   for (auto *lhsProto : lhs->quals()) { | 
 |     bool match = false; | 
 |     for (auto *rhsProto : rhs->quals()) { | 
 |       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { | 
 |         match = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (!match) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an | 
 | /// ObjCQualifiedIDType. | 
 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( | 
 |     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, | 
 |     bool compare) { | 
 |   // Allow id<P..> and an 'id' in all cases. | 
 |   if (lhs->isObjCIdType() || rhs->isObjCIdType()) | 
 |     return true; | 
 |  | 
 |   // Don't allow id<P..> to convert to Class or Class<P..> in either direction. | 
 |   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || | 
 |       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) | 
 |     return false; | 
 |  | 
 |   if (lhs->isObjCQualifiedIdType()) { | 
 |     if (rhs->qual_empty()) { | 
 |       // If the RHS is a unqualified interface pointer "NSString*", | 
 |       // make sure we check the class hierarchy. | 
 |       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { | 
 |         for (auto *I : lhs->quals()) { | 
 |           // when comparing an id<P> on lhs with a static type on rhs, | 
 |           // see if static class implements all of id's protocols, directly or | 
 |           // through its super class and categories. | 
 |           if (!rhsID->ClassImplementsProtocol(I, true)) | 
 |             return false; | 
 |         } | 
 |       } | 
 |       // If there are no qualifiers and no interface, we have an 'id'. | 
 |       return true; | 
 |     } | 
 |     // Both the right and left sides have qualifiers. | 
 |     for (auto *lhsProto : lhs->quals()) { | 
 |       bool match = false; | 
 |  | 
 |       // when comparing an id<P> on lhs with a static type on rhs, | 
 |       // see if static class implements all of id's protocols, directly or | 
 |       // through its super class and categories. | 
 |       for (auto *rhsProto : rhs->quals()) { | 
 |         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |           match = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       // If the RHS is a qualified interface pointer "NSString<P>*", | 
 |       // make sure we check the class hierarchy. | 
 |       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { | 
 |         for (auto *I : lhs->quals()) { | 
 |           // when comparing an id<P> on lhs with a static type on rhs, | 
 |           // see if static class implements all of id's protocols, directly or | 
 |           // through its super class and categories. | 
 |           if (rhsID->ClassImplementsProtocol(I, true)) { | 
 |             match = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |       if (!match) | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>"); | 
 |  | 
 |   if (lhs->getInterfaceType()) { | 
 |     // If both the right and left sides have qualifiers. | 
 |     for (auto *lhsProto : lhs->quals()) { | 
 |       bool match = false; | 
 |  | 
 |       // when comparing an id<P> on rhs with a static type on lhs, | 
 |       // see if static class implements all of id's protocols, directly or | 
 |       // through its super class and categories. | 
 |       // First, lhs protocols in the qualifier list must be found, direct | 
 |       // or indirect in rhs's qualifier list or it is a mismatch. | 
 |       for (auto *rhsProto : rhs->quals()) { | 
 |         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |           match = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (!match) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Static class's protocols, or its super class or category protocols | 
 |     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. | 
 |     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { | 
 |       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
 |       CollectInheritedProtocols(lhsID, LHSInheritedProtocols); | 
 |       // This is rather dubious but matches gcc's behavior. If lhs has | 
 |       // no type qualifier and its class has no static protocol(s) | 
 |       // assume that it is mismatch. | 
 |       if (LHSInheritedProtocols.empty() && lhs->qual_empty()) | 
 |         return false; | 
 |       for (auto *lhsProto : LHSInheritedProtocols) { | 
 |         bool match = false; | 
 |         for (auto *rhsProto : rhs->quals()) { | 
 |           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
 |               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
 |             match = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (!match) | 
 |           return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// canAssignObjCInterfaces - Return true if the two interface types are | 
 | /// compatible for assignment from RHS to LHS.  This handles validation of any | 
 | /// protocol qualifiers on the LHS or RHS. | 
 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, | 
 |                                          const ObjCObjectPointerType *RHSOPT) { | 
 |   const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
 |   const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
 |  | 
 |   // If either type represents the built-in 'id' type, return true. | 
 |   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) | 
 |     return true; | 
 |  | 
 |   // Function object that propagates a successful result or handles | 
 |   // __kindof types. | 
 |   auto finish = [&](bool succeeded) -> bool { | 
 |     if (succeeded) | 
 |       return true; | 
 |  | 
 |     if (!RHS->isKindOfType()) | 
 |       return false; | 
 |  | 
 |     // Strip off __kindof and protocol qualifiers, then check whether | 
 |     // we can assign the other way. | 
 |     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
 |                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this)); | 
 |   }; | 
 |  | 
 |   // Casts from or to id<P> are allowed when the other side has compatible | 
 |   // protocols. | 
 |   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { | 
 |     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); | 
 |   } | 
 |  | 
 |   // Verify protocol compatibility for casts from Class<P1> to Class<P2>. | 
 |   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { | 
 |     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); | 
 |   } | 
 |  | 
 |   // Casts from Class to Class<Foo>, or vice-versa, are allowed. | 
 |   if (LHS->isObjCClass() && RHS->isObjCClass()) { | 
 |     return true; | 
 |   } | 
 |  | 
 |   // If we have 2 user-defined types, fall into that path. | 
 |   if (LHS->getInterface() && RHS->getInterface()) { | 
 |     return finish(canAssignObjCInterfaces(LHS, RHS)); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written | 
 | /// for providing type-safety for objective-c pointers used to pass/return | 
 | /// arguments in block literals. When passed as arguments, passing 'A*' where | 
 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is | 
 | /// not OK. For the return type, the opposite is not OK. | 
 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( | 
 |                                          const ObjCObjectPointerType *LHSOPT, | 
 |                                          const ObjCObjectPointerType *RHSOPT, | 
 |                                          bool BlockReturnType) { | 
 |  | 
 |   // Function object that propagates a successful result or handles | 
 |   // __kindof types. | 
 |   auto finish = [&](bool succeeded) -> bool { | 
 |     if (succeeded) | 
 |       return true; | 
 |  | 
 |     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; | 
 |     if (!Expected->isKindOfType()) | 
 |       return false; | 
 |  | 
 |     // Strip off __kindof and protocol qualifiers, then check whether | 
 |     // we can assign the other way. | 
 |     return canAssignObjCInterfacesInBlockPointer( | 
 |              RHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
 |              LHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
 |              BlockReturnType); | 
 |   }; | 
 |  | 
 |   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) | 
 |     return true; | 
 |  | 
 |   if (LHSOPT->isObjCBuiltinType()) { | 
 |     return finish(RHSOPT->isObjCBuiltinType() || | 
 |                   RHSOPT->isObjCQualifiedIdType()); | 
 |   } | 
 |  | 
 |   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { | 
 |     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) | 
 |       // Use for block parameters previous type checking for compatibility. | 
 |       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || | 
 |                     // Or corrected type checking as in non-compat mode. | 
 |                     (!BlockReturnType && | 
 |                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); | 
 |     else | 
 |       return finish(ObjCQualifiedIdTypesAreCompatible( | 
 |           (BlockReturnType ? LHSOPT : RHSOPT), | 
 |           (BlockReturnType ? RHSOPT : LHSOPT), false)); | 
 |   } | 
 |  | 
 |   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); | 
 |   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); | 
 |   if (LHS && RHS)  { // We have 2 user-defined types. | 
 |     if (LHS != RHS) { | 
 |       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) | 
 |         return finish(BlockReturnType); | 
 |       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) | 
 |         return finish(!BlockReturnType); | 
 |     } | 
 |     else | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Comparison routine for Objective-C protocols to be used with | 
 | /// llvm::array_pod_sort. | 
 | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, | 
 |                                       ObjCProtocolDecl * const *rhs) { | 
 |   return (*lhs)->getName().compare((*rhs)->getName()); | 
 | } | 
 |  | 
 | /// getIntersectionOfProtocols - This routine finds the intersection of set | 
 | /// of protocols inherited from two distinct objective-c pointer objects with | 
 | /// the given common base. | 
 | /// It is used to build composite qualifier list of the composite type of | 
 | /// the conditional expression involving two objective-c pointer objects. | 
 | static | 
 | void getIntersectionOfProtocols(ASTContext &Context, | 
 |                                 const ObjCInterfaceDecl *CommonBase, | 
 |                                 const ObjCObjectPointerType *LHSOPT, | 
 |                                 const ObjCObjectPointerType *RHSOPT, | 
 |       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { | 
 |  | 
 |   const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
 |   const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
 |   assert(LHS->getInterface() && "LHS must have an interface base"); | 
 |   assert(RHS->getInterface() && "RHS must have an interface base"); | 
 |  | 
 |   // Add all of the protocols for the LHS. | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; | 
 |  | 
 |   // Start with the protocol qualifiers. | 
 |   for (auto *proto : LHS->quals()) { | 
 |     Context.CollectInheritedProtocols(proto, LHSProtocolSet); | 
 |   } | 
 |  | 
 |   // Also add the protocols associated with the LHS interface. | 
 |   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); | 
 |  | 
 |   // Add all of the protocols for the RHS. | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; | 
 |  | 
 |   // Start with the protocol qualifiers. | 
 |   for (auto *proto : RHS->quals()) { | 
 |     Context.CollectInheritedProtocols(proto, RHSProtocolSet); | 
 |   } | 
 |  | 
 |   // Also add the protocols associated with the RHS interface. | 
 |   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); | 
 |  | 
 |   // Compute the intersection of the collected protocol sets. | 
 |   for (auto *proto : LHSProtocolSet) { | 
 |     if (RHSProtocolSet.count(proto)) | 
 |       IntersectionSet.push_back(proto); | 
 |   } | 
 |  | 
 |   // Compute the set of protocols that is implied by either the common type or | 
 |   // the protocols within the intersection. | 
 |   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; | 
 |   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); | 
 |  | 
 |   // Remove any implied protocols from the list of inherited protocols. | 
 |   if (!ImpliedProtocols.empty()) { | 
 |     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool { | 
 |       return ImpliedProtocols.contains(proto); | 
 |     }); | 
 |   } | 
 |  | 
 |   // Sort the remaining protocols by name. | 
 |   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), | 
 |                        compareObjCProtocolsByName); | 
 | } | 
 |  | 
 | /// Determine whether the first type is a subtype of the second. | 
 | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, | 
 |                                      QualType rhs) { | 
 |   // Common case: two object pointers. | 
 |   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); | 
 |   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
 |   if (lhsOPT && rhsOPT) | 
 |     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); | 
 |  | 
 |   // Two block pointers. | 
 |   const auto *lhsBlock = lhs->getAs<BlockPointerType>(); | 
 |   const auto *rhsBlock = rhs->getAs<BlockPointerType>(); | 
 |   if (lhsBlock && rhsBlock) | 
 |     return ctx.typesAreBlockPointerCompatible(lhs, rhs); | 
 |  | 
 |   // If either is an unqualified 'id' and the other is a block, it's | 
 |   // acceptable. | 
 |   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || | 
 |       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Check that the given Objective-C type argument lists are equivalent. | 
 | static bool sameObjCTypeArgs(ASTContext &ctx, | 
 |                              const ObjCInterfaceDecl *iface, | 
 |                              ArrayRef<QualType> lhsArgs, | 
 |                              ArrayRef<QualType> rhsArgs, | 
 |                              bool stripKindOf) { | 
 |   if (lhsArgs.size() != rhsArgs.size()) | 
 |     return false; | 
 |  | 
 |   ObjCTypeParamList *typeParams = iface->getTypeParamList(); | 
 |   if (!typeParams) | 
 |     return false; | 
 |  | 
 |   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { | 
 |     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) | 
 |       continue; | 
 |  | 
 |     switch (typeParams->begin()[i]->getVariance()) { | 
 |     case ObjCTypeParamVariance::Invariant: | 
 |       if (!stripKindOf || | 
 |           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), | 
 |                            rhsArgs[i].stripObjCKindOfType(ctx))) { | 
 |         return false; | 
 |       } | 
 |       break; | 
 |  | 
 |     case ObjCTypeParamVariance::Covariant: | 
 |       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) | 
 |         return false; | 
 |       break; | 
 |  | 
 |     case ObjCTypeParamVariance::Contravariant: | 
 |       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) | 
 |         return false; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | QualType ASTContext::areCommonBaseCompatible( | 
 |            const ObjCObjectPointerType *Lptr, | 
 |            const ObjCObjectPointerType *Rptr) { | 
 |   const ObjCObjectType *LHS = Lptr->getObjectType(); | 
 |   const ObjCObjectType *RHS = Rptr->getObjectType(); | 
 |   const ObjCInterfaceDecl* LDecl = LHS->getInterface(); | 
 |   const ObjCInterfaceDecl* RDecl = RHS->getInterface(); | 
 |  | 
 |   if (!LDecl || !RDecl) | 
 |     return {}; | 
 |  | 
 |   // When either LHS or RHS is a kindof type, we should return a kindof type. | 
 |   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return | 
 |   // kindof(A). | 
 |   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); | 
 |  | 
 |   // Follow the left-hand side up the class hierarchy until we either hit a | 
 |   // root or find the RHS. Record the ancestors in case we don't find it. | 
 |   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> | 
 |     LHSAncestors; | 
 |   while (true) { | 
 |     // Record this ancestor. We'll need this if the common type isn't in the | 
 |     // path from the LHS to the root. | 
 |     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; | 
 |  | 
 |     if (declaresSameEntity(LHS->getInterface(), RDecl)) { | 
 |       // Get the type arguments. | 
 |       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); | 
 |       bool anyChanges = false; | 
 |       if (LHS->isSpecialized() && RHS->isSpecialized()) { | 
 |         // Both have type arguments, compare them. | 
 |         if (!sameObjCTypeArgs(*this, LHS->getInterface(), | 
 |                               LHS->getTypeArgs(), RHS->getTypeArgs(), | 
 |                               /*stripKindOf=*/true)) | 
 |           return {}; | 
 |       } else if (LHS->isSpecialized() != RHS->isSpecialized()) { | 
 |         // If only one has type arguments, the result will not have type | 
 |         // arguments. | 
 |         LHSTypeArgs = {}; | 
 |         anyChanges = true; | 
 |       } | 
 |  | 
 |       // Compute the intersection of protocols. | 
 |       SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
 |       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, | 
 |                                  Protocols); | 
 |       if (!Protocols.empty()) | 
 |         anyChanges = true; | 
 |  | 
 |       // If anything in the LHS will have changed, build a new result type. | 
 |       // If we need to return a kindof type but LHS is not a kindof type, we | 
 |       // build a new result type. | 
 |       if (anyChanges || LHS->isKindOfType() != anyKindOf) { | 
 |         QualType Result = getObjCInterfaceType(LHS->getInterface()); | 
 |         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, | 
 |                                    anyKindOf || LHS->isKindOfType()); | 
 |         return getObjCObjectPointerType(Result); | 
 |       } | 
 |  | 
 |       return getObjCObjectPointerType(QualType(LHS, 0)); | 
 |     } | 
 |  | 
 |     // Find the superclass. | 
 |     QualType LHSSuperType = LHS->getSuperClassType(); | 
 |     if (LHSSuperType.isNull()) | 
 |       break; | 
 |  | 
 |     LHS = LHSSuperType->castAs<ObjCObjectType>(); | 
 |   } | 
 |  | 
 |   // We didn't find anything by following the LHS to its root; now check | 
 |   // the RHS against the cached set of ancestors. | 
 |   while (true) { | 
 |     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); | 
 |     if (KnownLHS != LHSAncestors.end()) { | 
 |       LHS = KnownLHS->second; | 
 |  | 
 |       // Get the type arguments. | 
 |       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); | 
 |       bool anyChanges = false; | 
 |       if (LHS->isSpecialized() && RHS->isSpecialized()) { | 
 |         // Both have type arguments, compare them. | 
 |         if (!sameObjCTypeArgs(*this, LHS->getInterface(), | 
 |                               LHS->getTypeArgs(), RHS->getTypeArgs(), | 
 |                               /*stripKindOf=*/true)) | 
 |           return {}; | 
 |       } else if (LHS->isSpecialized() != RHS->isSpecialized()) { | 
 |         // If only one has type arguments, the result will not have type | 
 |         // arguments. | 
 |         RHSTypeArgs = {}; | 
 |         anyChanges = true; | 
 |       } | 
 |  | 
 |       // Compute the intersection of protocols. | 
 |       SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
 |       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, | 
 |                                  Protocols); | 
 |       if (!Protocols.empty()) | 
 |         anyChanges = true; | 
 |  | 
 |       // If we need to return a kindof type but RHS is not a kindof type, we | 
 |       // build a new result type. | 
 |       if (anyChanges || RHS->isKindOfType() != anyKindOf) { | 
 |         QualType Result = getObjCInterfaceType(RHS->getInterface()); | 
 |         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, | 
 |                                    anyKindOf || RHS->isKindOfType()); | 
 |         return getObjCObjectPointerType(Result); | 
 |       } | 
 |  | 
 |       return getObjCObjectPointerType(QualType(RHS, 0)); | 
 |     } | 
 |  | 
 |     // Find the superclass of the RHS. | 
 |     QualType RHSSuperType = RHS->getSuperClassType(); | 
 |     if (RHSSuperType.isNull()) | 
 |       break; | 
 |  | 
 |     RHS = RHSSuperType->castAs<ObjCObjectType>(); | 
 |   } | 
 |  | 
 |   return {}; | 
 | } | 
 |  | 
 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, | 
 |                                          const ObjCObjectType *RHS) { | 
 |   assert(LHS->getInterface() && "LHS is not an interface type"); | 
 |   assert(RHS->getInterface() && "RHS is not an interface type"); | 
 |  | 
 |   // Verify that the base decls are compatible: the RHS must be a subclass of | 
 |   // the LHS. | 
 |   ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); | 
 |   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); | 
 |   if (!IsSuperClass) | 
 |     return false; | 
 |  | 
 |   // If the LHS has protocol qualifiers, determine whether all of them are | 
 |   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the | 
 |   // LHS). | 
 |   if (LHS->getNumProtocols() > 0) { | 
 |     // OK if conversion of LHS to SuperClass results in narrowing of types | 
 |     // ; i.e., SuperClass may implement at least one of the protocols | 
 |     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. | 
 |     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. | 
 |     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; | 
 |     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); | 
 |     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's | 
 |     // qualifiers. | 
 |     for (auto *RHSPI : RHS->quals()) | 
 |       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); | 
 |     // If there is no protocols associated with RHS, it is not a match. | 
 |     if (SuperClassInheritedProtocols.empty()) | 
 |       return false; | 
 |  | 
 |     for (const auto *LHSProto : LHS->quals()) { | 
 |       bool SuperImplementsProtocol = false; | 
 |       for (auto *SuperClassProto : SuperClassInheritedProtocols) | 
 |         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { | 
 |           SuperImplementsProtocol = true; | 
 |           break; | 
 |         } | 
 |       if (!SuperImplementsProtocol) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // If the LHS is specialized, we may need to check type arguments. | 
 |   if (LHS->isSpecialized()) { | 
 |     // Follow the superclass chain until we've matched the LHS class in the | 
 |     // hierarchy. This substitutes type arguments through. | 
 |     const ObjCObjectType *RHSSuper = RHS; | 
 |     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) | 
 |       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); | 
 |  | 
 |     // If the RHS is specializd, compare type arguments. | 
 |     if (RHSSuper->isSpecialized() && | 
 |         !sameObjCTypeArgs(*this, LHS->getInterface(), | 
 |                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(), | 
 |                           /*stripKindOf=*/true)) { | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { | 
 |   // get the "pointed to" types | 
 |   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); | 
 |   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); | 
 |  | 
 |   if (!LHSOPT || !RHSOPT) | 
 |     return false; | 
 |  | 
 |   return canAssignObjCInterfaces(LHSOPT, RHSOPT) || | 
 |          canAssignObjCInterfaces(RHSOPT, LHSOPT); | 
 | } | 
 |  | 
 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { | 
 |   return canAssignObjCInterfaces( | 
 |       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), | 
 |       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); | 
 | } | 
 |  | 
 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, | 
 | /// both shall have the identically qualified version of a compatible type. | 
 | /// C99 6.2.7p1: Two types have compatible types if their types are the | 
 | /// same. See 6.7.[2,3,5] for additional rules. | 
 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, | 
 |                                     bool CompareUnqualified) { | 
 |   if (getLangOpts().CPlusPlus) | 
 |     return hasSameType(LHS, RHS); | 
 |  | 
 |   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); | 
 | } | 
 |  | 
 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { | 
 |   return typesAreCompatible(LHS, RHS); | 
 | } | 
 |  | 
 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { | 
 |   return !mergeTypes(LHS, RHS, true).isNull(); | 
 | } | 
 |  | 
 | /// mergeTransparentUnionType - if T is a transparent union type and a member | 
 | /// of T is compatible with SubType, return the merged type, else return | 
 | /// QualType() | 
 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, | 
 |                                                bool OfBlockPointer, | 
 |                                                bool Unqualified) { | 
 |   if (const RecordType *UT = T->getAsUnionType()) { | 
 |     RecordDecl *UD = UT->getDecl(); | 
 |     if (UD->hasAttr<TransparentUnionAttr>()) { | 
 |       for (const auto *I : UD->fields()) { | 
 |         QualType ET = I->getType().getUnqualifiedType(); | 
 |         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); | 
 |         if (!MT.isNull()) | 
 |           return MT; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return {}; | 
 | } | 
 |  | 
 | /// mergeFunctionParameterTypes - merge two types which appear as function | 
 | /// parameter types | 
 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, | 
 |                                                  bool OfBlockPointer, | 
 |                                                  bool Unqualified) { | 
 |   // GNU extension: two types are compatible if they appear as a function | 
 |   // argument, one of the types is a transparent union type and the other | 
 |   // type is compatible with a union member | 
 |   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, | 
 |                                               Unqualified); | 
 |   if (!lmerge.isNull()) | 
 |     return lmerge; | 
 |  | 
 |   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, | 
 |                                               Unqualified); | 
 |   if (!rmerge.isNull()) | 
 |     return rmerge; | 
 |  | 
 |   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); | 
 | } | 
 |  | 
 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, | 
 |                                         bool OfBlockPointer, bool Unqualified, | 
 |                                         bool AllowCXX, | 
 |                                         bool IsConditionalOperator) { | 
 |   const auto *lbase = lhs->castAs<FunctionType>(); | 
 |   const auto *rbase = rhs->castAs<FunctionType>(); | 
 |   const auto *lproto = dyn_cast<FunctionProtoType>(lbase); | 
 |   const auto *rproto = dyn_cast<FunctionProtoType>(rbase); | 
 |   bool allLTypes = true; | 
 |   bool allRTypes = true; | 
 |  | 
 |   // Check return type | 
 |   QualType retType; | 
 |   if (OfBlockPointer) { | 
 |     QualType RHS = rbase->getReturnType(); | 
 |     QualType LHS = lbase->getReturnType(); | 
 |     bool UnqualifiedResult = Unqualified; | 
 |     if (!UnqualifiedResult) | 
 |       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); | 
 |     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); | 
 |   } | 
 |   else | 
 |     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, | 
 |                          Unqualified); | 
 |   if (retType.isNull()) | 
 |     return {}; | 
 |  | 
 |   if (Unqualified) | 
 |     retType = retType.getUnqualifiedType(); | 
 |  | 
 |   CanQualType LRetType = getCanonicalType(lbase->getReturnType()); | 
 |   CanQualType RRetType = getCanonicalType(rbase->getReturnType()); | 
 |   if (Unqualified) { | 
 |     LRetType = LRetType.getUnqualifiedType(); | 
 |     RRetType = RRetType.getUnqualifiedType(); | 
 |   } | 
 |  | 
 |   if (getCanonicalType(retType) != LRetType) | 
 |     allLTypes = false; | 
 |   if (getCanonicalType(retType) != RRetType) | 
 |     allRTypes = false; | 
 |  | 
 |   // FIXME: double check this | 
 |   // FIXME: should we error if lbase->getRegParmAttr() != 0 && | 
 |   //                           rbase->getRegParmAttr() != 0 && | 
 |   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()? | 
 |   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); | 
 |   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); | 
 |  | 
 |   // Compatible functions must have compatible calling conventions | 
 |   if (lbaseInfo.getCC() != rbaseInfo.getCC()) | 
 |     return {}; | 
 |  | 
 |   // Regparm is part of the calling convention. | 
 |   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) | 
 |     return {}; | 
 |   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) | 
 |     return {}; | 
 |  | 
 |   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) | 
 |     return {}; | 
 |   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) | 
 |     return {}; | 
 |   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) | 
 |     return {}; | 
 |  | 
 |   // When merging declarations, it's common for supplemental information like | 
 |   // attributes to only be present in one of the declarations, and we generally | 
 |   // want type merging to preserve the union of information.  So a merged | 
 |   // function type should be noreturn if it was noreturn in *either* operand | 
 |   // type. | 
 |   // | 
 |   // But for the conditional operator, this is backwards.  The result of the | 
 |   // operator could be either operand, and its type should conservatively | 
 |   // reflect that.  So a function type in a composite type is noreturn only | 
 |   // if it's noreturn in *both* operand types. | 
 |   // | 
 |   // Arguably, noreturn is a kind of subtype, and the conditional operator | 
 |   // ought to produce the most specific common supertype of its operand types. | 
 |   // That would differ from this rule in contravariant positions.  However, | 
 |   // neither C nor C++ generally uses this kind of subtype reasoning.  Also, | 
 |   // as a practical matter, it would only affect C code that does abstraction of | 
 |   // higher-order functions (taking noreturn callbacks!), which is uncommon to | 
 |   // say the least.  So we use the simpler rule. | 
 |   bool NoReturn = IsConditionalOperator | 
 |                       ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() | 
 |                       : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); | 
 |   if (lbaseInfo.getNoReturn() != NoReturn) | 
 |     allLTypes = false; | 
 |   if (rbaseInfo.getNoReturn() != NoReturn) | 
 |     allRTypes = false; | 
 |  | 
 |   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); | 
 |  | 
 |   if (lproto && rproto) { // two C99 style function prototypes | 
 |     assert((AllowCXX || | 
 |             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && | 
 |            "C++ shouldn't be here"); | 
 |     // Compatible functions must have the same number of parameters | 
 |     if (lproto->getNumParams() != rproto->getNumParams()) | 
 |       return {}; | 
 |  | 
 |     // Variadic and non-variadic functions aren't compatible | 
 |     if (lproto->isVariadic() != rproto->isVariadic()) | 
 |       return {}; | 
 |  | 
 |     if (lproto->getMethodQuals() != rproto->getMethodQuals()) | 
 |       return {}; | 
 |  | 
 |     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; | 
 |     bool canUseLeft, canUseRight; | 
 |     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, | 
 |                                newParamInfos)) | 
 |       return {}; | 
 |  | 
 |     if (!canUseLeft) | 
 |       allLTypes = false; | 
 |     if (!canUseRight) | 
 |       allRTypes = false; | 
 |  | 
 |     // Check parameter type compatibility | 
 |     SmallVector<QualType, 10> types; | 
 |     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { | 
 |       QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); | 
 |       QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); | 
 |       QualType paramType = mergeFunctionParameterTypes( | 
 |           lParamType, rParamType, OfBlockPointer, Unqualified); | 
 |       if (paramType.isNull()) | 
 |         return {}; | 
 |  | 
 |       if (Unqualified) | 
 |         paramType = paramType.getUnqualifiedType(); | 
 |  | 
 |       types.push_back(paramType); | 
 |       if (Unqualified) { | 
 |         lParamType = lParamType.getUnqualifiedType(); | 
 |         rParamType = rParamType.getUnqualifiedType(); | 
 |       } | 
 |  | 
 |       if (getCanonicalType(paramType) != getCanonicalType(lParamType)) | 
 |         allLTypes = false; | 
 |       if (getCanonicalType(paramType) != getCanonicalType(rParamType)) | 
 |         allRTypes = false; | 
 |     } | 
 |  | 
 |     if (allLTypes) return lhs; | 
 |     if (allRTypes) return rhs; | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); | 
 |     EPI.ExtInfo = einfo; | 
 |     EPI.ExtParameterInfos = | 
 |         newParamInfos.empty() ? nullptr : newParamInfos.data(); | 
 |     return getFunctionType(retType, types, EPI); | 
 |   } | 
 |  | 
 |   if (lproto) allRTypes = false; | 
 |   if (rproto) allLTypes = false; | 
 |  | 
 |   const FunctionProtoType *proto = lproto ? lproto : rproto; | 
 |   if (proto) { | 
 |     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here"); | 
 |     if (proto->isVariadic()) | 
 |       return {}; | 
 |     // Check that the types are compatible with the types that | 
 |     // would result from default argument promotions (C99 6.7.5.3p15). | 
 |     // The only types actually affected are promotable integer | 
 |     // types and floats, which would be passed as a different | 
 |     // type depending on whether the prototype is visible. | 
 |     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { | 
 |       QualType paramTy = proto->getParamType(i); | 
 |  | 
 |       // Look at the converted type of enum types, since that is the type used | 
 |       // to pass enum values. | 
 |       if (const auto *Enum = paramTy->getAs<EnumType>()) { | 
 |         paramTy = Enum->getDecl()->getIntegerType(); | 
 |         if (paramTy.isNull()) | 
 |           return {}; | 
 |       } | 
 |  | 
 |       if (isPromotableIntegerType(paramTy) || | 
 |           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) | 
 |         return {}; | 
 |     } | 
 |  | 
 |     if (allLTypes) return lhs; | 
 |     if (allRTypes) return rhs; | 
 |  | 
 |     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); | 
 |     EPI.ExtInfo = einfo; | 
 |     return getFunctionType(retType, proto->getParamTypes(), EPI); | 
 |   } | 
 |  | 
 |   if (allLTypes) return lhs; | 
 |   if (allRTypes) return rhs; | 
 |   return getFunctionNoProtoType(retType, einfo); | 
 | } | 
 |  | 
 | /// Given that we have an enum type and a non-enum type, try to merge them. | 
 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, | 
 |                                      QualType other, bool isBlockReturnType) { | 
 |   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, | 
 |   // a signed integer type, or an unsigned integer type. | 
 |   // Compatibility is based on the underlying type, not the promotion | 
 |   // type. | 
 |   QualType underlyingType = ET->getDecl()->getIntegerType(); | 
 |   if (underlyingType.isNull()) | 
 |     return {}; | 
 |   if (Context.hasSameType(underlyingType, other)) | 
 |     return other; | 
 |  | 
 |   // In block return types, we're more permissive and accept any | 
 |   // integral type of the same size. | 
 |   if (isBlockReturnType && other->isIntegerType() && | 
 |       Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) | 
 |     return other; | 
 |  | 
 |   return {}; | 
 | } | 
 |  | 
 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, | 
 |                                 bool Unqualified, bool BlockReturnType, | 
 |                                 bool IsConditionalOperator) { | 
 |   // For C++ we will not reach this code with reference types (see below), | 
 |   // for OpenMP variant call overloading we might. | 
 |   // | 
 |   // C++ [expr]: If an expression initially has the type "reference to T", the | 
 |   // type is adjusted to "T" prior to any further analysis, the expression | 
 |   // designates the object or function denoted by the reference, and the | 
 |   // expression is an lvalue unless the reference is an rvalue reference and | 
 |   // the expression is a function call (possibly inside parentheses). | 
 |   auto *LHSRefTy = LHS->getAs<ReferenceType>(); | 
 |   auto *RHSRefTy = RHS->getAs<ReferenceType>(); | 
 |   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && | 
 |       LHS->getTypeClass() == RHS->getTypeClass()) | 
 |     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(), | 
 |                       OfBlockPointer, Unqualified, BlockReturnType); | 
 |   if (LHSRefTy || RHSRefTy) | 
 |     return {}; | 
 |  | 
 |   if (Unqualified) { | 
 |     LHS = LHS.getUnqualifiedType(); | 
 |     RHS = RHS.getUnqualifiedType(); | 
 |   } | 
 |  | 
 |   QualType LHSCan = getCanonicalType(LHS), | 
 |            RHSCan = getCanonicalType(RHS); | 
 |  | 
 |   // If two types are identical, they are compatible. | 
 |   if (LHSCan == RHSCan) | 
 |     return LHS; | 
 |  | 
 |   // If the qualifiers are different, the types aren't compatible... mostly. | 
 |   Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
 |   Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
 |   if (LQuals != RQuals) { | 
 |     // If any of these qualifiers are different, we have a type | 
 |     // mismatch. | 
 |     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
 |         LQuals.getAddressSpace() != RQuals.getAddressSpace() || | 
 |         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || | 
 |         LQuals.hasUnaligned() != RQuals.hasUnaligned()) | 
 |       return {}; | 
 |  | 
 |     // Exactly one GC qualifier difference is allowed: __strong is | 
 |     // okay if the other type has no GC qualifier but is an Objective | 
 |     // C object pointer (i.e. implicitly strong by default).  We fix | 
 |     // this by pretending that the unqualified type was actually | 
 |     // qualified __strong. | 
 |     Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
 |     Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
 |     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
 |  | 
 |     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
 |       return {}; | 
 |  | 
 |     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { | 
 |       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); | 
 |     } | 
 |     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { | 
 |       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); | 
 |     } | 
 |     return {}; | 
 |   } | 
 |  | 
 |   // Okay, qualifiers are equal. | 
 |  | 
 |   Type::TypeClass LHSClass = LHSCan->getTypeClass(); | 
 |   Type::TypeClass RHSClass = RHSCan->getTypeClass(); | 
 |  | 
 |   // We want to consider the two function types to be the same for these | 
 |   // comparisons, just force one to the other. | 
 |   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; | 
 |   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; | 
 |  | 
 |   // Same as above for arrays | 
 |   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) | 
 |     LHSClass = Type::ConstantArray; | 
 |   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) | 
 |     RHSClass = Type::ConstantArray; | 
 |  | 
 |   // ObjCInterfaces are just specialized ObjCObjects. | 
 |   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; | 
 |   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; | 
 |  | 
 |   // Canonicalize ExtVector -> Vector. | 
 |   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; | 
 |   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; | 
 |  | 
 |   // If the canonical type classes don't match. | 
 |   if (LHSClass != RHSClass) { | 
 |     // Note that we only have special rules for turning block enum | 
 |     // returns into block int returns, not vice-versa. | 
 |     if (const auto *ETy = LHS->getAs<EnumType>()) { | 
 |       return mergeEnumWithInteger(*this, ETy, RHS, false); | 
 |     } | 
 |     if (const EnumType* ETy = RHS->getAs<EnumType>()) { | 
 |       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); | 
 |     } | 
 |     // allow block pointer type to match an 'id' type. | 
 |     if (OfBlockPointer && !BlockReturnType) { | 
 |        if (LHS->isObjCIdType() && RHS->isBlockPointerType()) | 
 |          return LHS; | 
 |       if (RHS->isObjCIdType() && LHS->isBlockPointerType()) | 
 |         return RHS; | 
 |     } | 
 |     // Allow __auto_type to match anything; it merges to the type with more | 
 |     // information. | 
 |     if (const auto *AT = LHS->getAs<AutoType>()) { | 
 |       if (!AT->isDeduced() && AT->isGNUAutoType()) | 
 |         return RHS; | 
 |     } | 
 |     if (const auto *AT = RHS->getAs<AutoType>()) { | 
 |       if (!AT->isDeduced() && AT->isGNUAutoType()) | 
 |         return LHS; | 
 |     } | 
 |     return {}; | 
 |   } | 
 |  | 
 |   // The canonical type classes match. | 
 |   switch (LHSClass) { | 
 | #define TYPE(Class, Base) | 
 | #define ABSTRACT_TYPE(Class, Base) | 
 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
 | #include "clang/AST/TypeNodes.inc" | 
 |     llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
 |  | 
 |   case Type::Auto: | 
 |   case Type::DeducedTemplateSpecialization: | 
 |   case Type::LValueReference: | 
 |   case Type::RValueReference: | 
 |   case Type::MemberPointer: | 
 |     llvm_unreachable("C++ should never be in mergeTypes"); | 
 |  | 
 |   case Type::ObjCInterface: | 
 |   case Type::IncompleteArray: | 
 |   case Type::VariableArray: | 
 |   case Type::FunctionProto: | 
 |   case Type::ExtVector: | 
 |     llvm_unreachable("Types are eliminated above"); | 
 |  | 
 |   case Type::Pointer: | 
 |   { | 
 |     // Merge two pointer types, while trying to preserve typedef info | 
 |     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); | 
 |     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); | 
 |     if (Unqualified) { | 
 |       LHSPointee = LHSPointee.getUnqualifiedType(); | 
 |       RHSPointee = RHSPointee.getUnqualifiedType(); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) | 
 |       return {}; | 
 |     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getPointerType(ResultType); | 
 |   } | 
 |   case Type::BlockPointer: | 
 |   { | 
 |     // Merge two block pointer types, while trying to preserve typedef info | 
 |     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); | 
 |     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); | 
 |     if (Unqualified) { | 
 |       LHSPointee = LHSPointee.getUnqualifiedType(); | 
 |       RHSPointee = RHSPointee.getUnqualifiedType(); | 
 |     } | 
 |     if (getLangOpts().OpenCL) { | 
 |       Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); | 
 |       Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); | 
 |       // Blocks can't be an expression in a ternary operator (OpenCL v2.0 | 
 |       // 6.12.5) thus the following check is asymmetric. | 
 |       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) | 
 |         return {}; | 
 |       LHSPteeQual.removeAddressSpace(); | 
 |       RHSPteeQual.removeAddressSpace(); | 
 |       LHSPointee = | 
 |           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); | 
 |       RHSPointee = | 
 |           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) | 
 |       return {}; | 
 |     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getBlockPointerType(ResultType); | 
 |   } | 
 |   case Type::Atomic: | 
 |   { | 
 |     // Merge two pointer types, while trying to preserve typedef info | 
 |     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); | 
 |     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); | 
 |     if (Unqualified) { | 
 |       LHSValue = LHSValue.getUnqualifiedType(); | 
 |       RHSValue = RHSValue.getUnqualifiedType(); | 
 |     } | 
 |     QualType ResultType = mergeTypes(LHSValue, RHSValue, false, | 
 |                                      Unqualified); | 
 |     if (ResultType.isNull()) | 
 |       return {}; | 
 |     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     return getAtomicType(ResultType); | 
 |   } | 
 |   case Type::ConstantArray: | 
 |   { | 
 |     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); | 
 |     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); | 
 |     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) | 
 |       return {}; | 
 |  | 
 |     QualType LHSElem = getAsArrayType(LHS)->getElementType(); | 
 |     QualType RHSElem = getAsArrayType(RHS)->getElementType(); | 
 |     if (Unqualified) { | 
 |       LHSElem = LHSElem.getUnqualifiedType(); | 
 |       RHSElem = RHSElem.getUnqualifiedType(); | 
 |     } | 
 |  | 
 |     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); | 
 |     if (ResultType.isNull()) | 
 |       return {}; | 
 |  | 
 |     const VariableArrayType* LVAT = getAsVariableArrayType(LHS); | 
 |     const VariableArrayType* RVAT = getAsVariableArrayType(RHS); | 
 |  | 
 |     // If either side is a variable array, and both are complete, check whether | 
 |     // the current dimension is definite. | 
 |     if (LVAT || RVAT) { | 
 |       auto SizeFetch = [this](const VariableArrayType* VAT, | 
 |           const ConstantArrayType* CAT) | 
 |           -> std::pair<bool,llvm::APInt> { | 
 |         if (VAT) { | 
 |           std::optional<llvm::APSInt> TheInt; | 
 |           Expr *E = VAT->getSizeExpr(); | 
 |           if (E && (TheInt = E->getIntegerConstantExpr(*this))) | 
 |             return std::make_pair(true, *TheInt); | 
 |           return std::make_pair(false, llvm::APSInt()); | 
 |         } | 
 |         if (CAT) | 
 |           return std::make_pair(true, CAT->getSize()); | 
 |         return std::make_pair(false, llvm::APInt()); | 
 |       }; | 
 |  | 
 |       bool HaveLSize, HaveRSize; | 
 |       llvm::APInt LSize, RSize; | 
 |       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); | 
 |       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); | 
 |       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) | 
 |         return {}; // Definite, but unequal, array dimension | 
 |     } | 
 |  | 
 |     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     if (LCAT) | 
 |       return getConstantArrayType(ResultType, LCAT->getSize(), | 
 |                                   LCAT->getSizeExpr(), | 
 |                                   ArrayType::ArraySizeModifier(), 0); | 
 |     if (RCAT) | 
 |       return getConstantArrayType(ResultType, RCAT->getSize(), | 
 |                                   RCAT->getSizeExpr(), | 
 |                                   ArrayType::ArraySizeModifier(), 0); | 
 |     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
 |       return LHS; | 
 |     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
 |       return RHS; | 
 |     if (LVAT) { | 
 |       // FIXME: This isn't correct! But tricky to implement because | 
 |       // the array's size has to be the size of LHS, but the type | 
 |       // has to be different. | 
 |       return LHS; | 
 |     } | 
 |     if (RVAT) { | 
 |       // FIXME: This isn't correct! But tricky to implement because | 
 |       // the array's size has to be the size of RHS, but the type | 
 |       // has to be different. | 
 |       return RHS; | 
 |     } | 
 |     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; | 
 |     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; | 
 |     return getIncompleteArrayType(ResultType, | 
 |                                   ArrayType::ArraySizeModifier(), 0); | 
 |   } | 
 |   case Type::FunctionNoProto: | 
 |     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified, | 
 |                               /*AllowCXX=*/false, IsConditionalOperator); | 
 |   case Type::Record: | 
 |   case Type::Enum: | 
 |     return {}; | 
 |   case Type::Builtin: | 
 |     // Only exactly equal builtin types are compatible, which is tested above. | 
 |     return {}; | 
 |   case Type::Complex: | 
 |     // Distinct complex types are incompatible. | 
 |     return {}; | 
 |   case Type::Vector: | 
 |     // FIXME: The merged type should be an ExtVector! | 
 |     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), | 
 |                              RHSCan->castAs<VectorType>())) | 
 |       return LHS; | 
 |     return {}; | 
 |   case Type::ConstantMatrix: | 
 |     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), | 
 |                              RHSCan->castAs<ConstantMatrixType>())) | 
 |       return LHS; | 
 |     return {}; | 
 |   case Type::ObjCObject: { | 
 |     // Check if the types are assignment compatible. | 
 |     // FIXME: This should be type compatibility, e.g. whether | 
 |     // "LHS x; RHS x;" at global scope is legal. | 
 |     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), | 
 |                                 RHS->castAs<ObjCObjectType>())) | 
 |       return LHS; | 
 |     return {}; | 
 |   } | 
 |   case Type::ObjCObjectPointer: | 
 |     if (OfBlockPointer) { | 
 |       if (canAssignObjCInterfacesInBlockPointer( | 
 |               LHS->castAs<ObjCObjectPointerType>(), | 
 |               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) | 
 |         return LHS; | 
 |       return {}; | 
 |     } | 
 |     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), | 
 |                                 RHS->castAs<ObjCObjectPointerType>())) | 
 |       return LHS; | 
 |     return {}; | 
 |   case Type::Pipe: | 
 |     assert(LHS != RHS && | 
 |            "Equivalent pipe types should have already been handled!"); | 
 |     return {}; | 
 |   case Type::BitInt: { | 
 |     // Merge two bit-precise int types, while trying to preserve typedef info. | 
 |     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); | 
 |     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); | 
 |     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); | 
 |     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); | 
 |  | 
 |     // Like unsigned/int, shouldn't have a type if they don't match. | 
 |     if (LHSUnsigned != RHSUnsigned) | 
 |       return {}; | 
 |  | 
 |     if (LHSBits != RHSBits) | 
 |       return {}; | 
 |     return LHS; | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid Type::Class!"); | 
 | } | 
 |  | 
 | bool ASTContext::mergeExtParameterInfo( | 
 |     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, | 
 |     bool &CanUseFirst, bool &CanUseSecond, | 
 |     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { | 
 |   assert(NewParamInfos.empty() && "param info list not empty"); | 
 |   CanUseFirst = CanUseSecond = true; | 
 |   bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); | 
 |   bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); | 
 |  | 
 |   // Fast path: if the first type doesn't have ext parameter infos, | 
 |   // we match if and only if the second type also doesn't have them. | 
 |   if (!FirstHasInfo && !SecondHasInfo) | 
 |     return true; | 
 |  | 
 |   bool NeedParamInfo = false; | 
 |   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() | 
 |                           : SecondFnType->getExtParameterInfos().size(); | 
 |  | 
 |   for (size_t I = 0; I < E; ++I) { | 
 |     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; | 
 |     if (FirstHasInfo) | 
 |       FirstParam = FirstFnType->getExtParameterInfo(I); | 
 |     if (SecondHasInfo) | 
 |       SecondParam = SecondFnType->getExtParameterInfo(I); | 
 |  | 
 |     // Cannot merge unless everything except the noescape flag matches. | 
 |     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) | 
 |       return false; | 
 |  | 
 |     bool FirstNoEscape = FirstParam.isNoEscape(); | 
 |     bool SecondNoEscape = SecondParam.isNoEscape(); | 
 |     bool IsNoEscape = FirstNoEscape && SecondNoEscape; | 
 |     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); | 
 |     if (NewParamInfos.back().getOpaqueValue()) | 
 |       NeedParamInfo = true; | 
 |     if (FirstNoEscape != IsNoEscape) | 
 |       CanUseFirst = false; | 
 |     if (SecondNoEscape != IsNoEscape) | 
 |       CanUseSecond = false; | 
 |   } | 
 |  | 
 |   if (!NeedParamInfo) | 
 |     NewParamInfos.clear(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { | 
 |   ObjCLayouts[CD] = nullptr; | 
 | } | 
 |  | 
 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and | 
 | /// 'RHS' attributes and returns the merged version; including for function | 
 | /// return types. | 
 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { | 
 |   QualType LHSCan = getCanonicalType(LHS), | 
 |   RHSCan = getCanonicalType(RHS); | 
 |   // If two types are identical, they are compatible. | 
 |   if (LHSCan == RHSCan) | 
 |     return LHS; | 
 |   if (RHSCan->isFunctionType()) { | 
 |     if (!LHSCan->isFunctionType()) | 
 |       return {}; | 
 |     QualType OldReturnType = | 
 |         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); | 
 |     QualType NewReturnType = | 
 |         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); | 
 |     QualType ResReturnType = | 
 |       mergeObjCGCQualifiers(NewReturnType, OldReturnType); | 
 |     if (ResReturnType.isNull()) | 
 |       return {}; | 
 |     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { | 
 |       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); | 
 |       // In either case, use OldReturnType to build the new function type. | 
 |       const auto *F = LHS->castAs<FunctionType>(); | 
 |       if (const auto *FPT = cast<FunctionProtoType>(F)) { | 
 |         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
 |         EPI.ExtInfo = getFunctionExtInfo(LHS); | 
 |         QualType ResultType = | 
 |             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); | 
 |         return ResultType; | 
 |       } | 
 |     } | 
 |     return {}; | 
 |   } | 
 |  | 
 |   // If the qualifiers are different, the types can still be merged. | 
 |   Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
 |   Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
 |   if (LQuals != RQuals) { | 
 |     // If any of these qualifiers are different, we have a type mismatch. | 
 |     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
 |         LQuals.getAddressSpace() != RQuals.getAddressSpace()) | 
 |       return {}; | 
 |  | 
 |     // Exactly one GC qualifier difference is allowed: __strong is | 
 |     // okay if the other type has no GC qualifier but is an Objective | 
 |     // C object pointer (i.e. implicitly strong by default).  We fix | 
 |     // this by pretending that the unqualified type was actually | 
 |     // qualified __strong. | 
 |     Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
 |     Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
 |     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
 |  | 
 |     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
 |       return {}; | 
 |  | 
 |     if (GC_L == Qualifiers::Strong) | 
 |       return LHS; | 
 |     if (GC_R == Qualifiers::Strong) | 
 |       return RHS; | 
 |     return {}; | 
 |   } | 
 |  | 
 |   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { | 
 |     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); | 
 |     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); | 
 |     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); | 
 |     if (ResQT == LHSBaseQT) | 
 |       return LHS; | 
 |     if (ResQT == RHSBaseQT) | 
 |       return RHS; | 
 |   } | 
 |   return {}; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Integer Predicates | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | unsigned ASTContext::getIntWidth(QualType T) const { | 
 |   if (const auto *ET = T->getAs<EnumType>()) | 
 |     T = ET->getDecl()->getIntegerType(); | 
 |   if (T->isBooleanType()) | 
 |     return 1; | 
 |   if (const auto *EIT = T->getAs<BitIntType>()) | 
 |     return EIT->getNumBits(); | 
 |   // For builtin types, just use the standard type sizing method | 
 |   return (unsigned)getTypeSize(T); | 
 | } | 
 |  | 
 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { | 
 |   assert((T->hasIntegerRepresentation() || T->isEnumeralType() || | 
 |           T->isFixedPointType()) && | 
 |          "Unexpected type"); | 
 |  | 
 |   // Turn <4 x signed int> -> <4 x unsigned int> | 
 |   if (const auto *VTy = T->getAs<VectorType>()) | 
 |     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), | 
 |                          VTy->getNumElements(), VTy->getVectorKind()); | 
 |  | 
 |   // For _BitInt, return an unsigned _BitInt with same width. | 
 |   if (const auto *EITy = T->getAs<BitIntType>()) | 
 |     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits()); | 
 |  | 
 |   // For enums, get the underlying integer type of the enum, and let the general | 
 |   // integer type signchanging code handle it. | 
 |   if (const auto *ETy = T->getAs<EnumType>()) | 
 |     T = ETy->getDecl()->getIntegerType(); | 
 |  | 
 |   switch (T->castAs<BuiltinType>()->getKind()) { | 
 |   case BuiltinType::Char_U: | 
 |     // Plain `char` is mapped to `unsigned char` even if it's already unsigned | 
 |   case BuiltinType::Char_S: | 
 |   case BuiltinType::SChar: | 
 |   case BuiltinType::Char8: | 
 |     return UnsignedCharTy; | 
 |   case BuiltinType::Short: | 
 |     return UnsignedShortTy; | 
 |   case BuiltinType::Int: | 
 |     return UnsignedIntTy; | 
 |   case BuiltinType::Long: | 
 |     return UnsignedLongTy; | 
 |   case BuiltinType::LongLong: | 
 |     return UnsignedLongLongTy; | 
 |   case BuiltinType::Int128: | 
 |     return UnsignedInt128Ty; | 
 |   // wchar_t is special. It is either signed or not, but when it's signed, | 
 |   // there's no matching "unsigned wchar_t". Therefore we return the unsigned | 
 |   // version of its underlying type instead. | 
 |   case BuiltinType::WChar_S: | 
 |     return getUnsignedWCharType(); | 
 |  | 
 |   case BuiltinType::ShortAccum: | 
 |     return UnsignedShortAccumTy; | 
 |   case BuiltinType::Accum: | 
 |     return UnsignedAccumTy; | 
 |   case BuiltinType::LongAccum: | 
 |     return UnsignedLongAccumTy; | 
 |   case BuiltinType::SatShortAccum: | 
 |     return SatUnsignedShortAccumTy; | 
 |   case BuiltinType::SatAccum: | 
 |     return SatUnsignedAccumTy; | 
 |   case BuiltinType::SatLongAccum: | 
 |     return SatUnsignedLongAccumTy; | 
 |   case BuiltinType::ShortFract: | 
 |     return UnsignedShortFractTy; | 
 |   case BuiltinType::Fract: | 
 |     return UnsignedFractTy; | 
 |   case BuiltinType::LongFract: | 
 |     return UnsignedLongFractTy; | 
 |   case BuiltinType::SatShortFract: | 
 |     return SatUnsignedShortFractTy; | 
 |   case BuiltinType::SatFract: | 
 |     return SatUnsignedFractTy; | 
 |   case BuiltinType::SatLongFract: | 
 |     return SatUnsignedLongFractTy; | 
 |   default: | 
 |     assert((T->hasUnsignedIntegerRepresentation() || | 
 |             T->isUnsignedFixedPointType()) && | 
 |            "Unexpected signed integer or fixed point type"); | 
 |     return T; | 
 |   } | 
 | } | 
 |  | 
 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { | 
 |   assert((T->hasIntegerRepresentation() || T->isEnumeralType() || | 
 |           T->isFixedPointType()) && | 
 |          "Unexpected type"); | 
 |  | 
 |   // Turn <4 x unsigned int> -> <4 x signed int> | 
 |   if (const auto *VTy = T->getAs<VectorType>()) | 
 |     return getVectorType(getCorrespondingSignedType(VTy->getElementType()), | 
 |                          VTy->getNumElements(), VTy->getVectorKind()); | 
 |  | 
 |   // For _BitInt, return a signed _BitInt with same width. | 
 |   if (const auto *EITy = T->getAs<BitIntType>()) | 
 |     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits()); | 
 |  | 
 |   // For enums, get the underlying integer type of the enum, and let the general | 
 |   // integer type signchanging code handle it. | 
 |   if (const auto *ETy = T->getAs<EnumType>()) | 
 |     T = ETy->getDecl()->getIntegerType(); | 
 |  | 
 |   switch (T->castAs<BuiltinType>()->getKind()) { | 
 |   case BuiltinType::Char_S: | 
 |     // Plain `char` is mapped to `signed char` even if it's already signed | 
 |   case BuiltinType::Char_U: | 
 |   case BuiltinType::UChar: | 
 |   case BuiltinType::Char8: | 
 |     return SignedCharTy; | 
 |   case BuiltinType::UShort: | 
 |     return ShortTy; | 
 |   case BuiltinType::UInt: | 
 |     return IntTy; | 
 |   case BuiltinType::ULong: | 
 |     return LongTy; | 
 |   case BuiltinType::ULongLong: | 
 |     return LongLongTy; | 
 |   case BuiltinType::UInt128: | 
 |     return Int128Ty; | 
 |   // wchar_t is special. It is either unsigned or not, but when it's unsigned, | 
 |   // there's no matching "signed wchar_t". Therefore we return the signed | 
 |   // version of its underlying type instead. | 
 |   case BuiltinType::WChar_U: | 
 |     return getSignedWCharType(); | 
 |  | 
 |   case BuiltinType::UShortAccum: | 
 |     return ShortAccumTy; | 
 |   case BuiltinType::UAccum: | 
 |     return AccumTy; | 
 |   case BuiltinType::ULongAccum: | 
 |     return LongAccumTy; | 
 |   case BuiltinType::SatUShortAccum: | 
 |     return SatShortAccumTy; | 
 |   case BuiltinType::SatUAccum: | 
 |     return SatAccumTy; | 
 |   case BuiltinType::SatULongAccum: | 
 |     return SatLongAccumTy; | 
 |   case BuiltinType::UShortFract: | 
 |     return ShortFractTy; | 
 |   case BuiltinType::UFract: | 
 |     return FractTy; | 
 |   case BuiltinType::ULongFract: | 
 |     return LongFractTy; | 
 |   case BuiltinType::SatUShortFract: | 
 |     return SatShortFractTy; | 
 |   case BuiltinType::SatUFract: | 
 |     return SatFractTy; | 
 |   case BuiltinType::SatULongFract: | 
 |     return SatLongFractTy; | 
 |   default: | 
 |     assert( | 
 |         (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && | 
 |         "Unexpected signed integer or fixed point type"); | 
 |     return T; | 
 |   } | 
 | } | 
 |  | 
 | ASTMutationListener::~ASTMutationListener() = default; | 
 |  | 
 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, | 
 |                                             QualType ReturnType) {} | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          Builtin Type Computation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the | 
 | /// pointer over the consumed characters.  This returns the resultant type.  If | 
 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic | 
 | /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of | 
 | /// a vector of "i*". | 
 | /// | 
 | /// RequiresICE is filled in on return to indicate whether the value is required | 
 | /// to be an Integer Constant Expression. | 
 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, | 
 |                                   ASTContext::GetBuiltinTypeError &Error, | 
 |                                   bool &RequiresICE, | 
 |                                   bool AllowTypeModifiers) { | 
 |   // Modifiers. | 
 |   int HowLong = 0; | 
 |   bool Signed = false, Unsigned = false; | 
 |   RequiresICE = false; | 
 |  | 
 |   // Read the prefixed modifiers first. | 
 |   bool Done = false; | 
 |   #ifndef NDEBUG | 
 |   bool IsSpecial = false; | 
 |   #endif | 
 |   while (!Done) { | 
 |     switch (*Str++) { | 
 |     default: Done = true; --Str; break; | 
 |     case 'I': | 
 |       RequiresICE = true; | 
 |       break; | 
 |     case 'S': | 
 |       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); | 
 |       assert(!Signed && "Can't use 'S' modifier multiple times!"); | 
 |       Signed = true; | 
 |       break; | 
 |     case 'U': | 
 |       assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); | 
 |       assert(!Unsigned && "Can't use 'U' modifier multiple times!"); | 
 |       Unsigned = true; | 
 |       break; | 
 |     case 'L': | 
 |       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"); | 
 |       assert(HowLong <= 2 && "Can't have LLLL modifier"); | 
 |       ++HowLong; | 
 |       break; | 
 |     case 'N': | 
 |       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. | 
 |       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
 |       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); | 
 |       #ifndef NDEBUG | 
 |       IsSpecial = true; | 
 |       #endif | 
 |       if (Context.getTargetInfo().getLongWidth() == 32) | 
 |         ++HowLong; | 
 |       break; | 
 |     case 'W': | 
 |       // This modifier represents int64 type. | 
 |       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
 |       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); | 
 |       #ifndef NDEBUG | 
 |       IsSpecial = true; | 
 |       #endif | 
 |       switch (Context.getTargetInfo().getInt64Type()) { | 
 |       default: | 
 |         llvm_unreachable("Unexpected integer type"); | 
 |       case TargetInfo::SignedLong: | 
 |         HowLong = 1; | 
 |         break; | 
 |       case TargetInfo::SignedLongLong: | 
 |         HowLong = 2; | 
 |         break; | 
 |       } | 
 |       break; | 
 |     case 'Z': | 
 |       // This modifier represents int32 type. | 
 |       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
 |       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"); | 
 |       #ifndef NDEBUG | 
 |       IsSpecial = true; | 
 |       #endif | 
 |       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { | 
 |       default: | 
 |         llvm_unreachable("Unexpected integer type"); | 
 |       case TargetInfo::SignedInt: | 
 |         HowLong = 0; | 
 |         break; | 
 |       case TargetInfo::SignedLong: | 
 |         HowLong = 1; | 
 |         break; | 
 |       case TargetInfo::SignedLongLong: | 
 |         HowLong = 2; | 
 |         break; | 
 |       } | 
 |       break; | 
 |     case 'O': | 
 |       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
 |       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"); | 
 |       #ifndef NDEBUG | 
 |       IsSpecial = true; | 
 |       #endif | 
 |       if (Context.getLangOpts().OpenCL) | 
 |         HowLong = 1; | 
 |       else | 
 |         HowLong = 2; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   QualType Type; | 
 |  | 
 |   // Read the base type. | 
 |   switch (*Str++) { | 
 |   default: llvm_unreachable("Unknown builtin type letter!"); | 
 |   case 'x': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'x'!"); | 
 |     Type = Context.Float16Ty; | 
 |     break; | 
 |   case 'y': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'y'!"); | 
 |     Type = Context.BFloat16Ty; | 
 |     break; | 
 |   case 'v': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'v'!"); | 
 |     Type = Context.VoidTy; | 
 |     break; | 
 |   case 'h': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'h'!"); | 
 |     Type = Context.HalfTy; | 
 |     break; | 
 |   case 'f': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'f'!"); | 
 |     Type = Context.FloatTy; | 
 |     break; | 
 |   case 'd': | 
 |     assert(HowLong < 3 && !Signed && !Unsigned && | 
 |            "Bad modifiers used with 'd'!"); | 
 |     if (HowLong == 1) | 
 |       Type = Context.LongDoubleTy; | 
 |     else if (HowLong == 2) | 
 |       Type = Context.Float128Ty; | 
 |     else | 
 |       Type = Context.DoubleTy; | 
 |     break; | 
 |   case 's': | 
 |     assert(HowLong == 0 && "Bad modifiers used with 's'!"); | 
 |     if (Unsigned) | 
 |       Type = Context.UnsignedShortTy; | 
 |     else | 
 |       Type = Context.ShortTy; | 
 |     break; | 
 |   case 'i': | 
 |     if (HowLong == 3) | 
 |       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; | 
 |     else if (HowLong == 2) | 
 |       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
 |     else if (HowLong == 1) | 
 |       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; | 
 |     else | 
 |       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; | 
 |     break; | 
 |   case 'c': | 
 |     assert(HowLong == 0 && "Bad modifiers used with 'c'!"); | 
 |     if (Signed) | 
 |       Type = Context.SignedCharTy; | 
 |     else if (Unsigned) | 
 |       Type = Context.UnsignedCharTy; | 
 |     else | 
 |       Type = Context.CharTy; | 
 |     break; | 
 |   case 'b': // boolean | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); | 
 |     Type = Context.BoolTy; | 
 |     break; | 
 |   case 'z':  // size_t. | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); | 
 |     Type = Context.getSizeType(); | 
 |     break; | 
 |   case 'w':  // wchar_t. | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); | 
 |     Type = Context.getWideCharType(); | 
 |     break; | 
 |   case 'F': | 
 |     Type = Context.getCFConstantStringType(); | 
 |     break; | 
 |   case 'G': | 
 |     Type = Context.getObjCIdType(); | 
 |     break; | 
 |   case 'H': | 
 |     Type = Context.getObjCSelType(); | 
 |     break; | 
 |   case 'M': | 
 |     Type = Context.getObjCSuperType(); | 
 |     break; | 
 |   case 'a': | 
 |     Type = Context.getBuiltinVaListType(); | 
 |     assert(!Type.isNull() && "builtin va list type not initialized!"); | 
 |     break; | 
 |   case 'A': | 
 |     // This is a "reference" to a va_list; however, what exactly | 
 |     // this means depends on how va_list is defined. There are two | 
 |     // different kinds of va_list: ones passed by value, and ones | 
 |     // passed by reference.  An example of a by-value va_list is | 
 |     // x86, where va_list is a char*. An example of by-ref va_list | 
 |     // is x86-64, where va_list is a __va_list_tag[1]. For x86, | 
 |     // we want this argument to be a char*&; for x86-64, we want | 
 |     // it to be a __va_list_tag*. | 
 |     Type = Context.getBuiltinVaListType(); | 
 |     assert(!Type.isNull() && "builtin va list type not initialized!"); | 
 |     if (Type->isArrayType()) | 
 |       Type = Context.getArrayDecayedType(Type); | 
 |     else | 
 |       Type = Context.getLValueReferenceType(Type); | 
 |     break; | 
 |   case 'q': { | 
 |     char *End; | 
 |     unsigned NumElements = strtoul(Str, &End, 10); | 
 |     assert(End != Str && "Missing vector size"); | 
 |     Str = End; | 
 |  | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, | 
 |                                              RequiresICE, false); | 
 |     assert(!RequiresICE && "Can't require vector ICE"); | 
 |  | 
 |     Type = Context.getScalableVectorType(ElementType, NumElements); | 
 |     break; | 
 |   } | 
 |   case 'Q': { | 
 |     switch (*Str++) { | 
 |     case 'a': { | 
 |       Type = Context.SveCountTy; | 
 |       break; | 
 |     } | 
 |     default: | 
 |       llvm_unreachable("Unexpected target builtin type"); | 
 |     } | 
 |     break; | 
 |   } | 
 |   case 'V': { | 
 |     char *End; | 
 |     unsigned NumElements = strtoul(Str, &End, 10); | 
 |     assert(End != Str && "Missing vector size"); | 
 |     Str = End; | 
 |  | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, | 
 |                                              RequiresICE, false); | 
 |     assert(!RequiresICE && "Can't require vector ICE"); | 
 |  | 
 |     // TODO: No way to make AltiVec vectors in builtins yet. | 
 |     Type = Context.getVectorType(ElementType, NumElements, | 
 |                                  VectorType::GenericVector); | 
 |     break; | 
 |   } | 
 |   case 'E': { | 
 |     char *End; | 
 |  | 
 |     unsigned NumElements = strtoul(Str, &End, 10); | 
 |     assert(End != Str && "Missing vector size"); | 
 |  | 
 |     Str = End; | 
 |  | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
 |                                              false); | 
 |     Type = Context.getExtVectorType(ElementType, NumElements); | 
 |     break; | 
 |   } | 
 |   case 'X': { | 
 |     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
 |                                              false); | 
 |     assert(!RequiresICE && "Can't require complex ICE"); | 
 |     Type = Context.getComplexType(ElementType); | 
 |     break; | 
 |   } | 
 |   case 'Y': | 
 |     Type = Context.getPointerDiffType(); | 
 |     break; | 
 |   case 'P': | 
 |     Type = Context.getFILEType(); | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_stdio; | 
 |       return {}; | 
 |     } | 
 |     break; | 
 |   case 'J': | 
 |     if (Signed) | 
 |       Type = Context.getsigjmp_bufType(); | 
 |     else | 
 |       Type = Context.getjmp_bufType(); | 
 |  | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_setjmp; | 
 |       return {}; | 
 |     } | 
 |     break; | 
 |   case 'K': | 
 |     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); | 
 |     Type = Context.getucontext_tType(); | 
 |  | 
 |     if (Type.isNull()) { | 
 |       Error = ASTContext::GE_Missing_ucontext; | 
 |       return {}; | 
 |     } | 
 |     break; | 
 |   case 'p': | 
 |     Type = Context.getProcessIDType(); | 
 |     break; | 
 |   } | 
 |  | 
 |   // If there are modifiers and if we're allowed to parse them, go for it. | 
 |   Done = !AllowTypeModifiers; | 
 |   while (!Done) { | 
 |     switch (char c = *Str++) { | 
 |     default: Done = true; --Str; break; | 
 |     case '*': | 
 |     case '&': { | 
 |       // Both pointers and references can have their pointee types | 
 |       // qualified with an address space. | 
 |       char *End; | 
 |       unsigned AddrSpace = strtoul(Str, &End, 10); | 
 |       if (End != Str) { | 
 |         // Note AddrSpace == 0 is not the same as an unspecified address space. | 
 |         Type = Context.getAddrSpaceQualType( | 
 |           Type, | 
 |           Context.getLangASForBuiltinAddressSpace(AddrSpace)); | 
 |         Str = End; | 
 |       } | 
 |       if (c == '*') | 
 |         Type = Context.getPointerType(Type); | 
 |       else | 
 |         Type = Context.getLValueReferenceType(Type); | 
 |       break; | 
 |     } | 
 |     // FIXME: There's no way to have a built-in with an rvalue ref arg. | 
 |     case 'C': | 
 |       Type = Type.withConst(); | 
 |       break; | 
 |     case 'D': | 
 |       Type = Context.getVolatileType(Type); | 
 |       break; | 
 |     case 'R': | 
 |       Type = Type.withRestrict(); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && | 
 |          "Integer constant 'I' type must be an integer"); | 
 |  | 
 |   return Type; | 
 | } | 
 |  | 
 | // On some targets such as PowerPC, some of the builtins are defined with custom | 
 | // type descriptors for target-dependent types. These descriptors are decoded in | 
 | // other functions, but it may be useful to be able to fall back to default | 
 | // descriptor decoding to define builtins mixing target-dependent and target- | 
 | // independent types. This function allows decoding one type descriptor with | 
 | // default decoding. | 
 | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, | 
 |                                    GetBuiltinTypeError &Error, bool &RequireICE, | 
 |                                    bool AllowTypeModifiers) const { | 
 |   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); | 
 | } | 
 |  | 
 | /// GetBuiltinType - Return the type for the specified builtin. | 
 | QualType ASTContext::GetBuiltinType(unsigned Id, | 
 |                                     GetBuiltinTypeError &Error, | 
 |                                     unsigned *IntegerConstantArgs) const { | 
 |   const char *TypeStr = BuiltinInfo.getTypeString(Id); | 
 |   if (TypeStr[0] == '\0') { | 
 |     Error = GE_Missing_type; | 
 |     return {}; | 
 |   } | 
 |  | 
 |   SmallVector<QualType, 8> ArgTypes; | 
 |  | 
 |   bool RequiresICE = false; | 
 |   Error = GE_None; | 
 |   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, | 
 |                                        RequiresICE, true); | 
 |   if (Error != GE_None) | 
 |     return {}; | 
 |  | 
 |   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); | 
 |  | 
 |   while (TypeStr[0] && TypeStr[0] != '.') { | 
 |     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); | 
 |     if (Error != GE_None) | 
 |       return {}; | 
 |  | 
 |     // If this argument is required to be an IntegerConstantExpression and the | 
 |     // caller cares, fill in the bitmask we return. | 
 |     if (RequiresICE && IntegerConstantArgs) | 
 |       *IntegerConstantArgs |= 1 << ArgTypes.size(); | 
 |  | 
 |     // Do array -> pointer decay.  The builtin should use the decayed type. | 
 |     if (Ty->isArrayType()) | 
 |       Ty = getArrayDecayedType(Ty); | 
 |  | 
 |     ArgTypes.push_back(Ty); | 
 |   } | 
 |  | 
 |   if (Id == Builtin::BI__GetExceptionInfo) | 
 |     return {}; | 
 |  | 
 |   assert((TypeStr[0] != '.' || TypeStr[1] == 0) && | 
 |          "'.' should only occur at end of builtin type list!"); | 
 |  | 
 |   bool Variadic = (TypeStr[0] == '.'); | 
 |  | 
 |   FunctionType::ExtInfo EI(getDefaultCallingConvention( | 
 |       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); | 
 |   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); | 
 |  | 
 |  | 
 |   // We really shouldn't be making a no-proto type here. | 
 |   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) | 
 |     return getFunctionNoProtoType(ResType, EI); | 
 |  | 
 |   FunctionProtoType::ExtProtoInfo EPI; | 
 |   EPI.ExtInfo = EI; | 
 |   EPI.Variadic = Variadic; | 
 |   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) | 
 |     EPI.ExceptionSpec.Type = | 
 |         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; | 
 |  | 
 |   return getFunctionType(ResType, ArgTypes, EPI); | 
 | } | 
 |  | 
 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, | 
 |                                              const FunctionDecl *FD) { | 
 |   if (!FD->isExternallyVisible()) | 
 |     return GVA_Internal; | 
 |  | 
 |   // Non-user-provided functions get emitted as weak definitions with every | 
 |   // use, no matter whether they've been explicitly instantiated etc. | 
 |   if (!FD->isUserProvided()) | 
 |     return GVA_DiscardableODR; | 
 |  | 
 |   GVALinkage External; | 
 |   switch (FD->getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |   case TSK_ExplicitSpecialization: | 
 |     External = GVA_StrongExternal; | 
 |     break; | 
 |  | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return GVA_StrongODR; | 
 |  | 
 |   // C++11 [temp.explicit]p10: | 
 |   //   [ Note: The intent is that an inline function that is the subject of | 
 |   //   an explicit instantiation declaration will still be implicitly | 
 |   //   instantiated when used so that the body can be considered for | 
 |   //   inlining, but that no out-of-line copy of the inline function would be | 
 |   //   generated in the translation unit. -- end note ] | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     return GVA_AvailableExternally; | 
 |  | 
 |   case TSK_ImplicitInstantiation: | 
 |     External = GVA_DiscardableODR; | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!FD->isInlined()) | 
 |     return External; | 
 |  | 
 |   if ((!Context.getLangOpts().CPlusPlus && | 
 |        !Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
 |        !FD->hasAttr<DLLExportAttr>()) || | 
 |       FD->hasAttr<GNUInlineAttr>()) { | 
 |     // FIXME: This doesn't match gcc's behavior for dllexport inline functions. | 
 |  | 
 |     // GNU or C99 inline semantics. Determine whether this symbol should be | 
 |     // externally visible. | 
 |     if (FD->isInlineDefinitionExternallyVisible()) | 
 |       return External; | 
 |  | 
 |     // C99 inline semantics, where the symbol is not externally visible. | 
 |     return GVA_AvailableExternally; | 
 |   } | 
 |  | 
 |   // Functions specified with extern and inline in -fms-compatibility mode | 
 |   // forcibly get emitted.  While the body of the function cannot be later | 
 |   // replaced, the function definition cannot be discarded. | 
 |   if (FD->isMSExternInline()) | 
 |     return GVA_StrongODR; | 
 |  | 
 |   return GVA_DiscardableODR; | 
 | } | 
 |  | 
 | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, | 
 |                                                 const Decl *D, GVALinkage L) { | 
 |   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx | 
 |   // dllexport/dllimport on inline functions. | 
 |   if (D->hasAttr<DLLImportAttr>()) { | 
 |     if (L == GVA_DiscardableODR || L == GVA_StrongODR) | 
 |       return GVA_AvailableExternally; | 
 |   } else if (D->hasAttr<DLLExportAttr>()) { | 
 |     if (L == GVA_DiscardableODR) | 
 |       return GVA_StrongODR; | 
 |   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { | 
 |     // Device-side functions with __global__ attribute must always be | 
 |     // visible externally so they can be launched from host. | 
 |     if (D->hasAttr<CUDAGlobalAttr>() && | 
 |         (L == GVA_DiscardableODR || L == GVA_Internal)) | 
 |       return GVA_StrongODR; | 
 |     // Single source offloading languages like CUDA/HIP need to be able to | 
 |     // access static device variables from host code of the same compilation | 
 |     // unit. This is done by externalizing the static variable with a shared | 
 |     // name between the host and device compilation which is the same for the | 
 |     // same compilation unit whereas different among different compilation | 
 |     // units. | 
 |     if (Context.shouldExternalize(D)) | 
 |       return GVA_StrongExternal; | 
 |   } | 
 |   return L; | 
 | } | 
 |  | 
 | /// Adjust the GVALinkage for a declaration based on what an external AST source | 
 | /// knows about whether there can be other definitions of this declaration. | 
 | static GVALinkage | 
 | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, | 
 |                                           GVALinkage L) { | 
 |   ExternalASTSource *Source = Ctx.getExternalSource(); | 
 |   if (!Source) | 
 |     return L; | 
 |  | 
 |   switch (Source->hasExternalDefinitions(D)) { | 
 |   case ExternalASTSource::EK_Never: | 
 |     // Other translation units rely on us to provide the definition. | 
 |     if (L == GVA_DiscardableODR) | 
 |       return GVA_StrongODR; | 
 |     break; | 
 |  | 
 |   case ExternalASTSource::EK_Always: | 
 |     return GVA_AvailableExternally; | 
 |  | 
 |   case ExternalASTSource::EK_ReplyHazy: | 
 |     break; | 
 |   } | 
 |   return L; | 
 | } | 
 |  | 
 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { | 
 |   return adjustGVALinkageForExternalDefinitionKind(*this, FD, | 
 |            adjustGVALinkageForAttributes(*this, FD, | 
 |              basicGVALinkageForFunction(*this, FD))); | 
 | } | 
 |  | 
 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, | 
 |                                              const VarDecl *VD) { | 
 |   if (!VD->isExternallyVisible()) | 
 |     return GVA_Internal; | 
 |  | 
 |   if (VD->isStaticLocal()) { | 
 |     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); | 
 |     while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) | 
 |       LexicalContext = LexicalContext->getLexicalParent(); | 
 |  | 
 |     // ObjC Blocks can create local variables that don't have a FunctionDecl | 
 |     // LexicalContext. | 
 |     if (!LexicalContext) | 
 |       return GVA_DiscardableODR; | 
 |  | 
 |     // Otherwise, let the static local variable inherit its linkage from the | 
 |     // nearest enclosing function. | 
 |     auto StaticLocalLinkage = | 
 |         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); | 
 |  | 
 |     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must | 
 |     // be emitted in any object with references to the symbol for the object it | 
 |     // contains, whether inline or out-of-line." | 
 |     // Similar behavior is observed with MSVC. An alternative ABI could use | 
 |     // StrongODR/AvailableExternally to match the function, but none are | 
 |     // known/supported currently. | 
 |     if (StaticLocalLinkage == GVA_StrongODR || | 
 |         StaticLocalLinkage == GVA_AvailableExternally) | 
 |       return GVA_DiscardableODR; | 
 |     return StaticLocalLinkage; | 
 |   } | 
 |  | 
 |   // MSVC treats in-class initialized static data members as definitions. | 
 |   // By giving them non-strong linkage, out-of-line definitions won't | 
 |   // cause link errors. | 
 |   if (Context.isMSStaticDataMemberInlineDefinition(VD)) | 
 |     return GVA_DiscardableODR; | 
 |  | 
 |   // Most non-template variables have strong linkage; inline variables are | 
 |   // linkonce_odr or (occasionally, for compatibility) weak_odr. | 
 |   GVALinkage StrongLinkage; | 
 |   switch (Context.getInlineVariableDefinitionKind(VD)) { | 
 |   case ASTContext::InlineVariableDefinitionKind::None: | 
 |     StrongLinkage = GVA_StrongExternal; | 
 |     break; | 
 |   case ASTContext::InlineVariableDefinitionKind::Weak: | 
 |   case ASTContext::InlineVariableDefinitionKind::WeakUnknown: | 
 |     StrongLinkage = GVA_DiscardableODR; | 
 |     break; | 
 |   case ASTContext::InlineVariableDefinitionKind::Strong: | 
 |     StrongLinkage = GVA_StrongODR; | 
 |     break; | 
 |   } | 
 |  | 
 |   switch (VD->getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |     return StrongLinkage; | 
 |  | 
 |   case TSK_ExplicitSpecialization: | 
 |     return Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
 |                    VD->isStaticDataMember() | 
 |                ? GVA_StrongODR | 
 |                : StrongLinkage; | 
 |  | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return GVA_StrongODR; | 
 |  | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     return GVA_AvailableExternally; | 
 |  | 
 |   case TSK_ImplicitInstantiation: | 
 |     return GVA_DiscardableODR; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Invalid Linkage!"); | 
 | } | 
 |  | 
 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { | 
 |   return adjustGVALinkageForExternalDefinitionKind(*this, VD, | 
 |            adjustGVALinkageForAttributes(*this, VD, | 
 |              basicGVALinkageForVariable(*this, VD))); | 
 | } | 
 |  | 
 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (!VD->isFileVarDecl()) | 
 |       return false; | 
 |     // Global named register variables (GNU extension) are never emitted. | 
 |     if (VD->getStorageClass() == SC_Register) | 
 |       return false; | 
 |     if (VD->getDescribedVarTemplate() || | 
 |         isa<VarTemplatePartialSpecializationDecl>(VD)) | 
 |       return false; | 
 |   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     // We never need to emit an uninstantiated function template. | 
 |     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
 |       return false; | 
 |   } else if (isa<PragmaCommentDecl>(D)) | 
 |     return true; | 
 |   else if (isa<PragmaDetectMismatchDecl>(D)) | 
 |     return true; | 
 |   else if (isa<OMPRequiresDecl>(D)) | 
 |     return true; | 
 |   else if (isa<OMPThreadPrivateDecl>(D)) | 
 |     return !D->getDeclContext()->isDependentContext(); | 
 |   else if (isa<OMPAllocateDecl>(D)) | 
 |     return !D->getDeclContext()->isDependentContext(); | 
 |   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) | 
 |     return !D->getDeclContext()->isDependentContext(); | 
 |   else if (isa<ImportDecl>(D)) | 
 |     return true; | 
 |   else | 
 |     return false; | 
 |  | 
 |   // If this is a member of a class template, we do not need to emit it. | 
 |   if (D->getDeclContext()->isDependentContext()) | 
 |     return false; | 
 |  | 
 |   // Weak references don't produce any output by themselves. | 
 |   if (D->hasAttr<WeakRefAttr>()) | 
 |     return false; | 
 |  | 
 |   // Aliases and used decls are required. | 
 |   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) | 
 |     return true; | 
 |  | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     // Forward declarations aren't required. | 
 |     if (!FD->doesThisDeclarationHaveABody()) | 
 |       return FD->doesDeclarationForceExternallyVisibleDefinition(); | 
 |  | 
 |     // Constructors and destructors are required. | 
 |     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) | 
 |       return true; | 
 |  | 
 |     // The key function for a class is required.  This rule only comes | 
 |     // into play when inline functions can be key functions, though. | 
 |     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | 
 |       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |         const CXXRecordDecl *RD = MD->getParent(); | 
 |         if (MD->isOutOfLine() && RD->isDynamicClass()) { | 
 |           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); | 
 |           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) | 
 |             return true; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     GVALinkage Linkage = GetGVALinkageForFunction(FD); | 
 |  | 
 |     // static, static inline, always_inline, and extern inline functions can | 
 |     // always be deferred.  Normal inline functions can be deferred in C99/C++. | 
 |     // Implicit template instantiations can also be deferred in C++. | 
 |     return !isDiscardableGVALinkage(Linkage); | 
 |   } | 
 |  | 
 |   const auto *VD = cast<VarDecl>(D); | 
 |   assert(VD->isFileVarDecl() && "Expected file scoped var"); | 
 |  | 
 |   // If the decl is marked as `declare target to`, it should be emitted for the | 
 |   // host and for the device. | 
 |   if (LangOpts.OpenMP && | 
 |       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) | 
 |     return true; | 
 |  | 
 |   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && | 
 |       !isMSStaticDataMemberInlineDefinition(VD)) | 
 |     return false; | 
 |  | 
 |   // Variables in other module units shouldn't be forced to be emitted. | 
 |   if (VD->isInAnotherModuleUnit()) | 
 |     return false; | 
 |  | 
 |   // Variables that can be needed in other TUs are required. | 
 |   auto Linkage = GetGVALinkageForVariable(VD); | 
 |   if (!isDiscardableGVALinkage(Linkage)) | 
 |     return true; | 
 |  | 
 |   // We never need to emit a variable that is available in another TU. | 
 |   if (Linkage == GVA_AvailableExternally) | 
 |     return false; | 
 |  | 
 |   // Variables that have destruction with side-effects are required. | 
 |   if (VD->needsDestruction(*this)) | 
 |     return true; | 
 |  | 
 |   // Variables that have initialization with side-effects are required. | 
 |   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && | 
 |       // We can get a value-dependent initializer during error recovery. | 
 |       (VD->getInit()->isValueDependent() || !VD->evaluateValue())) | 
 |     return true; | 
 |  | 
 |   // Likewise, variables with tuple-like bindings are required if their | 
 |   // bindings have side-effects. | 
 |   if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) | 
 |     for (const auto *BD : DD->bindings()) | 
 |       if (const auto *BindingVD = BD->getHoldingVar()) | 
 |         if (DeclMustBeEmitted(BindingVD)) | 
 |           return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void ASTContext::forEachMultiversionedFunctionVersion( | 
 |     const FunctionDecl *FD, | 
 |     llvm::function_ref<void(FunctionDecl *)> Pred) const { | 
 |   assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); | 
 |   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; | 
 |   FD = FD->getMostRecentDecl(); | 
 |   // FIXME: The order of traversal here matters and depends on the order of | 
 |   // lookup results, which happens to be (mostly) oldest-to-newest, but we | 
 |   // shouldn't rely on that. | 
 |   for (auto *CurDecl : | 
 |        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { | 
 |     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); | 
 |     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && | 
 |         !SeenDecls.contains(CurFD)) { | 
 |       SeenDecls.insert(CurFD); | 
 |       Pred(CurFD); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, | 
 |                                                     bool IsCXXMethod, | 
 |                                                     bool IsBuiltin) const { | 
 |   // Pass through to the C++ ABI object | 
 |   if (IsCXXMethod) | 
 |     return ABI->getDefaultMethodCallConv(IsVariadic); | 
 |  | 
 |   // Builtins ignore user-specified default calling convention and remain the | 
 |   // Target's default calling convention. | 
 |   if (!IsBuiltin) { | 
 |     switch (LangOpts.getDefaultCallingConv()) { | 
 |     case LangOptions::DCC_None: | 
 |       break; | 
 |     case LangOptions::DCC_CDecl: | 
 |       return CC_C; | 
 |     case LangOptions::DCC_FastCall: | 
 |       if (getTargetInfo().hasFeature("sse2") && !IsVariadic) | 
 |         return CC_X86FastCall; | 
 |       break; | 
 |     case LangOptions::DCC_StdCall: | 
 |       if (!IsVariadic) | 
 |         return CC_X86StdCall; | 
 |       break; | 
 |     case LangOptions::DCC_VectorCall: | 
 |       // __vectorcall cannot be applied to variadic functions. | 
 |       if (!IsVariadic) | 
 |         return CC_X86VectorCall; | 
 |       break; | 
 |     case LangOptions::DCC_RegCall: | 
 |       // __regcall cannot be applied to variadic functions. | 
 |       if (!IsVariadic) | 
 |         return CC_X86RegCall; | 
 |       break; | 
 |     } | 
 |   } | 
 |   return Target->getDefaultCallingConv(); | 
 | } | 
 |  | 
 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { | 
 |   // Pass through to the C++ ABI object | 
 |   return ABI->isNearlyEmpty(RD); | 
 | } | 
 |  | 
 | VTableContextBase *ASTContext::getVTableContext() { | 
 |   if (!VTContext.get()) { | 
 |     auto ABI = Target->getCXXABI(); | 
 |     if (ABI.isMicrosoft()) | 
 |       VTContext.reset(new MicrosoftVTableContext(*this)); | 
 |     else { | 
 |       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables | 
 |                                  ? ItaniumVTableContext::Relative | 
 |                                  : ItaniumVTableContext::Pointer; | 
 |       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); | 
 |     } | 
 |   } | 
 |   return VTContext.get(); | 
 | } | 
 |  | 
 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { | 
 |   if (!T) | 
 |     T = Target; | 
 |   switch (T->getCXXABI().getKind()) { | 
 |   case TargetCXXABI::AppleARM64: | 
 |   case TargetCXXABI::Fuchsia: | 
 |   case TargetCXXABI::GenericAArch64: | 
 |   case TargetCXXABI::GenericItanium: | 
 |   case TargetCXXABI::GenericARM: | 
 |   case TargetCXXABI::GenericMIPS: | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::WebAssembly: | 
 |   case TargetCXXABI::WatchOS: | 
 |   case TargetCXXABI::XL: | 
 |     return ItaniumMangleContext::create(*this, getDiagnostics()); | 
 |   case TargetCXXABI::Microsoft: | 
 |     return MicrosoftMangleContext::create(*this, getDiagnostics()); | 
 |   } | 
 |   llvm_unreachable("Unsupported ABI"); | 
 | } | 
 |  | 
 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { | 
 |   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && | 
 |          "Device mangle context does not support Microsoft mangling."); | 
 |   switch (T.getCXXABI().getKind()) { | 
 |   case TargetCXXABI::AppleARM64: | 
 |   case TargetCXXABI::Fuchsia: | 
 |   case TargetCXXABI::GenericAArch64: | 
 |   case TargetCXXABI::GenericItanium: | 
 |   case TargetCXXABI::GenericARM: | 
 |   case TargetCXXABI::GenericMIPS: | 
 |   case TargetCXXABI::iOS: | 
 |   case TargetCXXABI::WebAssembly: | 
 |   case TargetCXXABI::WatchOS: | 
 |   case TargetCXXABI::XL: | 
 |     return ItaniumMangleContext::create( | 
 |         *this, getDiagnostics(), | 
 |         [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> { | 
 |           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) | 
 |             return RD->getDeviceLambdaManglingNumber(); | 
 |           return std::nullopt; | 
 |         }, | 
 |         /*IsAux=*/true); | 
 |   case TargetCXXABI::Microsoft: | 
 |     return MicrosoftMangleContext::create(*this, getDiagnostics(), | 
 |                                           /*IsAux=*/true); | 
 |   } | 
 |   llvm_unreachable("Unsupported ABI"); | 
 | } | 
 |  | 
 | CXXABI::~CXXABI() = default; | 
 |  | 
 | size_t ASTContext::getSideTableAllocatedMemory() const { | 
 |   return ASTRecordLayouts.getMemorySize() + | 
 |          llvm::capacity_in_bytes(ObjCLayouts) + | 
 |          llvm::capacity_in_bytes(KeyFunctions) + | 
 |          llvm::capacity_in_bytes(ObjCImpls) + | 
 |          llvm::capacity_in_bytes(BlockVarCopyInits) + | 
 |          llvm::capacity_in_bytes(DeclAttrs) + | 
 |          llvm::capacity_in_bytes(TemplateOrInstantiation) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + | 
 |          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + | 
 |          llvm::capacity_in_bytes(OverriddenMethods) + | 
 |          llvm::capacity_in_bytes(Types) + | 
 |          llvm::capacity_in_bytes(VariableArrayTypes); | 
 | } | 
 |  | 
 | /// getIntTypeForBitwidth - | 
 | /// sets integer QualTy according to specified details: | 
 | /// bitwidth, signed/unsigned. | 
 | /// Returns empty type if there is no appropriate target types. | 
 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, | 
 |                                            unsigned Signed) const { | 
 |   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); | 
 |   CanQualType QualTy = getFromTargetType(Ty); | 
 |   if (!QualTy && DestWidth == 128) | 
 |     return Signed ? Int128Ty : UnsignedInt128Ty; | 
 |   return QualTy; | 
 | } | 
 |  | 
 | /// getRealTypeForBitwidth - | 
 | /// sets floating point QualTy according to specified bitwidth. | 
 | /// Returns empty type if there is no appropriate target types. | 
 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, | 
 |                                             FloatModeKind ExplicitType) const { | 
 |   FloatModeKind Ty = | 
 |       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType); | 
 |   switch (Ty) { | 
 |   case FloatModeKind::Half: | 
 |     return HalfTy; | 
 |   case FloatModeKind::Float: | 
 |     return FloatTy; | 
 |   case FloatModeKind::Double: | 
 |     return DoubleTy; | 
 |   case FloatModeKind::LongDouble: | 
 |     return LongDoubleTy; | 
 |   case FloatModeKind::Float128: | 
 |     return Float128Ty; | 
 |   case FloatModeKind::Ibm128: | 
 |     return Ibm128Ty; | 
 |   case FloatModeKind::NoFloat: | 
 |     return {}; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unhandled TargetInfo::RealType value"); | 
 | } | 
 |  | 
 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { | 
 |   if (Number > 1) | 
 |     MangleNumbers[ND] = Number; | 
 | } | 
 |  | 
 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, | 
 |                                        bool ForAuxTarget) const { | 
 |   auto I = MangleNumbers.find(ND); | 
 |   unsigned Res = I != MangleNumbers.end() ? I->second : 1; | 
 |   // CUDA/HIP host compilation encodes host and device mangling numbers | 
 |   // as lower and upper half of 32 bit integer. | 
 |   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { | 
 |     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; | 
 |   } else { | 
 |     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " | 
 |                             "number for aux target"); | 
 |   } | 
 |   return Res > 1 ? Res : 1; | 
 | } | 
 |  | 
 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { | 
 |   if (Number > 1) | 
 |     StaticLocalNumbers[VD] = Number; | 
 | } | 
 |  | 
 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { | 
 |   auto I = StaticLocalNumbers.find(VD); | 
 |   return I != StaticLocalNumbers.end() ? I->second : 1; | 
 | } | 
 |  | 
 | MangleNumberingContext & | 
 | ASTContext::getManglingNumberContext(const DeclContext *DC) { | 
 |   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C. | 
 |   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; | 
 |   if (!MCtx) | 
 |     MCtx = createMangleNumberingContext(); | 
 |   return *MCtx; | 
 | } | 
 |  | 
 | MangleNumberingContext & | 
 | ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { | 
 |   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. | 
 |   std::unique_ptr<MangleNumberingContext> &MCtx = | 
 |       ExtraMangleNumberingContexts[D]; | 
 |   if (!MCtx) | 
 |     MCtx = createMangleNumberingContext(); | 
 |   return *MCtx; | 
 | } | 
 |  | 
 | std::unique_ptr<MangleNumberingContext> | 
 | ASTContext::createMangleNumberingContext() const { | 
 |   return ABI->createMangleNumberingContext(); | 
 | } | 
 |  | 
 | const CXXConstructorDecl * | 
 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { | 
 |   return ABI->getCopyConstructorForExceptionObject( | 
 |       cast<CXXRecordDecl>(RD->getFirstDecl())); | 
 | } | 
 |  | 
 | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, | 
 |                                                       CXXConstructorDecl *CD) { | 
 |   return ABI->addCopyConstructorForExceptionObject( | 
 |       cast<CXXRecordDecl>(RD->getFirstDecl()), | 
 |       cast<CXXConstructorDecl>(CD->getFirstDecl())); | 
 | } | 
 |  | 
 | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, | 
 |                                                  TypedefNameDecl *DD) { | 
 |   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); | 
 | } | 
 |  | 
 | TypedefNameDecl * | 
 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { | 
 |   return ABI->getTypedefNameForUnnamedTagDecl(TD); | 
 | } | 
 |  | 
 | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, | 
 |                                                 DeclaratorDecl *DD) { | 
 |   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); | 
 | } | 
 |  | 
 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { | 
 |   return ABI->getDeclaratorForUnnamedTagDecl(TD); | 
 | } | 
 |  | 
 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { | 
 |   ParamIndices[D] = index; | 
 | } | 
 |  | 
 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { | 
 |   ParameterIndexTable::const_iterator I = ParamIndices.find(D); | 
 |   assert(I != ParamIndices.end() && | 
 |          "ParmIndices lacks entry set by ParmVarDecl"); | 
 |   return I->second; | 
 | } | 
 |  | 
 | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, | 
 |                                                unsigned Length) const { | 
 |   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). | 
 |   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) | 
 |     EltTy = EltTy.withConst(); | 
 |  | 
 |   EltTy = adjustStringLiteralBaseType(EltTy); | 
 |  | 
 |   // Get an array type for the string, according to C99 6.4.5. This includes | 
 |   // the null terminator character. | 
 |   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, | 
 |                               ArrayType::Normal, /*IndexTypeQuals*/ 0); | 
 | } | 
 |  | 
 | StringLiteral * | 
 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { | 
 |   StringLiteral *&Result = StringLiteralCache[Key]; | 
 |   if (!Result) | 
 |     Result = StringLiteral::Create( | 
 |         *this, Key, StringLiteral::Ordinary, | 
 |         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), | 
 |         SourceLocation()); | 
 |   return Result; | 
 | } | 
 |  | 
 | MSGuidDecl * | 
 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { | 
 |   assert(MSGuidTagDecl && "building MS GUID without MS extensions?"); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   MSGuidDecl::Profile(ID, Parts); | 
 |  | 
 |   void *InsertPos; | 
 |   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return Existing; | 
 |  | 
 |   QualType GUIDType = getMSGuidType().withConst(); | 
 |   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); | 
 |   MSGuidDecls.InsertNode(New, InsertPos); | 
 |   return New; | 
 | } | 
 |  | 
 | UnnamedGlobalConstantDecl * | 
 | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, | 
 |                                          const APValue &APVal) const { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); | 
 |  | 
 |   void *InsertPos; | 
 |   if (UnnamedGlobalConstantDecl *Existing = | 
 |           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return Existing; | 
 |  | 
 |   UnnamedGlobalConstantDecl *New = | 
 |       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal); | 
 |   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos); | 
 |   return New; | 
 | } | 
 |  | 
 | TemplateParamObjectDecl * | 
 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { | 
 |   assert(T->isRecordType() && "template param object of unexpected type"); | 
 |  | 
 |   // C++ [temp.param]p8: | 
 |   //   [...] a static storage duration object of type 'const T' [...] | 
 |   T.addConst(); | 
 |  | 
 |   llvm::FoldingSetNodeID ID; | 
 |   TemplateParamObjectDecl::Profile(ID, T, V); | 
 |  | 
 |   void *InsertPos; | 
 |   if (TemplateParamObjectDecl *Existing = | 
 |           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
 |     return Existing; | 
 |  | 
 |   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); | 
 |   TemplateParamObjectDecls.InsertNode(New, InsertPos); | 
 |   return New; | 
 | } | 
 |  | 
 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { | 
 |   const llvm::Triple &T = getTargetInfo().getTriple(); | 
 |   if (!T.isOSDarwin()) | 
 |     return false; | 
 |  | 
 |   if (!(T.isiOS() && T.isOSVersionLT(7)) && | 
 |       !(T.isMacOSX() && T.isOSVersionLT(10, 9))) | 
 |     return false; | 
 |  | 
 |   QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
 |   CharUnits sizeChars = getTypeSizeInChars(AtomicTy); | 
 |   uint64_t Size = sizeChars.getQuantity(); | 
 |   CharUnits alignChars = getTypeAlignInChars(AtomicTy); | 
 |   unsigned Align = alignChars.getQuantity(); | 
 |   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); | 
 |   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); | 
 | } | 
 |  | 
 | bool | 
 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, | 
 |                                 const ObjCMethodDecl *MethodImpl) { | 
 |   // No point trying to match an unavailable/deprecated mothod. | 
 |   if (MethodDecl->hasAttr<UnavailableAttr>() | 
 |       || MethodDecl->hasAttr<DeprecatedAttr>()) | 
 |     return false; | 
 |   if (MethodDecl->getObjCDeclQualifier() != | 
 |       MethodImpl->getObjCDeclQualifier()) | 
 |     return false; | 
 |   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) | 
 |     return false; | 
 |  | 
 |   if (MethodDecl->param_size() != MethodImpl->param_size()) | 
 |     return false; | 
 |  | 
 |   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), | 
 |        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), | 
 |        EF = MethodDecl->param_end(); | 
 |        IM != EM && IF != EF; ++IM, ++IF) { | 
 |     const ParmVarDecl *DeclVar = (*IF); | 
 |     const ParmVarDecl *ImplVar = (*IM); | 
 |     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) | 
 |       return false; | 
 |     if (!hasSameType(DeclVar->getType(), ImplVar->getType())) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); | 
 | } | 
 |  | 
 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { | 
 |   LangAS AS; | 
 |   if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) | 
 |     AS = LangAS::Default; | 
 |   else | 
 |     AS = QT->getPointeeType().getAddressSpace(); | 
 |  | 
 |   return getTargetInfo().getNullPointerValue(AS); | 
 | } | 
 |  | 
 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { | 
 |   return getTargetInfo().getTargetAddressSpace(AS); | 
 | } | 
 |  | 
 | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { | 
 |   if (X == Y) | 
 |     return true; | 
 |   if (!X || !Y) | 
 |     return false; | 
 |   llvm::FoldingSetNodeID IDX, IDY; | 
 |   X->Profile(IDX, *this, /*Canonical=*/true); | 
 |   Y->Profile(IDY, *this, /*Canonical=*/true); | 
 |   return IDX == IDY; | 
 | } | 
 |  | 
 | // The getCommon* helpers return, for given 'same' X and Y entities given as | 
 | // inputs, another entity which is also the 'same' as the inputs, but which | 
 | // is closer to the canonical form of the inputs, each according to a given | 
 | // criteria. | 
 | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of | 
 | // the regular ones. | 
 |  | 
 | static Decl *getCommonDecl(Decl *X, Decl *Y) { | 
 |   if (!declaresSameEntity(X, Y)) | 
 |     return nullptr; | 
 |   for (const Decl *DX : X->redecls()) { | 
 |     // If we reach Y before reaching the first decl, that means X is older. | 
 |     if (DX == Y) | 
 |       return X; | 
 |     // If we reach the first decl, then Y is older. | 
 |     if (DX->isFirstDecl()) | 
 |       return Y; | 
 |   } | 
 |   llvm_unreachable("Corrupt redecls chain"); | 
 | } | 
 |  | 
 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> | 
 | static T *getCommonDecl(T *X, T *Y) { | 
 |   return cast_or_null<T>( | 
 |       getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)), | 
 |                     const_cast<Decl *>(cast_or_null<Decl>(Y)))); | 
 | } | 
 |  | 
 | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> | 
 | static T *getCommonDeclChecked(T *X, T *Y) { | 
 |   return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)), | 
 |                                const_cast<Decl *>(cast<Decl>(Y)))); | 
 | } | 
 |  | 
 | static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X, | 
 |                                           TemplateName Y) { | 
 |   if (X.getAsVoidPointer() == Y.getAsVoidPointer()) | 
 |     return X; | 
 |   // FIXME: There are cases here where we could find a common template name | 
 |   //        with more sugar. For example one could be a SubstTemplateTemplate* | 
 |   //        replacing the other. | 
 |   TemplateName CX = Ctx.getCanonicalTemplateName(X); | 
 |   if (CX.getAsVoidPointer() != | 
 |       Ctx.getCanonicalTemplateName(Y).getAsVoidPointer()) | 
 |     return TemplateName(); | 
 |   return CX; | 
 | } | 
 |  | 
 | static TemplateName | 
 | getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) { | 
 |   TemplateName R = getCommonTemplateName(Ctx, X, Y); | 
 |   assert(R.getAsVoidPointer() != nullptr); | 
 |   return R; | 
 | } | 
 |  | 
 | static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs, | 
 |                            ArrayRef<QualType> Ys, bool Unqualified = false) { | 
 |   assert(Xs.size() == Ys.size()); | 
 |   SmallVector<QualType, 8> Rs(Xs.size()); | 
 |   for (size_t I = 0; I < Rs.size(); ++I) | 
 |     Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified); | 
 |   return Rs; | 
 | } | 
 |  | 
 | template <class T> | 
 | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { | 
 |   return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() | 
 |                                                       : SourceLocation(); | 
 | } | 
 |  | 
 | static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx, | 
 |                                                   const TemplateArgument &X, | 
 |                                                   const TemplateArgument &Y) { | 
 |   if (X.getKind() != Y.getKind()) | 
 |     return TemplateArgument(); | 
 |  | 
 |   switch (X.getKind()) { | 
 |   case TemplateArgument::ArgKind::Type: | 
 |     if (!Ctx.hasSameType(X.getAsType(), Y.getAsType())) | 
 |       return TemplateArgument(); | 
 |     return TemplateArgument( | 
 |         Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType())); | 
 |   case TemplateArgument::ArgKind::NullPtr: | 
 |     if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType())) | 
 |       return TemplateArgument(); | 
 |     return TemplateArgument( | 
 |         Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), | 
 |         /*Unqualified=*/true); | 
 |   case TemplateArgument::ArgKind::Expression: | 
 |     if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType())) | 
 |       return TemplateArgument(); | 
 |     // FIXME: Try to keep the common sugar. | 
 |     return X; | 
 |   case TemplateArgument::ArgKind::Template: { | 
 |     TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); | 
 |     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); | 
 |     if (!CTN.getAsVoidPointer()) | 
 |       return TemplateArgument(); | 
 |     return TemplateArgument(CTN); | 
 |   } | 
 |   case TemplateArgument::ArgKind::TemplateExpansion: { | 
 |     TemplateName TX = X.getAsTemplateOrTemplatePattern(), | 
 |                  TY = Y.getAsTemplateOrTemplatePattern(); | 
 |     TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); | 
 |     if (!CTN.getAsVoidPointer()) | 
 |       return TemplateName(); | 
 |     auto NExpX = X.getNumTemplateExpansions(); | 
 |     assert(NExpX == Y.getNumTemplateExpansions()); | 
 |     return TemplateArgument(CTN, NExpX); | 
 |   } | 
 |   default: | 
 |     // FIXME: Handle the other argument kinds. | 
 |     return X; | 
 |   } | 
 | } | 
 |  | 
 | static bool getCommonTemplateArguments(ASTContext &Ctx, | 
 |                                        SmallVectorImpl<TemplateArgument> &R, | 
 |                                        ArrayRef<TemplateArgument> Xs, | 
 |                                        ArrayRef<TemplateArgument> Ys) { | 
 |   if (Xs.size() != Ys.size()) | 
 |     return true; | 
 |   R.resize(Xs.size()); | 
 |   for (size_t I = 0; I < R.size(); ++I) { | 
 |     R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]); | 
 |     if (R[I].isNull()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static auto getCommonTemplateArguments(ASTContext &Ctx, | 
 |                                        ArrayRef<TemplateArgument> Xs, | 
 |                                        ArrayRef<TemplateArgument> Ys) { | 
 |   SmallVector<TemplateArgument, 8> R; | 
 |   bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); | 
 |   assert(!Different); | 
 |   (void)Different; | 
 |   return R; | 
 | } | 
 |  | 
 | template <class T> | 
 | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) { | 
 |   return X->getKeyword() == Y->getKeyword() ? X->getKeyword() | 
 |                                             : ElaboratedTypeKeyword::ETK_None; | 
 | } | 
 |  | 
 | template <class T> | 
 | static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X, | 
 |                                          const T *Y) { | 
 |   // FIXME: Try to keep the common NNS sugar. | 
 |   return X->getQualifier() == Y->getQualifier() | 
 |              ? X->getQualifier() | 
 |              : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier()); | 
 | } | 
 |  | 
 | template <class T> | 
 | static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) { | 
 |   return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType()); | 
 | } | 
 |  | 
 | template <class T> | 
 | static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X, | 
 |                                           Qualifiers &QX, const T *Y, | 
 |                                           Qualifiers &QY) { | 
 |   QualType EX = X->getElementType(), EY = Y->getElementType(); | 
 |   QualType R = Ctx.getCommonSugaredType(EX, EY, | 
 |                                         /*Unqualified=*/true); | 
 |   Qualifiers RQ = R.getQualifiers(); | 
 |   QX += EX.getQualifiers() - RQ; | 
 |   QY += EY.getQualifiers() - RQ; | 
 |   return R; | 
 | } | 
 |  | 
 | template <class T> | 
 | static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) { | 
 |   return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType()); | 
 | } | 
 |  | 
 | template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) { | 
 |   assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); | 
 |   return X->getSizeExpr(); | 
 | } | 
 |  | 
 | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { | 
 |   assert(X->getSizeModifier() == Y->getSizeModifier()); | 
 |   return X->getSizeModifier(); | 
 | } | 
 |  | 
 | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, | 
 |                                             const ArrayType *Y) { | 
 |   assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); | 
 |   return X->getIndexTypeCVRQualifiers(); | 
 | } | 
 |  | 
 | // Merges two type lists such that the resulting vector will contain | 
 | // each type (in a canonical sense) only once, in the order they appear | 
 | // from X to Y. If they occur in both X and Y, the result will contain | 
 | // the common sugared type between them. | 
 | static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out, | 
 |                            ArrayRef<QualType> X, ArrayRef<QualType> Y) { | 
 |   llvm::DenseMap<QualType, unsigned> Found; | 
 |   for (auto Ts : {X, Y}) { | 
 |     for (QualType T : Ts) { | 
 |       auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size()); | 
 |       if (!Res.second) { | 
 |         QualType &U = Out[Res.first->second]; | 
 |         U = Ctx.getCommonSugaredType(U, T); | 
 |       } else { | 
 |         Out.emplace_back(T); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | FunctionProtoType::ExceptionSpecInfo | 
 | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, | 
 |                                 FunctionProtoType::ExceptionSpecInfo ESI2, | 
 |                                 SmallVectorImpl<QualType> &ExceptionTypeStorage, | 
 |                                 bool AcceptDependent) { | 
 |   ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; | 
 |  | 
 |   // If either of them can throw anything, that is the result. | 
 |   for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { | 
 |     if (EST1 == I) | 
 |       return ESI1; | 
 |     if (EST2 == I) | 
 |       return ESI2; | 
 |   } | 
 |  | 
 |   // If either of them is non-throwing, the result is the other. | 
 |   for (auto I : | 
 |        {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { | 
 |     if (EST1 == I) | 
 |       return ESI2; | 
 |     if (EST2 == I) | 
 |       return ESI1; | 
 |   } | 
 |  | 
 |   // If we're left with value-dependent computed noexcept expressions, we're | 
 |   // stuck. Before C++17, we can just drop the exception specification entirely, | 
 |   // since it's not actually part of the canonical type. And this should never | 
 |   // happen in C++17, because it would mean we were computing the composite | 
 |   // pointer type of dependent types, which should never happen. | 
 |   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { | 
 |     assert(AcceptDependent && | 
 |            "computing composite pointer type of dependent types"); | 
 |     return FunctionProtoType::ExceptionSpecInfo(); | 
 |   } | 
 |  | 
 |   // Switch over the possibilities so that people adding new values know to | 
 |   // update this function. | 
 |   switch (EST1) { | 
 |   case EST_None: | 
 |   case EST_DynamicNone: | 
 |   case EST_MSAny: | 
 |   case EST_BasicNoexcept: | 
 |   case EST_DependentNoexcept: | 
 |   case EST_NoexceptFalse: | 
 |   case EST_NoexceptTrue: | 
 |   case EST_NoThrow: | 
 |     llvm_unreachable("These ESTs should be handled above"); | 
 |  | 
 |   case EST_Dynamic: { | 
 |     // This is the fun case: both exception specifications are dynamic. Form | 
 |     // the union of the two lists. | 
 |     assert(EST2 == EST_Dynamic && "other cases should already be handled"); | 
 |     mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions, | 
 |                    ESI2.Exceptions); | 
 |     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); | 
 |     Result.Exceptions = ExceptionTypeStorage; | 
 |     return Result; | 
 |   } | 
 |  | 
 |   case EST_Unevaluated: | 
 |   case EST_Uninstantiated: | 
 |   case EST_Unparsed: | 
 |     llvm_unreachable("shouldn't see unresolved exception specifications here"); | 
 |   } | 
 |  | 
 |   llvm_unreachable("invalid ExceptionSpecificationType"); | 
 | } | 
 |  | 
 | static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X, | 
 |                                           Qualifiers &QX, const Type *Y, | 
 |                                           Qualifiers &QY) { | 
 |   Type::TypeClass TC = X->getTypeClass(); | 
 |   assert(TC == Y->getTypeClass()); | 
 |   switch (TC) { | 
 | #define UNEXPECTED_TYPE(Class, Kind)                                           \ | 
 |   case Type::Class:                                                            \ | 
 |     llvm_unreachable("Unexpected " Kind ": " #Class); | 
 |  | 
 | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") | 
 | #define TYPE(Class, Base) | 
 | #include "clang/AST/TypeNodes.inc" | 
 |  | 
 | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") | 
 |     SUGAR_FREE_TYPE(Builtin) | 
 |     SUGAR_FREE_TYPE(Decltype) | 
 |     SUGAR_FREE_TYPE(DeducedTemplateSpecialization) | 
 |     SUGAR_FREE_TYPE(DependentBitInt) | 
 |     SUGAR_FREE_TYPE(Enum) | 
 |     SUGAR_FREE_TYPE(BitInt) | 
 |     SUGAR_FREE_TYPE(ObjCInterface) | 
 |     SUGAR_FREE_TYPE(Record) | 
 |     SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) | 
 |     SUGAR_FREE_TYPE(UnresolvedUsing) | 
 | #undef SUGAR_FREE_TYPE | 
 | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") | 
 |     NON_UNIQUE_TYPE(TypeOfExpr) | 
 |     NON_UNIQUE_TYPE(VariableArray) | 
 | #undef NON_UNIQUE_TYPE | 
 |  | 
 |     UNEXPECTED_TYPE(TypeOf, "sugar") | 
 |  | 
 | #undef UNEXPECTED_TYPE | 
 |  | 
 |   case Type::Auto: { | 
 |     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); | 
 |     assert(AX->getDeducedType().isNull()); | 
 |     assert(AY->getDeducedType().isNull()); | 
 |     assert(AX->getKeyword() == AY->getKeyword()); | 
 |     assert(AX->isInstantiationDependentType() == | 
 |            AY->isInstantiationDependentType()); | 
 |     auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(), | 
 |                                          AY->getTypeConstraintArguments()); | 
 |     return Ctx.getAutoType(QualType(), AX->getKeyword(), | 
 |                            AX->isInstantiationDependentType(), | 
 |                            AX->containsUnexpandedParameterPack(), | 
 |                            getCommonDeclChecked(AX->getTypeConstraintConcept(), | 
 |                                                 AY->getTypeConstraintConcept()), | 
 |                            As); | 
 |   } | 
 |   case Type::IncompleteArray: { | 
 |     const auto *AX = cast<IncompleteArrayType>(X), | 
 |                *AY = cast<IncompleteArrayType>(Y); | 
 |     return Ctx.getIncompleteArrayType( | 
 |         getCommonArrayElementType(Ctx, AX, QX, AY, QY), | 
 |         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); | 
 |   } | 
 |   case Type::DependentSizedArray: { | 
 |     const auto *AX = cast<DependentSizedArrayType>(X), | 
 |                *AY = cast<DependentSizedArrayType>(Y); | 
 |     return Ctx.getDependentSizedArrayType( | 
 |         getCommonArrayElementType(Ctx, AX, QX, AY, QY), | 
 |         getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY), | 
 |         getCommonIndexTypeCVRQualifiers(AX, AY), | 
 |         AX->getBracketsRange() == AY->getBracketsRange() | 
 |             ? AX->getBracketsRange() | 
 |             : SourceRange()); | 
 |   } | 
 |   case Type::ConstantArray: { | 
 |     const auto *AX = cast<ConstantArrayType>(X), | 
 |                *AY = cast<ConstantArrayType>(Y); | 
 |     assert(AX->getSize() == AY->getSize()); | 
 |     const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr()) | 
 |                                ? AX->getSizeExpr() | 
 |                                : nullptr; | 
 |     return Ctx.getConstantArrayType( | 
 |         getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr, | 
 |         getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); | 
 |   } | 
 |   case Type::Atomic: { | 
 |     const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y); | 
 |     return Ctx.getAtomicType( | 
 |         Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType())); | 
 |   } | 
 |   case Type::Complex: { | 
 |     const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y); | 
 |     return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY)); | 
 |   } | 
 |   case Type::Pointer: { | 
 |     const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y); | 
 |     return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
 |   } | 
 |   case Type::BlockPointer: { | 
 |     const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y); | 
 |     return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
 |   } | 
 |   case Type::ObjCObjectPointer: { | 
 |     const auto *PX = cast<ObjCObjectPointerType>(X), | 
 |                *PY = cast<ObjCObjectPointerType>(Y); | 
 |     return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
 |   } | 
 |   case Type::MemberPointer: { | 
 |     const auto *PX = cast<MemberPointerType>(X), | 
 |                *PY = cast<MemberPointerType>(Y); | 
 |     return Ctx.getMemberPointerType( | 
 |         getCommonPointeeType(Ctx, PX, PY), | 
 |         Ctx.getCommonSugaredType(QualType(PX->getClass(), 0), | 
 |                                  QualType(PY->getClass(), 0)) | 
 |             .getTypePtr()); | 
 |   } | 
 |   case Type::LValueReference: { | 
 |     const auto *PX = cast<LValueReferenceType>(X), | 
 |                *PY = cast<LValueReferenceType>(Y); | 
 |     // FIXME: Preserve PointeeTypeAsWritten. | 
 |     return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY), | 
 |                                       PX->isSpelledAsLValue() || | 
 |                                           PY->isSpelledAsLValue()); | 
 |   } | 
 |   case Type::RValueReference: { | 
 |     const auto *PX = cast<RValueReferenceType>(X), | 
 |                *PY = cast<RValueReferenceType>(Y); | 
 |     // FIXME: Preserve PointeeTypeAsWritten. | 
 |     return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY)); | 
 |   } | 
 |   case Type::DependentAddressSpace: { | 
 |     const auto *PX = cast<DependentAddressSpaceType>(X), | 
 |                *PY = cast<DependentAddressSpaceType>(Y); | 
 |     assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); | 
 |     return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY), | 
 |                                             PX->getAddrSpaceExpr(), | 
 |                                             getCommonAttrLoc(PX, PY)); | 
 |   } | 
 |   case Type::FunctionNoProto: { | 
 |     const auto *FX = cast<FunctionNoProtoType>(X), | 
 |                *FY = cast<FunctionNoProtoType>(Y); | 
 |     assert(FX->getExtInfo() == FY->getExtInfo()); | 
 |     return Ctx.getFunctionNoProtoType( | 
 |         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()), | 
 |         FX->getExtInfo()); | 
 |   } | 
 |   case Type::FunctionProto: { | 
 |     const auto *FX = cast<FunctionProtoType>(X), | 
 |                *FY = cast<FunctionProtoType>(Y); | 
 |     FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), | 
 |                                     EPIY = FY->getExtProtoInfo(); | 
 |     assert(EPIX.ExtInfo == EPIY.ExtInfo); | 
 |     assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos); | 
 |     assert(EPIX.RefQualifier == EPIY.RefQualifier); | 
 |     assert(EPIX.TypeQuals == EPIY.TypeQuals); | 
 |     assert(EPIX.Variadic == EPIY.Variadic); | 
 |  | 
 |     // FIXME: Can we handle an empty EllipsisLoc? | 
 |     //        Use emtpy EllipsisLoc if X and Y differ. | 
 |  | 
 |     EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; | 
 |  | 
 |     QualType R = | 
 |         Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()); | 
 |     auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(), | 
 |                             /*Unqualified=*/true); | 
 |  | 
 |     SmallVector<QualType, 8> Exceptions; | 
 |     EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( | 
 |         EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true); | 
 |     return Ctx.getFunctionType(R, P, EPIX); | 
 |   } | 
 |   case Type::ObjCObject: { | 
 |     const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y); | 
 |     assert( | 
 |         std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), | 
 |                    OY->getProtocols().begin(), OY->getProtocols().end(), | 
 |                    [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { | 
 |                      return P0->getCanonicalDecl() == P1->getCanonicalDecl(); | 
 |                    }) && | 
 |         "protocol lists must be the same"); | 
 |     auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(), | 
 |                               OY->getTypeArgsAsWritten()); | 
 |     return Ctx.getObjCObjectType( | 
 |         Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs, | 
 |         OX->getProtocols(), | 
 |         OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); | 
 |   } | 
 |   case Type::ConstantMatrix: { | 
 |     const auto *MX = cast<ConstantMatrixType>(X), | 
 |                *MY = cast<ConstantMatrixType>(Y); | 
 |     assert(MX->getNumRows() == MY->getNumRows()); | 
 |     assert(MX->getNumColumns() == MY->getNumColumns()); | 
 |     return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY), | 
 |                                      MX->getNumRows(), MX->getNumColumns()); | 
 |   } | 
 |   case Type::DependentSizedMatrix: { | 
 |     const auto *MX = cast<DependentSizedMatrixType>(X), | 
 |                *MY = cast<DependentSizedMatrixType>(Y); | 
 |     assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); | 
 |     assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); | 
 |     return Ctx.getDependentSizedMatrixType( | 
 |         getCommonElementType(Ctx, MX, MY), MX->getRowExpr(), | 
 |         MX->getColumnExpr(), getCommonAttrLoc(MX, MY)); | 
 |   } | 
 |   case Type::Vector: { | 
 |     const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y); | 
 |     assert(VX->getNumElements() == VY->getNumElements()); | 
 |     assert(VX->getVectorKind() == VY->getVectorKind()); | 
 |     return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY), | 
 |                              VX->getNumElements(), VX->getVectorKind()); | 
 |   } | 
 |   case Type::ExtVector: { | 
 |     const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y); | 
 |     assert(VX->getNumElements() == VY->getNumElements()); | 
 |     return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY), | 
 |                                 VX->getNumElements()); | 
 |   } | 
 |   case Type::DependentSizedExtVector: { | 
 |     const auto *VX = cast<DependentSizedExtVectorType>(X), | 
 |                *VY = cast<DependentSizedExtVectorType>(Y); | 
 |     return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY), | 
 |                                               getCommonSizeExpr(Ctx, VX, VY), | 
 |                                               getCommonAttrLoc(VX, VY)); | 
 |   } | 
 |   case Type::DependentVector: { | 
 |     const auto *VX = cast<DependentVectorType>(X), | 
 |                *VY = cast<DependentVectorType>(Y); | 
 |     assert(VX->getVectorKind() == VY->getVectorKind()); | 
 |     return Ctx.getDependentVectorType( | 
 |         getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY), | 
 |         getCommonAttrLoc(VX, VY), VX->getVectorKind()); | 
 |   } | 
 |   case Type::InjectedClassName: { | 
 |     const auto *IX = cast<InjectedClassNameType>(X), | 
 |                *IY = cast<InjectedClassNameType>(Y); | 
 |     return Ctx.getInjectedClassNameType( | 
 |         getCommonDeclChecked(IX->getDecl(), IY->getDecl()), | 
 |         Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(), | 
 |                                  IY->getInjectedSpecializationType())); | 
 |   } | 
 |   case Type::TemplateSpecialization: { | 
 |     const auto *TX = cast<TemplateSpecializationType>(X), | 
 |                *TY = cast<TemplateSpecializationType>(Y); | 
 |     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), | 
 |                                          TY->template_arguments()); | 
 |     return Ctx.getTemplateSpecializationType( | 
 |         ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(), | 
 |                                        TY->getTemplateName()), | 
 |         As, X->getCanonicalTypeInternal()); | 
 |   } | 
 |   case Type::DependentName: { | 
 |     const auto *NX = cast<DependentNameType>(X), | 
 |                *NY = cast<DependentNameType>(Y); | 
 |     assert(NX->getIdentifier() == NY->getIdentifier()); | 
 |     return Ctx.getDependentNameType( | 
 |         getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY), | 
 |         NX->getIdentifier(), NX->getCanonicalTypeInternal()); | 
 |   } | 
 |   case Type::DependentTemplateSpecialization: { | 
 |     const auto *TX = cast<DependentTemplateSpecializationType>(X), | 
 |                *TY = cast<DependentTemplateSpecializationType>(Y); | 
 |     assert(TX->getIdentifier() == TY->getIdentifier()); | 
 |     auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), | 
 |                                          TY->template_arguments()); | 
 |     return Ctx.getDependentTemplateSpecializationType( | 
 |         getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY), | 
 |         TX->getIdentifier(), As); | 
 |   } | 
 |   case Type::UnaryTransform: { | 
 |     const auto *TX = cast<UnaryTransformType>(X), | 
 |                *TY = cast<UnaryTransformType>(Y); | 
 |     assert(TX->getUTTKind() == TY->getUTTKind()); | 
 |     return Ctx.getUnaryTransformType( | 
 |         Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()), | 
 |         Ctx.getCommonSugaredType(TX->getUnderlyingType(), | 
 |                                  TY->getUnderlyingType()), | 
 |         TX->getUTTKind()); | 
 |   } | 
 |   case Type::PackExpansion: { | 
 |     const auto *PX = cast<PackExpansionType>(X), | 
 |                *PY = cast<PackExpansionType>(Y); | 
 |     assert(PX->getNumExpansions() == PY->getNumExpansions()); | 
 |     return Ctx.getPackExpansionType( | 
 |         Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()), | 
 |         PX->getNumExpansions(), false); | 
 |   } | 
 |   case Type::Pipe: { | 
 |     const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y); | 
 |     assert(PX->isReadOnly() == PY->isReadOnly()); | 
 |     auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType | 
 |                                : &ASTContext::getWritePipeType; | 
 |     return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY)); | 
 |   } | 
 |   case Type::TemplateTypeParm: { | 
 |     const auto *TX = cast<TemplateTypeParmType>(X), | 
 |                *TY = cast<TemplateTypeParmType>(Y); | 
 |     assert(TX->getDepth() == TY->getDepth()); | 
 |     assert(TX->getIndex() == TY->getIndex()); | 
 |     assert(TX->isParameterPack() == TY->isParameterPack()); | 
 |     return Ctx.getTemplateTypeParmType( | 
 |         TX->getDepth(), TX->getIndex(), TX->isParameterPack(), | 
 |         getCommonDecl(TX->getDecl(), TY->getDecl())); | 
 |   } | 
 |   } | 
 |   llvm_unreachable("Unknown Type Class"); | 
 | } | 
 |  | 
 | static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X, | 
 |                                        const Type *Y, | 
 |                                        SplitQualType Underlying) { | 
 |   Type::TypeClass TC = X->getTypeClass(); | 
 |   if (TC != Y->getTypeClass()) | 
 |     return QualType(); | 
 |   switch (TC) { | 
 | #define UNEXPECTED_TYPE(Class, Kind)                                           \ | 
 |   case Type::Class:                                                            \ | 
 |     llvm_unreachable("Unexpected " Kind ": " #Class); | 
 | #define TYPE(Class, Base) | 
 | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") | 
 | #include "clang/AST/TypeNodes.inc" | 
 |  | 
 | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") | 
 |     CANONICAL_TYPE(Atomic) | 
 |     CANONICAL_TYPE(BitInt) | 
 |     CANONICAL_TYPE(BlockPointer) | 
 |     CANONICAL_TYPE(Builtin) | 
 |     CANONICAL_TYPE(Complex) | 
 |     CANONICAL_TYPE(ConstantArray) | 
 |     CANONICAL_TYPE(ConstantMatrix) | 
 |     CANONICAL_TYPE(Enum) | 
 |     CANONICAL_TYPE(ExtVector) | 
 |     CANONICAL_TYPE(FunctionNoProto) | 
 |     CANONICAL_TYPE(FunctionProto) | 
 |     CANONICAL_TYPE(IncompleteArray) | 
 |     CANONICAL_TYPE(LValueReference) | 
 |     CANONICAL_TYPE(MemberPointer) | 
 |     CANONICAL_TYPE(ObjCInterface) | 
 |     CANONICAL_TYPE(ObjCObject) | 
 |     CANONICAL_TYPE(ObjCObjectPointer) | 
 |     CANONICAL_TYPE(Pipe) | 
 |     CANONICAL_TYPE(Pointer) | 
 |     CANONICAL_TYPE(Record) | 
 |     CANONICAL_TYPE(RValueReference) | 
 |     CANONICAL_TYPE(VariableArray) | 
 |     CANONICAL_TYPE(Vector) | 
 | #undef CANONICAL_TYPE | 
 |  | 
 | #undef UNEXPECTED_TYPE | 
 |  | 
 |   case Type::Adjusted: { | 
 |     const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y); | 
 |     QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); | 
 |     if (!Ctx.hasSameType(OX, OY)) | 
 |       return QualType(); | 
 |     // FIXME: It's inefficient to have to unify the original types. | 
 |     return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY), | 
 |                                Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::Decayed: { | 
 |     const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y); | 
 |     QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); | 
 |     if (!Ctx.hasSameType(OX, OY)) | 
 |       return QualType(); | 
 |     // FIXME: It's inefficient to have to unify the original types. | 
 |     return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY), | 
 |                               Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::Attributed: { | 
 |     const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y); | 
 |     AttributedType::Kind Kind = AX->getAttrKind(); | 
 |     if (Kind != AY->getAttrKind()) | 
 |       return QualType(); | 
 |     QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); | 
 |     if (!Ctx.hasSameType(MX, MY)) | 
 |       return QualType(); | 
 |     // FIXME: It's inefficient to have to unify the modified types. | 
 |     return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY), | 
 |                                  Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::BTFTagAttributed: { | 
 |     const auto *BX = cast<BTFTagAttributedType>(X); | 
 |     const BTFTypeTagAttr *AX = BX->getAttr(); | 
 |     // The attribute is not uniqued, so just compare the tag. | 
 |     if (AX->getBTFTypeTag() != | 
 |         cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag()) | 
 |       return QualType(); | 
 |     return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::Auto: { | 
 |     const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); | 
 |  | 
 |     AutoTypeKeyword KW = AX->getKeyword(); | 
 |     if (KW != AY->getKeyword()) | 
 |       return QualType(); | 
 |  | 
 |     ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(), | 
 |                                       AY->getTypeConstraintConcept()); | 
 |     SmallVector<TemplateArgument, 8> As; | 
 |     if (CD && | 
 |         getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(), | 
 |                                    AY->getTypeConstraintArguments())) { | 
 |       CD = nullptr; // The arguments differ, so make it unconstrained. | 
 |       As.clear(); | 
 |     } | 
 |  | 
 |     // Both auto types can't be dependent, otherwise they wouldn't have been | 
 |     // sugar. This implies they can't contain unexpanded packs either. | 
 |     return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(), | 
 |                            /*IsDependent=*/false, /*IsPack=*/false, CD, As); | 
 |   } | 
 |   case Type::Decltype: | 
 |     return QualType(); | 
 |   case Type::DeducedTemplateSpecialization: | 
 |     // FIXME: Try to merge these. | 
 |     return QualType(); | 
 |  | 
 |   case Type::Elaborated: { | 
 |     const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y); | 
 |     return Ctx.getElaboratedType( | 
 |         ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY), | 
 |         Ctx.getQualifiedType(Underlying), | 
 |         ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl())); | 
 |   } | 
 |   case Type::MacroQualified: { | 
 |     const auto *MX = cast<MacroQualifiedType>(X), | 
 |                *MY = cast<MacroQualifiedType>(Y); | 
 |     const IdentifierInfo *IX = MX->getMacroIdentifier(); | 
 |     if (IX != MY->getMacroIdentifier()) | 
 |       return QualType(); | 
 |     return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX); | 
 |   } | 
 |   case Type::SubstTemplateTypeParm: { | 
 |     const auto *SX = cast<SubstTemplateTypeParmType>(X), | 
 |                *SY = cast<SubstTemplateTypeParmType>(Y); | 
 |     Decl *CD = | 
 |         ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl()); | 
 |     if (!CD) | 
 |       return QualType(); | 
 |     unsigned Index = SX->getIndex(); | 
 |     if (Index != SY->getIndex()) | 
 |       return QualType(); | 
 |     auto PackIndex = SX->getPackIndex(); | 
 |     if (PackIndex != SY->getPackIndex()) | 
 |       return QualType(); | 
 |     return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying), | 
 |                                             CD, Index, PackIndex); | 
 |   } | 
 |   case Type::ObjCTypeParam: | 
 |     // FIXME: Try to merge these. | 
 |     return QualType(); | 
 |   case Type::Paren: | 
 |     return Ctx.getParenType(Ctx.getQualifiedType(Underlying)); | 
 |  | 
 |   case Type::TemplateSpecialization: { | 
 |     const auto *TX = cast<TemplateSpecializationType>(X), | 
 |                *TY = cast<TemplateSpecializationType>(Y); | 
 |     TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(), | 
 |                                                TY->getTemplateName()); | 
 |     if (!CTN.getAsVoidPointer()) | 
 |       return QualType(); | 
 |     SmallVector<TemplateArgument, 8> Args; | 
 |     if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(), | 
 |                                    TY->template_arguments())) | 
 |       return QualType(); | 
 |     return Ctx.getTemplateSpecializationType(CTN, Args, | 
 |                                              Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::Typedef: { | 
 |     const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y); | 
 |     const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl()); | 
 |     if (!CD) | 
 |       return QualType(); | 
 |     return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   case Type::TypeOf: { | 
 |     // The common sugar between two typeof expressions, where one is | 
 |     // potentially a typeof_unqual and the other is not, we unify to the | 
 |     // qualified type as that retains the most information along with the type. | 
 |     // We only return a typeof_unqual type when both types are unqual types. | 
 |     TypeOfKind Kind = TypeOfKind::Qualified; | 
 |     if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() && | 
 |         cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified) | 
 |       Kind = TypeOfKind::Unqualified; | 
 |     return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind); | 
 |   } | 
 |   case Type::TypeOfExpr: | 
 |     return QualType(); | 
 |  | 
 |   case Type::UnaryTransform: { | 
 |     const auto *UX = cast<UnaryTransformType>(X), | 
 |                *UY = cast<UnaryTransformType>(Y); | 
 |     UnaryTransformType::UTTKind KX = UX->getUTTKind(); | 
 |     if (KX != UY->getUTTKind()) | 
 |       return QualType(); | 
 |     QualType BX = UX->getBaseType(), BY = UY->getBaseType(); | 
 |     if (!Ctx.hasSameType(BX, BY)) | 
 |       return QualType(); | 
 |     // FIXME: It's inefficient to have to unify the base types. | 
 |     return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY), | 
 |                                      Ctx.getQualifiedType(Underlying), KX); | 
 |   } | 
 |   case Type::Using: { | 
 |     const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y); | 
 |     const UsingShadowDecl *CD = | 
 |         ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl()); | 
 |     if (!CD) | 
 |       return QualType(); | 
 |     return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying)); | 
 |   } | 
 |   } | 
 |   llvm_unreachable("Unhandled Type Class"); | 
 | } | 
 |  | 
 | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { | 
 |   SmallVector<SplitQualType, 8> R; | 
 |   while (true) { | 
 |     QTotal.addConsistentQualifiers(T.Quals); | 
 |     QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); | 
 |     if (NT == QualType(T.Ty, 0)) | 
 |       break; | 
 |     R.push_back(T); | 
 |     T = NT.split(); | 
 |   } | 
 |   return R; | 
 | } | 
 |  | 
 | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, | 
 |                                           bool Unqualified) { | 
 |   assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); | 
 |   if (X == Y) | 
 |     return X; | 
 |   if (!Unqualified) { | 
 |     if (X.isCanonical()) | 
 |       return X; | 
 |     if (Y.isCanonical()) | 
 |       return Y; | 
 |   } | 
 |  | 
 |   SplitQualType SX = X.split(), SY = Y.split(); | 
 |   Qualifiers QX, QY; | 
 |   // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, | 
 |   // until we reach their underlying "canonical nodes". Note these are not | 
 |   // necessarily canonical types, as they may still have sugared properties. | 
 |   // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. | 
 |   auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY); | 
 |   if (SX.Ty != SY.Ty) { | 
 |     // The canonical nodes differ. Build a common canonical node out of the two, | 
 |     // unifying their sugar. This may recurse back here. | 
 |     SX.Ty = | 
 |         ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr(); | 
 |   } else { | 
 |     // The canonical nodes were identical: We may have desugared too much. | 
 |     // Add any common sugar back in. | 
 |     while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { | 
 |       QX -= SX.Quals; | 
 |       QY -= SY.Quals; | 
 |       SX = Xs.pop_back_val(); | 
 |       SY = Ys.pop_back_val(); | 
 |     } | 
 |   } | 
 |   if (Unqualified) | 
 |     QX = Qualifiers::removeCommonQualifiers(QX, QY); | 
 |   else | 
 |     assert(QX == QY); | 
 |  | 
 |   // Even though the remaining sugar nodes in Xs and Ys differ, some may be | 
 |   // related. Walk up these nodes, unifying them and adding the result. | 
 |   while (!Xs.empty() && !Ys.empty()) { | 
 |     auto Underlying = SplitQualType( | 
 |         SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals)); | 
 |     SX = Xs.pop_back_val(); | 
 |     SY = Ys.pop_back_val(); | 
 |     SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying) | 
 |                 .getTypePtrOrNull(); | 
 |     // Stop at the first pair which is unrelated. | 
 |     if (!SX.Ty) { | 
 |       SX.Ty = Underlying.Ty; | 
 |       break; | 
 |     } | 
 |     QX -= Underlying.Quals; | 
 |   }; | 
 |  | 
 |   // Add back the missing accumulated qualifiers, which were stripped off | 
 |   // with the sugar nodes we could not unify. | 
 |   QualType R = getQualifiedType(SX.Ty, QX); | 
 |   assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); | 
 |   return R; | 
 | } | 
 |  | 
 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { | 
 |   assert(Ty->isFixedPointType()); | 
 |  | 
 |   if (Ty->isSaturatedFixedPointType()) return Ty; | 
 |  | 
 |   switch (Ty->castAs<BuiltinType>()->getKind()) { | 
 |     default: | 
 |       llvm_unreachable("Not a fixed point type!"); | 
 |     case BuiltinType::ShortAccum: | 
 |       return SatShortAccumTy; | 
 |     case BuiltinType::Accum: | 
 |       return SatAccumTy; | 
 |     case BuiltinType::LongAccum: | 
 |       return SatLongAccumTy; | 
 |     case BuiltinType::UShortAccum: | 
 |       return SatUnsignedShortAccumTy; | 
 |     case BuiltinType::UAccum: | 
 |       return SatUnsignedAccumTy; | 
 |     case BuiltinType::ULongAccum: | 
 |       return SatUnsignedLongAccumTy; | 
 |     case BuiltinType::ShortFract: | 
 |       return SatShortFractTy; | 
 |     case BuiltinType::Fract: | 
 |       return SatFractTy; | 
 |     case BuiltinType::LongFract: | 
 |       return SatLongFractTy; | 
 |     case BuiltinType::UShortFract: | 
 |       return SatUnsignedShortFractTy; | 
 |     case BuiltinType::UFract: | 
 |       return SatUnsignedFractTy; | 
 |     case BuiltinType::ULongFract: | 
 |       return SatUnsignedLongFractTy; | 
 |   } | 
 | } | 
 |  | 
 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { | 
 |   if (LangOpts.OpenCL) | 
 |     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); | 
 |  | 
 |   if (LangOpts.CUDA) | 
 |     return getTargetInfo().getCUDABuiltinAddressSpace(AS); | 
 |  | 
 |   return getLangASFromTargetAS(AS); | 
 | } | 
 |  | 
 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that | 
 | // doesn't include ASTContext.h | 
 | template | 
 | clang::LazyGenerationalUpdatePtr< | 
 |     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType | 
 | clang::LazyGenerationalUpdatePtr< | 
 |     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( | 
 |         const clang::ASTContext &Ctx, Decl *Value); | 
 |  | 
 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { | 
 |   assert(Ty->isFixedPointType()); | 
 |  | 
 |   const TargetInfo &Target = getTargetInfo(); | 
 |   switch (Ty->castAs<BuiltinType>()->getKind()) { | 
 |     default: | 
 |       llvm_unreachable("Not a fixed point type!"); | 
 |     case BuiltinType::ShortAccum: | 
 |     case BuiltinType::SatShortAccum: | 
 |       return Target.getShortAccumScale(); | 
 |     case BuiltinType::Accum: | 
 |     case BuiltinType::SatAccum: | 
 |       return Target.getAccumScale(); | 
 |     case BuiltinType::LongAccum: | 
 |     case BuiltinType::SatLongAccum: | 
 |       return Target.getLongAccumScale(); | 
 |     case BuiltinType::UShortAccum: | 
 |     case BuiltinType::SatUShortAccum: | 
 |       return Target.getUnsignedShortAccumScale(); | 
 |     case BuiltinType::UAccum: | 
 |     case BuiltinType::SatUAccum: | 
 |       return Target.getUnsignedAccumScale(); | 
 |     case BuiltinType::ULongAccum: | 
 |     case BuiltinType::SatULongAccum: | 
 |       return Target.getUnsignedLongAccumScale(); | 
 |     case BuiltinType::ShortFract: | 
 |     case BuiltinType::SatShortFract: | 
 |       return Target.getShortFractScale(); | 
 |     case BuiltinType::Fract: | 
 |     case BuiltinType::SatFract: | 
 |       return Target.getFractScale(); | 
 |     case BuiltinType::LongFract: | 
 |     case BuiltinType::SatLongFract: | 
 |       return Target.getLongFractScale(); | 
 |     case BuiltinType::UShortFract: | 
 |     case BuiltinType::SatUShortFract: | 
 |       return Target.getUnsignedShortFractScale(); | 
 |     case BuiltinType::UFract: | 
 |     case BuiltinType::SatUFract: | 
 |       return Target.getUnsignedFractScale(); | 
 |     case BuiltinType::ULongFract: | 
 |     case BuiltinType::SatULongFract: | 
 |       return Target.getUnsignedLongFractScale(); | 
 |   } | 
 | } | 
 |  | 
 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { | 
 |   assert(Ty->isFixedPointType()); | 
 |  | 
 |   const TargetInfo &Target = getTargetInfo(); | 
 |   switch (Ty->castAs<BuiltinType>()->getKind()) { | 
 |     default: | 
 |       llvm_unreachable("Not a fixed point type!"); | 
 |     case BuiltinType::ShortAccum: | 
 |     case BuiltinType::SatShortAccum: | 
 |       return Target.getShortAccumIBits(); | 
 |     case BuiltinType::Accum: | 
 |     case BuiltinType::SatAccum: | 
 |       return Target.getAccumIBits(); | 
 |     case BuiltinType::LongAccum: | 
 |     case BuiltinType::SatLongAccum: | 
 |       return Target.getLongAccumIBits(); | 
 |     case BuiltinType::UShortAccum: | 
 |     case BuiltinType::SatUShortAccum: | 
 |       return Target.getUnsignedShortAccumIBits(); | 
 |     case BuiltinType::UAccum: | 
 |     case BuiltinType::SatUAccum: | 
 |       return Target.getUnsignedAccumIBits(); | 
 |     case BuiltinType::ULongAccum: | 
 |     case BuiltinType::SatULongAccum: | 
 |       return Target.getUnsignedLongAccumIBits(); | 
 |     case BuiltinType::ShortFract: | 
 |     case BuiltinType::SatShortFract: | 
 |     case BuiltinType::Fract: | 
 |     case BuiltinType::SatFract: | 
 |     case BuiltinType::LongFract: | 
 |     case BuiltinType::SatLongFract: | 
 |     case BuiltinType::UShortFract: | 
 |     case BuiltinType::SatUShortFract: | 
 |     case BuiltinType::UFract: | 
 |     case BuiltinType::SatUFract: | 
 |     case BuiltinType::ULongFract: | 
 |     case BuiltinType::SatULongFract: | 
 |       return 0; | 
 |   } | 
 | } | 
 |  | 
 | llvm::FixedPointSemantics | 
 | ASTContext::getFixedPointSemantics(QualType Ty) const { | 
 |   assert((Ty->isFixedPointType() || Ty->isIntegerType()) && | 
 |          "Can only get the fixed point semantics for a " | 
 |          "fixed point or integer type."); | 
 |   if (Ty->isIntegerType()) | 
 |     return llvm::FixedPointSemantics::GetIntegerSemantics( | 
 |         getIntWidth(Ty), Ty->isSignedIntegerType()); | 
 |  | 
 |   bool isSigned = Ty->isSignedFixedPointType(); | 
 |   return llvm::FixedPointSemantics( | 
 |       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, | 
 |       Ty->isSaturatedFixedPointType(), | 
 |       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); | 
 | } | 
 |  | 
 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { | 
 |   assert(Ty->isFixedPointType()); | 
 |   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); | 
 | } | 
 |  | 
 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { | 
 |   assert(Ty->isFixedPointType()); | 
 |   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); | 
 | } | 
 |  | 
 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { | 
 |   assert(Ty->isUnsignedFixedPointType() && | 
 |          "Expected unsigned fixed point type"); | 
 |  | 
 |   switch (Ty->castAs<BuiltinType>()->getKind()) { | 
 |   case BuiltinType::UShortAccum: | 
 |     return ShortAccumTy; | 
 |   case BuiltinType::UAccum: | 
 |     return AccumTy; | 
 |   case BuiltinType::ULongAccum: | 
 |     return LongAccumTy; | 
 |   case BuiltinType::SatUShortAccum: | 
 |     return SatShortAccumTy; | 
 |   case BuiltinType::SatUAccum: | 
 |     return SatAccumTy; | 
 |   case BuiltinType::SatULongAccum: | 
 |     return SatLongAccumTy; | 
 |   case BuiltinType::UShortFract: | 
 |     return ShortFractTy; | 
 |   case BuiltinType::UFract: | 
 |     return FractTy; | 
 |   case BuiltinType::ULongFract: | 
 |     return LongFractTy; | 
 |   case BuiltinType::SatUShortFract: | 
 |     return SatShortFractTy; | 
 |   case BuiltinType::SatUFract: | 
 |     return SatFractTy; | 
 |   case BuiltinType::SatULongFract: | 
 |     return SatLongFractTy; | 
 |   default: | 
 |     llvm_unreachable("Unexpected unsigned fixed point type"); | 
 |   } | 
 | } | 
 |  | 
 | std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs( | 
 |     const TargetVersionAttr *TV) const { | 
 |   assert(TV != nullptr); | 
 |   llvm::SmallVector<StringRef, 8> Feats; | 
 |   std::vector<std::string> ResFeats; | 
 |   TV->getFeatures(Feats); | 
 |   for (auto &Feature : Feats) | 
 |     if (Target->validateCpuSupports(Feature.str())) | 
 |       // Use '?' to mark features that came from TargetVersion. | 
 |       ResFeats.push_back("?" + Feature.str()); | 
 |   return ResFeats; | 
 | } | 
 |  | 
 | ParsedTargetAttr | 
 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { | 
 |   assert(TD != nullptr); | 
 |   ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr()); | 
 |  | 
 |   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) { | 
 |     return !Target->isValidFeatureName(StringRef{Feat}.substr(1)); | 
 |   }); | 
 |   return ParsedAttr; | 
 | } | 
 |  | 
 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, | 
 |                                        const FunctionDecl *FD) const { | 
 |   if (FD) | 
 |     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); | 
 |   else | 
 |     Target->initFeatureMap(FeatureMap, getDiagnostics(), | 
 |                            Target->getTargetOpts().CPU, | 
 |                            Target->getTargetOpts().Features); | 
 | } | 
 |  | 
 | // Fills in the supplied string map with the set of target features for the | 
 | // passed in function. | 
 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, | 
 |                                        GlobalDecl GD) const { | 
 |   StringRef TargetCPU = Target->getTargetOpts().CPU; | 
 |   const FunctionDecl *FD = GD.getDecl()->getAsFunction(); | 
 |   if (const auto *TD = FD->getAttr<TargetAttr>()) { | 
 |     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); | 
 |  | 
 |     // Make a copy of the features as passed on the command line into the | 
 |     // beginning of the additional features from the function to override. | 
 |     ParsedAttr.Features.insert( | 
 |         ParsedAttr.Features.begin(), | 
 |         Target->getTargetOpts().FeaturesAsWritten.begin(), | 
 |         Target->getTargetOpts().FeaturesAsWritten.end()); | 
 |  | 
 |     if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU)) | 
 |       TargetCPU = ParsedAttr.CPU; | 
 |  | 
 |     // Now populate the feature map, first with the TargetCPU which is either | 
 |     // the default or a new one from the target attribute string. Then we'll use | 
 |     // the passed in features (FeaturesAsWritten) along with the new ones from | 
 |     // the attribute. | 
 |     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, | 
 |                            ParsedAttr.Features); | 
 |   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { | 
 |     llvm::SmallVector<StringRef, 32> FeaturesTmp; | 
 |     Target->getCPUSpecificCPUDispatchFeatures( | 
 |         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); | 
 |     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); | 
 |     Features.insert(Features.begin(), | 
 |                     Target->getTargetOpts().FeaturesAsWritten.begin(), | 
 |                     Target->getTargetOpts().FeaturesAsWritten.end()); | 
 |     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
 |   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { | 
 |     std::vector<std::string> Features; | 
 |     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); | 
 |     if (Target->getTriple().isAArch64()) { | 
 |       // TargetClones for AArch64 | 
 |       if (VersionStr != "default") { | 
 |         SmallVector<StringRef, 1> VersionFeatures; | 
 |         VersionStr.split(VersionFeatures, "+"); | 
 |         for (auto &VFeature : VersionFeatures) { | 
 |           VFeature = VFeature.trim(); | 
 |           // Use '?' to mark features that came from AArch64 TargetClones. | 
 |           Features.push_back((StringRef{"?"} + VFeature).str()); | 
 |         } | 
 |       } | 
 |       Features.insert(Features.begin(), | 
 |                       Target->getTargetOpts().FeaturesAsWritten.begin(), | 
 |                       Target->getTargetOpts().FeaturesAsWritten.end()); | 
 |     } else { | 
 |       if (VersionStr.startswith("arch=")) | 
 |         TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1); | 
 |       else if (VersionStr != "default") | 
 |         Features.push_back((StringRef{"+"} + VersionStr).str()); | 
 |     } | 
 |     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
 |   } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { | 
 |     std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV); | 
 |     Feats.insert(Feats.begin(), | 
 |                  Target->getTargetOpts().FeaturesAsWritten.begin(), | 
 |                  Target->getTargetOpts().FeaturesAsWritten.end()); | 
 |     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats); | 
 |   } else { | 
 |     FeatureMap = Target->getTargetOpts().FeatureMap; | 
 |   } | 
 | } | 
 |  | 
 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { | 
 |   OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); | 
 |   return *OMPTraitInfoVector.back(); | 
 | } | 
 |  | 
 | const StreamingDiagnostic &clang:: | 
 | operator<<(const StreamingDiagnostic &DB, | 
 |            const ASTContext::SectionInfo &Section) { | 
 |   if (Section.Decl) | 
 |     return DB << Section.Decl; | 
 |   return DB << "a prior #pragma section"; | 
 | } | 
 |  | 
 | bool ASTContext::mayExternalize(const Decl *D) const { | 
 |   bool IsInternalVar = | 
 |       isa<VarDecl>(D) && | 
 |       basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal; | 
 |   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && | 
 |                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) || | 
 |                              (D->hasAttr<CUDAConstantAttr>() && | 
 |                               !D->getAttr<CUDAConstantAttr>()->isImplicit()); | 
 |   // CUDA/HIP: managed variables need to be externalized since it is | 
 |   // a declaration in IR, therefore cannot have internal linkage. Kernels in | 
 |   // anonymous name space needs to be externalized to avoid duplicate symbols. | 
 |   return (IsInternalVar && | 
 |           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || | 
 |          (D->hasAttr<CUDAGlobalAttr>() && | 
 |           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) == | 
 |               GVA_Internal); | 
 | } | 
 |  | 
 | bool ASTContext::shouldExternalize(const Decl *D) const { | 
 |   return mayExternalize(D) && | 
 |          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || | 
 |           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); | 
 | } | 
 |  | 
 | StringRef ASTContext::getCUIDHash() const { | 
 |   if (!CUIDHash.empty()) | 
 |     return CUIDHash; | 
 |   if (LangOpts.CUID.empty()) | 
 |     return StringRef(); | 
 |   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true); | 
 |   return CUIDHash; | 
 | } |