|  | //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass splits the stack into the safe stack (kept as-is for LLVM backend) | 
|  | // and the unsafe stack (explicitly allocated and managed through the runtime | 
|  | // support library). | 
|  | // | 
|  | // http://clang.llvm.org/docs/SafeStack.html | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SafeStackLayout.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/StackLifetime.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetPassConfig.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DIBuilder.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <optional> | 
|  | #include <string> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::safestack; | 
|  |  | 
|  | #define DEBUG_TYPE "safe-stack" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | STATISTIC(NumFunctions, "Total number of functions"); | 
|  | STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack"); | 
|  | STATISTIC(NumUnsafeStackRestorePointsFunctions, | 
|  | "Number of functions that use setjmp or exceptions"); | 
|  |  | 
|  | STATISTIC(NumAllocas, "Total number of allocas"); | 
|  | STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas"); | 
|  | STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas"); | 
|  | STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments"); | 
|  | STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads"); | 
|  |  | 
|  | } // namespace llvm | 
|  |  | 
|  | /// Use __safestack_pointer_address even if the platform has a faster way of | 
|  | /// access safe stack pointer. | 
|  | static cl::opt<bool> | 
|  | SafeStackUsePointerAddress("safestack-use-pointer-address", | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> ClColoring("safe-stack-coloring", | 
|  | cl::desc("enable safe stack coloring"), | 
|  | cl::Hidden, cl::init(true)); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// The SafeStack pass splits the stack of each function into the safe | 
|  | /// stack, which is only accessed through memory safe dereferences (as | 
|  | /// determined statically), and the unsafe stack, which contains all | 
|  | /// local variables that are accessed in ways that we can't prove to | 
|  | /// be safe. | 
|  | class SafeStack { | 
|  | Function &F; | 
|  | const TargetLoweringBase &TL; | 
|  | const DataLayout &DL; | 
|  | DomTreeUpdater *DTU; | 
|  | ScalarEvolution &SE; | 
|  |  | 
|  | Type *StackPtrTy; | 
|  | Type *IntPtrTy; | 
|  | Type *Int32Ty; | 
|  | Type *Int8Ty; | 
|  |  | 
|  | Value *UnsafeStackPtr = nullptr; | 
|  |  | 
|  | /// Unsafe stack alignment. Each stack frame must ensure that the stack is | 
|  | /// aligned to this value. We need to re-align the unsafe stack if the | 
|  | /// alignment of any object on the stack exceeds this value. | 
|  | /// | 
|  | /// 16 seems like a reasonable upper bound on the alignment of objects that we | 
|  | /// might expect to appear on the stack on most common targets. | 
|  | static constexpr Align StackAlignment = Align::Constant<16>(); | 
|  |  | 
|  | /// Return the value of the stack canary. | 
|  | Value *getStackGuard(IRBuilder<> &IRB, Function &F); | 
|  |  | 
|  | /// Load stack guard from the frame and check if it has changed. | 
|  | void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI, | 
|  | AllocaInst *StackGuardSlot, Value *StackGuard); | 
|  |  | 
|  | /// Find all static allocas, dynamic allocas, return instructions and | 
|  | /// stack restore points (exception unwind blocks and setjmp calls) in the | 
|  | /// given function and append them to the respective vectors. | 
|  | void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas, | 
|  | SmallVectorImpl<AllocaInst *> &DynamicAllocas, | 
|  | SmallVectorImpl<Argument *> &ByValArguments, | 
|  | SmallVectorImpl<Instruction *> &Returns, | 
|  | SmallVectorImpl<Instruction *> &StackRestorePoints); | 
|  |  | 
|  | /// Calculate the allocation size of a given alloca. Returns 0 if the | 
|  | /// size can not be statically determined. | 
|  | uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI); | 
|  |  | 
|  | /// Allocate space for all static allocas in \p StaticAllocas, | 
|  | /// replace allocas with pointers into the unsafe stack. | 
|  | /// | 
|  | /// \returns A pointer to the top of the unsafe stack after all unsafe static | 
|  | /// allocas are allocated. | 
|  | Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F, | 
|  | ArrayRef<AllocaInst *> StaticAllocas, | 
|  | ArrayRef<Argument *> ByValArguments, | 
|  | Instruction *BasePointer, | 
|  | AllocaInst *StackGuardSlot); | 
|  |  | 
|  | /// Generate code to restore the stack after all stack restore points | 
|  | /// in \p StackRestorePoints. | 
|  | /// | 
|  | /// \returns A local variable in which to maintain the dynamic top of the | 
|  | /// unsafe stack if needed. | 
|  | AllocaInst * | 
|  | createStackRestorePoints(IRBuilder<> &IRB, Function &F, | 
|  | ArrayRef<Instruction *> StackRestorePoints, | 
|  | Value *StaticTop, bool NeedDynamicTop); | 
|  |  | 
|  | /// Replace all allocas in \p DynamicAllocas with code to allocate | 
|  | /// space dynamically on the unsafe stack and store the dynamic unsafe stack | 
|  | /// top to \p DynamicTop if non-null. | 
|  | void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr, | 
|  | AllocaInst *DynamicTop, | 
|  | ArrayRef<AllocaInst *> DynamicAllocas); | 
|  |  | 
|  | bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize); | 
|  |  | 
|  | bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, | 
|  | const Value *AllocaPtr, uint64_t AllocaSize); | 
|  | bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr, | 
|  | uint64_t AllocaSize); | 
|  |  | 
|  | bool ShouldInlinePointerAddress(CallInst &CI); | 
|  | void TryInlinePointerAddress(); | 
|  |  | 
|  | public: | 
|  | SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL, | 
|  | DomTreeUpdater *DTU, ScalarEvolution &SE) | 
|  | : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE), | 
|  | StackPtrTy(Type::getInt8PtrTy(F.getContext())), | 
|  | IntPtrTy(DL.getIntPtrType(F.getContext())), | 
|  | Int32Ty(Type::getInt32Ty(F.getContext())), | 
|  | Int8Ty(Type::getInt8Ty(F.getContext())) {} | 
|  |  | 
|  | // Run the transformation on the associated function. | 
|  | // Returns whether the function was changed. | 
|  | bool run(); | 
|  | }; | 
|  |  | 
|  | constexpr Align SafeStack::StackAlignment; | 
|  |  | 
|  | uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) { | 
|  | uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType()); | 
|  | if (AI->isArrayAllocation()) { | 
|  | auto C = dyn_cast<ConstantInt>(AI->getArraySize()); | 
|  | if (!C) | 
|  | return 0; | 
|  | Size *= C->getZExtValue(); | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize, | 
|  | const Value *AllocaPtr, uint64_t AllocaSize) { | 
|  | const SCEV *AddrExpr = SE.getSCEV(Addr); | 
|  | const auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(AddrExpr)); | 
|  | if (!Base || Base->getValue() != AllocaPtr) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[SafeStack] " | 
|  | << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") | 
|  | << *AllocaPtr << "\n" | 
|  | << "SCEV " << *AddrExpr << " not directly based on alloca\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const SCEV *Expr = SE.removePointerBase(AddrExpr); | 
|  | uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType()); | 
|  | ConstantRange AccessStartRange = SE.getUnsignedRange(Expr); | 
|  | ConstantRange SizeRange = | 
|  | ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize)); | 
|  | ConstantRange AccessRange = AccessStartRange.add(SizeRange); | 
|  | ConstantRange AllocaRange = | 
|  | ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize)); | 
|  | bool Safe = AllocaRange.contains(AccessRange); | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "[SafeStack] " | 
|  | << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ") | 
|  | << *AllocaPtr << "\n" | 
|  | << "            Access " << *Addr << "\n" | 
|  | << "            SCEV " << *Expr | 
|  | << " U: " << SE.getUnsignedRange(Expr) | 
|  | << ", S: " << SE.getSignedRange(Expr) << "\n" | 
|  | << "            Range " << AccessRange << "\n" | 
|  | << "            AllocaRange " << AllocaRange << "\n" | 
|  | << "            " << (Safe ? "safe" : "unsafe") << "\n"); | 
|  |  | 
|  | return Safe; | 
|  | } | 
|  |  | 
|  | bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U, | 
|  | const Value *AllocaPtr, | 
|  | uint64_t AllocaSize) { | 
|  | if (auto MTI = dyn_cast<MemTransferInst>(MI)) { | 
|  | if (MTI->getRawSource() != U && MTI->getRawDest() != U) | 
|  | return true; | 
|  | } else { | 
|  | if (MI->getRawDest() != U) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const auto *Len = dyn_cast<ConstantInt>(MI->getLength()); | 
|  | // Non-constant size => unsafe. FIXME: try SCEV getRange. | 
|  | if (!Len) return false; | 
|  | return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize); | 
|  | } | 
|  |  | 
|  | /// Check whether a given allocation must be put on the safe | 
|  | /// stack or not. The function analyzes all uses of AI and checks whether it is | 
|  | /// only accessed in a memory safe way (as decided statically). | 
|  | bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) { | 
|  | // Go through all uses of this alloca and check whether all accesses to the | 
|  | // allocated object are statically known to be memory safe and, hence, the | 
|  | // object can be placed on the safe stack. | 
|  | SmallPtrSet<const Value *, 16> Visited; | 
|  | SmallVector<const Value *, 8> WorkList; | 
|  | WorkList.push_back(AllocaPtr); | 
|  |  | 
|  | // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. | 
|  | while (!WorkList.empty()) { | 
|  | const Value *V = WorkList.pop_back_val(); | 
|  | for (const Use &UI : V->uses()) { | 
|  | auto I = cast<const Instruction>(UI.getUser()); | 
|  | assert(V == UI.get()); | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Load: | 
|  | if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr, | 
|  | AllocaSize)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Instruction::VAArg: | 
|  | // "va-arg" from a pointer is safe. | 
|  | break; | 
|  | case Instruction::Store: | 
|  | if (V == I->getOperand(0)) { | 
|  | // Stored the pointer - conservatively assume it may be unsafe. | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "[SafeStack] Unsafe alloca: " << *AllocaPtr | 
|  | << "\n            store of address: " << *I << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()), | 
|  | AllocaPtr, AllocaSize)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case Instruction::Ret: | 
|  | // Information leak. | 
|  | return false; | 
|  |  | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: { | 
|  | const CallBase &CS = *cast<CallBase>(I); | 
|  |  | 
|  | if (I->isLifetimeStartOrEnd()) | 
|  | continue; | 
|  |  | 
|  | if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | 
|  | if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) { | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "[SafeStack] Unsafe alloca: " << *AllocaPtr | 
|  | << "\n            unsafe memintrinsic: " << *I << "\n"); | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // LLVM 'nocapture' attribute is only set for arguments whose address | 
|  | // is not stored, passed around, or used in any other non-trivial way. | 
|  | // We assume that passing a pointer to an object as a 'nocapture | 
|  | // readnone' argument is safe. | 
|  | // FIXME: a more precise solution would require an interprocedural | 
|  | // analysis here, which would look at all uses of an argument inside | 
|  | // the function being called. | 
|  | auto B = CS.arg_begin(), E = CS.arg_end(); | 
|  | for (const auto *A = B; A != E; ++A) | 
|  | if (A->get() == V) | 
|  | if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) || | 
|  | CS.doesNotAccessMemory()))) { | 
|  | LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr | 
|  | << "\n            unsafe call: " << *I << "\n"); | 
|  | return false; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | default: | 
|  | if (Visited.insert(I).second) | 
|  | WorkList.push_back(cast<const Instruction>(I)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // All uses of the alloca are safe, we can place it on the safe stack. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) { | 
|  | Value *StackGuardVar = TL.getIRStackGuard(IRB); | 
|  | Module *M = F.getParent(); | 
|  |  | 
|  | if (!StackGuardVar) { | 
|  | TL.insertSSPDeclarations(*M); | 
|  | return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); | 
|  | } | 
|  |  | 
|  | return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard"); | 
|  | } | 
|  |  | 
|  | void SafeStack::findInsts(Function &F, | 
|  | SmallVectorImpl<AllocaInst *> &StaticAllocas, | 
|  | SmallVectorImpl<AllocaInst *> &DynamicAllocas, | 
|  | SmallVectorImpl<Argument *> &ByValArguments, | 
|  | SmallVectorImpl<Instruction *> &Returns, | 
|  | SmallVectorImpl<Instruction *> &StackRestorePoints) { | 
|  | for (Instruction &I : instructions(&F)) { | 
|  | if (auto AI = dyn_cast<AllocaInst>(&I)) { | 
|  | ++NumAllocas; | 
|  |  | 
|  | uint64_t Size = getStaticAllocaAllocationSize(AI); | 
|  | if (IsSafeStackAlloca(AI, Size)) | 
|  | continue; | 
|  |  | 
|  | if (AI->isStaticAlloca()) { | 
|  | ++NumUnsafeStaticAllocas; | 
|  | StaticAllocas.push_back(AI); | 
|  | } else { | 
|  | ++NumUnsafeDynamicAllocas; | 
|  | DynamicAllocas.push_back(AI); | 
|  | } | 
|  | } else if (auto RI = dyn_cast<ReturnInst>(&I)) { | 
|  | if (CallInst *CI = I.getParent()->getTerminatingMustTailCall()) | 
|  | Returns.push_back(CI); | 
|  | else | 
|  | Returns.push_back(RI); | 
|  | } else if (auto CI = dyn_cast<CallInst>(&I)) { | 
|  | // setjmps require stack restore. | 
|  | if (CI->getCalledFunction() && CI->canReturnTwice()) | 
|  | StackRestorePoints.push_back(CI); | 
|  | } else if (auto LP = dyn_cast<LandingPadInst>(&I)) { | 
|  | // Exception landing pads require stack restore. | 
|  | StackRestorePoints.push_back(LP); | 
|  | } else if (auto II = dyn_cast<IntrinsicInst>(&I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::gcroot) | 
|  | report_fatal_error( | 
|  | "gcroot intrinsic not compatible with safestack attribute"); | 
|  | } | 
|  | } | 
|  | for (Argument &Arg : F.args()) { | 
|  | if (!Arg.hasByValAttr()) | 
|  | continue; | 
|  | uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType()); | 
|  | if (IsSafeStackAlloca(&Arg, Size)) | 
|  | continue; | 
|  |  | 
|  | ++NumUnsafeByValArguments; | 
|  | ByValArguments.push_back(&Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | AllocaInst * | 
|  | SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F, | 
|  | ArrayRef<Instruction *> StackRestorePoints, | 
|  | Value *StaticTop, bool NeedDynamicTop) { | 
|  | assert(StaticTop && "The stack top isn't set."); | 
|  |  | 
|  | if (StackRestorePoints.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // We need the current value of the shadow stack pointer to restore | 
|  | // after longjmp or exception catching. | 
|  |  | 
|  | // FIXME: On some platforms this could be handled by the longjmp/exception | 
|  | // runtime itself. | 
|  |  | 
|  | AllocaInst *DynamicTop = nullptr; | 
|  | if (NeedDynamicTop) { | 
|  | // If we also have dynamic alloca's, the stack pointer value changes | 
|  | // throughout the function. For now we store it in an alloca. | 
|  | DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr, | 
|  | "unsafe_stack_dynamic_ptr"); | 
|  | IRB.CreateStore(StaticTop, DynamicTop); | 
|  | } | 
|  |  | 
|  | // Restore current stack pointer after longjmp/exception catch. | 
|  | for (Instruction *I : StackRestorePoints) { | 
|  | ++NumUnsafeStackRestorePoints; | 
|  |  | 
|  | IRB.SetInsertPoint(I->getNextNode()); | 
|  | Value *CurrentTop = | 
|  | DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop; | 
|  | IRB.CreateStore(CurrentTop, UnsafeStackPtr); | 
|  | } | 
|  |  | 
|  | return DynamicTop; | 
|  | } | 
|  |  | 
|  | void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI, | 
|  | AllocaInst *StackGuardSlot, Value *StackGuard) { | 
|  | Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot); | 
|  | Value *Cmp = IRB.CreateICmpNE(StackGuard, V); | 
|  |  | 
|  | auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true); | 
|  | auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false); | 
|  | MDNode *Weights = MDBuilder(F.getContext()) | 
|  | .createBranchWeights(SuccessProb.getNumerator(), | 
|  | FailureProb.getNumerator()); | 
|  | Instruction *CheckTerm = | 
|  | SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU); | 
|  | IRBuilder<> IRBFail(CheckTerm); | 
|  | // FIXME: respect -fsanitize-trap / -ftrap-function here? | 
|  | FunctionCallee StackChkFail = | 
|  | F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy()); | 
|  | IRBFail.CreateCall(StackChkFail, {}); | 
|  | } | 
|  |  | 
|  | /// We explicitly compute and set the unsafe stack layout for all unsafe | 
|  | /// static alloca instructions. We save the unsafe "base pointer" in the | 
|  | /// prologue into a local variable and restore it in the epilogue. | 
|  | Value *SafeStack::moveStaticAllocasToUnsafeStack( | 
|  | IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas, | 
|  | ArrayRef<Argument *> ByValArguments, Instruction *BasePointer, | 
|  | AllocaInst *StackGuardSlot) { | 
|  | if (StaticAllocas.empty() && ByValArguments.empty()) | 
|  | return BasePointer; | 
|  |  | 
|  | DIBuilder DIB(*F.getParent()); | 
|  |  | 
|  | StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May); | 
|  | static const StackLifetime::LiveRange NoColoringRange(1, true); | 
|  | if (ClColoring) | 
|  | SSC.run(); | 
|  |  | 
|  | for (const auto *I : SSC.getMarkers()) { | 
|  | auto *Op = dyn_cast<Instruction>(I->getOperand(1)); | 
|  | const_cast<IntrinsicInst *>(I)->eraseFromParent(); | 
|  | // Remove the operand bitcast, too, if it has no more uses left. | 
|  | if (Op && Op->use_empty()) | 
|  | Op->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Unsafe stack always grows down. | 
|  | StackLayout SSL(StackAlignment); | 
|  | if (StackGuardSlot) { | 
|  | Type *Ty = StackGuardSlot->getAllocatedType(); | 
|  | Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign()); | 
|  | SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot), | 
|  | Align, SSC.getFullLiveRange()); | 
|  | } | 
|  |  | 
|  | for (Argument *Arg : ByValArguments) { | 
|  | Type *Ty = Arg->getParamByValType(); | 
|  | uint64_t Size = DL.getTypeStoreSize(Ty); | 
|  | if (Size == 0) | 
|  | Size = 1; // Don't create zero-sized stack objects. | 
|  |  | 
|  | // Ensure the object is properly aligned. | 
|  | Align Align = DL.getPrefTypeAlign(Ty); | 
|  | if (auto A = Arg->getParamAlign()) | 
|  | Align = std::max(Align, *A); | 
|  | SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange()); | 
|  | } | 
|  |  | 
|  | for (AllocaInst *AI : StaticAllocas) { | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t Size = getStaticAllocaAllocationSize(AI); | 
|  | if (Size == 0) | 
|  | Size = 1; // Don't create zero-sized stack objects. | 
|  |  | 
|  | // Ensure the object is properly aligned. | 
|  | Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()); | 
|  |  | 
|  | SSL.addObject(AI, Size, Align, | 
|  | ClColoring ? SSC.getLiveRange(AI) : NoColoringRange); | 
|  | } | 
|  |  | 
|  | SSL.computeLayout(); | 
|  | Align FrameAlignment = SSL.getFrameAlignment(); | 
|  |  | 
|  | // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location | 
|  | // (AlignmentSkew). | 
|  | if (FrameAlignment > StackAlignment) { | 
|  | // Re-align the base pointer according to the max requested alignment. | 
|  | IRB.SetInsertPoint(BasePointer->getNextNode()); | 
|  | BasePointer = cast<Instruction>(IRB.CreateIntToPtr( | 
|  | IRB.CreateAnd( | 
|  | IRB.CreatePtrToInt(BasePointer, IntPtrTy), | 
|  | ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))), | 
|  | StackPtrTy)); | 
|  | } | 
|  |  | 
|  | IRB.SetInsertPoint(BasePointer->getNextNode()); | 
|  |  | 
|  | if (StackGuardSlot) { | 
|  | unsigned Offset = SSL.getObjectOffset(StackGuardSlot); | 
|  | Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* | 
|  | ConstantInt::get(Int32Ty, -Offset)); | 
|  | Value *NewAI = | 
|  | IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot"); | 
|  |  | 
|  | // Replace alloc with the new location. | 
|  | StackGuardSlot->replaceAllUsesWith(NewAI); | 
|  | StackGuardSlot->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | for (Argument *Arg : ByValArguments) { | 
|  | unsigned Offset = SSL.getObjectOffset(Arg); | 
|  | MaybeAlign Align(SSL.getObjectAlignment(Arg)); | 
|  | Type *Ty = Arg->getParamByValType(); | 
|  |  | 
|  | uint64_t Size = DL.getTypeStoreSize(Ty); | 
|  | if (Size == 0) | 
|  | Size = 1; // Don't create zero-sized stack objects. | 
|  |  | 
|  | Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* | 
|  | ConstantInt::get(Int32Ty, -Offset)); | 
|  | Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(), | 
|  | Arg->getName() + ".unsafe-byval"); | 
|  |  | 
|  | // Replace alloc with the new location. | 
|  | replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset, | 
|  | -Offset); | 
|  | Arg->replaceAllUsesWith(NewArg); | 
|  | IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode()); | 
|  | IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size); | 
|  | } | 
|  |  | 
|  | // Allocate space for every unsafe static AllocaInst on the unsafe stack. | 
|  | for (AllocaInst *AI : StaticAllocas) { | 
|  | IRB.SetInsertPoint(AI); | 
|  | unsigned Offset = SSL.getObjectOffset(AI); | 
|  |  | 
|  | replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset); | 
|  | replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset); | 
|  |  | 
|  | // Replace uses of the alloca with the new location. | 
|  | // Insert address calculation close to each use to work around PR27844. | 
|  | std::string Name = std::string(AI->getName()) + ".unsafe"; | 
|  | while (!AI->use_empty()) { | 
|  | Use &U = *AI->use_begin(); | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | Instruction *InsertBefore; | 
|  | if (auto *PHI = dyn_cast<PHINode>(User)) | 
|  | InsertBefore = PHI->getIncomingBlock(U)->getTerminator(); | 
|  | else | 
|  | InsertBefore = User; | 
|  |  | 
|  | IRBuilder<> IRBUser(InsertBefore); | 
|  | Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8* | 
|  | ConstantInt::get(Int32Ty, -Offset)); | 
|  | Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name); | 
|  |  | 
|  | if (auto *PHI = dyn_cast<PHINode>(User)) | 
|  | // PHI nodes may have multiple incoming edges from the same BB (why??), | 
|  | // all must be updated at once with the same incoming value. | 
|  | PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement); | 
|  | else | 
|  | U.set(Replacement); | 
|  | } | 
|  |  | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Re-align BasePointer so that our callees would see it aligned as | 
|  | // expected. | 
|  | // FIXME: no need to update BasePointer in leaf functions. | 
|  | unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment); | 
|  |  | 
|  | MDBuilder MDB(F.getContext()); | 
|  | SmallVector<Metadata *, 2> Data; | 
|  | Data.push_back(MDB.createString("unsafe-stack-size")); | 
|  | Data.push_back(MDB.createConstant(ConstantInt::get(Int32Ty, FrameSize))); | 
|  | MDNode *MD = MDTuple::get(F.getContext(), Data); | 
|  | F.setMetadata(LLVMContext::MD_annotation, MD); | 
|  |  | 
|  | // Update shadow stack pointer in the function epilogue. | 
|  | IRB.SetInsertPoint(BasePointer->getNextNode()); | 
|  |  | 
|  | Value *StaticTop = | 
|  | IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize), | 
|  | "unsafe_stack_static_top"); | 
|  | IRB.CreateStore(StaticTop, UnsafeStackPtr); | 
|  | return StaticTop; | 
|  | } | 
|  |  | 
|  | void SafeStack::moveDynamicAllocasToUnsafeStack( | 
|  | Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop, | 
|  | ArrayRef<AllocaInst *> DynamicAllocas) { | 
|  | DIBuilder DIB(*F.getParent()); | 
|  |  | 
|  | for (AllocaInst *AI : DynamicAllocas) { | 
|  | IRBuilder<> IRB(AI); | 
|  |  | 
|  | // Compute the new SP value (after AI). | 
|  | Value *ArraySize = AI->getArraySize(); | 
|  | if (ArraySize->getType() != IntPtrTy) | 
|  | ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false); | 
|  |  | 
|  | Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t TySize = DL.getTypeAllocSize(Ty); | 
|  | Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize)); | 
|  |  | 
|  | Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr), | 
|  | IntPtrTy); | 
|  | SP = IRB.CreateSub(SP, Size); | 
|  |  | 
|  | // Align the SP value to satisfy the AllocaInst, type and stack alignments. | 
|  | auto Align = std::max(std::max(DL.getPrefTypeAlign(Ty), AI->getAlign()), | 
|  | StackAlignment); | 
|  |  | 
|  | Value *NewTop = IRB.CreateIntToPtr( | 
|  | IRB.CreateAnd(SP, | 
|  | ConstantInt::get(IntPtrTy, ~uint64_t(Align.value() - 1))), | 
|  | StackPtrTy); | 
|  |  | 
|  | // Save the stack pointer. | 
|  | IRB.CreateStore(NewTop, UnsafeStackPtr); | 
|  | if (DynamicTop) | 
|  | IRB.CreateStore(NewTop, DynamicTop); | 
|  |  | 
|  | Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType()); | 
|  | if (AI->hasName() && isa<Instruction>(NewAI)) | 
|  | NewAI->takeName(AI); | 
|  |  | 
|  | replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0); | 
|  | AI->replaceAllUsesWith(NewAI); | 
|  | AI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | if (!DynamicAllocas.empty()) { | 
|  | // Now go through the instructions again, replacing stacksave/stackrestore. | 
|  | for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) { | 
|  | auto *II = dyn_cast<IntrinsicInst>(&I); | 
|  | if (!II) | 
|  | continue; | 
|  |  | 
|  | if (II->getIntrinsicID() == Intrinsic::stacksave) { | 
|  | IRBuilder<> IRB(II); | 
|  | Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr); | 
|  | LI->takeName(II); | 
|  | II->replaceAllUsesWith(LI); | 
|  | II->eraseFromParent(); | 
|  | } else if (II->getIntrinsicID() == Intrinsic::stackrestore) { | 
|  | IRBuilder<> IRB(II); | 
|  | Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr); | 
|  | SI->takeName(II); | 
|  | assert(II->use_empty()); | 
|  | II->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) { | 
|  | Function *Callee = CI.getCalledFunction(); | 
|  | if (CI.hasFnAttr(Attribute::AlwaysInline) && | 
|  | isInlineViable(*Callee).isSuccess()) | 
|  | return true; | 
|  | if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) || | 
|  | CI.isNoInline()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SafeStack::TryInlinePointerAddress() { | 
|  | auto *CI = dyn_cast<CallInst>(UnsafeStackPtr); | 
|  | if (!CI) | 
|  | return; | 
|  |  | 
|  | if(F.hasOptNone()) | 
|  | return; | 
|  |  | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | if (!Callee || Callee->isDeclaration()) | 
|  | return; | 
|  |  | 
|  | if (!ShouldInlinePointerAddress(*CI)) | 
|  | return; | 
|  |  | 
|  | InlineFunctionInfo IFI; | 
|  | InlineFunction(*CI, IFI); | 
|  | } | 
|  |  | 
|  | bool SafeStack::run() { | 
|  | assert(F.hasFnAttribute(Attribute::SafeStack) && | 
|  | "Can't run SafeStack on a function without the attribute"); | 
|  | assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration"); | 
|  |  | 
|  | ++NumFunctions; | 
|  |  | 
|  | SmallVector<AllocaInst *, 16> StaticAllocas; | 
|  | SmallVector<AllocaInst *, 4> DynamicAllocas; | 
|  | SmallVector<Argument *, 4> ByValArguments; | 
|  | SmallVector<Instruction *, 4> Returns; | 
|  |  | 
|  | // Collect all points where stack gets unwound and needs to be restored | 
|  | // This is only necessary because the runtime (setjmp and unwind code) is | 
|  | // not aware of the unsafe stack and won't unwind/restore it properly. | 
|  | // To work around this problem without changing the runtime, we insert | 
|  | // instrumentation to restore the unsafe stack pointer when necessary. | 
|  | SmallVector<Instruction *, 4> StackRestorePoints; | 
|  |  | 
|  | // Find all static and dynamic alloca instructions that must be moved to the | 
|  | // unsafe stack, all return instructions and stack restore points. | 
|  | findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns, | 
|  | StackRestorePoints); | 
|  |  | 
|  | if (StaticAllocas.empty() && DynamicAllocas.empty() && | 
|  | ByValArguments.empty() && StackRestorePoints.empty()) | 
|  | return false; // Nothing to do in this function. | 
|  |  | 
|  | if (!StaticAllocas.empty() || !DynamicAllocas.empty() || | 
|  | !ByValArguments.empty()) | 
|  | ++NumUnsafeStackFunctions; // This function has the unsafe stack. | 
|  |  | 
|  | if (!StackRestorePoints.empty()) | 
|  | ++NumUnsafeStackRestorePointsFunctions; | 
|  |  | 
|  | IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt()); | 
|  | // Calls must always have a debug location, or else inlining breaks. So | 
|  | // we explicitly set a artificial debug location here. | 
|  | if (DISubprogram *SP = F.getSubprogram()) | 
|  | IRB.SetCurrentDebugLocation( | 
|  | DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP)); | 
|  | if (SafeStackUsePointerAddress) { | 
|  | FunctionCallee Fn = F.getParent()->getOrInsertFunction( | 
|  | "__safestack_pointer_address", StackPtrTy->getPointerTo(0)); | 
|  | UnsafeStackPtr = IRB.CreateCall(Fn); | 
|  | } else { | 
|  | UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB); | 
|  | } | 
|  |  | 
|  | // Load the current stack pointer (we'll also use it as a base pointer). | 
|  | // FIXME: use a dedicated register for it ? | 
|  | Instruction *BasePointer = | 
|  | IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr"); | 
|  | assert(BasePointer->getType() == StackPtrTy); | 
|  |  | 
|  | AllocaInst *StackGuardSlot = nullptr; | 
|  | // FIXME: implement weaker forms of stack protector. | 
|  | if (F.hasFnAttribute(Attribute::StackProtect) || | 
|  | F.hasFnAttribute(Attribute::StackProtectStrong) || | 
|  | F.hasFnAttribute(Attribute::StackProtectReq)) { | 
|  | Value *StackGuard = getStackGuard(IRB, F); | 
|  | StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr); | 
|  | IRB.CreateStore(StackGuard, StackGuardSlot); | 
|  |  | 
|  | for (Instruction *RI : Returns) { | 
|  | IRBuilder<> IRBRet(RI); | 
|  | checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The top of the unsafe stack after all unsafe static allocas are | 
|  | // allocated. | 
|  | Value *StaticTop = moveStaticAllocasToUnsafeStack( | 
|  | IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot); | 
|  |  | 
|  | // Safe stack object that stores the current unsafe stack top. It is updated | 
|  | // as unsafe dynamic (non-constant-sized) allocas are allocated and freed. | 
|  | // This is only needed if we need to restore stack pointer after longjmp | 
|  | // or exceptions, and we have dynamic allocations. | 
|  | // FIXME: a better alternative might be to store the unsafe stack pointer | 
|  | // before setjmp / invoke instructions. | 
|  | AllocaInst *DynamicTop = createStackRestorePoints( | 
|  | IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty()); | 
|  |  | 
|  | // Handle dynamic allocas. | 
|  | moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop, | 
|  | DynamicAllocas); | 
|  |  | 
|  | // Restore the unsafe stack pointer before each return. | 
|  | for (Instruction *RI : Returns) { | 
|  | IRB.SetInsertPoint(RI); | 
|  | IRB.CreateStore(BasePointer, UnsafeStackPtr); | 
|  | } | 
|  |  | 
|  | TryInlinePointerAddress(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | class SafeStackLegacyPass : public FunctionPass { | 
|  | const TargetMachine *TM = nullptr; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid.. | 
|  |  | 
|  | SafeStackLegacyPass() : FunctionPass(ID) { | 
|  | initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<TargetPassConfig>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n"); | 
|  |  | 
|  | if (!F.hasFnAttribute(Attribute::SafeStack)) { | 
|  | LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested" | 
|  | " for this function\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (F.isDeclaration()) { | 
|  | LLVM_DEBUG(dbgs() << "[SafeStack]     function definition" | 
|  | " is not available\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); | 
|  | auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); | 
|  | if (!TL) | 
|  | report_fatal_error("TargetLowering instance is required"); | 
|  |  | 
|  | auto *DL = &F.getParent()->getDataLayout(); | 
|  | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | 
|  | auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  |  | 
|  | // Compute DT and LI only for functions that have the attribute. | 
|  | // This is only useful because the legacy pass manager doesn't let us | 
|  | // compute analyzes lazily. | 
|  |  | 
|  | DominatorTree *DT; | 
|  | bool ShouldPreserveDominatorTree; | 
|  | std::optional<DominatorTree> LazilyComputedDomTree; | 
|  |  | 
|  | // Do we already have a DominatorTree avaliable from the previous pass? | 
|  | // Note that we should *NOT* require it, to avoid the case where we end up | 
|  | // not needing it, but the legacy PM would have computed it for us anyways. | 
|  | if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) { | 
|  | DT = &DTWP->getDomTree(); | 
|  | ShouldPreserveDominatorTree = true; | 
|  | } else { | 
|  | // Otherwise, we need to compute it. | 
|  | LazilyComputedDomTree.emplace(F); | 
|  | DT = &*LazilyComputedDomTree; | 
|  | ShouldPreserveDominatorTree = false; | 
|  | } | 
|  |  | 
|  | // Likewise, lazily compute loop info. | 
|  | LoopInfo LI(*DT); | 
|  |  | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); | 
|  |  | 
|  | ScalarEvolution SE(F, TLI, ACT, *DT, LI); | 
|  |  | 
|  | return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr, | 
|  | SE) | 
|  | .run(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char SafeStackLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE, | 
|  | "Safe Stack instrumentation pass", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE, | 
|  | "Safe Stack instrumentation pass", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); } |