| //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // \file | 
 | // | 
 | // This file defines the interleaved-load-combine pass. The pass searches for | 
 | // ShuffleVectorInstruction that execute interleaving loads. If a matching | 
 | // pattern is found, it adds a combined load and further instructions in a | 
 | // pattern that is detectable by InterleavedAccesPass. The old instructions are | 
 | // left dead to be removed later. The pass is specifically designed to be | 
 | // executed just before InterleavedAccesPass to find any left-over instances | 
 | // that are not detected within former passes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/MemorySSA.h" | 
 | #include "llvm/Analysis/MemorySSAUpdater.h" | 
 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetPassConfig.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 |  | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <list> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "interleaved-load-combine" | 
 |  | 
 | namespace { | 
 |  | 
 | /// Statistic counter | 
 | STATISTIC(NumInterleavedLoadCombine, "Number of combined loads"); | 
 |  | 
 | /// Option to disable the pass | 
 | static cl::opt<bool> DisableInterleavedLoadCombine( | 
 |     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden, | 
 |     cl::desc("Disable combining of interleaved loads")); | 
 |  | 
 | struct VectorInfo; | 
 |  | 
 | struct InterleavedLoadCombineImpl { | 
 | public: | 
 |   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA, | 
 |                              TargetMachine &TM) | 
 |       : F(F), DT(DT), MSSA(MSSA), | 
 |         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), | 
 |         TTI(TM.getTargetTransformInfo(F)) {} | 
 |  | 
 |   /// Scan the function for interleaved load candidates and execute the | 
 |   /// replacement if applicable. | 
 |   bool run(); | 
 |  | 
 | private: | 
 |   /// Function this pass is working on | 
 |   Function &F; | 
 |  | 
 |   /// Dominator Tree Analysis | 
 |   DominatorTree &DT; | 
 |  | 
 |   /// Memory Alias Analyses | 
 |   MemorySSA &MSSA; | 
 |  | 
 |   /// Target Lowering Information | 
 |   const TargetLowering &TLI; | 
 |  | 
 |   /// Target Transform Information | 
 |   const TargetTransformInfo TTI; | 
 |  | 
 |   /// Find the instruction in sets LIs that dominates all others, return nullptr | 
 |   /// if there is none. | 
 |   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs); | 
 |  | 
 |   /// Replace interleaved load candidates. It does additional | 
 |   /// analyses if this makes sense. Returns true on success and false | 
 |   /// of nothing has been changed. | 
 |   bool combine(std::list<VectorInfo> &InterleavedLoad, | 
 |                OptimizationRemarkEmitter &ORE); | 
 |  | 
 |   /// Given a set of VectorInfo containing candidates for a given interleave | 
 |   /// factor, find a set that represents a 'factor' interleaved load. | 
 |   bool findPattern(std::list<VectorInfo> &Candidates, | 
 |                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor, | 
 |                    const DataLayout &DL); | 
 | }; // InterleavedLoadCombine | 
 |  | 
 | /// First Order Polynomial on an n-Bit Integer Value | 
 | /// | 
 | /// Polynomial(Value) = Value * B + A + E*2^(n-e) | 
 | /// | 
 | /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most | 
 | /// significant bits. It is introduced if an exact computation cannot be proven | 
 | /// (e.q. division by 2). | 
 | /// | 
 | /// As part of this optimization multiple loads will be combined. It necessary | 
 | /// to prove that loads are within some relative offset to each other. This | 
 | /// class is used to prove relative offsets of values loaded from memory. | 
 | /// | 
 | /// Representing an integer in this form is sound since addition in two's | 
 | /// complement is associative (trivial) and multiplication distributes over the | 
 | /// addition (see Proof(1) in Polynomial::mul). Further, both operations | 
 | /// commute. | 
 | // | 
 | // Example: | 
 | // declare @fn(i64 %IDX, <4 x float>* %PTR) { | 
 | //   %Pa1 = add i64 %IDX, 2 | 
 | //   %Pa2 = lshr i64 %Pa1, 1 | 
 | //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2 | 
 | //   %Va = load <4 x float>, <4 x float>* %Pa3 | 
 | // | 
 | //   %Pb1 = add i64 %IDX, 4 | 
 | //   %Pb2 = lshr i64 %Pb1, 1 | 
 | //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2 | 
 | //   %Vb = load <4 x float>, <4 x float>* %Pb3 | 
 | // ... } | 
 | // | 
 | // The goal is to prove that two loads load consecutive addresses. | 
 | // | 
 | // In this case the polynomials are constructed by the following | 
 | // steps. | 
 | // | 
 | // The number tag #e specifies the error bits. | 
 | // | 
 | // Pa_0 = %IDX              #0 | 
 | // Pa_1 = %IDX + 2          #0 | add 2 | 
 | // Pa_2 = %IDX/2 + 1        #1 | lshr 1 | 
 | // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64 | 
 | // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats | 
 | // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components | 
 | // | 
 | // Pb_0 = %IDX              #0 | 
 | // Pb_1 = %IDX + 4          #0 | add 2 | 
 | // Pb_2 = %IDX/2 + 2        #1 | lshr 1 | 
 | // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64 | 
 | // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats | 
 | // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components | 
 | // | 
 | // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset | 
 | // | 
 | // Remark: %PTR is not maintained within this class. So in this instance the | 
 | // offset of 16 can only be assumed if the pointers are equal. | 
 | // | 
 | class Polynomial { | 
 |   /// Operations on B | 
 |   enum BOps { | 
 |     LShr, | 
 |     Mul, | 
 |     SExt, | 
 |     Trunc, | 
 |   }; | 
 |  | 
 |   /// Number of Error Bits e | 
 |   unsigned ErrorMSBs = (unsigned)-1; | 
 |  | 
 |   /// Value | 
 |   Value *V = nullptr; | 
 |  | 
 |   /// Coefficient B | 
 |   SmallVector<std::pair<BOps, APInt>, 4> B; | 
 |  | 
 |   /// Coefficient A | 
 |   APInt A; | 
 |  | 
 | public: | 
 |   Polynomial(Value *V) : V(V) { | 
 |     IntegerType *Ty = dyn_cast<IntegerType>(V->getType()); | 
 |     if (Ty) { | 
 |       ErrorMSBs = 0; | 
 |       this->V = V; | 
 |       A = APInt(Ty->getBitWidth(), 0); | 
 |     } | 
 |   } | 
 |  | 
 |   Polynomial(const APInt &A, unsigned ErrorMSBs = 0) | 
 |       : ErrorMSBs(ErrorMSBs), A(A) {} | 
 |  | 
 |   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0) | 
 |       : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {} | 
 |  | 
 |   Polynomial() = default; | 
 |  | 
 |   /// Increment and clamp the number of undefined bits. | 
 |   void incErrorMSBs(unsigned amt) { | 
 |     if (ErrorMSBs == (unsigned)-1) | 
 |       return; | 
 |  | 
 |     ErrorMSBs += amt; | 
 |     if (ErrorMSBs > A.getBitWidth()) | 
 |       ErrorMSBs = A.getBitWidth(); | 
 |   } | 
 |  | 
 |   /// Decrement and clamp the number of undefined bits. | 
 |   void decErrorMSBs(unsigned amt) { | 
 |     if (ErrorMSBs == (unsigned)-1) | 
 |       return; | 
 |  | 
 |     if (ErrorMSBs > amt) | 
 |       ErrorMSBs -= amt; | 
 |     else | 
 |       ErrorMSBs = 0; | 
 |   } | 
 |  | 
 |   /// Apply an add on the polynomial | 
 |   Polynomial &add(const APInt &C) { | 
 |     // Note: Addition is associative in two's complement even when in case of | 
 |     // signed overflow. | 
 |     // | 
 |     // Error bits can only propagate into higher significant bits. As these are | 
 |     // already regarded as undefined, there is no change. | 
 |     // | 
 |     // Theorem: Adding a constant to a polynomial does not change the error | 
 |     // term. | 
 |     // | 
 |     // Proof: | 
 |     // | 
 |     //   Since the addition is associative and commutes: | 
 |     // | 
 |     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e) | 
 |     // [qed] | 
 |  | 
 |     if (C.getBitWidth() != A.getBitWidth()) { | 
 |       ErrorMSBs = (unsigned)-1; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     A += C; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// Apply a multiplication onto the polynomial. | 
 |   Polynomial &mul(const APInt &C) { | 
 |     // Note: Multiplication distributes over the addition | 
 |     // | 
 |     // Theorem: Multiplication distributes over the addition | 
 |     // | 
 |     // Proof(1): | 
 |     // | 
 |     //   (B+A)*C =- | 
 |     //        = (B + A) + (B + A) + .. {C Times} | 
 |     //         addition is associative and commutes, hence | 
 |     //        = B + B + .. {C Times} .. + A + A + .. {C times} | 
 |     //        = B*C + A*C | 
 |     //   (see (function add) for signed values and overflows) | 
 |     // [qed] | 
 |     // | 
 |     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out | 
 |     // to the left. | 
 |     // | 
 |     // Proof(2): | 
 |     // | 
 |     //   Let B' and A' be the n-Bit inputs with some unknown errors EA, | 
 |     //   EB at e leading bits. B' and A' can be written down as: | 
 |     // | 
 |     //     B' = B + 2^(n-e)*EB | 
 |     //     A' = A + 2^(n-e)*EA | 
 |     // | 
 |     //   Let C' be an input with c trailing zero bits. C' can be written as | 
 |     // | 
 |     //     C' = C*2^c | 
 |     // | 
 |     //   Therefore we can compute the result by using distributivity and | 
 |     //   commutativity. | 
 |     // | 
 |     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' = | 
 |     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = | 
 |     //                     = (B'+A') * C' = | 
 |     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' = | 
 |     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' = | 
 |     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' = | 
 |     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c = | 
 |     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c = | 
 |     // | 
 |     //   Let EC be the final error with EC = C*(EB + EA) | 
 |     // | 
 |     //                     = (B + A)*C' + EC*2^(n-e)*2^c = | 
 |     //                     = (B + A)*C' + EC*2^(n-(e-c)) | 
 |     // | 
 |     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c | 
 |     //   less error bits than the input. c bits are shifted out to the left. | 
 |     // [qed] | 
 |  | 
 |     if (C.getBitWidth() != A.getBitWidth()) { | 
 |       ErrorMSBs = (unsigned)-1; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     // Multiplying by one is a no-op. | 
 |     if (C.isOne()) { | 
 |       return *this; | 
 |     } | 
 |  | 
 |     // Multiplying by zero removes the coefficient B and defines all bits. | 
 |     if (C.isZero()) { | 
 |       ErrorMSBs = 0; | 
 |       deleteB(); | 
 |     } | 
 |  | 
 |     // See Proof(2): Trailing zero bits indicate a left shift. This removes | 
 |     // leading bits from the result even if they are undefined. | 
 |     decErrorMSBs(C.countr_zero()); | 
 |  | 
 |     A *= C; | 
 |     pushBOperation(Mul, C); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// Apply a logical shift right on the polynomial | 
 |   Polynomial &lshr(const APInt &C) { | 
 |     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e') | 
 |     //          where | 
 |     //             e' = e + 1, | 
 |     //             E is a e-bit number, | 
 |     //             E' is a e'-bit number, | 
 |     //   holds under the following precondition: | 
 |     //          pre(1): A % 2 = 0 | 
 |     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n) | 
 |     //   where >> expresses a logical shift to the right, with adding zeros. | 
 |     // | 
 |     //  We need to show that for every, E there is a E' | 
 |     // | 
 |     //  B = b_h * 2^(n-1) + b_m * 2 + b_l | 
 |     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1)) | 
 |     // | 
 |     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers | 
 |     // | 
 |     //  Let X = (B + A + E*2^(n-e)) >> 1 | 
 |     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1 | 
 |     // | 
 |     //    X = [B + A + E*2^(n-e)] >> 1 = | 
 |     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l + | 
 |     //         + a_h * 2^(n-1) + a_m * 2 + | 
 |     //         + E * 2^(n-e) ] >> 1 = | 
 |     // | 
 |     //    The sum is built by putting the overflow of [a_m + b+n] into the term | 
 |     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within | 
 |     //    this bit is discarded. This is expressed by % 2. | 
 |     // | 
 |     //    The bit in position 0 cannot overflow into the term (b_m + a_m). | 
 |     // | 
 |     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) * 2 + | 
 |     //         + b_l + E * 2^(n-e) ] >> 1 = | 
 |     // | 
 |     //    The shift is computed by dividing the terms by 2 and by cutting off | 
 |     //    b_l. | 
 |     // | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + E * 2^(n-(e+1)) = | 
 |     // | 
 |     //    by the definition in the Theorem e+1 = e' | 
 |     // | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + E * 2^(n-e') = | 
 |     // | 
 |     //    Compute Y by applying distributivity first | 
 |     // | 
 |     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') = | 
 |     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 + | 
 |     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 + | 
 |     //         + E * 2^(n-e) >> 1 = | 
 |     // | 
 |     //    Again, the shift is computed by dividing the terms by 2 and by cutting | 
 |     //    off b_l. | 
 |     // | 
 |     //      =     b_h * 2^(n-2) + b_m + | 
 |     //         +  a_h * 2^(n-2) + a_m + | 
 |     //         +  E * 2^(n-(e+1)) = | 
 |     // | 
 |     //    Again, the sum is built by putting the overflow of [a_m + b+n] into | 
 |     //    the term 2^(n-1). But this time there is room for a second bit in the | 
 |     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a | 
 |     //    second step. | 
 |     // | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) + | 
 |     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + E * 2^(n-(e+1)) = | 
 |     // | 
 |     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1 | 
 |     //    Further replace e+1 by e'. | 
 |     // | 
 |     //      =    o_h * 2^(n-1) + | 
 |     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + E * 2^(n-e') = | 
 |     // | 
 |     //    Move o_h into the error term and construct E'. To ensure that there is | 
 |     //    no 2^x with negative x, this step requires pre(2) (e < n). | 
 |     // | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1) | 
 |     //                                                     | out of the old exponent | 
 |     //         + E * 2^(n-e') = | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of | 
 |     //                                                     | the old exponent | 
 |     // | 
 |     //    Let E' = o_h * 2^(e'-1) + E | 
 |     // | 
 |     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) + | 
 |     //         + ((b_m + a_m) % 2^(n-2)) + | 
 |     //         + E' * 2^(n-e') | 
 |     // | 
 |     //    Because X and Y are distinct only in there error terms and E' can be | 
 |     //    constructed as shown the theorem holds. | 
 |     // [qed] | 
 |     // | 
 |     // For completeness in case of the case e=n it is also required to show that | 
 |     // distributivity can be applied. | 
 |     // | 
 |     // In this case Theorem(1) transforms to (the pre-condition on A can also be | 
 |     // dropped) | 
 |     // | 
 |     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E' | 
 |     //          where | 
 |     //             A, B, E, E' are two's complement numbers with the same bit | 
 |     //             width | 
 |     // | 
 |     //   Let A + B + E = X | 
 |     //   Let (B >> 1) + (A >> 1) = Y | 
 |     // | 
 |     //   Therefore we need to show that for every X and Y there is an E' which | 
 |     //   makes the equation | 
 |     // | 
 |     //     X = Y + E' | 
 |     // | 
 |     //   hold. This is trivially the case for E' = X - Y. | 
 |     // | 
 |     // [qed] | 
 |     // | 
 |     // Remark: Distributing lshr with and arbitrary number n can be expressed as | 
 |     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}. | 
 |     // This construction induces n additional error bits at the left. | 
 |  | 
 |     if (C.getBitWidth() != A.getBitWidth()) { | 
 |       ErrorMSBs = (unsigned)-1; | 
 |       return *this; | 
 |     } | 
 |  | 
 |     if (C.isZero()) | 
 |       return *this; | 
 |  | 
 |     // Test if the result will be zero | 
 |     unsigned shiftAmt = C.getZExtValue(); | 
 |     if (shiftAmt >= C.getBitWidth()) | 
 |       return mul(APInt(C.getBitWidth(), 0)); | 
 |  | 
 |     // The proof that shiftAmt LSBs are zero for at least one summand is only | 
 |     // possible for the constant number. | 
 |     // | 
 |     // If this can be proven add shiftAmt to the error counter | 
 |     // `ErrorMSBs`. Otherwise set all bits as undefined. | 
 |     if (A.countr_zero() < shiftAmt) | 
 |       ErrorMSBs = A.getBitWidth(); | 
 |     else | 
 |       incErrorMSBs(shiftAmt); | 
 |  | 
 |     // Apply the operation. | 
 |     pushBOperation(LShr, C); | 
 |     A = A.lshr(shiftAmt); | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// Apply a sign-extend or truncate operation on the polynomial. | 
 |   Polynomial &sextOrTrunc(unsigned n) { | 
 |     if (n < A.getBitWidth()) { | 
 |       // Truncate: Clearly undefined Bits on the MSB side are removed | 
 |       // if there are any. | 
 |       decErrorMSBs(A.getBitWidth() - n); | 
 |       A = A.trunc(n); | 
 |       pushBOperation(Trunc, APInt(sizeof(n) * 8, n)); | 
 |     } | 
 |     if (n > A.getBitWidth()) { | 
 |       // Extend: Clearly extending first and adding later is different | 
 |       // to adding first and extending later in all extended bits. | 
 |       incErrorMSBs(n - A.getBitWidth()); | 
 |       A = A.sext(n); | 
 |       pushBOperation(SExt, APInt(sizeof(n) * 8, n)); | 
 |     } | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /// Test if there is a coefficient B. | 
 |   bool isFirstOrder() const { return V != nullptr; } | 
 |  | 
 |   /// Test coefficient B of two Polynomials are equal. | 
 |   bool isCompatibleTo(const Polynomial &o) const { | 
 |     // The polynomial use different bit width. | 
 |     if (A.getBitWidth() != o.A.getBitWidth()) | 
 |       return false; | 
 |  | 
 |     // If neither Polynomial has the Coefficient B. | 
 |     if (!isFirstOrder() && !o.isFirstOrder()) | 
 |       return true; | 
 |  | 
 |     // The index variable is different. | 
 |     if (V != o.V) | 
 |       return false; | 
 |  | 
 |     // Check the operations. | 
 |     if (B.size() != o.B.size()) | 
 |       return false; | 
 |  | 
 |     auto *ob = o.B.begin(); | 
 |     for (const auto &b : B) { | 
 |       if (b != *ob) | 
 |         return false; | 
 |       ob++; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Subtract two polynomials, return an undefined polynomial if | 
 |   /// subtraction is not possible. | 
 |   Polynomial operator-(const Polynomial &o) const { | 
 |     // Return an undefined polynomial if incompatible. | 
 |     if (!isCompatibleTo(o)) | 
 |       return Polynomial(); | 
 |  | 
 |     // If the polynomials are compatible (meaning they have the same | 
 |     // coefficient on B), B is eliminated. Thus a polynomial solely | 
 |     // containing A is returned | 
 |     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs)); | 
 |   } | 
 |  | 
 |   /// Subtract a constant from a polynomial, | 
 |   Polynomial operator-(uint64_t C) const { | 
 |     Polynomial Result(*this); | 
 |     Result.A -= C; | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// Add a constant to a polynomial, | 
 |   Polynomial operator+(uint64_t C) const { | 
 |     Polynomial Result(*this); | 
 |     Result.A += C; | 
 |     return Result; | 
 |   } | 
 |  | 
 |   /// Returns true if it can be proven that two Polynomials are equal. | 
 |   bool isProvenEqualTo(const Polynomial &o) { | 
 |     // Subtract both polynomials and test if it is fully defined and zero. | 
 |     Polynomial r = *this - o; | 
 |     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero()); | 
 |   } | 
 |  | 
 |   /// Print the polynomial into a stream. | 
 |   void print(raw_ostream &OS) const { | 
 |     OS << "[{#ErrBits:" << ErrorMSBs << "} "; | 
 |  | 
 |     if (V) { | 
 |       for (auto b : B) | 
 |         OS << "("; | 
 |       OS << "(" << *V << ") "; | 
 |  | 
 |       for (auto b : B) { | 
 |         switch (b.first) { | 
 |         case LShr: | 
 |           OS << "LShr "; | 
 |           break; | 
 |         case Mul: | 
 |           OS << "Mul "; | 
 |           break; | 
 |         case SExt: | 
 |           OS << "SExt "; | 
 |           break; | 
 |         case Trunc: | 
 |           OS << "Trunc "; | 
 |           break; | 
 |         } | 
 |  | 
 |         OS << b.second << ") "; | 
 |       } | 
 |     } | 
 |  | 
 |     OS << "+ " << A << "]"; | 
 |   } | 
 |  | 
 | private: | 
 |   void deleteB() { | 
 |     V = nullptr; | 
 |     B.clear(); | 
 |   } | 
 |  | 
 |   void pushBOperation(const BOps Op, const APInt &C) { | 
 |     if (isFirstOrder()) { | 
 |       B.push_back(std::make_pair(Op, C)); | 
 |       return; | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | #ifndef NDEBUG | 
 | static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) { | 
 |   S.print(OS); | 
 |   return OS; | 
 | } | 
 | #endif | 
 |  | 
 | /// VectorInfo stores abstract the following information for each vector | 
 | /// element: | 
 | /// | 
 | /// 1) The the memory address loaded into the element as Polynomial | 
 | /// 2) a set of load instruction necessary to construct the vector, | 
 | /// 3) a set of all other instructions that are necessary to create the vector and | 
 | /// 4) a pointer value that can be used as relative base for all elements. | 
 | struct VectorInfo { | 
 | private: | 
 |   VectorInfo(const VectorInfo &c) : VTy(c.VTy) { | 
 |     llvm_unreachable( | 
 |         "Copying VectorInfo is neither implemented nor necessary,"); | 
 |   } | 
 |  | 
 | public: | 
 |   /// Information of a Vector Element | 
 |   struct ElementInfo { | 
 |     /// Offset Polynomial. | 
 |     Polynomial Ofs; | 
 |  | 
 |     /// The Load Instruction used to Load the entry. LI is null if the pointer | 
 |     /// of the load instruction does not point on to the entry | 
 |     LoadInst *LI; | 
 |  | 
 |     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr) | 
 |         : Ofs(Offset), LI(LI) {} | 
 |   }; | 
 |  | 
 |   /// Basic-block the load instructions are within | 
 |   BasicBlock *BB = nullptr; | 
 |  | 
 |   /// Pointer value of all participation load instructions | 
 |   Value *PV = nullptr; | 
 |  | 
 |   /// Participating load instructions | 
 |   std::set<LoadInst *> LIs; | 
 |  | 
 |   /// Participating instructions | 
 |   std::set<Instruction *> Is; | 
 |  | 
 |   /// Final shuffle-vector instruction | 
 |   ShuffleVectorInst *SVI = nullptr; | 
 |  | 
 |   /// Information of the offset for each vector element | 
 |   ElementInfo *EI; | 
 |  | 
 |   /// Vector Type | 
 |   FixedVectorType *const VTy; | 
 |  | 
 |   VectorInfo(FixedVectorType *VTy) : VTy(VTy) { | 
 |     EI = new ElementInfo[VTy->getNumElements()]; | 
 |   } | 
 |  | 
 |   VectorInfo &operator=(const VectorInfo &other) = delete; | 
 |  | 
 |   virtual ~VectorInfo() { delete[] EI; } | 
 |  | 
 |   unsigned getDimension() const { return VTy->getNumElements(); } | 
 |  | 
 |   /// Test if the VectorInfo can be part of an interleaved load with the | 
 |   /// specified factor. | 
 |   /// | 
 |   /// \param Factor of the interleave | 
 |   /// \param DL Targets Datalayout | 
 |   /// | 
 |   /// \returns true if this is possible and false if not | 
 |   bool isInterleaved(unsigned Factor, const DataLayout &DL) const { | 
 |     unsigned Size = DL.getTypeAllocSize(VTy->getElementType()); | 
 |     for (unsigned i = 1; i < getDimension(); i++) { | 
 |       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Recursively computes the vector information stored in V. | 
 |   /// | 
 |   /// This function delegates the work to specialized implementations | 
 |   /// | 
 |   /// \param V Value to operate on | 
 |   /// \param Result Result of the computation | 
 |   /// | 
 |   /// \returns false if no sensible information can be gathered. | 
 |   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) { | 
 |     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); | 
 |     if (SVI) | 
 |       return computeFromSVI(SVI, Result, DL); | 
 |     LoadInst *LI = dyn_cast<LoadInst>(V); | 
 |     if (LI) | 
 |       return computeFromLI(LI, Result, DL); | 
 |     BitCastInst *BCI = dyn_cast<BitCastInst>(V); | 
 |     if (BCI) | 
 |       return computeFromBCI(BCI, Result, DL); | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// BitCastInst specialization to compute the vector information. | 
 |   /// | 
 |   /// \param BCI BitCastInst to operate on | 
 |   /// \param Result Result of the computation | 
 |   /// | 
 |   /// \returns false if no sensible information can be gathered. | 
 |   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result, | 
 |                              const DataLayout &DL) { | 
 |     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0)); | 
 |  | 
 |     if (!Op) | 
 |       return false; | 
 |  | 
 |     FixedVectorType *VTy = dyn_cast<FixedVectorType>(Op->getType()); | 
 |     if (!VTy) | 
 |       return false; | 
 |  | 
 |     // We can only cast from large to smaller vectors | 
 |     if (Result.VTy->getNumElements() % VTy->getNumElements()) | 
 |       return false; | 
 |  | 
 |     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements(); | 
 |     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType()); | 
 |     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType()); | 
 |  | 
 |     if (NewSize * Factor != OldSize) | 
 |       return false; | 
 |  | 
 |     VectorInfo Old(VTy); | 
 |     if (!compute(Op, Old, DL)) | 
 |       return false; | 
 |  | 
 |     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) { | 
 |       for (unsigned j = 0; j < Factor; j++) { | 
 |         Result.EI[i + j] = | 
 |             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize, | 
 |                         j == 0 ? Old.EI[i / Factor].LI : nullptr); | 
 |       } | 
 |     } | 
 |  | 
 |     Result.BB = Old.BB; | 
 |     Result.PV = Old.PV; | 
 |     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end()); | 
 |     Result.Is.insert(Old.Is.begin(), Old.Is.end()); | 
 |     Result.Is.insert(BCI); | 
 |     Result.SVI = nullptr; | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// ShuffleVectorInst specialization to compute vector information. | 
 |   /// | 
 |   /// \param SVI ShuffleVectorInst to operate on | 
 |   /// \param Result Result of the computation | 
 |   /// | 
 |   /// Compute the left and the right side vector information and merge them by | 
 |   /// applying the shuffle operation. This function also ensures that the left | 
 |   /// and right side have compatible loads. This means that all loads are with | 
 |   /// in the same basic block and are based on the same pointer. | 
 |   /// | 
 |   /// \returns false if no sensible information can be gathered. | 
 |   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result, | 
 |                              const DataLayout &DL) { | 
 |     FixedVectorType *ArgTy = | 
 |         cast<FixedVectorType>(SVI->getOperand(0)->getType()); | 
 |  | 
 |     // Compute the left hand vector information. | 
 |     VectorInfo LHS(ArgTy); | 
 |     if (!compute(SVI->getOperand(0), LHS, DL)) | 
 |       LHS.BB = nullptr; | 
 |  | 
 |     // Compute the right hand vector information. | 
 |     VectorInfo RHS(ArgTy); | 
 |     if (!compute(SVI->getOperand(1), RHS, DL)) | 
 |       RHS.BB = nullptr; | 
 |  | 
 |     // Neither operand produced sensible results? | 
 |     if (!LHS.BB && !RHS.BB) | 
 |       return false; | 
 |     // Only RHS produced sensible results? | 
 |     else if (!LHS.BB) { | 
 |       Result.BB = RHS.BB; | 
 |       Result.PV = RHS.PV; | 
 |     } | 
 |     // Only LHS produced sensible results? | 
 |     else if (!RHS.BB) { | 
 |       Result.BB = LHS.BB; | 
 |       Result.PV = LHS.PV; | 
 |     } | 
 |     // Both operands produced sensible results? | 
 |     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) { | 
 |       Result.BB = LHS.BB; | 
 |       Result.PV = LHS.PV; | 
 |     } | 
 |     // Both operands produced sensible results but they are incompatible. | 
 |     else { | 
 |       return false; | 
 |     } | 
 |  | 
 |     // Merge and apply the operation on the offset information. | 
 |     if (LHS.BB) { | 
 |       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end()); | 
 |       Result.Is.insert(LHS.Is.begin(), LHS.Is.end()); | 
 |     } | 
 |     if (RHS.BB) { | 
 |       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end()); | 
 |       Result.Is.insert(RHS.Is.begin(), RHS.Is.end()); | 
 |     } | 
 |     Result.Is.insert(SVI); | 
 |     Result.SVI = SVI; | 
 |  | 
 |     int j = 0; | 
 |     for (int i : SVI->getShuffleMask()) { | 
 |       assert((i < 2 * (signed)ArgTy->getNumElements()) && | 
 |              "Invalid ShuffleVectorInst (index out of bounds)"); | 
 |  | 
 |       if (i < 0) | 
 |         Result.EI[j] = ElementInfo(); | 
 |       else if (i < (signed)ArgTy->getNumElements()) { | 
 |         if (LHS.BB) | 
 |           Result.EI[j] = LHS.EI[i]; | 
 |         else | 
 |           Result.EI[j] = ElementInfo(); | 
 |       } else { | 
 |         if (RHS.BB) | 
 |           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()]; | 
 |         else | 
 |           Result.EI[j] = ElementInfo(); | 
 |       } | 
 |       j++; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// LoadInst specialization to compute vector information. | 
 |   /// | 
 |   /// This function also acts as abort condition to the recursion. | 
 |   /// | 
 |   /// \param LI LoadInst to operate on | 
 |   /// \param Result Result of the computation | 
 |   /// | 
 |   /// \returns false if no sensible information can be gathered. | 
 |   static bool computeFromLI(LoadInst *LI, VectorInfo &Result, | 
 |                             const DataLayout &DL) { | 
 |     Value *BasePtr; | 
 |     Polynomial Offset; | 
 |  | 
 |     if (LI->isVolatile()) | 
 |       return false; | 
 |  | 
 |     if (LI->isAtomic()) | 
 |       return false; | 
 |  | 
 |     // Get the base polynomial | 
 |     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL); | 
 |  | 
 |     Result.BB = LI->getParent(); | 
 |     Result.PV = BasePtr; | 
 |     Result.LIs.insert(LI); | 
 |     Result.Is.insert(LI); | 
 |  | 
 |     for (unsigned i = 0; i < Result.getDimension(); i++) { | 
 |       Value *Idx[2] = { | 
 |           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0), | 
 |           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i), | 
 |       }; | 
 |       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, ArrayRef(Idx, 2)); | 
 |       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr); | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   /// Recursively compute polynomial of a value. | 
 |   /// | 
 |   /// \param BO Input binary operation | 
 |   /// \param Result Result polynomial | 
 |   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) { | 
 |     Value *LHS = BO.getOperand(0); | 
 |     Value *RHS = BO.getOperand(1); | 
 |  | 
 |     // Find the RHS Constant if any | 
 |     ConstantInt *C = dyn_cast<ConstantInt>(RHS); | 
 |     if ((!C) && BO.isCommutative()) { | 
 |       C = dyn_cast<ConstantInt>(LHS); | 
 |       if (C) | 
 |         std::swap(LHS, RHS); | 
 |     } | 
 |  | 
 |     switch (BO.getOpcode()) { | 
 |     case Instruction::Add: | 
 |       if (!C) | 
 |         break; | 
 |  | 
 |       computePolynomial(*LHS, Result); | 
 |       Result.add(C->getValue()); | 
 |       return; | 
 |  | 
 |     case Instruction::LShr: | 
 |       if (!C) | 
 |         break; | 
 |  | 
 |       computePolynomial(*LHS, Result); | 
 |       Result.lshr(C->getValue()); | 
 |       return; | 
 |  | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |     Result = Polynomial(&BO); | 
 |   } | 
 |  | 
 |   /// Recursively compute polynomial of a value | 
 |   /// | 
 |   /// \param V input value | 
 |   /// \param Result result polynomial | 
 |   static void computePolynomial(Value &V, Polynomial &Result) { | 
 |     if (auto *BO = dyn_cast<BinaryOperator>(&V)) | 
 |       computePolynomialBinOp(*BO, Result); | 
 |     else | 
 |       Result = Polynomial(&V); | 
 |   } | 
 |  | 
 |   /// Compute the Polynomial representation of a Pointer type. | 
 |   /// | 
 |   /// \param Ptr input pointer value | 
 |   /// \param Result result polynomial | 
 |   /// \param BasePtr pointer the polynomial is based on | 
 |   /// \param DL Datalayout of the target machine | 
 |   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result, | 
 |                                            Value *&BasePtr, | 
 |                                            const DataLayout &DL) { | 
 |     // Not a pointer type? Return an undefined polynomial | 
 |     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType()); | 
 |     if (!PtrTy) { | 
 |       Result = Polynomial(); | 
 |       BasePtr = nullptr; | 
 |       return; | 
 |     } | 
 |     unsigned PointerBits = | 
 |         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()); | 
 |  | 
 |     /// Skip pointer casts. Return Zero polynomial otherwise | 
 |     if (isa<CastInst>(&Ptr)) { | 
 |       CastInst &CI = *cast<CastInst>(&Ptr); | 
 |       switch (CI.getOpcode()) { | 
 |       case Instruction::BitCast: | 
 |         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL); | 
 |         break; | 
 |       default: | 
 |         BasePtr = &Ptr; | 
 |         Polynomial(PointerBits, 0); | 
 |         break; | 
 |       } | 
 |     } | 
 |     /// Resolve GetElementPtrInst. | 
 |     else if (isa<GetElementPtrInst>(&Ptr)) { | 
 |       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr); | 
 |  | 
 |       APInt BaseOffset(PointerBits, 0); | 
 |  | 
 |       // Check if we can compute the Offset with accumulateConstantOffset | 
 |       if (GEP.accumulateConstantOffset(DL, BaseOffset)) { | 
 |         Result = Polynomial(BaseOffset); | 
 |         BasePtr = GEP.getPointerOperand(); | 
 |         return; | 
 |       } else { | 
 |         // Otherwise we allow that the last index operand of the GEP is | 
 |         // non-constant. | 
 |         unsigned idxOperand, e; | 
 |         SmallVector<Value *, 4> Indices; | 
 |         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e; | 
 |              idxOperand++) { | 
 |           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand)); | 
 |           if (!IDX) | 
 |             break; | 
 |           Indices.push_back(IDX); | 
 |         } | 
 |  | 
 |         // It must also be the last operand. | 
 |         if (idxOperand + 1 != e) { | 
 |           Result = Polynomial(); | 
 |           BasePtr = nullptr; | 
 |           return; | 
 |         } | 
 |  | 
 |         // Compute the polynomial of the index operand. | 
 |         computePolynomial(*GEP.getOperand(idxOperand), Result); | 
 |  | 
 |         // Compute base offset from zero based index, excluding the last | 
 |         // variable operand. | 
 |         BaseOffset = | 
 |             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices); | 
 |  | 
 |         // Apply the operations of GEP to the polynomial. | 
 |         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType()); | 
 |         Result.sextOrTrunc(PointerBits); | 
 |         Result.mul(APInt(PointerBits, ResultSize)); | 
 |         Result.add(BaseOffset); | 
 |         BasePtr = GEP.getPointerOperand(); | 
 |       } | 
 |     } | 
 |     // All other instructions are handled by using the value as base pointer and | 
 |     // a zero polynomial. | 
 |     else { | 
 |       BasePtr = &Ptr; | 
 |       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0); | 
 |     } | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   void print(raw_ostream &OS) const { | 
 |     if (PV) | 
 |       OS << *PV; | 
 |     else | 
 |       OS << "(none)"; | 
 |     OS << " + "; | 
 |     for (unsigned i = 0; i < getDimension(); i++) | 
 |       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs; | 
 |     OS << "]"; | 
 |   } | 
 | #endif | 
 | }; | 
 |  | 
 | } // anonymous namespace | 
 |  | 
 | bool InterleavedLoadCombineImpl::findPattern( | 
 |     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad, | 
 |     unsigned Factor, const DataLayout &DL) { | 
 |   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) { | 
 |     unsigned i; | 
 |     // Try to find an interleaved load using the front of Worklist as first line | 
 |     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType()); | 
 |  | 
 |     // List containing iterators pointing to the VectorInfos of the candidates | 
 |     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end()); | 
 |  | 
 |     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) { | 
 |       if (C->VTy != C0->VTy) | 
 |         continue; | 
 |       if (C->BB != C0->BB) | 
 |         continue; | 
 |       if (C->PV != C0->PV) | 
 |         continue; | 
 |  | 
 |       // Check the current value matches any of factor - 1 remaining lines | 
 |       for (i = 1; i < Factor; i++) { | 
 |         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) { | 
 |           Res[i] = C; | 
 |         } | 
 |       } | 
 |  | 
 |       for (i = 1; i < Factor; i++) { | 
 |         if (Res[i] == Candidates.end()) | 
 |           break; | 
 |       } | 
 |       if (i == Factor) { | 
 |         Res[0] = C0; | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Res[0] != Candidates.end()) { | 
 |       // Move the result into the output | 
 |       for (unsigned i = 0; i < Factor; i++) { | 
 |         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]); | 
 |       } | 
 |  | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | LoadInst * | 
 | InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) { | 
 |   assert(!LIs.empty() && "No load instructions given."); | 
 |  | 
 |   // All LIs are within the same BB. Select the first for a reference. | 
 |   BasicBlock *BB = (*LIs.begin())->getParent(); | 
 |   BasicBlock::iterator FLI = llvm::find_if( | 
 |       *BB, [&LIs](Instruction &I) -> bool { return is_contained(LIs, &I); }); | 
 |   assert(FLI != BB->end()); | 
 |  | 
 |   return cast<LoadInst>(FLI); | 
 | } | 
 |  | 
 | bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad, | 
 |                                          OptimizationRemarkEmitter &ORE) { | 
 |   LLVM_DEBUG(dbgs() << "Checking interleaved load\n"); | 
 |  | 
 |   // The insertion point is the LoadInst which loads the first values. The | 
 |   // following tests are used to proof that the combined load can be inserted | 
 |   // just before InsertionPoint. | 
 |   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI; | 
 |  | 
 |   // Test if the offset is computed | 
 |   if (!InsertionPoint) | 
 |     return false; | 
 |  | 
 |   std::set<LoadInst *> LIs; | 
 |   std::set<Instruction *> Is; | 
 |   std::set<Instruction *> SVIs; | 
 |  | 
 |   InstructionCost InterleavedCost; | 
 |   InstructionCost InstructionCost = 0; | 
 |   const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency; | 
 |  | 
 |   // Get the interleave factor | 
 |   unsigned Factor = InterleavedLoad.size(); | 
 |  | 
 |   // Merge all input sets used in analysis | 
 |   for (auto &VI : InterleavedLoad) { | 
 |     // Generate a set of all load instructions to be combined | 
 |     LIs.insert(VI.LIs.begin(), VI.LIs.end()); | 
 |  | 
 |     // Generate a set of all instructions taking part in load | 
 |     // interleaved. This list excludes the instructions necessary for the | 
 |     // polynomial construction. | 
 |     Is.insert(VI.Is.begin(), VI.Is.end()); | 
 |  | 
 |     // Generate the set of the final ShuffleVectorInst. | 
 |     SVIs.insert(VI.SVI); | 
 |   } | 
 |  | 
 |   // There is nothing to combine. | 
 |   if (LIs.size() < 2) | 
 |     return false; | 
 |  | 
 |   // Test if all participating instruction will be dead after the | 
 |   // transformation. If intermediate results are used, no performance gain can | 
 |   // be expected. Also sum the cost of the Instructions beeing left dead. | 
 |   for (const auto &I : Is) { | 
 |     // Compute the old cost | 
 |     InstructionCost += TTI.getInstructionCost(I, CostKind); | 
 |  | 
 |     // The final SVIs are allowed not to be dead, all uses will be replaced | 
 |     if (SVIs.find(I) != SVIs.end()) | 
 |       continue; | 
 |  | 
 |     // If there are users outside the set to be eliminated, we abort the | 
 |     // transformation. No gain can be expected. | 
 |     for (auto *U : I->users()) { | 
 |       if (Is.find(dyn_cast<Instruction>(U)) == Is.end()) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   // We need to have a valid cost in order to proceed. | 
 |   if (!InstructionCost.isValid()) | 
 |     return false; | 
 |  | 
 |   // We know that all LoadInst are within the same BB. This guarantees that | 
 |   // either everything or nothing is loaded. | 
 |   LoadInst *First = findFirstLoad(LIs); | 
 |  | 
 |   // To be safe that the loads can be combined, iterate over all loads and test | 
 |   // that the corresponding defining access dominates first LI. This guarantees | 
 |   // that there are no aliasing stores in between the loads. | 
 |   auto FMA = MSSA.getMemoryAccess(First); | 
 |   for (auto *LI : LIs) { | 
 |     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess(); | 
 |     if (!MSSA.dominates(MADef, FMA)) | 
 |       return false; | 
 |   } | 
 |   assert(!LIs.empty() && "There are no LoadInst to combine"); | 
 |  | 
 |   // It is necessary that insertion point dominates all final ShuffleVectorInst. | 
 |   for (auto &VI : InterleavedLoad) { | 
 |     if (!DT.dominates(InsertionPoint, VI.SVI)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // All checks are done. Add instructions detectable by InterleavedAccessPass | 
 |   // The old instruction will are left dead. | 
 |   IRBuilder<> Builder(InsertionPoint); | 
 |   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType(); | 
 |   unsigned ElementsPerSVI = | 
 |       cast<FixedVectorType>(InterleavedLoad.front().SVI->getType()) | 
 |           ->getNumElements(); | 
 |   FixedVectorType *ILTy = FixedVectorType::get(ETy, Factor * ElementsPerSVI); | 
 |  | 
 |   auto Indices = llvm::to_vector<4>(llvm::seq<unsigned>(0, Factor)); | 
 |   InterleavedCost = TTI.getInterleavedMemoryOpCost( | 
 |       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlign(), | 
 |       InsertionPoint->getPointerAddressSpace(), CostKind); | 
 |  | 
 |   if (InterleavedCost >= InstructionCost) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Create a pointer cast for the wide load. | 
 |   auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0), | 
 |                                       ILTy->getPointerTo(), | 
 |                                       "interleaved.wide.ptrcast"); | 
 |  | 
 |   // Create the wide load and update the MemorySSA. | 
 |   auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlign(), | 
 |                                       "interleaved.wide.load"); | 
 |   auto MSSAU = MemorySSAUpdater(&MSSA); | 
 |   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore( | 
 |       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint))); | 
 |   MSSAU.insertUse(MSSALoad, /*RenameUses=*/ true); | 
 |  | 
 |   // Create the final SVIs and replace all uses. | 
 |   int i = 0; | 
 |   for (auto &VI : InterleavedLoad) { | 
 |     SmallVector<int, 4> Mask; | 
 |     for (unsigned j = 0; j < ElementsPerSVI; j++) | 
 |       Mask.push_back(i + j * Factor); | 
 |  | 
 |     Builder.SetInsertPoint(VI.SVI); | 
 |     auto SVI = Builder.CreateShuffleVector(LI, Mask, "interleaved.shuffle"); | 
 |     VI.SVI->replaceAllUsesWith(SVI); | 
 |     i++; | 
 |   } | 
 |  | 
 |   NumInterleavedLoadCombine++; | 
 |   ORE.emit([&]() { | 
 |     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI) | 
 |            << "Load interleaved combined with factor " | 
 |            << ore::NV("Factor", Factor); | 
 |   }); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool InterleavedLoadCombineImpl::run() { | 
 |   OptimizationRemarkEmitter ORE(&F); | 
 |   bool changed = false; | 
 |   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor(); | 
 |  | 
 |   auto &DL = F.getParent()->getDataLayout(); | 
 |  | 
 |   // Start with the highest factor to avoid combining and recombining. | 
 |   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) { | 
 |     std::list<VectorInfo> Candidates; | 
 |  | 
 |     for (BasicBlock &BB : F) { | 
 |       for (Instruction &I : BB) { | 
 |         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) { | 
 |           // We don't support scalable vectors in this pass. | 
 |           if (isa<ScalableVectorType>(SVI->getType())) | 
 |             continue; | 
 |  | 
 |           Candidates.emplace_back(cast<FixedVectorType>(SVI->getType())); | 
 |  | 
 |           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) { | 
 |             Candidates.pop_back(); | 
 |             continue; | 
 |           } | 
 |  | 
 |           if (!Candidates.back().isInterleaved(Factor, DL)) { | 
 |             Candidates.pop_back(); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     std::list<VectorInfo> InterleavedLoad; | 
 |     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) { | 
 |       if (combine(InterleavedLoad, ORE)) { | 
 |         changed = true; | 
 |       } else { | 
 |         // Remove the first element of the Interleaved Load but put the others | 
 |         // back on the list and continue searching | 
 |         Candidates.splice(Candidates.begin(), InterleavedLoad, | 
 |                           std::next(InterleavedLoad.begin()), | 
 |                           InterleavedLoad.end()); | 
 |       } | 
 |       InterleavedLoad.clear(); | 
 |     } | 
 |   } | 
 |  | 
 |   return changed; | 
 | } | 
 |  | 
 | namespace { | 
 | /// This pass combines interleaved loads into a pattern detectable by | 
 | /// InterleavedAccessPass. | 
 | struct InterleavedLoadCombine : public FunctionPass { | 
 |   static char ID; | 
 |  | 
 |   InterleavedLoadCombine() : FunctionPass(ID) { | 
 |     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   StringRef getPassName() const override { | 
 |     return "Interleaved Load Combine Pass"; | 
 |   } | 
 |  | 
 |   bool runOnFunction(Function &F) override { | 
 |     if (DisableInterleavedLoadCombine) | 
 |       return false; | 
 |  | 
 |     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); | 
 |     if (!TPC) | 
 |       return false; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() | 
 |                       << "\n"); | 
 |  | 
 |     return InterleavedLoadCombineImpl( | 
 |                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
 |                getAnalysis<MemorySSAWrapperPass>().getMSSA(), | 
 |                TPC->getTM<TargetMachine>()) | 
 |         .run(); | 
 |   } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.addRequired<MemorySSAWrapperPass>(); | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     FunctionPass::getAnalysisUsage(AU); | 
 |   } | 
 |  | 
 | private: | 
 | }; | 
 | } // anonymous namespace | 
 |  | 
 | char InterleavedLoadCombine::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN( | 
 |     InterleavedLoadCombine, DEBUG_TYPE, | 
 |     "Combine interleaved loads into wide loads and shufflevector instructions", | 
 |     false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) | 
 | INITIALIZE_PASS_END( | 
 |     InterleavedLoadCombine, DEBUG_TYPE, | 
 |     "Combine interleaved loads into wide loads and shufflevector instructions", | 
 |     false, false) | 
 |  | 
 | FunctionPass * | 
 | llvm::createInterleavedLoadCombinePass() { | 
 |   auto P = new InterleavedLoadCombine(); | 
 |   return P; | 
 | } |