|  | //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Bitcode writer implementation. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Bitcode/BitcodeWriter.h" | 
|  | #include "ValueEnumerator.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Bitcode/BitcodeCommon.h" | 
|  | #include "llvm/Bitcode/BitcodeReader.h" | 
|  | #include "llvm/Bitcode/LLVMBitCodes.h" | 
|  | #include "llvm/Bitstream/BitCodes.h" | 
|  | #include "llvm/Bitstream/BitstreamWriter.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Comdat.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalIFunc.h" | 
|  | #include "llvm/IR/GlobalObject.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSummaryIndex.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/UseListOrder.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueSymbolTable.h" | 
|  | #include "llvm/MC/StringTableBuilder.h" | 
|  | #include "llvm/MC/TargetRegistry.h" | 
|  | #include "llvm/Object/IRSymtab.h" | 
|  | #include "llvm/Support/AtomicOrdering.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/Error.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/TargetParser/Triple.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <optional> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), | 
|  | cl::desc("Number of metadatas above which we emit an index " | 
|  | "to enable lazy-loading")); | 
|  | static cl::opt<uint32_t> FlushThreshold( | 
|  | "bitcode-flush-threshold", cl::Hidden, cl::init(512), | 
|  | cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); | 
|  |  | 
|  | static cl::opt<bool> WriteRelBFToSummary( | 
|  | "write-relbf-to-summary", cl::Hidden, cl::init(false), | 
|  | cl::desc("Write relative block frequency to function summary ")); | 
|  |  | 
|  | namespace llvm { | 
|  | extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// These are manifest constants used by the bitcode writer. They do not need to | 
|  | /// be kept in sync with the reader, but need to be consistent within this file. | 
|  | enum { | 
|  | // VALUE_SYMTAB_BLOCK abbrev id's. | 
|  | VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | VST_ENTRY_7_ABBREV, | 
|  | VST_ENTRY_6_ABBREV, | 
|  | VST_BBENTRY_6_ABBREV, | 
|  |  | 
|  | // CONSTANTS_BLOCK abbrev id's. | 
|  | CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | CONSTANTS_INTEGER_ABBREV, | 
|  | CONSTANTS_CE_CAST_Abbrev, | 
|  | CONSTANTS_NULL_Abbrev, | 
|  |  | 
|  | // FUNCTION_BLOCK abbrev id's. | 
|  | FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | FUNCTION_INST_UNOP_ABBREV, | 
|  | FUNCTION_INST_UNOP_FLAGS_ABBREV, | 
|  | FUNCTION_INST_BINOP_ABBREV, | 
|  | FUNCTION_INST_BINOP_FLAGS_ABBREV, | 
|  | FUNCTION_INST_CAST_ABBREV, | 
|  | FUNCTION_INST_RET_VOID_ABBREV, | 
|  | FUNCTION_INST_RET_VAL_ABBREV, | 
|  | FUNCTION_INST_UNREACHABLE_ABBREV, | 
|  | FUNCTION_INST_GEP_ABBREV, | 
|  | }; | 
|  |  | 
|  | /// Abstract class to manage the bitcode writing, subclassed for each bitcode | 
|  | /// file type. | 
|  | class BitcodeWriterBase { | 
|  | protected: | 
|  | /// The stream created and owned by the client. | 
|  | BitstreamWriter &Stream; | 
|  |  | 
|  | StringTableBuilder &StrtabBuilder; | 
|  |  | 
|  | public: | 
|  | /// Constructs a BitcodeWriterBase object that writes to the provided | 
|  | /// \p Stream. | 
|  | BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) | 
|  | : Stream(Stream), StrtabBuilder(StrtabBuilder) {} | 
|  |  | 
|  | protected: | 
|  | void writeModuleVersion(); | 
|  | }; | 
|  |  | 
|  | void BitcodeWriterBase::writeModuleVersion() { | 
|  | // VERSION: [version#] | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); | 
|  | } | 
|  |  | 
|  | /// Base class to manage the module bitcode writing, currently subclassed for | 
|  | /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. | 
|  | class ModuleBitcodeWriterBase : public BitcodeWriterBase { | 
|  | protected: | 
|  | /// The Module to write to bitcode. | 
|  | const Module &M; | 
|  |  | 
|  | /// Enumerates ids for all values in the module. | 
|  | ValueEnumerator VE; | 
|  |  | 
|  | /// Optional per-module index to write for ThinLTO. | 
|  | const ModuleSummaryIndex *Index; | 
|  |  | 
|  | /// Map that holds the correspondence between GUIDs in the summary index, | 
|  | /// that came from indirect call profiles, and a value id generated by this | 
|  | /// class to use in the VST and summary block records. | 
|  | std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; | 
|  |  | 
|  | /// Tracks the last value id recorded in the GUIDToValueMap. | 
|  | unsigned GlobalValueId; | 
|  |  | 
|  | /// Saves the offset of the VSTOffset record that must eventually be | 
|  | /// backpatched with the offset of the actual VST. | 
|  | uint64_t VSTOffsetPlaceholder = 0; | 
|  |  | 
|  | public: | 
|  | /// Constructs a ModuleBitcodeWriterBase object for the given Module, | 
|  | /// writing to the provided \p Buffer. | 
|  | ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, | 
|  | BitstreamWriter &Stream, | 
|  | bool ShouldPreserveUseListOrder, | 
|  | const ModuleSummaryIndex *Index) | 
|  | : BitcodeWriterBase(Stream, StrtabBuilder), M(M), | 
|  | VE(M, ShouldPreserveUseListOrder), Index(Index) { | 
|  | // Assign ValueIds to any callee values in the index that came from | 
|  | // indirect call profiles and were recorded as a GUID not a Value* | 
|  | // (which would have been assigned an ID by the ValueEnumerator). | 
|  | // The starting ValueId is just after the number of values in the | 
|  | // ValueEnumerator, so that they can be emitted in the VST. | 
|  | GlobalValueId = VE.getValues().size(); | 
|  | if (!Index) | 
|  | return; | 
|  | for (const auto &GUIDSummaryLists : *Index) | 
|  | // Examine all summaries for this GUID. | 
|  | for (auto &Summary : GUIDSummaryLists.second.SummaryList) | 
|  | if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) | 
|  | // For each call in the function summary, see if the call | 
|  | // is to a GUID (which means it is for an indirect call, | 
|  | // otherwise we would have a Value for it). If so, synthesize | 
|  | // a value id. | 
|  | for (auto &CallEdge : FS->calls()) | 
|  | if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) | 
|  | assignValueId(CallEdge.first.getGUID()); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | void writePerModuleGlobalValueSummary(); | 
|  |  | 
|  | private: | 
|  | void writePerModuleFunctionSummaryRecord( | 
|  | SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, | 
|  | unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, | 
|  | unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); | 
|  | void writeModuleLevelReferences(const GlobalVariable &V, | 
|  | SmallVector<uint64_t, 64> &NameVals, | 
|  | unsigned FSModRefsAbbrev, | 
|  | unsigned FSModVTableRefsAbbrev); | 
|  |  | 
|  | void assignValueId(GlobalValue::GUID ValGUID) { | 
|  | GUIDToValueIdMap[ValGUID] = ++GlobalValueId; | 
|  | } | 
|  |  | 
|  | unsigned getValueId(GlobalValue::GUID ValGUID) { | 
|  | const auto &VMI = GUIDToValueIdMap.find(ValGUID); | 
|  | // Expect that any GUID value had a value Id assigned by an | 
|  | // earlier call to assignValueId. | 
|  | assert(VMI != GUIDToValueIdMap.end() && | 
|  | "GUID does not have assigned value Id"); | 
|  | return VMI->second; | 
|  | } | 
|  |  | 
|  | // Helper to get the valueId for the type of value recorded in VI. | 
|  | unsigned getValueId(ValueInfo VI) { | 
|  | if (!VI.haveGVs() || !VI.getValue()) | 
|  | return getValueId(VI.getGUID()); | 
|  | return VE.getValueID(VI.getValue()); | 
|  | } | 
|  |  | 
|  | std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } | 
|  | }; | 
|  |  | 
|  | /// Class to manage the bitcode writing for a module. | 
|  | class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { | 
|  | /// Pointer to the buffer allocated by caller for bitcode writing. | 
|  | const SmallVectorImpl<char> &Buffer; | 
|  |  | 
|  | /// True if a module hash record should be written. | 
|  | bool GenerateHash; | 
|  |  | 
|  | /// If non-null, when GenerateHash is true, the resulting hash is written | 
|  | /// into ModHash. | 
|  | ModuleHash *ModHash; | 
|  |  | 
|  | SHA1 Hasher; | 
|  |  | 
|  | /// The start bit of the identification block. | 
|  | uint64_t BitcodeStartBit; | 
|  |  | 
|  | public: | 
|  | /// Constructs a ModuleBitcodeWriter object for the given Module, | 
|  | /// writing to the provided \p Buffer. | 
|  | ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, | 
|  | StringTableBuilder &StrtabBuilder, | 
|  | BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, | 
|  | const ModuleSummaryIndex *Index, bool GenerateHash, | 
|  | ModuleHash *ModHash = nullptr) | 
|  | : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, | 
|  | ShouldPreserveUseListOrder, Index), | 
|  | Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), | 
|  | BitcodeStartBit(Stream.GetCurrentBitNo()) {} | 
|  |  | 
|  | /// Emit the current module to the bitstream. | 
|  | void write(); | 
|  |  | 
|  | private: | 
|  | uint64_t bitcodeStartBit() { return BitcodeStartBit; } | 
|  |  | 
|  | size_t addToStrtab(StringRef Str); | 
|  |  | 
|  | void writeAttributeGroupTable(); | 
|  | void writeAttributeTable(); | 
|  | void writeTypeTable(); | 
|  | void writeComdats(); | 
|  | void writeValueSymbolTableForwardDecl(); | 
|  | void writeModuleInfo(); | 
|  | void writeValueAsMetadata(const ValueAsMetadata *MD, | 
|  | SmallVectorImpl<uint64_t> &Record); | 
|  | void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | unsigned createDILocationAbbrev(); | 
|  | void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned &Abbrev); | 
|  | unsigned createGenericDINodeAbbrev(); | 
|  | void writeGenericDINode(const GenericDINode *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); | 
|  | void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIGenericSubrange(const DIGenericSubrange *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIEnumerator(const DIEnumerator *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIStringType(const DIStringType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIDerivedType(const DIDerivedType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDICompositeType(const DICompositeType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDISubroutineType(const DISubroutineType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDICompileUnit(const DICompileUnit *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDISubprogram(const DISubprogram *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILexicalBlock(const DILexicalBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILexicalBlockFile(const DILexicalBlockFile *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDICommonBlock(const DICommonBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDITemplateValueParameter(const DITemplateValueParameter *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIGlobalVariable(const DIGlobalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDILocalVariable(const DILocalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILabel(const DILabel *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIExpression(const DIExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIObjCProperty(const DIObjCProperty *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIImportedEntity(const DIImportedEntity *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | unsigned createNamedMetadataAbbrev(); | 
|  | void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); | 
|  | unsigned createMetadataStringsAbbrev(); | 
|  | void writeMetadataStrings(ArrayRef<const Metadata *> Strings, | 
|  | SmallVectorImpl<uint64_t> &Record); | 
|  | void writeMetadataRecords(ArrayRef<const Metadata *> MDs, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | std::vector<unsigned> *MDAbbrevs = nullptr, | 
|  | std::vector<uint64_t> *IndexPos = nullptr); | 
|  | void writeModuleMetadata(); | 
|  | void writeFunctionMetadata(const Function &F); | 
|  | void writeFunctionMetadataAttachment(const Function &F); | 
|  | void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, | 
|  | const GlobalObject &GO); | 
|  | void writeModuleMetadataKinds(); | 
|  | void writeOperandBundleTags(); | 
|  | void writeSyncScopeNames(); | 
|  | void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); | 
|  | void writeModuleConstants(); | 
|  | bool pushValueAndType(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void writeOperandBundles(const CallBase &CB, unsigned InstID); | 
|  | void pushValue(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void pushValueSigned(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<uint64_t> &Vals); | 
|  | void writeInstruction(const Instruction &I, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); | 
|  | void writeGlobalValueSymbolTable( | 
|  | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); | 
|  | void writeUseList(UseListOrder &&Order); | 
|  | void writeUseListBlock(const Function *F); | 
|  | void | 
|  | writeFunction(const Function &F, | 
|  | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); | 
|  | void writeBlockInfo(); | 
|  | void writeModuleHash(size_t BlockStartPos); | 
|  |  | 
|  | unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { | 
|  | return unsigned(SSID); | 
|  | } | 
|  |  | 
|  | unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } | 
|  | }; | 
|  |  | 
|  | /// Class to manage the bitcode writing for a combined index. | 
|  | class IndexBitcodeWriter : public BitcodeWriterBase { | 
|  | /// The combined index to write to bitcode. | 
|  | const ModuleSummaryIndex &Index; | 
|  |  | 
|  | /// When writing a subset of the index for distributed backends, client | 
|  | /// provides a map of modules to the corresponding GUIDs/summaries to write. | 
|  | const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; | 
|  |  | 
|  | /// Map that holds the correspondence between the GUID used in the combined | 
|  | /// index and a value id generated by this class to use in references. | 
|  | std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; | 
|  |  | 
|  | // The sorted stack id indices actually used in the summary entries being | 
|  | // written, which will be a subset of those in the full index in the case of | 
|  | // distributed indexes. | 
|  | std::vector<unsigned> StackIdIndices; | 
|  |  | 
|  | /// Tracks the last value id recorded in the GUIDToValueMap. | 
|  | unsigned GlobalValueId = 0; | 
|  |  | 
|  | public: | 
|  | /// Constructs a IndexBitcodeWriter object for the given combined index, | 
|  | /// writing to the provided \p Buffer. When writing a subset of the index | 
|  | /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. | 
|  | IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, | 
|  | const ModuleSummaryIndex &Index, | 
|  | const std::map<std::string, GVSummaryMapTy> | 
|  | *ModuleToSummariesForIndex = nullptr) | 
|  | : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), | 
|  | ModuleToSummariesForIndex(ModuleToSummariesForIndex) { | 
|  | // Assign unique value ids to all summaries to be written, for use | 
|  | // in writing out the call graph edges. Save the mapping from GUID | 
|  | // to the new global value id to use when writing those edges, which | 
|  | // are currently saved in the index in terms of GUID. | 
|  | forEachSummary([&](GVInfo I, bool IsAliasee) { | 
|  | GUIDToValueIdMap[I.first] = ++GlobalValueId; | 
|  | if (IsAliasee) | 
|  | return; | 
|  | auto *FS = dyn_cast<FunctionSummary>(I.second); | 
|  | if (!FS) | 
|  | return; | 
|  | // Record all stack id indices actually used in the summary entries being | 
|  | // written, so that we can compact them in the case of distributed ThinLTO | 
|  | // indexes. | 
|  | for (auto &CI : FS->callsites()) | 
|  | for (auto Idx : CI.StackIdIndices) | 
|  | StackIdIndices.push_back(Idx); | 
|  | for (auto &AI : FS->allocs()) | 
|  | for (auto &MIB : AI.MIBs) | 
|  | for (auto Idx : MIB.StackIdIndices) | 
|  | StackIdIndices.push_back(Idx); | 
|  | }); | 
|  | llvm::sort(StackIdIndices); | 
|  | StackIdIndices.erase( | 
|  | std::unique(StackIdIndices.begin(), StackIdIndices.end()), | 
|  | StackIdIndices.end()); | 
|  | } | 
|  |  | 
|  | /// The below iterator returns the GUID and associated summary. | 
|  | using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; | 
|  |  | 
|  | /// Calls the callback for each value GUID and summary to be written to | 
|  | /// bitcode. This hides the details of whether they are being pulled from the | 
|  | /// entire index or just those in a provided ModuleToSummariesForIndex map. | 
|  | template<typename Functor> | 
|  | void forEachSummary(Functor Callback) { | 
|  | if (ModuleToSummariesForIndex) { | 
|  | for (auto &M : *ModuleToSummariesForIndex) | 
|  | for (auto &Summary : M.second) { | 
|  | Callback(Summary, false); | 
|  | // Ensure aliasee is handled, e.g. for assigning a valueId, | 
|  | // even if we are not importing the aliasee directly (the | 
|  | // imported alias will contain a copy of aliasee). | 
|  | if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) | 
|  | Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); | 
|  | } | 
|  | } else { | 
|  | for (auto &Summaries : Index) | 
|  | for (auto &Summary : Summaries.second.SummaryList) | 
|  | Callback({Summaries.first, Summary.get()}, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Calls the callback for each entry in the modulePaths StringMap that | 
|  | /// should be written to the module path string table. This hides the details | 
|  | /// of whether they are being pulled from the entire index or just those in a | 
|  | /// provided ModuleToSummariesForIndex map. | 
|  | template <typename Functor> void forEachModule(Functor Callback) { | 
|  | if (ModuleToSummariesForIndex) { | 
|  | for (const auto &M : *ModuleToSummariesForIndex) { | 
|  | const auto &MPI = Index.modulePaths().find(M.first); | 
|  | if (MPI == Index.modulePaths().end()) { | 
|  | // This should only happen if the bitcode file was empty, in which | 
|  | // case we shouldn't be importing (the ModuleToSummariesForIndex | 
|  | // would only include the module we are writing and index for). | 
|  | assert(ModuleToSummariesForIndex->size() == 1); | 
|  | continue; | 
|  | } | 
|  | Callback(*MPI); | 
|  | } | 
|  | } else { | 
|  | for (const auto &MPSE : Index.modulePaths()) | 
|  | Callback(MPSE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Main entry point for writing a combined index to bitcode. | 
|  | void write(); | 
|  |  | 
|  | private: | 
|  | void writeModStrings(); | 
|  | void writeCombinedGlobalValueSummary(); | 
|  |  | 
|  | std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { | 
|  | auto VMI = GUIDToValueIdMap.find(ValGUID); | 
|  | if (VMI == GUIDToValueIdMap.end()) | 
|  | return std::nullopt; | 
|  | return VMI->second; | 
|  | } | 
|  |  | 
|  | std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static unsigned getEncodedCastOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown cast instruction!"); | 
|  | case Instruction::Trunc   : return bitc::CAST_TRUNC; | 
|  | case Instruction::ZExt    : return bitc::CAST_ZEXT; | 
|  | case Instruction::SExt    : return bitc::CAST_SEXT; | 
|  | case Instruction::FPToUI  : return bitc::CAST_FPTOUI; | 
|  | case Instruction::FPToSI  : return bitc::CAST_FPTOSI; | 
|  | case Instruction::UIToFP  : return bitc::CAST_UITOFP; | 
|  | case Instruction::SIToFP  : return bitc::CAST_SITOFP; | 
|  | case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; | 
|  | case Instruction::FPExt   : return bitc::CAST_FPEXT; | 
|  | case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; | 
|  | case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; | 
|  | case Instruction::BitCast : return bitc::CAST_BITCAST; | 
|  | case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedUnaryOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown binary instruction!"); | 
|  | case Instruction::FNeg: return bitc::UNOP_FNEG; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedBinaryOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: llvm_unreachable("Unknown binary instruction!"); | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: return bitc::BINOP_ADD; | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: return bitc::BINOP_SUB; | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: return bitc::BINOP_MUL; | 
|  | case Instruction::UDiv: return bitc::BINOP_UDIV; | 
|  | case Instruction::FDiv: | 
|  | case Instruction::SDiv: return bitc::BINOP_SDIV; | 
|  | case Instruction::URem: return bitc::BINOP_UREM; | 
|  | case Instruction::FRem: | 
|  | case Instruction::SRem: return bitc::BINOP_SREM; | 
|  | case Instruction::Shl:  return bitc::BINOP_SHL; | 
|  | case Instruction::LShr: return bitc::BINOP_LSHR; | 
|  | case Instruction::AShr: return bitc::BINOP_ASHR; | 
|  | case Instruction::And:  return bitc::BINOP_AND; | 
|  | case Instruction::Or:   return bitc::BINOP_OR; | 
|  | case Instruction::Xor:  return bitc::BINOP_XOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { | 
|  | switch (Op) { | 
|  | default: llvm_unreachable("Unknown RMW operation!"); | 
|  | case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; | 
|  | case AtomicRMWInst::Add: return bitc::RMW_ADD; | 
|  | case AtomicRMWInst::Sub: return bitc::RMW_SUB; | 
|  | case AtomicRMWInst::And: return bitc::RMW_AND; | 
|  | case AtomicRMWInst::Nand: return bitc::RMW_NAND; | 
|  | case AtomicRMWInst::Or: return bitc::RMW_OR; | 
|  | case AtomicRMWInst::Xor: return bitc::RMW_XOR; | 
|  | case AtomicRMWInst::Max: return bitc::RMW_MAX; | 
|  | case AtomicRMWInst::Min: return bitc::RMW_MIN; | 
|  | case AtomicRMWInst::UMax: return bitc::RMW_UMAX; | 
|  | case AtomicRMWInst::UMin: return bitc::RMW_UMIN; | 
|  | case AtomicRMWInst::FAdd: return bitc::RMW_FADD; | 
|  | case AtomicRMWInst::FSub: return bitc::RMW_FSUB; | 
|  | case AtomicRMWInst::FMax: return bitc::RMW_FMAX; | 
|  | case AtomicRMWInst::FMin: return bitc::RMW_FMIN; | 
|  | case AtomicRMWInst::UIncWrap: | 
|  | return bitc::RMW_UINC_WRAP; | 
|  | case AtomicRMWInst::UDecWrap: | 
|  | return bitc::RMW_UDEC_WRAP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedOrdering(AtomicOrdering Ordering) { | 
|  | switch (Ordering) { | 
|  | case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; | 
|  | case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; | 
|  | case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; | 
|  | case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; | 
|  | case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; | 
|  | case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; | 
|  | case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; | 
|  | } | 
|  | llvm_unreachable("Invalid ordering"); | 
|  | } | 
|  |  | 
|  | static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, | 
|  | StringRef Str, unsigned AbbrevToUse) { | 
|  | SmallVector<unsigned, 64> Vals; | 
|  |  | 
|  | // Code: [strchar x N] | 
|  | for (char C : Str) { | 
|  | if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) | 
|  | AbbrevToUse = 0; | 
|  | Vals.push_back(C); | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, Vals, AbbrevToUse); | 
|  | } | 
|  |  | 
|  | static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { | 
|  | switch (Kind) { | 
|  | case Attribute::Alignment: | 
|  | return bitc::ATTR_KIND_ALIGNMENT; | 
|  | case Attribute::AllocAlign: | 
|  | return bitc::ATTR_KIND_ALLOC_ALIGN; | 
|  | case Attribute::AllocSize: | 
|  | return bitc::ATTR_KIND_ALLOC_SIZE; | 
|  | case Attribute::AlwaysInline: | 
|  | return bitc::ATTR_KIND_ALWAYS_INLINE; | 
|  | case Attribute::Builtin: | 
|  | return bitc::ATTR_KIND_BUILTIN; | 
|  | case Attribute::ByVal: | 
|  | return bitc::ATTR_KIND_BY_VAL; | 
|  | case Attribute::Convergent: | 
|  | return bitc::ATTR_KIND_CONVERGENT; | 
|  | case Attribute::InAlloca: | 
|  | return bitc::ATTR_KIND_IN_ALLOCA; | 
|  | case Attribute::Cold: | 
|  | return bitc::ATTR_KIND_COLD; | 
|  | case Attribute::DisableSanitizerInstrumentation: | 
|  | return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; | 
|  | case Attribute::FnRetThunkExtern: | 
|  | return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; | 
|  | case Attribute::Hot: | 
|  | return bitc::ATTR_KIND_HOT; | 
|  | case Attribute::ElementType: | 
|  | return bitc::ATTR_KIND_ELEMENTTYPE; | 
|  | case Attribute::InlineHint: | 
|  | return bitc::ATTR_KIND_INLINE_HINT; | 
|  | case Attribute::InReg: | 
|  | return bitc::ATTR_KIND_IN_REG; | 
|  | case Attribute::JumpTable: | 
|  | return bitc::ATTR_KIND_JUMP_TABLE; | 
|  | case Attribute::MinSize: | 
|  | return bitc::ATTR_KIND_MIN_SIZE; | 
|  | case Attribute::AllocatedPointer: | 
|  | return bitc::ATTR_KIND_ALLOCATED_POINTER; | 
|  | case Attribute::AllocKind: | 
|  | return bitc::ATTR_KIND_ALLOC_KIND; | 
|  | case Attribute::Memory: | 
|  | return bitc::ATTR_KIND_MEMORY; | 
|  | case Attribute::NoFPClass: | 
|  | return bitc::ATTR_KIND_NOFPCLASS; | 
|  | case Attribute::Naked: | 
|  | return bitc::ATTR_KIND_NAKED; | 
|  | case Attribute::Nest: | 
|  | return bitc::ATTR_KIND_NEST; | 
|  | case Attribute::NoAlias: | 
|  | return bitc::ATTR_KIND_NO_ALIAS; | 
|  | case Attribute::NoBuiltin: | 
|  | return bitc::ATTR_KIND_NO_BUILTIN; | 
|  | case Attribute::NoCallback: | 
|  | return bitc::ATTR_KIND_NO_CALLBACK; | 
|  | case Attribute::NoCapture: | 
|  | return bitc::ATTR_KIND_NO_CAPTURE; | 
|  | case Attribute::NoDuplicate: | 
|  | return bitc::ATTR_KIND_NO_DUPLICATE; | 
|  | case Attribute::NoFree: | 
|  | return bitc::ATTR_KIND_NOFREE; | 
|  | case Attribute::NoImplicitFloat: | 
|  | return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; | 
|  | case Attribute::NoInline: | 
|  | return bitc::ATTR_KIND_NO_INLINE; | 
|  | case Attribute::NoRecurse: | 
|  | return bitc::ATTR_KIND_NO_RECURSE; | 
|  | case Attribute::NoMerge: | 
|  | return bitc::ATTR_KIND_NO_MERGE; | 
|  | case Attribute::NonLazyBind: | 
|  | return bitc::ATTR_KIND_NON_LAZY_BIND; | 
|  | case Attribute::NonNull: | 
|  | return bitc::ATTR_KIND_NON_NULL; | 
|  | case Attribute::Dereferenceable: | 
|  | return bitc::ATTR_KIND_DEREFERENCEABLE; | 
|  | case Attribute::DereferenceableOrNull: | 
|  | return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; | 
|  | case Attribute::NoRedZone: | 
|  | return bitc::ATTR_KIND_NO_RED_ZONE; | 
|  | case Attribute::NoReturn: | 
|  | return bitc::ATTR_KIND_NO_RETURN; | 
|  | case Attribute::NoSync: | 
|  | return bitc::ATTR_KIND_NOSYNC; | 
|  | case Attribute::NoCfCheck: | 
|  | return bitc::ATTR_KIND_NOCF_CHECK; | 
|  | case Attribute::NoProfile: | 
|  | return bitc::ATTR_KIND_NO_PROFILE; | 
|  | case Attribute::SkipProfile: | 
|  | return bitc::ATTR_KIND_SKIP_PROFILE; | 
|  | case Attribute::NoUnwind: | 
|  | return bitc::ATTR_KIND_NO_UNWIND; | 
|  | case Attribute::NoSanitizeBounds: | 
|  | return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; | 
|  | case Attribute::NoSanitizeCoverage: | 
|  | return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; | 
|  | case Attribute::NullPointerIsValid: | 
|  | return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; | 
|  | case Attribute::OptForFuzzing: | 
|  | return bitc::ATTR_KIND_OPT_FOR_FUZZING; | 
|  | case Attribute::OptimizeForSize: | 
|  | return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; | 
|  | case Attribute::OptimizeNone: | 
|  | return bitc::ATTR_KIND_OPTIMIZE_NONE; | 
|  | case Attribute::ReadNone: | 
|  | return bitc::ATTR_KIND_READ_NONE; | 
|  | case Attribute::ReadOnly: | 
|  | return bitc::ATTR_KIND_READ_ONLY; | 
|  | case Attribute::Returned: | 
|  | return bitc::ATTR_KIND_RETURNED; | 
|  | case Attribute::ReturnsTwice: | 
|  | return bitc::ATTR_KIND_RETURNS_TWICE; | 
|  | case Attribute::SExt: | 
|  | return bitc::ATTR_KIND_S_EXT; | 
|  | case Attribute::Speculatable: | 
|  | return bitc::ATTR_KIND_SPECULATABLE; | 
|  | case Attribute::StackAlignment: | 
|  | return bitc::ATTR_KIND_STACK_ALIGNMENT; | 
|  | case Attribute::StackProtect: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT; | 
|  | case Attribute::StackProtectReq: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT_REQ; | 
|  | case Attribute::StackProtectStrong: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT_STRONG; | 
|  | case Attribute::SafeStack: | 
|  | return bitc::ATTR_KIND_SAFESTACK; | 
|  | case Attribute::ShadowCallStack: | 
|  | return bitc::ATTR_KIND_SHADOWCALLSTACK; | 
|  | case Attribute::StrictFP: | 
|  | return bitc::ATTR_KIND_STRICT_FP; | 
|  | case Attribute::StructRet: | 
|  | return bitc::ATTR_KIND_STRUCT_RET; | 
|  | case Attribute::SanitizeAddress: | 
|  | return bitc::ATTR_KIND_SANITIZE_ADDRESS; | 
|  | case Attribute::SanitizeHWAddress: | 
|  | return bitc::ATTR_KIND_SANITIZE_HWADDRESS; | 
|  | case Attribute::SanitizeThread: | 
|  | return bitc::ATTR_KIND_SANITIZE_THREAD; | 
|  | case Attribute::SanitizeMemory: | 
|  | return bitc::ATTR_KIND_SANITIZE_MEMORY; | 
|  | case Attribute::SpeculativeLoadHardening: | 
|  | return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; | 
|  | case Attribute::SwiftError: | 
|  | return bitc::ATTR_KIND_SWIFT_ERROR; | 
|  | case Attribute::SwiftSelf: | 
|  | return bitc::ATTR_KIND_SWIFT_SELF; | 
|  | case Attribute::SwiftAsync: | 
|  | return bitc::ATTR_KIND_SWIFT_ASYNC; | 
|  | case Attribute::UWTable: | 
|  | return bitc::ATTR_KIND_UW_TABLE; | 
|  | case Attribute::VScaleRange: | 
|  | return bitc::ATTR_KIND_VSCALE_RANGE; | 
|  | case Attribute::WillReturn: | 
|  | return bitc::ATTR_KIND_WILLRETURN; | 
|  | case Attribute::WriteOnly: | 
|  | return bitc::ATTR_KIND_WRITEONLY; | 
|  | case Attribute::ZExt: | 
|  | return bitc::ATTR_KIND_Z_EXT; | 
|  | case Attribute::ImmArg: | 
|  | return bitc::ATTR_KIND_IMMARG; | 
|  | case Attribute::SanitizeMemTag: | 
|  | return bitc::ATTR_KIND_SANITIZE_MEMTAG; | 
|  | case Attribute::Preallocated: | 
|  | return bitc::ATTR_KIND_PREALLOCATED; | 
|  | case Attribute::NoUndef: | 
|  | return bitc::ATTR_KIND_NOUNDEF; | 
|  | case Attribute::ByRef: | 
|  | return bitc::ATTR_KIND_BYREF; | 
|  | case Attribute::MustProgress: | 
|  | return bitc::ATTR_KIND_MUSTPROGRESS; | 
|  | case Attribute::PresplitCoroutine: | 
|  | return bitc::ATTR_KIND_PRESPLIT_COROUTINE; | 
|  | case Attribute::EndAttrKinds: | 
|  | llvm_unreachable("Can not encode end-attribute kinds marker."); | 
|  | case Attribute::None: | 
|  | llvm_unreachable("Can not encode none-attribute."); | 
|  | case Attribute::EmptyKey: | 
|  | case Attribute::TombstoneKey: | 
|  | llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Trying to encode unknown attribute"); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeAttributeGroupTable() { | 
|  | const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = | 
|  | VE.getAttributeGroups(); | 
|  | if (AttrGrps.empty()) return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { | 
|  | unsigned AttrListIndex = Pair.first; | 
|  | AttributeSet AS = Pair.second; | 
|  | Record.push_back(VE.getAttributeGroupID(Pair)); | 
|  | Record.push_back(AttrListIndex); | 
|  |  | 
|  | for (Attribute Attr : AS) { | 
|  | if (Attr.isEnumAttribute()) { | 
|  | Record.push_back(0); | 
|  | Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); | 
|  | } else if (Attr.isIntAttribute()) { | 
|  | Record.push_back(1); | 
|  | Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); | 
|  | Record.push_back(Attr.getValueAsInt()); | 
|  | } else if (Attr.isStringAttribute()) { | 
|  | StringRef Kind = Attr.getKindAsString(); | 
|  | StringRef Val = Attr.getValueAsString(); | 
|  |  | 
|  | Record.push_back(Val.empty() ? 3 : 4); | 
|  | Record.append(Kind.begin(), Kind.end()); | 
|  | Record.push_back(0); | 
|  | if (!Val.empty()) { | 
|  | Record.append(Val.begin(), Val.end()); | 
|  | Record.push_back(0); | 
|  | } | 
|  | } else { | 
|  | assert(Attr.isTypeAttribute()); | 
|  | Type *Ty = Attr.getValueAsType(); | 
|  | Record.push_back(Ty ? 6 : 5); | 
|  | Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); | 
|  | if (Ty) | 
|  | Record.push_back(VE.getTypeID(Attr.getValueAsType())); | 
|  | } | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeAttributeTable() { | 
|  | const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); | 
|  | if (Attrs.empty()) return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | for (const AttributeList &AL : Attrs) { | 
|  | for (unsigned i : AL.indexes()) { | 
|  | AttributeSet AS = AL.getAttributes(i); | 
|  | if (AS.hasAttributes()) | 
|  | Record.push_back(VE.getAttributeGroupID({i, AS})); | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// WriteTypeTable - Write out the type table for a module. | 
|  | void ModuleBitcodeWriter::writeTypeTable() { | 
|  | const ValueEnumerator::TypeList &TypeList = VE.getTypes(); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); | 
|  | SmallVector<uint64_t, 64> TypeVals; | 
|  |  | 
|  | uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_OPAQUE_POINTER. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 | 
|  | unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_FUNCTION. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_ANON. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_NAME. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_NAMED. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_ARRAY. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Emit an entry count so the reader can reserve space. | 
|  | TypeVals.push_back(TypeList.size()); | 
|  | Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); | 
|  | TypeVals.clear(); | 
|  |  | 
|  | // Loop over all of the types, emitting each in turn. | 
|  | for (Type *T : TypeList) { | 
|  | int AbbrevToUse = 0; | 
|  | unsigned Code = 0; | 
|  |  | 
|  | switch (T->getTypeID()) { | 
|  | case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break; | 
|  | case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break; | 
|  | case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break; | 
|  | case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break; | 
|  | case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break; | 
|  | case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break; | 
|  | case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break; | 
|  | case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; | 
|  | case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break; | 
|  | case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break; | 
|  | case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break; | 
|  | case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break; | 
|  | case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break; | 
|  | case Type::IntegerTyID: | 
|  | // INTEGER: [width] | 
|  | Code = bitc::TYPE_CODE_INTEGER; | 
|  | TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); | 
|  | break; | 
|  | case Type::PointerTyID: { | 
|  | PointerType *PTy = cast<PointerType>(T); | 
|  | unsigned AddressSpace = PTy->getAddressSpace(); | 
|  | // OPAQUE_POINTER: [address space] | 
|  | Code = bitc::TYPE_CODE_OPAQUE_POINTER; | 
|  | TypeVals.push_back(AddressSpace); | 
|  | if (AddressSpace == 0) | 
|  | AbbrevToUse = OpaquePtrAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::FunctionTyID: { | 
|  | FunctionType *FT = cast<FunctionType>(T); | 
|  | // FUNCTION: [isvararg, retty, paramty x N] | 
|  | Code = bitc::TYPE_CODE_FUNCTION; | 
|  | TypeVals.push_back(FT->isVarArg()); | 
|  | TypeVals.push_back(VE.getTypeID(FT->getReturnType())); | 
|  | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) | 
|  | TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); | 
|  | AbbrevToUse = FunctionAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::StructTyID: { | 
|  | StructType *ST = cast<StructType>(T); | 
|  | // STRUCT: [ispacked, eltty x N] | 
|  | TypeVals.push_back(ST->isPacked()); | 
|  | // Output all of the element types. | 
|  | for (Type *ET : ST->elements()) | 
|  | TypeVals.push_back(VE.getTypeID(ET)); | 
|  |  | 
|  | if (ST->isLiteral()) { | 
|  | Code = bitc::TYPE_CODE_STRUCT_ANON; | 
|  | AbbrevToUse = StructAnonAbbrev; | 
|  | } else { | 
|  | if (ST->isOpaque()) { | 
|  | Code = bitc::TYPE_CODE_OPAQUE; | 
|  | } else { | 
|  | Code = bitc::TYPE_CODE_STRUCT_NAMED; | 
|  | AbbrevToUse = StructNamedAbbrev; | 
|  | } | 
|  |  | 
|  | // Emit the name if it is present. | 
|  | if (!ST->getName().empty()) | 
|  | writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), | 
|  | StructNameAbbrev); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Type::ArrayTyID: { | 
|  | ArrayType *AT = cast<ArrayType>(T); | 
|  | // ARRAY: [numelts, eltty] | 
|  | Code = bitc::TYPE_CODE_ARRAY; | 
|  | TypeVals.push_back(AT->getNumElements()); | 
|  | TypeVals.push_back(VE.getTypeID(AT->getElementType())); | 
|  | AbbrevToUse = ArrayAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::FixedVectorTyID: | 
|  | case Type::ScalableVectorTyID: { | 
|  | VectorType *VT = cast<VectorType>(T); | 
|  | // VECTOR [numelts, eltty] or | 
|  | //        [numelts, eltty, scalable] | 
|  | Code = bitc::TYPE_CODE_VECTOR; | 
|  | TypeVals.push_back(VT->getElementCount().getKnownMinValue()); | 
|  | TypeVals.push_back(VE.getTypeID(VT->getElementType())); | 
|  | if (isa<ScalableVectorType>(VT)) | 
|  | TypeVals.push_back(true); | 
|  | break; | 
|  | } | 
|  | case Type::TargetExtTyID: { | 
|  | TargetExtType *TET = cast<TargetExtType>(T); | 
|  | Code = bitc::TYPE_CODE_TARGET_TYPE; | 
|  | writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), | 
|  | StructNameAbbrev); | 
|  | TypeVals.push_back(TET->getNumTypeParameters()); | 
|  | for (Type *InnerTy : TET->type_params()) | 
|  | TypeVals.push_back(VE.getTypeID(InnerTy)); | 
|  | for (unsigned IntParam : TET->int_params()) | 
|  | TypeVals.push_back(IntParam); | 
|  | break; | 
|  | } | 
|  | case Type::TypedPointerTyID: | 
|  | llvm_unreachable("Typed pointers cannot be added to IR modules"); | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, TypeVals, AbbrevToUse); | 
|  | TypeVals.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { | 
|  | switch (Linkage) { | 
|  | case GlobalValue::ExternalLinkage: | 
|  | return 0; | 
|  | case GlobalValue::WeakAnyLinkage: | 
|  | return 16; | 
|  | case GlobalValue::AppendingLinkage: | 
|  | return 2; | 
|  | case GlobalValue::InternalLinkage: | 
|  | return 3; | 
|  | case GlobalValue::LinkOnceAnyLinkage: | 
|  | return 18; | 
|  | case GlobalValue::ExternalWeakLinkage: | 
|  | return 7; | 
|  | case GlobalValue::CommonLinkage: | 
|  | return 8; | 
|  | case GlobalValue::PrivateLinkage: | 
|  | return 9; | 
|  | case GlobalValue::WeakODRLinkage: | 
|  | return 17; | 
|  | case GlobalValue::LinkOnceODRLinkage: | 
|  | return 19; | 
|  | case GlobalValue::AvailableExternallyLinkage: | 
|  | return 12; | 
|  | } | 
|  | llvm_unreachable("Invalid linkage"); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedLinkage(const GlobalValue &GV) { | 
|  | return getEncodedLinkage(GV.getLinkage()); | 
|  | } | 
|  |  | 
|  | static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { | 
|  | uint64_t RawFlags = 0; | 
|  | RawFlags |= Flags.ReadNone; | 
|  | RawFlags |= (Flags.ReadOnly << 1); | 
|  | RawFlags |= (Flags.NoRecurse << 2); | 
|  | RawFlags |= (Flags.ReturnDoesNotAlias << 3); | 
|  | RawFlags |= (Flags.NoInline << 4); | 
|  | RawFlags |= (Flags.AlwaysInline << 5); | 
|  | RawFlags |= (Flags.NoUnwind << 6); | 
|  | RawFlags |= (Flags.MayThrow << 7); | 
|  | RawFlags |= (Flags.HasUnknownCall << 8); | 
|  | RawFlags |= (Flags.MustBeUnreachable << 9); | 
|  | return RawFlags; | 
|  | } | 
|  |  | 
|  | // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags | 
|  | // in BitcodeReader.cpp. | 
|  | static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { | 
|  | uint64_t RawFlags = 0; | 
|  |  | 
|  | RawFlags |= Flags.NotEligibleToImport; // bool | 
|  | RawFlags |= (Flags.Live << 1); | 
|  | RawFlags |= (Flags.DSOLocal << 2); | 
|  | RawFlags |= (Flags.CanAutoHide << 3); | 
|  |  | 
|  | // Linkage don't need to be remapped at that time for the summary. Any future | 
|  | // change to the getEncodedLinkage() function will need to be taken into | 
|  | // account here as well. | 
|  | RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits | 
|  |  | 
|  | RawFlags |= (Flags.Visibility << 8); // 2 bits | 
|  |  | 
|  | return RawFlags; | 
|  | } | 
|  |  | 
|  | static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { | 
|  | uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | | 
|  | (Flags.Constant << 2) | Flags.VCallVisibility << 3; | 
|  | return RawFlags; | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedVisibility(const GlobalValue &GV) { | 
|  | switch (GV.getVisibility()) { | 
|  | case GlobalValue::DefaultVisibility:   return 0; | 
|  | case GlobalValue::HiddenVisibility:    return 1; | 
|  | case GlobalValue::ProtectedVisibility: return 2; | 
|  | } | 
|  | llvm_unreachable("Invalid visibility"); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { | 
|  | switch (GV.getDLLStorageClass()) { | 
|  | case GlobalValue::DefaultStorageClass:   return 0; | 
|  | case GlobalValue::DLLImportStorageClass: return 1; | 
|  | case GlobalValue::DLLExportStorageClass: return 2; | 
|  | } | 
|  | llvm_unreachable("Invalid DLL storage class"); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { | 
|  | switch (GV.getThreadLocalMode()) { | 
|  | case GlobalVariable::NotThreadLocal:         return 0; | 
|  | case GlobalVariable::GeneralDynamicTLSModel: return 1; | 
|  | case GlobalVariable::LocalDynamicTLSModel:   return 2; | 
|  | case GlobalVariable::InitialExecTLSModel:    return 3; | 
|  | case GlobalVariable::LocalExecTLSModel:      return 4; | 
|  | } | 
|  | llvm_unreachable("Invalid TLS model"); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedComdatSelectionKind(const Comdat &C) { | 
|  | switch (C.getSelectionKind()) { | 
|  | case Comdat::Any: | 
|  | return bitc::COMDAT_SELECTION_KIND_ANY; | 
|  | case Comdat::ExactMatch: | 
|  | return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; | 
|  | case Comdat::Largest: | 
|  | return bitc::COMDAT_SELECTION_KIND_LARGEST; | 
|  | case Comdat::NoDeduplicate: | 
|  | return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; | 
|  | case Comdat::SameSize: | 
|  | return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; | 
|  | } | 
|  | llvm_unreachable("Invalid selection kind"); | 
|  | } | 
|  |  | 
|  | static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { | 
|  | switch (GV.getUnnamedAddr()) { | 
|  | case GlobalValue::UnnamedAddr::None:   return 0; | 
|  | case GlobalValue::UnnamedAddr::Local:  return 2; | 
|  | case GlobalValue::UnnamedAddr::Global: return 1; | 
|  | } | 
|  | llvm_unreachable("Invalid unnamed_addr"); | 
|  | } | 
|  |  | 
|  | size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { | 
|  | if (GenerateHash) | 
|  | Hasher.update(Str); | 
|  | return StrtabBuilder.add(Str); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeComdats() { | 
|  | SmallVector<unsigned, 64> Vals; | 
|  | for (const Comdat *C : VE.getComdats()) { | 
|  | // COMDAT: [strtab offset, strtab size, selection_kind] | 
|  | Vals.push_back(addToStrtab(C->getName())); | 
|  | Vals.push_back(C->getName().size()); | 
|  | Vals.push_back(getEncodedComdatSelectionKind(*C)); | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); | 
|  | Vals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Write a record that will eventually hold the word offset of the | 
|  | /// module-level VST. For now the offset is 0, which will be backpatched | 
|  | /// after the real VST is written. Saves the bit offset to backpatch. | 
|  | void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { | 
|  | // Write a placeholder value in for the offset of the real VST, | 
|  | // which is written after the function blocks so that it can include | 
|  | // the offset of each function. The placeholder offset will be | 
|  | // updated when the real VST is written. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); | 
|  | // Blocks are 32-bit aligned, so we can use a 32-bit word offset to | 
|  | // hold the real VST offset. Must use fixed instead of VBR as we don't | 
|  | // know how many VBR chunks to reserve ahead of time. | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Emit the placeholder | 
|  | uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; | 
|  | Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); | 
|  |  | 
|  | // Compute and save the bit offset to the placeholder, which will be | 
|  | // patched when the real VST is written. We can simply subtract the 32-bit | 
|  | // fixed size from the current bit number to get the location to backpatch. | 
|  | VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; | 
|  | } | 
|  |  | 
|  | enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; | 
|  |  | 
|  | /// Determine the encoding to use for the given string name and length. | 
|  | static StringEncoding getStringEncoding(StringRef Str) { | 
|  | bool isChar6 = true; | 
|  | for (char C : Str) { | 
|  | if (isChar6) | 
|  | isChar6 = BitCodeAbbrevOp::isChar6(C); | 
|  | if ((unsigned char)C & 128) | 
|  | // don't bother scanning the rest. | 
|  | return SE_Fixed8; | 
|  | } | 
|  | if (isChar6) | 
|  | return SE_Char6; | 
|  | return SE_Fixed7; | 
|  | } | 
|  |  | 
|  | static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), | 
|  | "Sanitizer Metadata is too large for naive serialization."); | 
|  | static unsigned | 
|  | serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { | 
|  | return Meta.NoAddress | (Meta.NoHWAddress << 1) | | 
|  | (Meta.Memtag << 2) | (Meta.IsDynInit << 3); | 
|  | } | 
|  |  | 
|  | /// Emit top-level description of module, including target triple, inline asm, | 
|  | /// descriptors for global variables, and function prototype info. | 
|  | /// Returns the bit offset to backpatch with the location of the real VST. | 
|  | void ModuleBitcodeWriter::writeModuleInfo() { | 
|  | // Emit various pieces of data attached to a module. | 
|  | if (!M.getTargetTriple().empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), | 
|  | 0 /*TODO*/); | 
|  | const std::string &DL = M.getDataLayoutStr(); | 
|  | if (!DL.empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); | 
|  | if (!M.getModuleInlineAsm().empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), | 
|  | 0 /*TODO*/); | 
|  |  | 
|  | // Emit information about sections and GC, computing how many there are. Also | 
|  | // compute the maximum alignment value. | 
|  | std::map<std::string, unsigned> SectionMap; | 
|  | std::map<std::string, unsigned> GCMap; | 
|  | MaybeAlign MaxAlignment; | 
|  | unsigned MaxGlobalType = 0; | 
|  | const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { | 
|  | if (A) | 
|  | MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); | 
|  | }; | 
|  | for (const GlobalVariable &GV : M.globals()) { | 
|  | UpdateMaxAlignment(GV.getAlign()); | 
|  | MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); | 
|  | if (GV.hasSection()) { | 
|  | // Give section names unique ID's. | 
|  | unsigned &Entry = SectionMap[std::string(GV.getSection())]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), | 
|  | 0 /*TODO*/); | 
|  | Entry = SectionMap.size(); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (const Function &F : M) { | 
|  | UpdateMaxAlignment(F.getAlign()); | 
|  | if (F.hasSection()) { | 
|  | // Give section names unique ID's. | 
|  | unsigned &Entry = SectionMap[std::string(F.getSection())]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), | 
|  | 0 /*TODO*/); | 
|  | Entry = SectionMap.size(); | 
|  | } | 
|  | } | 
|  | if (F.hasGC()) { | 
|  | // Same for GC names. | 
|  | unsigned &Entry = GCMap[F.getGC()]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), | 
|  | 0 /*TODO*/); | 
|  | Entry = GCMap.size(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit abbrev for globals, now that we know # sections and max alignment. | 
|  | unsigned SimpleGVarAbbrev = 0; | 
|  | if (!M.global_empty()) { | 
|  | // Add an abbrev for common globals with no visibility or thread localness. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(MaxGlobalType+1))); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2 | 
|  | //| explicitType << 1 | 
|  | //| constant | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer. | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. | 
|  | if (!MaxAlignment)                                     // Alignment. | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); | 
|  | else { | 
|  | unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(MaxEncAlignment+1))); | 
|  | } | 
|  | if (SectionMap.empty())                                    // Section. | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); | 
|  | else | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(SectionMap.size()+1))); | 
|  | // Don't bother emitting vis + thread local. | 
|  | SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 64> Vals; | 
|  | // Emit the module's source file name. | 
|  | { | 
|  | StringEncoding Bits = getStringEncoding(M.getSourceFileName()); | 
|  | BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); | 
|  | if (Bits == SE_Char6) | 
|  | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); | 
|  | else if (Bits == SE_Fixed7) | 
|  | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); | 
|  |  | 
|  | // MODULE_CODE_SOURCE_FILENAME: [namechar x N] | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(AbbrevOpToUse); | 
|  | unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | for (const auto P : M.getSourceFileName()) | 
|  | Vals.push_back((unsigned char)P); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the global variable information. | 
|  | for (const GlobalVariable &GV : M.globals()) { | 
|  | unsigned AbbrevToUse = 0; | 
|  |  | 
|  | // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, | 
|  | //             linkage, alignment, section, visibility, threadlocal, | 
|  | //             unnamed_addr, externally_initialized, dllstorageclass, | 
|  | //             comdat, attributes, DSO_Local, GlobalSanitizer] | 
|  | Vals.push_back(addToStrtab(GV.getName())); | 
|  | Vals.push_back(GV.getName().size()); | 
|  | Vals.push_back(VE.getTypeID(GV.getValueType())); | 
|  | Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); | 
|  | Vals.push_back(GV.isDeclaration() ? 0 : | 
|  | (VE.getValueID(GV.getInitializer()) + 1)); | 
|  | Vals.push_back(getEncodedLinkage(GV)); | 
|  | Vals.push_back(getEncodedAlign(GV.getAlign())); | 
|  | Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] | 
|  | : 0); | 
|  | if (GV.isThreadLocal() || | 
|  | GV.getVisibility() != GlobalValue::DefaultVisibility || | 
|  | GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || | 
|  | GV.isExternallyInitialized() || | 
|  | GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || | 
|  | GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || | 
|  | GV.hasPartition() || GV.hasSanitizerMetadata()) { | 
|  | Vals.push_back(getEncodedVisibility(GV)); | 
|  | Vals.push_back(getEncodedThreadLocalMode(GV)); | 
|  | Vals.push_back(getEncodedUnnamedAddr(GV)); | 
|  | Vals.push_back(GV.isExternallyInitialized()); | 
|  | Vals.push_back(getEncodedDLLStorageClass(GV)); | 
|  | Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); | 
|  |  | 
|  | auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); | 
|  | Vals.push_back(VE.getAttributeListID(AL)); | 
|  |  | 
|  | Vals.push_back(GV.isDSOLocal()); | 
|  | Vals.push_back(addToStrtab(GV.getPartition())); | 
|  | Vals.push_back(GV.getPartition().size()); | 
|  |  | 
|  | Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( | 
|  | GV.getSanitizerMetadata()) | 
|  | : 0)); | 
|  | } else { | 
|  | AbbrevToUse = SimpleGVarAbbrev; | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the function proto information. | 
|  | for (const Function &F : M) { | 
|  | // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto, | 
|  | //             linkage, paramattrs, alignment, section, visibility, gc, | 
|  | //             unnamed_addr, prologuedata, dllstorageclass, comdat, | 
|  | //             prefixdata, personalityfn, DSO_Local, addrspace] | 
|  | Vals.push_back(addToStrtab(F.getName())); | 
|  | Vals.push_back(F.getName().size()); | 
|  | Vals.push_back(VE.getTypeID(F.getFunctionType())); | 
|  | Vals.push_back(F.getCallingConv()); | 
|  | Vals.push_back(F.isDeclaration()); | 
|  | Vals.push_back(getEncodedLinkage(F)); | 
|  | Vals.push_back(VE.getAttributeListID(F.getAttributes())); | 
|  | Vals.push_back(getEncodedAlign(F.getAlign())); | 
|  | Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] | 
|  | : 0); | 
|  | Vals.push_back(getEncodedVisibility(F)); | 
|  | Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); | 
|  | Vals.push_back(getEncodedUnnamedAddr(F)); | 
|  | Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) | 
|  | : 0); | 
|  | Vals.push_back(getEncodedDLLStorageClass(F)); | 
|  | Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); | 
|  | Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) | 
|  | : 0); | 
|  | Vals.push_back( | 
|  | F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); | 
|  |  | 
|  | Vals.push_back(F.isDSOLocal()); | 
|  | Vals.push_back(F.getAddressSpace()); | 
|  | Vals.push_back(addToStrtab(F.getPartition())); | 
|  | Vals.push_back(F.getPartition().size()); | 
|  |  | 
|  | unsigned AbbrevToUse = 0; | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the alias information. | 
|  | for (const GlobalAlias &A : M.aliases()) { | 
|  | // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, | 
|  | //         visibility, dllstorageclass, threadlocal, unnamed_addr, | 
|  | //         DSO_Local] | 
|  | Vals.push_back(addToStrtab(A.getName())); | 
|  | Vals.push_back(A.getName().size()); | 
|  | Vals.push_back(VE.getTypeID(A.getValueType())); | 
|  | Vals.push_back(A.getType()->getAddressSpace()); | 
|  | Vals.push_back(VE.getValueID(A.getAliasee())); | 
|  | Vals.push_back(getEncodedLinkage(A)); | 
|  | Vals.push_back(getEncodedVisibility(A)); | 
|  | Vals.push_back(getEncodedDLLStorageClass(A)); | 
|  | Vals.push_back(getEncodedThreadLocalMode(A)); | 
|  | Vals.push_back(getEncodedUnnamedAddr(A)); | 
|  | Vals.push_back(A.isDSOLocal()); | 
|  | Vals.push_back(addToStrtab(A.getPartition())); | 
|  | Vals.push_back(A.getPartition().size()); | 
|  |  | 
|  | unsigned AbbrevToUse = 0; | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the ifunc information. | 
|  | for (const GlobalIFunc &I : M.ifuncs()) { | 
|  | // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver | 
|  | //         val#, linkage, visibility, DSO_Local] | 
|  | Vals.push_back(addToStrtab(I.getName())); | 
|  | Vals.push_back(I.getName().size()); | 
|  | Vals.push_back(VE.getTypeID(I.getValueType())); | 
|  | Vals.push_back(I.getType()->getAddressSpace()); | 
|  | Vals.push_back(VE.getValueID(I.getResolver())); | 
|  | Vals.push_back(getEncodedLinkage(I)); | 
|  | Vals.push_back(getEncodedVisibility(I)); | 
|  | Vals.push_back(I.isDSOLocal()); | 
|  | Vals.push_back(addToStrtab(I.getPartition())); | 
|  | Vals.push_back(I.getPartition().size()); | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | writeValueSymbolTableForwardDecl(); | 
|  | } | 
|  |  | 
|  | static uint64_t getOptimizationFlags(const Value *V) { | 
|  | uint64_t Flags = 0; | 
|  |  | 
|  | if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { | 
|  | if (OBO->hasNoSignedWrap()) | 
|  | Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; | 
|  | if (OBO->hasNoUnsignedWrap()) | 
|  | Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; | 
|  | } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { | 
|  | if (PEO->isExact()) | 
|  | Flags |= 1 << bitc::PEO_EXACT; | 
|  | } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { | 
|  | if (FPMO->hasAllowReassoc()) | 
|  | Flags |= bitc::AllowReassoc; | 
|  | if (FPMO->hasNoNaNs()) | 
|  | Flags |= bitc::NoNaNs; | 
|  | if (FPMO->hasNoInfs()) | 
|  | Flags |= bitc::NoInfs; | 
|  | if (FPMO->hasNoSignedZeros()) | 
|  | Flags |= bitc::NoSignedZeros; | 
|  | if (FPMO->hasAllowReciprocal()) | 
|  | Flags |= bitc::AllowReciprocal; | 
|  | if (FPMO->hasAllowContract()) | 
|  | Flags |= bitc::AllowContract; | 
|  | if (FPMO->hasApproxFunc()) | 
|  | Flags |= bitc::ApproxFunc; | 
|  | } | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeValueAsMetadata( | 
|  | const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { | 
|  | // Mimic an MDNode with a value as one operand. | 
|  | Value *V = MD->getValue(); | 
|  | Record.push_back(VE.getTypeID(V->getType())); | 
|  | Record.push_back(VE.getValueID(V)); | 
|  | Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | Metadata *MD = N->getOperand(i); | 
|  | assert(!(MD && isa<LocalAsMetadata>(MD)) && | 
|  | "Unexpected function-local metadata"); | 
|  | Record.push_back(VE.getMetadataOrNullID(MD)); | 
|  | } | 
|  | Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE | 
|  | : bitc::METADATA_NODE, | 
|  | Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | unsigned ModuleBitcodeWriter::createDILocationAbbrev() { | 
|  | // Assume the column is usually under 128, and always output the inlined-at | 
|  | // location (it's never more expensive than building an array size 1). | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDILocation(const DILocation *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned &Abbrev) { | 
|  | if (!Abbrev) | 
|  | Abbrev = createDILocationAbbrev(); | 
|  |  | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(N->getColumn()); | 
|  | Record.push_back(VE.getMetadataID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); | 
|  | Record.push_back(N->isImplicitCode()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { | 
|  | // Assume the column is usually under 128, and always output the inlined-at | 
|  | // location (it's never more expensive than building an array size 1). | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned &Abbrev) { | 
|  | if (!Abbrev) | 
|  | Abbrev = createGenericDINodeAbbrev(); | 
|  |  | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(0); // Per-tag version field; unused for now. | 
|  |  | 
|  | for (auto &I : N->operands()) | 
|  | Record.push_back(VE.getMetadataOrNullID(I)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const uint64_t Version = 2 << 1; | 
|  | Record.push_back((uint64_t)N->isDistinct() | Version); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIGenericSubrange( | 
|  | const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back((uint64_t)N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { | 
|  | if ((int64_t)V >= 0) | 
|  | Vals.push_back(V << 1); | 
|  | else | 
|  | Vals.push_back((-V << 1) | 1); | 
|  | } | 
|  |  | 
|  | static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { | 
|  | // We have an arbitrary precision integer value to write whose | 
|  | // bit width is > 64. However, in canonical unsigned integer | 
|  | // format it is likely that the high bits are going to be zero. | 
|  | // So, we only write the number of active words. | 
|  | unsigned NumWords = A.getActiveWords(); | 
|  | const uint64_t *RawData = A.getRawData(); | 
|  | for (unsigned i = 0; i < NumWords; i++) | 
|  | emitSignedInt64(Vals, RawData[i]); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const uint64_t IsBigInt = 1 << 2; | 
|  | Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); | 
|  | Record.push_back(N->getValue().getBitWidth()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | emitWideAPInt(Record, N->getValue()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getEncoding()); | 
|  | Record.push_back(N->getFlags()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getEncoding()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getOffsetInBits()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); | 
|  |  | 
|  | // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means | 
|  | // that there is no DWARF address space associated with DIDerivedType. | 
|  | if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) | 
|  | Record.push_back(*DWARFAddressSpace + 1); | 
|  | else | 
|  | Record.push_back(0); | 
|  |  | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDICompositeType( | 
|  | const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const unsigned IsNotUsedInOldTypeRef = 0x2; | 
|  | Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getOffsetInBits()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); | 
|  | Record.push_back(N->getRuntimeLang()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDISubroutineType( | 
|  | const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const unsigned HasNoOldTypeRefs = 0x2; | 
|  | Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); | 
|  | Record.push_back(N->getCC()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIFile(const DIFile *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); | 
|  | if (N->getRawChecksum()) { | 
|  | Record.push_back(N->getRawChecksum()->Kind); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); | 
|  | } else { | 
|  | // Maintain backwards compatibility with the old internal representation of | 
|  | // CSK_None in ChecksumKind by writing nulls here when Checksum is None. | 
|  | Record.push_back(0); | 
|  | Record.push_back(VE.getMetadataOrNullID(nullptr)); | 
|  | } | 
|  | auto Source = N->getRawSource(); | 
|  | if (Source) | 
|  | Record.push_back(VE.getMetadataOrNullID(Source)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | assert(N->isDistinct() && "Expected distinct compile units"); | 
|  | Record.push_back(/* IsDistinct */ true); | 
|  | Record.push_back(N->getSourceLanguage()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); | 
|  | Record.push_back(N->isOptimized()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); | 
|  | Record.push_back(N->getRuntimeVersion()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); | 
|  | Record.push_back(N->getEmissionKind()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); | 
|  | Record.push_back(/* subprograms */ 0); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); | 
|  | Record.push_back(N->getDWOId()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); | 
|  | Record.push_back(N->getSplitDebugInlining()); | 
|  | Record.push_back(N->getDebugInfoForProfiling()); | 
|  | Record.push_back((unsigned)N->getNameTableKind()); | 
|  | Record.push_back(N->getRangesBaseAddress()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const uint64_t HasUnitFlag = 1 << 1; | 
|  | const uint64_t HasSPFlagsFlag = 1 << 2; | 
|  | Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->getScopeLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); | 
|  | Record.push_back(N->getSPFlags()); | 
|  | Record.push_back(N->getVirtualIndex()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); | 
|  | Record.push_back(N->getThisAdjustment()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(N->getColumn()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDILexicalBlockFile( | 
|  | const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getDiscriminator()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getDecl())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLineNo()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getMacinfoType()); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getMacinfoType()); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.reserve(N->getArgs().size()); | 
|  | for (ValueAsMetadata *MD : N->getArgs()) | 
|  | Record.push_back(VE.getMetadataID(MD)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIModule(const DIModule *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | for (auto &I : N->operands()) | 
|  | Record.push_back(VE.getMetadataOrNullID(I)); | 
|  | Record.push_back(N->getLineNo()); | 
|  | Record.push_back(N->getIsDecl()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | // There are no arguments for this metadata type. | 
|  | Record.push_back(N->isDistinct()); | 
|  | Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDITemplateTypeParameter( | 
|  | const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->isDefault()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDITemplateValueParameter( | 
|  | const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->isDefault()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getValue())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIGlobalVariable( | 
|  | const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | const uint64_t Version = 2 << 1; | 
|  | Record.push_back((uint64_t)N->isDistinct() | Version); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->isLocalToUnit()); | 
|  | Record.push_back(N->isDefinition()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDILocalVariable( | 
|  | const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | // In order to support all possible bitcode formats in BitcodeReader we need | 
|  | // to distinguish the following cases: | 
|  | // 1) Record has no artificial tag (Record[1]), | 
|  | //   has no obsolete inlinedAt field (Record[9]). | 
|  | //   In this case Record size will be 8, HasAlignment flag is false. | 
|  | // 2) Record has artificial tag (Record[1]), | 
|  | //   has no obsolete inlignedAt field (Record[9]). | 
|  | //   In this case Record size will be 9, HasAlignment flag is false. | 
|  | // 3) Record has both artificial tag (Record[1]) and | 
|  | //   obsolete inlignedAt field (Record[9]). | 
|  | //   In this case Record size will be 10, HasAlignment flag is false. | 
|  | // 4) Record has neither artificial tag, nor inlignedAt field, but | 
|  | //   HasAlignment flag is true and Record[8] contains alignment value. | 
|  | const uint64_t HasAlignmentFlag = 1 << 1; | 
|  | Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->getArg()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDILabel( | 
|  | const DILabel *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back((uint64_t)N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.reserve(N->getElements().size() + 1); | 
|  | const uint64_t Version = 3 << 1; | 
|  | Record.push_back((uint64_t)N->isDistinct() | Version); | 
|  | Record.append(N->elements_begin(), N->elements_end()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIGlobalVariableExpression( | 
|  | const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getVariable())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getExpression())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); | 
|  | Record.push_back(N->getAttributes()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeDIImportedEntity( | 
|  | const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getEntity())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeNamedMetadata( | 
|  | SmallVectorImpl<uint64_t> &Record) { | 
|  | if (M.named_metadata_empty()) | 
|  | return; | 
|  |  | 
|  | unsigned Abbrev = createNamedMetadataAbbrev(); | 
|  | for (const NamedMDNode &NMD : M.named_metadata()) { | 
|  | // Write name. | 
|  | StringRef Str = NMD.getName(); | 
|  | Record.append(Str.bytes_begin(), Str.bytes_end()); | 
|  | Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); | 
|  | Record.clear(); | 
|  |  | 
|  | // Write named metadata operands. | 
|  | for (const MDNode *N : NMD.operands()) | 
|  | Record.push_back(VE.getMetadataID(N)); | 
|  | Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | /// Write out a record for MDString. | 
|  | /// | 
|  | /// All the metadata strings in a metadata block are emitted in a single | 
|  | /// record.  The sizes and strings themselves are shoved into a blob. | 
|  | void ModuleBitcodeWriter::writeMetadataStrings( | 
|  | ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { | 
|  | if (Strings.empty()) | 
|  | return; | 
|  |  | 
|  | // Start the record with the number of strings. | 
|  | Record.push_back(bitc::METADATA_STRINGS); | 
|  | Record.push_back(Strings.size()); | 
|  |  | 
|  | // Emit the sizes of the strings in the blob. | 
|  | SmallString<256> Blob; | 
|  | { | 
|  | BitstreamWriter W(Blob); | 
|  | for (const Metadata *MD : Strings) | 
|  | W.EmitVBR(cast<MDString>(MD)->getLength(), 6); | 
|  | W.FlushToWord(); | 
|  | } | 
|  |  | 
|  | // Add the offset to the strings to the record. | 
|  | Record.push_back(Blob.size()); | 
|  |  | 
|  | // Add the strings to the blob. | 
|  | for (const Metadata *MD : Strings) | 
|  | Blob.append(cast<MDString>(MD)->getString()); | 
|  |  | 
|  | // Emit the final record. | 
|  | Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | // Generates an enum to use as an index in the Abbrev array of Metadata record. | 
|  | enum MetadataAbbrev : unsigned { | 
|  | #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, | 
|  | #include "llvm/IR/Metadata.def" | 
|  | LastPlusOne | 
|  | }; | 
|  |  | 
|  | void ModuleBitcodeWriter::writeMetadataRecords( | 
|  | ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, | 
|  | std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { | 
|  | if (MDs.empty()) | 
|  | return; | 
|  |  | 
|  | // Initialize MDNode abbreviations. | 
|  | #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; | 
|  | #include "llvm/IR/Metadata.def" | 
|  |  | 
|  | for (const Metadata *MD : MDs) { | 
|  | if (IndexPos) | 
|  | IndexPos->push_back(Stream.GetCurrentBitNo()); | 
|  | if (const MDNode *N = dyn_cast<MDNode>(MD)) { | 
|  | assert(N->isResolved() && "Expected forward references to be resolved"); | 
|  |  | 
|  | switch (N->getMetadataID()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid MDNode subclass"); | 
|  | #define HANDLE_MDNODE_LEAF(CLASS)                                              \ | 
|  | case Metadata::CLASS##Kind:                                                  \ | 
|  | if (MDAbbrevs)                                                             \ | 
|  | write##CLASS(cast<CLASS>(N), Record,                                     \ | 
|  | (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \ | 
|  | else                                                                       \ | 
|  | write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \ | 
|  | continue; | 
|  | #include "llvm/IR/Metadata.def" | 
|  | } | 
|  | } | 
|  | writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeModuleMetadata() { | 
|  | if (!VE.hasMDs() && M.named_metadata_empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | // Emit all abbrevs upfront, so that the reader can jump in the middle of the | 
|  | // block and load any metadata. | 
|  | std::vector<unsigned> MDAbbrevs; | 
|  |  | 
|  | MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); | 
|  | MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); | 
|  | MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = | 
|  | createGenericDINodeAbbrev(); | 
|  |  | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Emit MDStrings together upfront. | 
|  | writeMetadataStrings(VE.getMDStrings(), Record); | 
|  |  | 
|  | // We only emit an index for the metadata record if we have more than a given | 
|  | // (naive) threshold of metadatas, otherwise it is not worth it. | 
|  | if (VE.getNonMDStrings().size() > IndexThreshold) { | 
|  | // Write a placeholder value in for the offset of the metadata index, | 
|  | // which is written after the records, so that it can include | 
|  | // the offset of each entry. The placeholder offset will be | 
|  | // updated after all records are emitted. | 
|  | uint64_t Vals[] = {0, 0}; | 
|  | Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); | 
|  | } | 
|  |  | 
|  | // Compute and save the bit offset to the current position, which will be | 
|  | // patched when we emit the index later. We can simply subtract the 64-bit | 
|  | // fixed size from the current bit number to get the location to backpatch. | 
|  | uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); | 
|  |  | 
|  | // This index will contain the bitpos for each individual record. | 
|  | std::vector<uint64_t> IndexPos; | 
|  | IndexPos.reserve(VE.getNonMDStrings().size()); | 
|  |  | 
|  | // Write all the records | 
|  | writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); | 
|  |  | 
|  | if (VE.getNonMDStrings().size() > IndexThreshold) { | 
|  | // Now that we have emitted all the records we will emit the index. But | 
|  | // first | 
|  | // backpatch the forward reference so that the reader can skip the records | 
|  | // efficiently. | 
|  | Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, | 
|  | Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); | 
|  |  | 
|  | // Delta encode the index. | 
|  | uint64_t PreviousValue = IndexOffsetRecordBitPos; | 
|  | for (auto &Elt : IndexPos) { | 
|  | auto EltDelta = Elt - PreviousValue; | 
|  | PreviousValue = Elt; | 
|  | Elt = EltDelta; | 
|  | } | 
|  | // Emit the index record. | 
|  | Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); | 
|  | IndexPos.clear(); | 
|  | } | 
|  |  | 
|  | // Write the named metadata now. | 
|  | writeNamedMetadata(Record); | 
|  |  | 
|  | auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { | 
|  | SmallVector<uint64_t, 4> Record; | 
|  | Record.push_back(VE.getValueID(&GO)); | 
|  | pushGlobalMetadataAttachment(Record, GO); | 
|  | Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); | 
|  | }; | 
|  | for (const Function &F : M) | 
|  | if (F.isDeclaration() && F.hasMetadata()) | 
|  | AddDeclAttachedMetadata(F); | 
|  | // FIXME: Only store metadata for declarations here, and move data for global | 
|  | // variable definitions to a separate block (PR28134). | 
|  | for (const GlobalVariable &GV : M.globals()) | 
|  | if (GV.hasMetadata()) | 
|  | AddDeclAttachedMetadata(GV); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { | 
|  | if (!VE.hasMDs()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | writeMetadataStrings(VE.getMDStrings(), Record); | 
|  | writeMetadataRecords(VE.getNonMDStrings(), Record); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::pushGlobalMetadataAttachment( | 
|  | SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { | 
|  | // [n x [id, mdnode]] | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | 
|  | GO.getAllMetadata(MDs); | 
|  | for (const auto &I : MDs) { | 
|  | Record.push_back(I.first); | 
|  | Record.push_back(VE.getMetadataID(I.second)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { | 
|  | Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | if (F.hasMetadata()) { | 
|  | pushGlobalMetadataAttachment(Record, F); | 
|  | Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | // Write metadata attachments | 
|  | // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | 
|  | for (const BasicBlock &BB : F) | 
|  | for (const Instruction &I : BB) { | 
|  | MDs.clear(); | 
|  | I.getAllMetadataOtherThanDebugLoc(MDs); | 
|  |  | 
|  | // If no metadata, ignore instruction. | 
|  | if (MDs.empty()) continue; | 
|  |  | 
|  | Record.push_back(VE.getInstructionID(&I)); | 
|  |  | 
|  | for (unsigned i = 0, e = MDs.size(); i != e; ++i) { | 
|  | Record.push_back(MDs[i].first); | 
|  | Record.push_back(VE.getMetadataID(MDs[i].second)); | 
|  | } | 
|  | Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeModuleMetadataKinds() { | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | // Write metadata kinds | 
|  | // METADATA_KIND - [n x [id, name]] | 
|  | SmallVector<StringRef, 8> Names; | 
|  | M.getMDKindNames(Names); | 
|  |  | 
|  | if (Names.empty()) return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); | 
|  |  | 
|  | for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { | 
|  | Record.push_back(MDKindID); | 
|  | StringRef KName = Names[MDKindID]; | 
|  | Record.append(KName.begin(), KName.end()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeOperandBundleTags() { | 
|  | // Write metadata kinds | 
|  | // | 
|  | // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG | 
|  | // | 
|  | // OPERAND_BUNDLE_TAG - [strchr x N] | 
|  |  | 
|  | SmallVector<StringRef, 8> Tags; | 
|  | M.getOperandBundleTags(Tags); | 
|  |  | 
|  | if (Tags.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | for (auto Tag : Tags) { | 
|  | Record.append(Tag.begin(), Tag.end()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeSyncScopeNames() { | 
|  | SmallVector<StringRef, 8> SSNs; | 
|  | M.getContext().getSyncScopeNames(SSNs); | 
|  | if (SSNs.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | for (auto SSN : SSNs) { | 
|  | Record.append(SSN.begin(), SSN.end()); | 
|  | Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, | 
|  | bool isGlobal) { | 
|  | if (FirstVal == LastVal) return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); | 
|  |  | 
|  | unsigned AggregateAbbrev = 0; | 
|  | unsigned String8Abbrev = 0; | 
|  | unsigned CString7Abbrev = 0; | 
|  | unsigned CString6Abbrev = 0; | 
|  | // If this is a constant pool for the module, emit module-specific abbrevs. | 
|  | if (isGlobal) { | 
|  | // Abbrev for CST_CODE_AGGREGATE. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); | 
|  | AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for CST_CODE_STRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | // Abbrev for CST_CODE_CSTRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); | 
|  | CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | // Abbrev for CST_CODE_CSTRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | const ValueEnumerator::ValueList &Vals = VE.getValues(); | 
|  | Type *LastTy = nullptr; | 
|  | for (unsigned i = FirstVal; i != LastVal; ++i) { | 
|  | const Value *V = Vals[i].first; | 
|  | // If we need to switch types, do so now. | 
|  | if (V->getType() != LastTy) { | 
|  | LastTy = V->getType(); | 
|  | Record.push_back(VE.getTypeID(LastTy)); | 
|  | Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, | 
|  | CONSTANTS_SETTYPE_ABBREV); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { | 
|  | Record.push_back(VE.getTypeID(IA->getFunctionType())); | 
|  | Record.push_back( | 
|  | unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | | 
|  | unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); | 
|  |  | 
|  | // Add the asm string. | 
|  | const std::string &AsmStr = IA->getAsmString(); | 
|  | Record.push_back(AsmStr.size()); | 
|  | Record.append(AsmStr.begin(), AsmStr.end()); | 
|  |  | 
|  | // Add the constraint string. | 
|  | const std::string &ConstraintStr = IA->getConstraintString(); | 
|  | Record.push_back(ConstraintStr.size()); | 
|  | Record.append(ConstraintStr.begin(), ConstraintStr.end()); | 
|  | Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); | 
|  | Record.clear(); | 
|  | continue; | 
|  | } | 
|  | const Constant *C = cast<Constant>(V); | 
|  | unsigned Code = -1U; | 
|  | unsigned AbbrevToUse = 0; | 
|  | if (C->isNullValue()) { | 
|  | Code = bitc::CST_CODE_NULL; | 
|  | } else if (isa<PoisonValue>(C)) { | 
|  | Code = bitc::CST_CODE_POISON; | 
|  | } else if (isa<UndefValue>(C)) { | 
|  | Code = bitc::CST_CODE_UNDEF; | 
|  | } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { | 
|  | if (IV->getBitWidth() <= 64) { | 
|  | uint64_t V = IV->getSExtValue(); | 
|  | emitSignedInt64(Record, V); | 
|  | Code = bitc::CST_CODE_INTEGER; | 
|  | AbbrevToUse = CONSTANTS_INTEGER_ABBREV; | 
|  | } else {                             // Wide integers, > 64 bits in size. | 
|  | emitWideAPInt(Record, IV->getValue()); | 
|  | Code = bitc::CST_CODE_WIDE_INTEGER; | 
|  | } | 
|  | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | Code = bitc::CST_CODE_FLOAT; | 
|  | Type *Ty = CFP->getType(); | 
|  | if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || | 
|  | Ty->isDoubleTy()) { | 
|  | Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); | 
|  | } else if (Ty->isX86_FP80Ty()) { | 
|  | // api needed to prevent premature destruction | 
|  | // bits are not in the same order as a normal i80 APInt, compensate. | 
|  | APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
|  | const uint64_t *p = api.getRawData(); | 
|  | Record.push_back((p[1] << 48) | (p[0] >> 16)); | 
|  | Record.push_back(p[0] & 0xffffLL); | 
|  | } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { | 
|  | APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
|  | const uint64_t *p = api.getRawData(); | 
|  | Record.push_back(p[0]); | 
|  | Record.push_back(p[1]); | 
|  | } else { | 
|  | assert(0 && "Unknown FP type!"); | 
|  | } | 
|  | } else if (isa<ConstantDataSequential>(C) && | 
|  | cast<ConstantDataSequential>(C)->isString()) { | 
|  | const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); | 
|  | // Emit constant strings specially. | 
|  | unsigned NumElts = Str->getNumElements(); | 
|  | // If this is a null-terminated string, use the denser CSTRING encoding. | 
|  | if (Str->isCString()) { | 
|  | Code = bitc::CST_CODE_CSTRING; | 
|  | --NumElts;  // Don't encode the null, which isn't allowed by char6. | 
|  | } else { | 
|  | Code = bitc::CST_CODE_STRING; | 
|  | AbbrevToUse = String8Abbrev; | 
|  | } | 
|  | bool isCStr7 = Code == bitc::CST_CODE_CSTRING; | 
|  | bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | unsigned char V = Str->getElementAsInteger(i); | 
|  | Record.push_back(V); | 
|  | isCStr7 &= (V & 128) == 0; | 
|  | if (isCStrChar6) | 
|  | isCStrChar6 = BitCodeAbbrevOp::isChar6(V); | 
|  | } | 
|  |  | 
|  | if (isCStrChar6) | 
|  | AbbrevToUse = CString6Abbrev; | 
|  | else if (isCStr7) | 
|  | AbbrevToUse = CString7Abbrev; | 
|  | } else if (const ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(C)) { | 
|  | Code = bitc::CST_CODE_DATA; | 
|  | Type *EltTy = CDS->getElementType(); | 
|  | if (isa<IntegerType>(EltTy)) { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) | 
|  | Record.push_back(CDS->getElementAsInteger(i)); | 
|  | } else { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) | 
|  | Record.push_back( | 
|  | CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); | 
|  | } | 
|  | } else if (isa<ConstantAggregate>(C)) { | 
|  | Code = bitc::CST_CODE_AGGREGATE; | 
|  | for (const Value *Op : C->operands()) | 
|  | Record.push_back(VE.getValueID(Op)); | 
|  | AbbrevToUse = AggregateAbbrev; | 
|  | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | if (Instruction::isCast(CE->getOpcode())) { | 
|  | Code = bitc::CST_CODE_CE_CAST; | 
|  | Record.push_back(getEncodedCastOpcode(CE->getOpcode())); | 
|  | Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; | 
|  | } else { | 
|  | assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); | 
|  | Code = bitc::CST_CODE_CE_BINOP; | 
|  | Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | uint64_t Flags = getOptimizationFlags(CE); | 
|  | if (Flags != 0) | 
|  | Record.push_back(Flags); | 
|  | } | 
|  | break; | 
|  | case Instruction::FNeg: { | 
|  | assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); | 
|  | Code = bitc::CST_CODE_CE_UNOP; | 
|  | Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | uint64_t Flags = getOptimizationFlags(CE); | 
|  | if (Flags != 0) | 
|  | Record.push_back(Flags); | 
|  | break; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | Code = bitc::CST_CODE_CE_GEP; | 
|  | const auto *GO = cast<GEPOperator>(C); | 
|  | Record.push_back(VE.getTypeID(GO->getSourceElementType())); | 
|  | if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { | 
|  | Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; | 
|  | Record.push_back((*Idx << 1) | GO->isInBounds()); | 
|  | } else if (GO->isInBounds()) | 
|  | Code = bitc::CST_CODE_CE_INBOUNDS_GEP; | 
|  | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { | 
|  | Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(i))); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractElement: | 
|  | Code = bitc::CST_CODE_CE_EXTRACTELT; | 
|  | Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | Code = bitc::CST_CODE_CE_INSERTELT; | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(2))); | 
|  | break; | 
|  | case Instruction::ShuffleVector: | 
|  | // If the return type and argument types are the same, this is a | 
|  | // standard shufflevector instruction.  If the types are different, | 
|  | // then the shuffle is widening or truncating the input vectors, and | 
|  | // the argument type must also be encoded. | 
|  | if (C->getType() == C->getOperand(0)->getType()) { | 
|  | Code = bitc::CST_CODE_CE_SHUFFLEVEC; | 
|  | } else { | 
|  | Code = bitc::CST_CODE_CE_SHUFVEC_EX; | 
|  | Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); | 
|  | } | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | Code = bitc::CST_CODE_CE_CMP; | 
|  | Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(CE->getPredicate()); | 
|  | break; | 
|  | } | 
|  | } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { | 
|  | Code = bitc::CST_CODE_BLOCKADDRESS; | 
|  | Record.push_back(VE.getTypeID(BA->getFunction()->getType())); | 
|  | Record.push_back(VE.getValueID(BA->getFunction())); | 
|  | Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); | 
|  | } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { | 
|  | Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; | 
|  | Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); | 
|  | Record.push_back(VE.getValueID(Equiv->getGlobalValue())); | 
|  | } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { | 
|  | Code = bitc::CST_CODE_NO_CFI_VALUE; | 
|  | Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); | 
|  | Record.push_back(VE.getValueID(NC->getGlobalValue())); | 
|  | } else { | 
|  | #ifndef NDEBUG | 
|  | C->dump(); | 
|  | #endif | 
|  | llvm_unreachable("Unknown constant!"); | 
|  | } | 
|  | Stream.EmitRecord(Code, Record, AbbrevToUse); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeModuleConstants() { | 
|  | const ValueEnumerator::ValueList &Vals = VE.getValues(); | 
|  |  | 
|  | // Find the first constant to emit, which is the first non-globalvalue value. | 
|  | // We know globalvalues have been emitted by WriteModuleInfo. | 
|  | for (unsigned i = 0, e = Vals.size(); i != e; ++i) { | 
|  | if (!isa<GlobalValue>(Vals[i].first)) { | 
|  | writeConstants(i, Vals.size(), true); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// pushValueAndType - The file has to encode both the value and type id for | 
|  | /// many values, because we need to know what type to create for forward | 
|  | /// references.  However, most operands are not forward references, so this type | 
|  | /// field is not needed. | 
|  | /// | 
|  | /// This function adds V's value ID to Vals.  If the value ID is higher than the | 
|  | /// instruction ID, then it is a forward reference, and it also includes the | 
|  | /// type ID.  The value ID that is written is encoded relative to the InstID. | 
|  | bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | // Make encoding relative to the InstID. | 
|  | Vals.push_back(InstID - ValID); | 
|  | if (ValID >= InstID) { | 
|  | Vals.push_back(VE.getTypeID(V->getType())); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, | 
|  | unsigned InstID) { | 
|  | SmallVector<unsigned, 64> Record; | 
|  | LLVMContext &C = CS.getContext(); | 
|  |  | 
|  | for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { | 
|  | const auto &Bundle = CS.getOperandBundleAt(i); | 
|  | Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); | 
|  |  | 
|  | for (auto &Input : Bundle.Inputs) | 
|  | pushValueAndType(Input, InstID, Record); | 
|  |  | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); | 
|  | Record.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// pushValue - Like pushValueAndType, but where the type of the value is | 
|  | /// omitted (perhaps it was already encoded in an earlier operand). | 
|  | void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | Vals.push_back(InstID - ValID); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<uint64_t> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | int64_t diff = ((int32_t)InstID - (int32_t)ValID); | 
|  | emitSignedInt64(Vals, diff); | 
|  | } | 
|  |  | 
|  | /// WriteInstruction - Emit an instruction to the specified stream. | 
|  | void ModuleBitcodeWriter::writeInstruction(const Instruction &I, | 
|  | unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned Code = 0; | 
|  | unsigned AbbrevToUse = 0; | 
|  | VE.setInstructionID(&I); | 
|  | switch (I.getOpcode()) { | 
|  | default: | 
|  | if (Instruction::isCast(I.getOpcode())) { | 
|  | Code = bitc::FUNC_CODE_INST_CAST; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = FUNCTION_INST_CAST_ABBREV; | 
|  | Vals.push_back(VE.getTypeID(I.getType())); | 
|  | Vals.push_back(getEncodedCastOpcode(I.getOpcode())); | 
|  | } else { | 
|  | assert(isa<BinaryOperator>(I) && "Unknown instruction!"); | 
|  | Code = bitc::FUNC_CODE_INST_BINOP; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) { | 
|  | if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) | 
|  | AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; | 
|  | Vals.push_back(Flags); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::FNeg: { | 
|  | Code = bitc::FUNC_CODE_INST_UNOP; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; | 
|  | Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) { | 
|  | if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) | 
|  | AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; | 
|  | Vals.push_back(Flags); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::GetElementPtr: { | 
|  | Code = bitc::FUNC_CODE_INST_GEP; | 
|  | AbbrevToUse = FUNCTION_INST_GEP_ABBREV; | 
|  | auto &GEPInst = cast<GetElementPtrInst>(I); | 
|  | Vals.push_back(GEPInst.isInBounds()); | 
|  | Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractValue: { | 
|  | Code = bitc::FUNC_CODE_INST_EXTRACTVAL; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); | 
|  | Vals.append(EVI->idx_begin(), EVI->idx_end()); | 
|  | break; | 
|  | } | 
|  | case Instruction::InsertValue: { | 
|  | Code = bitc::FUNC_CODE_INST_INSERTVAL; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | const InsertValueInst *IVI = cast<InsertValueInst>(&I); | 
|  | Vals.append(IVI->idx_begin(), IVI->idx_end()); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: { | 
|  | Code = bitc::FUNC_CODE_INST_VSELECT; | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | pushValue(I.getOperand(2), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) | 
|  | Vals.push_back(Flags); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractElement: | 
|  | Code = bitc::FUNC_CODE_INST_EXTRACTELT; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | Code = bitc::FUNC_CODE_INST_INSERTELT; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(2), InstID, Vals); | 
|  | break; | 
|  | case Instruction::ShuffleVector: | 
|  | Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, | 
|  | Vals); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: { | 
|  | // compare returning Int1Ty or vector of Int1Ty | 
|  | Code = bitc::FUNC_CODE_INST_CMP2; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | Vals.push_back(cast<CmpInst>(I).getPredicate()); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) | 
|  | Vals.push_back(Flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Ret: | 
|  | { | 
|  | Code = bitc::FUNC_CODE_INST_RET; | 
|  | unsigned NumOperands = I.getNumOperands(); | 
|  | if (NumOperands == 0) | 
|  | AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; | 
|  | else if (NumOperands == 1) { | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; | 
|  | } else { | 
|  | for (unsigned i = 0, e = NumOperands; i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Br: | 
|  | { | 
|  | Code = bitc::FUNC_CODE_INST_BR; | 
|  | const BranchInst &II = cast<BranchInst>(I); | 
|  | Vals.push_back(VE.getValueID(II.getSuccessor(0))); | 
|  | if (II.isConditional()) { | 
|  | Vals.push_back(VE.getValueID(II.getSuccessor(1))); | 
|  | pushValue(II.getCondition(), InstID, Vals); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Switch: | 
|  | { | 
|  | Code = bitc::FUNC_CODE_INST_SWITCH; | 
|  | const SwitchInst &SI = cast<SwitchInst>(I); | 
|  | Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); | 
|  | pushValue(SI.getCondition(), InstID, Vals); | 
|  | Vals.push_back(VE.getValueID(SI.getDefaultDest())); | 
|  | for (auto Case : SI.cases()) { | 
|  | Vals.push_back(VE.getValueID(Case.getCaseValue())); | 
|  | Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::IndirectBr: | 
|  | Code = bitc::FUNC_CODE_INST_INDIRECTBR; | 
|  | Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); | 
|  | // Encode the address operand as relative, but not the basic blocks. | 
|  | pushValue(I.getOperand(0), InstID, Vals); | 
|  | for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) | 
|  | Vals.push_back(VE.getValueID(I.getOperand(i))); | 
|  | break; | 
|  |  | 
|  | case Instruction::Invoke: { | 
|  | const InvokeInst *II = cast<InvokeInst>(&I); | 
|  | const Value *Callee = II->getCalledOperand(); | 
|  | FunctionType *FTy = II->getFunctionType(); | 
|  |  | 
|  | if (II->hasOperandBundles()) | 
|  | writeOperandBundles(*II, InstID); | 
|  |  | 
|  | Code = bitc::FUNC_CODE_INST_INVOKE; | 
|  |  | 
|  | Vals.push_back(VE.getAttributeListID(II->getAttributes())); | 
|  | Vals.push_back(II->getCallingConv() | 1 << 13); | 
|  | Vals.push_back(VE.getValueID(II->getNormalDest())); | 
|  | Vals.push_back(VE.getValueID(II->getUnwindDest())); | 
|  | Vals.push_back(VE.getTypeID(FTy)); | 
|  | pushValueAndType(Callee, InstID, Vals); | 
|  |  | 
|  | // Emit value #'s for the fixed parameters. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
|  | pushValue(I.getOperand(i), InstID, Vals); // fixed param. | 
|  |  | 
|  | // Emit type/value pairs for varargs params. | 
|  | if (FTy->isVarArg()) { | 
|  | for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); // vararg | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Resume: | 
|  | Code = bitc::FUNC_CODE_INST_RESUME; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | break; | 
|  | case Instruction::CleanupRet: { | 
|  | Code = bitc::FUNC_CODE_INST_CLEANUPRET; | 
|  | const auto &CRI = cast<CleanupReturnInst>(I); | 
|  | pushValue(CRI.getCleanupPad(), InstID, Vals); | 
|  | if (CRI.hasUnwindDest()) | 
|  | Vals.push_back(VE.getValueID(CRI.getUnwindDest())); | 
|  | break; | 
|  | } | 
|  | case Instruction::CatchRet: { | 
|  | Code = bitc::FUNC_CODE_INST_CATCHRET; | 
|  | const auto &CRI = cast<CatchReturnInst>(I); | 
|  | pushValue(CRI.getCatchPad(), InstID, Vals); | 
|  | Vals.push_back(VE.getValueID(CRI.getSuccessor())); | 
|  | break; | 
|  | } | 
|  | case Instruction::CleanupPad: | 
|  | case Instruction::CatchPad: { | 
|  | const auto &FuncletPad = cast<FuncletPadInst>(I); | 
|  | Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD | 
|  | : bitc::FUNC_CODE_INST_CLEANUPPAD; | 
|  | pushValue(FuncletPad.getParentPad(), InstID, Vals); | 
|  |  | 
|  | unsigned NumArgOperands = FuncletPad.arg_size(); | 
|  | Vals.push_back(NumArgOperands); | 
|  | for (unsigned Op = 0; Op != NumArgOperands; ++Op) | 
|  | pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); | 
|  | break; | 
|  | } | 
|  | case Instruction::CatchSwitch: { | 
|  | Code = bitc::FUNC_CODE_INST_CATCHSWITCH; | 
|  | const auto &CatchSwitch = cast<CatchSwitchInst>(I); | 
|  |  | 
|  | pushValue(CatchSwitch.getParentPad(), InstID, Vals); | 
|  |  | 
|  | unsigned NumHandlers = CatchSwitch.getNumHandlers(); | 
|  | Vals.push_back(NumHandlers); | 
|  | for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) | 
|  | Vals.push_back(VE.getValueID(CatchPadBB)); | 
|  |  | 
|  | if (CatchSwitch.hasUnwindDest()) | 
|  | Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); | 
|  | break; | 
|  | } | 
|  | case Instruction::CallBr: { | 
|  | const CallBrInst *CBI = cast<CallBrInst>(&I); | 
|  | const Value *Callee = CBI->getCalledOperand(); | 
|  | FunctionType *FTy = CBI->getFunctionType(); | 
|  |  | 
|  | if (CBI->hasOperandBundles()) | 
|  | writeOperandBundles(*CBI, InstID); | 
|  |  | 
|  | Code = bitc::FUNC_CODE_INST_CALLBR; | 
|  |  | 
|  | Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); | 
|  |  | 
|  | Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | | 
|  | 1 << bitc::CALL_EXPLICIT_TYPE); | 
|  |  | 
|  | Vals.push_back(VE.getValueID(CBI->getDefaultDest())); | 
|  | Vals.push_back(CBI->getNumIndirectDests()); | 
|  | for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) | 
|  | Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); | 
|  |  | 
|  | Vals.push_back(VE.getTypeID(FTy)); | 
|  | pushValueAndType(Callee, InstID, Vals); | 
|  |  | 
|  | // Emit value #'s for the fixed parameters. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
|  | pushValue(I.getOperand(i), InstID, Vals); // fixed param. | 
|  |  | 
|  | // Emit type/value pairs for varargs params. | 
|  | if (FTy->isVarArg()) { | 
|  | for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); // vararg | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Unreachable: | 
|  | Code = bitc::FUNC_CODE_INST_UNREACHABLE; | 
|  | AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; | 
|  | break; | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | const PHINode &PN = cast<PHINode>(I); | 
|  | Code = bitc::FUNC_CODE_INST_PHI; | 
|  | // With the newer instruction encoding, forward references could give | 
|  | // negative valued IDs.  This is most common for PHIs, so we use | 
|  | // signed VBRs. | 
|  | SmallVector<uint64_t, 128> Vals64; | 
|  | Vals64.push_back(VE.getTypeID(PN.getType())); | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); | 
|  | Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); | 
|  | } | 
|  |  | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) | 
|  | Vals64.push_back(Flags); | 
|  |  | 
|  | // Emit a Vals64 vector and exit. | 
|  | Stream.EmitRecord(Code, Vals64, AbbrevToUse); | 
|  | Vals64.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Instruction::LandingPad: { | 
|  | const LandingPadInst &LP = cast<LandingPadInst>(I); | 
|  | Code = bitc::FUNC_CODE_INST_LANDINGPAD; | 
|  | Vals.push_back(VE.getTypeID(LP.getType())); | 
|  | Vals.push_back(LP.isCleanup()); | 
|  | Vals.push_back(LP.getNumClauses()); | 
|  | for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { | 
|  | if (LP.isCatch(I)) | 
|  | Vals.push_back(LandingPadInst::Catch); | 
|  | else | 
|  | Vals.push_back(LandingPadInst::Filter); | 
|  | pushValueAndType(LP.getClause(I), InstID, Vals); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Alloca: { | 
|  | Code = bitc::FUNC_CODE_INST_ALLOCA; | 
|  | const AllocaInst &AI = cast<AllocaInst>(I); | 
|  | Vals.push_back(VE.getTypeID(AI.getAllocatedType())); | 
|  | Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); | 
|  | Vals.push_back(VE.getValueID(I.getOperand(0))); // size. | 
|  | using APV = AllocaPackedValues; | 
|  | unsigned Record = 0; | 
|  | unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); | 
|  | Bitfield::set<APV::AlignLower>( | 
|  | Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); | 
|  | Bitfield::set<APV::AlignUpper>(Record, | 
|  | EncodedAlign >> APV::AlignLower::Bits); | 
|  | Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); | 
|  | Bitfield::set<APV::ExplicitType>(Record, true); | 
|  | Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); | 
|  | Vals.push_back(Record); | 
|  |  | 
|  | unsigned AS = AI.getAddressSpace(); | 
|  | if (AS != M.getDataLayout().getAllocaAddrSpace()) | 
|  | Vals.push_back(AS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Load: | 
|  | if (cast<LoadInst>(I).isAtomic()) { | 
|  | Code = bitc::FUNC_CODE_INST_LOADATOMIC; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | } else { | 
|  | Code = bitc::FUNC_CODE_INST_LOAD; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr | 
|  | AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; | 
|  | } | 
|  | Vals.push_back(VE.getTypeID(I.getType())); | 
|  | Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); | 
|  | Vals.push_back(cast<LoadInst>(I).isVolatile()); | 
|  | if (cast<LoadInst>(I).isAtomic()) { | 
|  | Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); | 
|  | Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); | 
|  | } | 
|  | break; | 
|  | case Instruction::Store: | 
|  | if (cast<StoreInst>(I).isAtomic()) | 
|  | Code = bitc::FUNC_CODE_INST_STOREATOMIC; | 
|  | else | 
|  | Code = bitc::FUNC_CODE_INST_STORE; | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val | 
|  | Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); | 
|  | Vals.push_back(cast<StoreInst>(I).isVolatile()); | 
|  | if (cast<StoreInst>(I).isAtomic()) { | 
|  | Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); | 
|  | } | 
|  | break; | 
|  | case Instruction::AtomicCmpXchg: | 
|  | Code = bitc::FUNC_CODE_INST_CMPXCHG; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. | 
|  | pushValue(I.getOperand(2), InstID, Vals);        // newval. | 
|  | Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); | 
|  | Vals.push_back( | 
|  | getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); | 
|  | Vals.push_back( | 
|  | getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); | 
|  | Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); | 
|  | Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); | 
|  | break; | 
|  | case Instruction::AtomicRMW: | 
|  | Code = bitc::FUNC_CODE_INST_ATOMICRMW; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val | 
|  | Vals.push_back( | 
|  | getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); | 
|  | Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); | 
|  | Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); | 
|  | Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); | 
|  | break; | 
|  | case Instruction::Fence: | 
|  | Code = bitc::FUNC_CODE_INST_FENCE; | 
|  | Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); | 
|  | Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); | 
|  | break; | 
|  | case Instruction::Call: { | 
|  | const CallInst &CI = cast<CallInst>(I); | 
|  | FunctionType *FTy = CI.getFunctionType(); | 
|  |  | 
|  | if (CI.hasOperandBundles()) | 
|  | writeOperandBundles(CI, InstID); | 
|  |  | 
|  | Code = bitc::FUNC_CODE_INST_CALL; | 
|  |  | 
|  | Vals.push_back(VE.getAttributeListID(CI.getAttributes())); | 
|  |  | 
|  | unsigned Flags = getOptimizationFlags(&I); | 
|  | Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | | 
|  | unsigned(CI.isTailCall()) << bitc::CALL_TAIL | | 
|  | unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | | 
|  | 1 << bitc::CALL_EXPLICIT_TYPE | | 
|  | unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | | 
|  | unsigned(Flags != 0) << bitc::CALL_FMF); | 
|  | if (Flags != 0) | 
|  | Vals.push_back(Flags); | 
|  |  | 
|  | Vals.push_back(VE.getTypeID(FTy)); | 
|  | pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee | 
|  |  | 
|  | // Emit value #'s for the fixed parameters. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { | 
|  | // Check for labels (can happen with asm labels). | 
|  | if (FTy->getParamType(i)->isLabelTy()) | 
|  | Vals.push_back(VE.getValueID(CI.getArgOperand(i))); | 
|  | else | 
|  | pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. | 
|  | } | 
|  |  | 
|  | // Emit type/value pairs for varargs params. | 
|  | if (FTy->isVarArg()) { | 
|  | for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) | 
|  | pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::VAArg: | 
|  | Code = bitc::FUNC_CODE_INST_VAARG; | 
|  | Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty | 
|  | pushValue(I.getOperand(0), InstID, Vals);                   // valist. | 
|  | Vals.push_back(VE.getTypeID(I.getType())); // restype. | 
|  | break; | 
|  | case Instruction::Freeze: | 
|  | Code = bitc::FUNC_CODE_INST_FREEZE; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(Code, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | /// Write a GlobalValue VST to the module. The purpose of this data structure is | 
|  | /// to allow clients to efficiently find the function body. | 
|  | void ModuleBitcodeWriter::writeGlobalValueSymbolTable( | 
|  | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { | 
|  | // Get the offset of the VST we are writing, and backpatch it into | 
|  | // the VST forward declaration record. | 
|  | uint64_t VSTOffset = Stream.GetCurrentBitNo(); | 
|  | // The BitcodeStartBit was the stream offset of the identification block. | 
|  | VSTOffset -= bitcodeStartBit(); | 
|  | assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); | 
|  | // Note that we add 1 here because the offset is relative to one word | 
|  | // before the start of the identification block, which was historically | 
|  | // always the start of the regular bitcode header. | 
|  | Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); | 
|  |  | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset | 
|  | unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | for (const Function &F : M) { | 
|  | uint64_t Record[2]; | 
|  |  | 
|  | if (F.isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | Record[0] = VE.getValueID(&F); | 
|  |  | 
|  | // Save the word offset of the function (from the start of the | 
|  | // actual bitcode written to the stream). | 
|  | uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); | 
|  | assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); | 
|  | // Note that we add 1 here because the offset is relative to one word | 
|  | // before the start of the identification block, which was historically | 
|  | // always the start of the regular bitcode header. | 
|  | Record[1] = BitcodeIndex / 32 + 1; | 
|  |  | 
|  | Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Emit names for arguments, instructions and basic blocks in a function. | 
|  | void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( | 
|  | const ValueSymbolTable &VST) { | 
|  | if (VST.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); | 
|  |  | 
|  | // FIXME: Set up the abbrev, we know how many values there are! | 
|  | // FIXME: We know if the type names can use 7-bit ascii. | 
|  | SmallVector<uint64_t, 64> NameVals; | 
|  |  | 
|  | for (const ValueName &Name : VST) { | 
|  | // Figure out the encoding to use for the name. | 
|  | StringEncoding Bits = getStringEncoding(Name.getKey()); | 
|  |  | 
|  | unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; | 
|  | NameVals.push_back(VE.getValueID(Name.getValue())); | 
|  |  | 
|  | // VST_CODE_ENTRY:   [valueid, namechar x N] | 
|  | // VST_CODE_BBENTRY: [bbid, namechar x N] | 
|  | unsigned Code; | 
|  | if (isa<BasicBlock>(Name.getValue())) { | 
|  | Code = bitc::VST_CODE_BBENTRY; | 
|  | if (Bits == SE_Char6) | 
|  | AbbrevToUse = VST_BBENTRY_6_ABBREV; | 
|  | } else { | 
|  | Code = bitc::VST_CODE_ENTRY; | 
|  | if (Bits == SE_Char6) | 
|  | AbbrevToUse = VST_ENTRY_6_ABBREV; | 
|  | else if (Bits == SE_Fixed7) | 
|  | AbbrevToUse = VST_ENTRY_7_ABBREV; | 
|  | } | 
|  |  | 
|  | for (const auto P : Name.getKey()) | 
|  | NameVals.push_back((unsigned char)P); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, NameVals, AbbrevToUse); | 
|  | NameVals.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { | 
|  | assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); | 
|  | unsigned Code; | 
|  | if (isa<BasicBlock>(Order.V)) | 
|  | Code = bitc::USELIST_CODE_BB; | 
|  | else | 
|  | Code = bitc::USELIST_CODE_DEFAULT; | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); | 
|  | Record.push_back(VE.getValueID(Order.V)); | 
|  | Stream.EmitRecord(Code, Record); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { | 
|  | assert(VE.shouldPreserveUseListOrder() && | 
|  | "Expected to be preserving use-list order"); | 
|  |  | 
|  | auto hasMore = [&]() { | 
|  | return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; | 
|  | }; | 
|  | if (!hasMore()) | 
|  | // Nothing to do. | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); | 
|  | while (hasMore()) { | 
|  | writeUseList(std::move(VE.UseListOrders.back())); | 
|  | VE.UseListOrders.pop_back(); | 
|  | } | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Emit a function body to the module stream. | 
|  | void ModuleBitcodeWriter::writeFunction( | 
|  | const Function &F, | 
|  | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { | 
|  | // Save the bitcode index of the start of this function block for recording | 
|  | // in the VST. | 
|  | FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); | 
|  | VE.incorporateFunction(F); | 
|  |  | 
|  | SmallVector<unsigned, 64> Vals; | 
|  |  | 
|  | // Emit the number of basic blocks, so the reader can create them ahead of | 
|  | // time. | 
|  | Vals.push_back(VE.getBasicBlocks().size()); | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); | 
|  | Vals.clear(); | 
|  |  | 
|  | // If there are function-local constants, emit them now. | 
|  | unsigned CstStart, CstEnd; | 
|  | VE.getFunctionConstantRange(CstStart, CstEnd); | 
|  | writeConstants(CstStart, CstEnd, false); | 
|  |  | 
|  | // If there is function-local metadata, emit it now. | 
|  | writeFunctionMetadata(F); | 
|  |  | 
|  | // Keep a running idea of what the instruction ID is. | 
|  | unsigned InstID = CstEnd; | 
|  |  | 
|  | bool NeedsMetadataAttachment = F.hasMetadata(); | 
|  |  | 
|  | DILocation *LastDL = nullptr; | 
|  | SmallSetVector<Function *, 4> BlockAddressUsers; | 
|  |  | 
|  | // Finally, emit all the instructions, in order. | 
|  | for (const BasicBlock &BB : F) { | 
|  | for (const Instruction &I : BB) { | 
|  | writeInstruction(I, InstID, Vals); | 
|  |  | 
|  | if (!I.getType()->isVoidTy()) | 
|  | ++InstID; | 
|  |  | 
|  | // If the instruction has metadata, write a metadata attachment later. | 
|  | NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); | 
|  |  | 
|  | // If the instruction has a debug location, emit it. | 
|  | DILocation *DL = I.getDebugLoc(); | 
|  | if (!DL) | 
|  | continue; | 
|  |  | 
|  | if (DL == LastDL) { | 
|  | // Just repeat the same debug loc as last time. | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Vals.push_back(DL->getLine()); | 
|  | Vals.push_back(DL->getColumn()); | 
|  | Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); | 
|  | Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); | 
|  | Vals.push_back(DL->isImplicitCode()); | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); | 
|  | Vals.clear(); | 
|  |  | 
|  | LastDL = DL; | 
|  | } | 
|  |  | 
|  | if (BlockAddress *BA = BlockAddress::lookup(&BB)) { | 
|  | SmallVector<Value *> Worklist{BA}; | 
|  | SmallPtrSet<Value *, 8> Visited{BA}; | 
|  | while (!Worklist.empty()) { | 
|  | Value *V = Worklist.pop_back_val(); | 
|  | for (User *U : V->users()) { | 
|  | if (auto *I = dyn_cast<Instruction>(U)) { | 
|  | Function *P = I->getFunction(); | 
|  | if (P != &F) | 
|  | BlockAddressUsers.insert(P); | 
|  | } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && | 
|  | Visited.insert(U).second) | 
|  | Worklist.push_back(U); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BlockAddressUsers.empty()) { | 
|  | Vals.resize(BlockAddressUsers.size()); | 
|  | for (auto I : llvm::enumerate(BlockAddressUsers)) | 
|  | Vals[I.index()] = VE.getValueID(I.value()); | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit names for all the instructions etc. | 
|  | if (auto *Symtab = F.getValueSymbolTable()) | 
|  | writeFunctionLevelValueSymbolTable(*Symtab); | 
|  |  | 
|  | if (NeedsMetadataAttachment) | 
|  | writeFunctionMetadataAttachment(F); | 
|  | if (VE.shouldPreserveUseListOrder()) | 
|  | writeUseListBlock(&F); | 
|  | VE.purgeFunction(); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | // Emit blockinfo, which defines the standard abbreviations etc. | 
|  | void ModuleBitcodeWriter::writeBlockInfo() { | 
|  | // We only want to emit block info records for blocks that have multiple | 
|  | // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. | 
|  | // Other blocks can define their abbrevs inline. | 
|  | Stream.EnterBlockInfoBlock(); | 
|  |  | 
|  | { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != | 
|  | VST_ENTRY_8_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // 7-bit fixed width VST_CODE_ENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != | 
|  | VST_ENTRY_7_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // 6-bit char6 VST_CODE_ENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != | 
|  | VST_ENTRY_6_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // 6-bit char6 VST_CODE_BBENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != | 
|  | VST_BBENTRY_6_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // SETTYPE abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != | 
|  | CONSTANTS_SETTYPE_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // INTEGER abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != | 
|  | CONSTANTS_INTEGER_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // CE_CAST abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id | 
|  |  | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != | 
|  | CONSTANTS_CE_CAST_Abbrev) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // NULL abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != | 
|  | CONSTANTS_NULL_Abbrev) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | // FIXME: This should only use space for first class types! | 
|  |  | 
|  | { // INST_LOAD abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_LOAD_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_UNOP abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_UNOP_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_UNOP_FLAGS_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_BINOP abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_BINOP_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_BINOP_FLAGS_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_CAST abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_CAST_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // INST_RET abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_RET_VOID_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_RET abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_RET_VAL_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_UNREACHABLE_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  | { | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty | 
|  | Log2_32_Ceil(VE.getTypes().size() + 1))); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != | 
|  | FUNCTION_INST_GEP_ABBREV) | 
|  | llvm_unreachable("Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Write the module path strings, currently only used when generating | 
|  | /// a combined index file. | 
|  | void IndexBitcodeWriter::writeModStrings() { | 
|  | Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); | 
|  |  | 
|  | // TODO: See which abbrev sizes we actually need to emit | 
|  |  | 
|  | // 8-bit fixed-width MST_ENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // 7-bit fixed width MST_ENTRY strings. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); | 
|  | unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // 6-bit char6 MST_ENTRY strings. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); | 
|  | unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | SmallVector<unsigned, 64> Vals; | 
|  | forEachModule( | 
|  | [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { | 
|  | StringRef Key = MPSE.getKey(); | 
|  | const auto &Value = MPSE.getValue(); | 
|  | StringEncoding Bits = getStringEncoding(Key); | 
|  | unsigned AbbrevToUse = Abbrev8Bit; | 
|  | if (Bits == SE_Char6) | 
|  | AbbrevToUse = Abbrev6Bit; | 
|  | else if (Bits == SE_Fixed7) | 
|  | AbbrevToUse = Abbrev7Bit; | 
|  |  | 
|  | Vals.push_back(Value.first); | 
|  | Vals.append(Key.begin(), Key.end()); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); | 
|  |  | 
|  | // Emit an optional hash for the module now | 
|  | const auto &Hash = Value.second; | 
|  | if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { | 
|  | Vals.assign(Hash.begin(), Hash.end()); | 
|  | // Emit the hash record. | 
|  | Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); | 
|  | } | 
|  |  | 
|  | Vals.clear(); | 
|  | }); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Write the function type metadata related records that need to appear before | 
|  | /// a function summary entry (whether per-module or combined). | 
|  | template <typename Fn> | 
|  | static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, | 
|  | FunctionSummary *FS, | 
|  | Fn GetValueID) { | 
|  | if (!FS->type_tests().empty()) | 
|  | Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | auto WriteVFuncIdVec = [&](uint64_t Ty, | 
|  | ArrayRef<FunctionSummary::VFuncId> VFs) { | 
|  | if (VFs.empty()) | 
|  | return; | 
|  | Record.clear(); | 
|  | for (auto &VF : VFs) { | 
|  | Record.push_back(VF.GUID); | 
|  | Record.push_back(VF.Offset); | 
|  | } | 
|  | Stream.EmitRecord(Ty, Record); | 
|  | }; | 
|  |  | 
|  | WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, | 
|  | FS->type_test_assume_vcalls()); | 
|  | WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, | 
|  | FS->type_checked_load_vcalls()); | 
|  |  | 
|  | auto WriteConstVCallVec = [&](uint64_t Ty, | 
|  | ArrayRef<FunctionSummary::ConstVCall> VCs) { | 
|  | for (auto &VC : VCs) { | 
|  | Record.clear(); | 
|  | Record.push_back(VC.VFunc.GUID); | 
|  | Record.push_back(VC.VFunc.Offset); | 
|  | llvm::append_range(Record, VC.Args); | 
|  | Stream.EmitRecord(Ty, Record); | 
|  | } | 
|  | }; | 
|  |  | 
|  | WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, | 
|  | FS->type_test_assume_const_vcalls()); | 
|  | WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, | 
|  | FS->type_checked_load_const_vcalls()); | 
|  |  | 
|  | auto WriteRange = [&](ConstantRange Range) { | 
|  | Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); | 
|  | assert(Range.getLower().getNumWords() == 1); | 
|  | assert(Range.getUpper().getNumWords() == 1); | 
|  | emitSignedInt64(Record, *Range.getLower().getRawData()); | 
|  | emitSignedInt64(Record, *Range.getUpper().getRawData()); | 
|  | }; | 
|  |  | 
|  | if (!FS->paramAccesses().empty()) { | 
|  | Record.clear(); | 
|  | for (auto &Arg : FS->paramAccesses()) { | 
|  | size_t UndoSize = Record.size(); | 
|  | Record.push_back(Arg.ParamNo); | 
|  | WriteRange(Arg.Use); | 
|  | Record.push_back(Arg.Calls.size()); | 
|  | for (auto &Call : Arg.Calls) { | 
|  | Record.push_back(Call.ParamNo); | 
|  | std::optional<unsigned> ValueID = GetValueID(Call.Callee); | 
|  | if (!ValueID) { | 
|  | // If ValueID is unknown we can't drop just this call, we must drop | 
|  | // entire parameter. | 
|  | Record.resize(UndoSize); | 
|  | break; | 
|  | } | 
|  | Record.push_back(*ValueID); | 
|  | WriteRange(Call.Offsets); | 
|  | } | 
|  | } | 
|  | if (!Record.empty()) | 
|  | Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Collect type IDs from type tests used by function. | 
|  | static void | 
|  | getReferencedTypeIds(FunctionSummary *FS, | 
|  | std::set<GlobalValue::GUID> &ReferencedTypeIds) { | 
|  | if (!FS->type_tests().empty()) | 
|  | for (auto &TT : FS->type_tests()) | 
|  | ReferencedTypeIds.insert(TT); | 
|  |  | 
|  | auto GetReferencedTypesFromVFuncIdVec = | 
|  | [&](ArrayRef<FunctionSummary::VFuncId> VFs) { | 
|  | for (auto &VF : VFs) | 
|  | ReferencedTypeIds.insert(VF.GUID); | 
|  | }; | 
|  |  | 
|  | GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); | 
|  | GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); | 
|  |  | 
|  | auto GetReferencedTypesFromConstVCallVec = | 
|  | [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { | 
|  | for (auto &VC : VCs) | 
|  | ReferencedTypeIds.insert(VC.VFunc.GUID); | 
|  | }; | 
|  |  | 
|  | GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); | 
|  | GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); | 
|  | } | 
|  |  | 
|  | static void writeWholeProgramDevirtResolutionByArg( | 
|  | SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, | 
|  | const WholeProgramDevirtResolution::ByArg &ByArg) { | 
|  | NameVals.push_back(args.size()); | 
|  | llvm::append_range(NameVals, args); | 
|  |  | 
|  | NameVals.push_back(ByArg.TheKind); | 
|  | NameVals.push_back(ByArg.Info); | 
|  | NameVals.push_back(ByArg.Byte); | 
|  | NameVals.push_back(ByArg.Bit); | 
|  | } | 
|  |  | 
|  | static void writeWholeProgramDevirtResolution( | 
|  | SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, | 
|  | uint64_t Id, const WholeProgramDevirtResolution &Wpd) { | 
|  | NameVals.push_back(Id); | 
|  |  | 
|  | NameVals.push_back(Wpd.TheKind); | 
|  | NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); | 
|  | NameVals.push_back(Wpd.SingleImplName.size()); | 
|  |  | 
|  | NameVals.push_back(Wpd.ResByArg.size()); | 
|  | for (auto &A : Wpd.ResByArg) | 
|  | writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); | 
|  | } | 
|  |  | 
|  | static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, | 
|  | StringTableBuilder &StrtabBuilder, | 
|  | const std::string &Id, | 
|  | const TypeIdSummary &Summary) { | 
|  | NameVals.push_back(StrtabBuilder.add(Id)); | 
|  | NameVals.push_back(Id.size()); | 
|  |  | 
|  | NameVals.push_back(Summary.TTRes.TheKind); | 
|  | NameVals.push_back(Summary.TTRes.SizeM1BitWidth); | 
|  | NameVals.push_back(Summary.TTRes.AlignLog2); | 
|  | NameVals.push_back(Summary.TTRes.SizeM1); | 
|  | NameVals.push_back(Summary.TTRes.BitMask); | 
|  | NameVals.push_back(Summary.TTRes.InlineBits); | 
|  |  | 
|  | for (auto &W : Summary.WPDRes) | 
|  | writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, | 
|  | W.second); | 
|  | } | 
|  |  | 
|  | static void writeTypeIdCompatibleVtableSummaryRecord( | 
|  | SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, | 
|  | const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, | 
|  | ValueEnumerator &VE) { | 
|  | NameVals.push_back(StrtabBuilder.add(Id)); | 
|  | NameVals.push_back(Id.size()); | 
|  |  | 
|  | for (auto &P : Summary) { | 
|  | NameVals.push_back(P.AddressPointOffset); | 
|  | NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void writeFunctionHeapProfileRecords( | 
|  | BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, | 
|  | unsigned AllocAbbrev, bool PerModule, | 
|  | std::function<unsigned(const ValueInfo &VI)> GetValueID, | 
|  | std::function<unsigned(unsigned)> GetStackIndex) { | 
|  | SmallVector<uint64_t> Record; | 
|  |  | 
|  | for (auto &CI : FS->callsites()) { | 
|  | Record.clear(); | 
|  | // Per module callsite clones should always have a single entry of | 
|  | // value 0. | 
|  | assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); | 
|  | Record.push_back(GetValueID(CI.Callee)); | 
|  | if (!PerModule) { | 
|  | Record.push_back(CI.StackIdIndices.size()); | 
|  | Record.push_back(CI.Clones.size()); | 
|  | } | 
|  | for (auto Id : CI.StackIdIndices) | 
|  | Record.push_back(GetStackIndex(Id)); | 
|  | if (!PerModule) { | 
|  | for (auto V : CI.Clones) | 
|  | Record.push_back(V); | 
|  | } | 
|  | Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO | 
|  | : bitc::FS_COMBINED_CALLSITE_INFO, | 
|  | Record, CallsiteAbbrev); | 
|  | } | 
|  |  | 
|  | for (auto &AI : FS->allocs()) { | 
|  | Record.clear(); | 
|  | // Per module alloc versions should always have a single entry of | 
|  | // value 0. | 
|  | assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); | 
|  | if (!PerModule) { | 
|  | Record.push_back(AI.MIBs.size()); | 
|  | Record.push_back(AI.Versions.size()); | 
|  | } | 
|  | for (auto &MIB : AI.MIBs) { | 
|  | Record.push_back((uint8_t)MIB.AllocType); | 
|  | Record.push_back(MIB.StackIdIndices.size()); | 
|  | for (auto Id : MIB.StackIdIndices) | 
|  | Record.push_back(GetStackIndex(Id)); | 
|  | } | 
|  | if (!PerModule) { | 
|  | for (auto V : AI.Versions) | 
|  | Record.push_back(V); | 
|  | } | 
|  | Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO | 
|  | : bitc::FS_COMBINED_ALLOC_INFO, | 
|  | Record, AllocAbbrev); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Helper to emit a single function summary record. | 
|  | void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( | 
|  | SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, | 
|  | unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, | 
|  | unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { | 
|  | NameVals.push_back(ValueID); | 
|  |  | 
|  | FunctionSummary *FS = cast<FunctionSummary>(Summary); | 
|  |  | 
|  | writeFunctionTypeMetadataRecords( | 
|  | Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { | 
|  | return {VE.getValueID(VI.getValue())}; | 
|  | }); | 
|  |  | 
|  | writeFunctionHeapProfileRecords( | 
|  | Stream, FS, CallsiteAbbrev, AllocAbbrev, | 
|  | /*PerModule*/ true, | 
|  | /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, | 
|  | /*GetStackIndex*/ [&](unsigned I) { return I; }); | 
|  |  | 
|  | auto SpecialRefCnts = FS->specialRefCounts(); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); | 
|  | NameVals.push_back(FS->instCount()); | 
|  | NameVals.push_back(getEncodedFFlags(FS->fflags())); | 
|  | NameVals.push_back(FS->refs().size()); | 
|  | NameVals.push_back(SpecialRefCnts.first);  // rorefcnt | 
|  | NameVals.push_back(SpecialRefCnts.second); // worefcnt | 
|  |  | 
|  | for (auto &RI : FS->refs()) | 
|  | NameVals.push_back(VE.getValueID(RI.getValue())); | 
|  |  | 
|  | bool HasProfileData = | 
|  | F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; | 
|  | for (auto &ECI : FS->calls()) { | 
|  | NameVals.push_back(getValueId(ECI.first)); | 
|  | if (HasProfileData) | 
|  | NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); | 
|  | else if (WriteRelBFToSummary) | 
|  | NameVals.push_back(ECI.second.RelBlockFreq); | 
|  | } | 
|  |  | 
|  | unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); | 
|  | unsigned Code = | 
|  | (HasProfileData ? bitc::FS_PERMODULE_PROFILE | 
|  | : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF | 
|  | : bitc::FS_PERMODULE)); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, NameVals, FSAbbrev); | 
|  | NameVals.clear(); | 
|  | } | 
|  |  | 
|  | // Collect the global value references in the given variable's initializer, | 
|  | // and emit them in a summary record. | 
|  | void ModuleBitcodeWriterBase::writeModuleLevelReferences( | 
|  | const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, | 
|  | unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { | 
|  | auto VI = Index->getValueInfo(V.getGUID()); | 
|  | if (!VI || VI.getSummaryList().empty()) { | 
|  | // Only declarations should not have a summary (a declaration might however | 
|  | // have a summary if the def was in module level asm). | 
|  | assert(V.isDeclaration()); | 
|  | return; | 
|  | } | 
|  | auto *Summary = VI.getSummaryList()[0].get(); | 
|  | NameVals.push_back(VE.getValueID(&V)); | 
|  | GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); | 
|  | NameVals.push_back(getEncodedGVarFlags(VS->varflags())); | 
|  |  | 
|  | auto VTableFuncs = VS->vTableFuncs(); | 
|  | if (!VTableFuncs.empty()) | 
|  | NameVals.push_back(VS->refs().size()); | 
|  |  | 
|  | unsigned SizeBeforeRefs = NameVals.size(); | 
|  | for (auto &RI : VS->refs()) | 
|  | NameVals.push_back(VE.getValueID(RI.getValue())); | 
|  | // Sort the refs for determinism output, the vector returned by FS->refs() has | 
|  | // been initialized from a DenseSet. | 
|  | llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); | 
|  |  | 
|  | if (VTableFuncs.empty()) | 
|  | Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, | 
|  | FSModRefsAbbrev); | 
|  | else { | 
|  | // VTableFuncs pairs should already be sorted by offset. | 
|  | for (auto &P : VTableFuncs) { | 
|  | NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); | 
|  | NameVals.push_back(P.VTableOffset); | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, | 
|  | FSModVTableRefsAbbrev); | 
|  | } | 
|  | NameVals.clear(); | 
|  | } | 
|  |  | 
|  | /// Emit the per-module summary section alongside the rest of | 
|  | /// the module's bitcode. | 
|  | void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { | 
|  | // By default we compile with ThinLTO if the module has a summary, but the | 
|  | // client can request full LTO with a module flag. | 
|  | bool IsThinLTO = true; | 
|  | if (auto *MD = | 
|  | mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) | 
|  | IsThinLTO = MD->getZExtValue(); | 
|  | Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID | 
|  | : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, | 
|  | 4); | 
|  |  | 
|  | Stream.EmitRecord( | 
|  | bitc::FS_VERSION, | 
|  | ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); | 
|  |  | 
|  | // Write the index flags. | 
|  | uint64_t Flags = 0; | 
|  | // Bits 1-3 are set only in the combined index, skip them. | 
|  | if (Index->enableSplitLTOUnit()) | 
|  | Flags |= 0x8; | 
|  | if (Index->hasUnifiedLTO()) | 
|  | Flags |= 0x200; | 
|  |  | 
|  | Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); | 
|  |  | 
|  | if (Index->begin() == Index->end()) { | 
|  | Stream.ExitBlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const auto &GVI : valueIds()) { | 
|  | Stream.EmitRecord(bitc::FS_VALUE_GUID, | 
|  | ArrayRef<uint64_t>{GVI.second, GVI.first}); | 
|  | } | 
|  |  | 
|  | if (!Index->stackIds().empty()) { | 
|  | auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); | 
|  | // numids x stackid | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); | 
|  | Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); | 
|  | } | 
|  |  | 
|  | // Abbrev for FS_PERMODULE_PROFILE. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt | 
|  | // numrefs x valueid, n x (valueid, hotness) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | if (WriteRelBFToSummary) | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); | 
|  | else | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt | 
|  | // numrefs x valueid, n x (valueid [, rel_block_freq]) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs | 
|  | // numrefs x valueid, n x (valueid , offset) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_ALIAS. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_TYPE_ID_METADATA | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length | 
|  | // n x (valueid , offset) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid | 
|  | // n x stackidindex | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); | 
|  | // n x (alloc type, numstackids, numstackids x stackidindex) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | SmallVector<uint64_t, 64> NameVals; | 
|  | // Iterate over the list of functions instead of the Index to | 
|  | // ensure the ordering is stable. | 
|  | for (const Function &F : M) { | 
|  | // Summary emission does not support anonymous functions, they have to | 
|  | // renamed using the anonymous function renaming pass. | 
|  | if (!F.hasName()) | 
|  | report_fatal_error("Unexpected anonymous function when writing summary"); | 
|  |  | 
|  | ValueInfo VI = Index->getValueInfo(F.getGUID()); | 
|  | if (!VI || VI.getSummaryList().empty()) { | 
|  | // Only declarations should not have a summary (a declaration might | 
|  | // however have a summary if the def was in module level asm). | 
|  | assert(F.isDeclaration()); | 
|  | continue; | 
|  | } | 
|  | auto *Summary = VI.getSummaryList()[0].get(); | 
|  | writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), | 
|  | FSCallsAbbrev, FSCallsProfileAbbrev, | 
|  | CallsiteAbbrev, AllocAbbrev, F); | 
|  | } | 
|  |  | 
|  | // Capture references from GlobalVariable initializers, which are outside | 
|  | // of a function scope. | 
|  | for (const GlobalVariable &G : M.globals()) | 
|  | writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, | 
|  | FSModVTableRefsAbbrev); | 
|  |  | 
|  | for (const GlobalAlias &A : M.aliases()) { | 
|  | auto *Aliasee = A.getAliaseeObject(); | 
|  | // Skip ifunc and nameless functions which don't have an entry in the | 
|  | // summary. | 
|  | if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) | 
|  | continue; | 
|  | auto AliasId = VE.getValueID(&A); | 
|  | auto AliaseeId = VE.getValueID(Aliasee); | 
|  | NameVals.push_back(AliasId); | 
|  | auto *Summary = Index->getGlobalValueSummary(A); | 
|  | AliasSummary *AS = cast<AliasSummary>(Summary); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); | 
|  | NameVals.push_back(AliaseeId); | 
|  | Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); | 
|  | NameVals.clear(); | 
|  | } | 
|  |  | 
|  | for (auto &S : Index->typeIdCompatibleVtableMap()) { | 
|  | writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, | 
|  | S.second, VE); | 
|  | Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, | 
|  | TypeIdCompatibleVtableAbbrev); | 
|  | NameVals.clear(); | 
|  | } | 
|  |  | 
|  | if (Index->getBlockCount()) | 
|  | Stream.EmitRecord(bitc::FS_BLOCK_COUNT, | 
|  | ArrayRef<uint64_t>{Index->getBlockCount()}); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Emit the combined summary section into the combined index file. | 
|  | void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { | 
|  | Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); | 
|  | Stream.EmitRecord( | 
|  | bitc::FS_VERSION, | 
|  | ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); | 
|  |  | 
|  | // Write the index flags. | 
|  | Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); | 
|  |  | 
|  | for (const auto &GVI : valueIds()) { | 
|  | Stream.EmitRecord(bitc::FS_VALUE_GUID, | 
|  | ArrayRef<uint64_t>{GVI.second, GVI.first}); | 
|  | } | 
|  |  | 
|  | if (!StackIdIndices.empty()) { | 
|  | auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); | 
|  | // numids x stackid | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); | 
|  | // Write the stack ids used by this index, which will be a subset of those in | 
|  | // the full index in the case of distributed indexes. | 
|  | std::vector<uint64_t> StackIds; | 
|  | for (auto &I : StackIdIndices) | 
|  | StackIds.push_back(Index.getStackIdAtIndex(I)); | 
|  | Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); | 
|  | } | 
|  |  | 
|  | // Abbrev for FS_COMBINED. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt | 
|  | // numrefs x valueid, n x (valueid) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_COMBINED_PROFILE. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt | 
|  | // numrefs x valueid, n x (valueid, hotness) | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for FS_COMBINED_ALIAS. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid | 
|  | unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver | 
|  | // numstackindices x stackidindex, numver x version | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver | 
|  | // nummib x (alloc type, numstackids, numstackids x stackidindex), | 
|  | // numver x version | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // The aliases are emitted as a post-pass, and will point to the value | 
|  | // id of the aliasee. Save them in a vector for post-processing. | 
|  | SmallVector<AliasSummary *, 64> Aliases; | 
|  |  | 
|  | // Save the value id for each summary for alias emission. | 
|  | DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; | 
|  |  | 
|  | SmallVector<uint64_t, 64> NameVals; | 
|  |  | 
|  | // Set that will be populated during call to writeFunctionTypeMetadataRecords | 
|  | // with the type ids referenced by this index file. | 
|  | std::set<GlobalValue::GUID> ReferencedTypeIds; | 
|  |  | 
|  | // For local linkage, we also emit the original name separately | 
|  | // immediately after the record. | 
|  | auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { | 
|  | // We don't need to emit the original name if we are writing the index for | 
|  | // distributed backends (in which case ModuleToSummariesForIndex is | 
|  | // non-null). The original name is only needed during the thin link, since | 
|  | // for SamplePGO the indirect call targets for local functions have | 
|  | // have the original name annotated in profile. | 
|  | // Continue to emit it when writing out the entire combined index, which is | 
|  | // used in testing the thin link via llvm-lto. | 
|  | if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) | 
|  | return; | 
|  | NameVals.push_back(S.getOriginalName()); | 
|  | Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); | 
|  | NameVals.clear(); | 
|  | }; | 
|  |  | 
|  | std::set<GlobalValue::GUID> DefOrUseGUIDs; | 
|  | forEachSummary([&](GVInfo I, bool IsAliasee) { | 
|  | GlobalValueSummary *S = I.second; | 
|  | assert(S); | 
|  | DefOrUseGUIDs.insert(I.first); | 
|  | for (const ValueInfo &VI : S->refs()) | 
|  | DefOrUseGUIDs.insert(VI.getGUID()); | 
|  |  | 
|  | auto ValueId = getValueId(I.first); | 
|  | assert(ValueId); | 
|  | SummaryToValueIdMap[S] = *ValueId; | 
|  |  | 
|  | // If this is invoked for an aliasee, we want to record the above | 
|  | // mapping, but then not emit a summary entry (if the aliasee is | 
|  | // to be imported, we will invoke this separately with IsAliasee=false). | 
|  | if (IsAliasee) | 
|  | return; | 
|  |  | 
|  | if (auto *AS = dyn_cast<AliasSummary>(S)) { | 
|  | // Will process aliases as a post-pass because the reader wants all | 
|  | // global to be loaded first. | 
|  | Aliases.push_back(AS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { | 
|  | NameVals.push_back(*ValueId); | 
|  | NameVals.push_back(Index.getModuleId(VS->modulePath())); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); | 
|  | NameVals.push_back(getEncodedGVarFlags(VS->varflags())); | 
|  | for (auto &RI : VS->refs()) { | 
|  | auto RefValueId = getValueId(RI.getGUID()); | 
|  | if (!RefValueId) | 
|  | continue; | 
|  | NameVals.push_back(*RefValueId); | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, | 
|  | FSModRefsAbbrev); | 
|  | NameVals.clear(); | 
|  | MaybeEmitOriginalName(*S); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { | 
|  | if (!VI) | 
|  | return std::nullopt; | 
|  | return getValueId(VI.getGUID()); | 
|  | }; | 
|  |  | 
|  | auto *FS = cast<FunctionSummary>(S); | 
|  | writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); | 
|  | getReferencedTypeIds(FS, ReferencedTypeIds); | 
|  |  | 
|  | writeFunctionHeapProfileRecords( | 
|  | Stream, FS, CallsiteAbbrev, AllocAbbrev, | 
|  | /*PerModule*/ false, | 
|  | /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { | 
|  | std::optional<unsigned> ValueID = GetValueId(VI); | 
|  | // This can happen in shared index files for distributed ThinLTO if | 
|  | // the callee function summary is not included. Record 0 which we | 
|  | // will have to deal with conservatively when doing any kind of | 
|  | // validation in the ThinLTO backends. | 
|  | if (!ValueID) | 
|  | return 0; | 
|  | return *ValueID; | 
|  | }, | 
|  | /*GetStackIndex*/ [&](unsigned I) { | 
|  | // Get the corresponding index into the list of StackIdIndices | 
|  | // actually being written for this combined index (which may be a | 
|  | // subset in the case of distributed indexes). | 
|  | auto Lower = llvm::lower_bound(StackIdIndices, I); | 
|  | return std::distance(StackIdIndices.begin(), Lower); | 
|  | }); | 
|  |  | 
|  | NameVals.push_back(*ValueId); | 
|  | NameVals.push_back(Index.getModuleId(FS->modulePath())); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); | 
|  | NameVals.push_back(FS->instCount()); | 
|  | NameVals.push_back(getEncodedFFlags(FS->fflags())); | 
|  | NameVals.push_back(FS->entryCount()); | 
|  |  | 
|  | // Fill in below | 
|  | NameVals.push_back(0); // numrefs | 
|  | NameVals.push_back(0); // rorefcnt | 
|  | NameVals.push_back(0); // worefcnt | 
|  |  | 
|  | unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; | 
|  | for (auto &RI : FS->refs()) { | 
|  | auto RefValueId = getValueId(RI.getGUID()); | 
|  | if (!RefValueId) | 
|  | continue; | 
|  | NameVals.push_back(*RefValueId); | 
|  | if (RI.isReadOnly()) | 
|  | RORefCnt++; | 
|  | else if (RI.isWriteOnly()) | 
|  | WORefCnt++; | 
|  | Count++; | 
|  | } | 
|  | NameVals[6] = Count; | 
|  | NameVals[7] = RORefCnt; | 
|  | NameVals[8] = WORefCnt; | 
|  |  | 
|  | bool HasProfileData = false; | 
|  | for (auto &EI : FS->calls()) { | 
|  | HasProfileData |= | 
|  | EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; | 
|  | if (HasProfileData) | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (auto &EI : FS->calls()) { | 
|  | // If this GUID doesn't have a value id, it doesn't have a function | 
|  | // summary and we don't need to record any calls to it. | 
|  | std::optional<unsigned> CallValueId = GetValueId(EI.first); | 
|  | if (!CallValueId) | 
|  | continue; | 
|  | NameVals.push_back(*CallValueId); | 
|  | if (HasProfileData) | 
|  | NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); | 
|  | } | 
|  |  | 
|  | unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); | 
|  | unsigned Code = | 
|  | (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, NameVals, FSAbbrev); | 
|  | NameVals.clear(); | 
|  | MaybeEmitOriginalName(*S); | 
|  | }); | 
|  |  | 
|  | for (auto *AS : Aliases) { | 
|  | auto AliasValueId = SummaryToValueIdMap[AS]; | 
|  | assert(AliasValueId); | 
|  | NameVals.push_back(AliasValueId); | 
|  | NameVals.push_back(Index.getModuleId(AS->modulePath())); | 
|  | NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); | 
|  | auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; | 
|  | assert(AliaseeValueId); | 
|  | NameVals.push_back(AliaseeValueId); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); | 
|  | NameVals.clear(); | 
|  | MaybeEmitOriginalName(*AS); | 
|  |  | 
|  | if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) | 
|  | getReferencedTypeIds(FS, ReferencedTypeIds); | 
|  | } | 
|  |  | 
|  | if (!Index.cfiFunctionDefs().empty()) { | 
|  | for (auto &S : Index.cfiFunctionDefs()) { | 
|  | if (DefOrUseGUIDs.count( | 
|  | GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { | 
|  | NameVals.push_back(StrtabBuilder.add(S)); | 
|  | NameVals.push_back(S.size()); | 
|  | } | 
|  | } | 
|  | if (!NameVals.empty()) { | 
|  | Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); | 
|  | NameVals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Index.cfiFunctionDecls().empty()) { | 
|  | for (auto &S : Index.cfiFunctionDecls()) { | 
|  | if (DefOrUseGUIDs.count( | 
|  | GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { | 
|  | NameVals.push_back(StrtabBuilder.add(S)); | 
|  | NameVals.push_back(S.size()); | 
|  | } | 
|  | } | 
|  | if (!NameVals.empty()) { | 
|  | Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); | 
|  | NameVals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Walk the GUIDs that were referenced, and write the | 
|  | // corresponding type id records. | 
|  | for (auto &T : ReferencedTypeIds) { | 
|  | auto TidIter = Index.typeIds().equal_range(T); | 
|  | for (auto It = TidIter.first; It != TidIter.second; ++It) { | 
|  | writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, | 
|  | It->second.second); | 
|  | Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); | 
|  | NameVals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Index.getBlockCount()) | 
|  | Stream.EmitRecord(bitc::FS_BLOCK_COUNT, | 
|  | ArrayRef<uint64_t>{Index.getBlockCount()}); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the | 
|  | /// current llvm version, and a record for the epoch number. | 
|  | static void writeIdentificationBlock(BitstreamWriter &Stream) { | 
|  | Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); | 
|  |  | 
|  | // Write the "user readable" string identifying the bitcode producer | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, | 
|  | "LLVM" LLVM_VERSION_STRING, StringAbbrev); | 
|  |  | 
|  | // Write the epoch version | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; | 
|  | Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { | 
|  | // Emit the module's hash. | 
|  | // MODULE_CODE_HASH: [5*i32] | 
|  | if (GenerateHash) { | 
|  | uint32_t Vals[5]; | 
|  | Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], | 
|  | Buffer.size() - BlockStartPos)); | 
|  | std::array<uint8_t, 20> Hash = Hasher.result(); | 
|  | for (int Pos = 0; Pos < 20; Pos += 4) { | 
|  | Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); | 
|  |  | 
|  | if (ModHash) | 
|  | // Save the written hash value. | 
|  | llvm::copy(Vals, std::begin(*ModHash)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ModuleBitcodeWriter::write() { | 
|  | writeIdentificationBlock(Stream); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); | 
|  | size_t BlockStartPos = Buffer.size(); | 
|  |  | 
|  | writeModuleVersion(); | 
|  |  | 
|  | // Emit blockinfo, which defines the standard abbreviations etc. | 
|  | writeBlockInfo(); | 
|  |  | 
|  | // Emit information describing all of the types in the module. | 
|  | writeTypeTable(); | 
|  |  | 
|  | // Emit information about attribute groups. | 
|  | writeAttributeGroupTable(); | 
|  |  | 
|  | // Emit information about parameter attributes. | 
|  | writeAttributeTable(); | 
|  |  | 
|  | writeComdats(); | 
|  |  | 
|  | // Emit top-level description of module, including target triple, inline asm, | 
|  | // descriptors for global variables, and function prototype info. | 
|  | writeModuleInfo(); | 
|  |  | 
|  | // Emit constants. | 
|  | writeModuleConstants(); | 
|  |  | 
|  | // Emit metadata kind names. | 
|  | writeModuleMetadataKinds(); | 
|  |  | 
|  | // Emit metadata. | 
|  | writeModuleMetadata(); | 
|  |  | 
|  | // Emit module-level use-lists. | 
|  | if (VE.shouldPreserveUseListOrder()) | 
|  | writeUseListBlock(nullptr); | 
|  |  | 
|  | writeOperandBundleTags(); | 
|  | writeSyncScopeNames(); | 
|  |  | 
|  | // Emit function bodies. | 
|  | DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; | 
|  | for (const Function &F : M) | 
|  | if (!F.isDeclaration()) | 
|  | writeFunction(F, FunctionToBitcodeIndex); | 
|  |  | 
|  | // Need to write after the above call to WriteFunction which populates | 
|  | // the summary information in the index. | 
|  | if (Index) | 
|  | writePerModuleGlobalValueSummary(); | 
|  |  | 
|  | writeGlobalValueSymbolTable(FunctionToBitcodeIndex); | 
|  |  | 
|  | writeModuleHash(BlockStartPos); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, | 
|  | uint32_t &Position) { | 
|  | support::endian::write32le(&Buffer[Position], Value); | 
|  | Position += 4; | 
|  | } | 
|  |  | 
|  | /// If generating a bc file on darwin, we have to emit a | 
|  | /// header and trailer to make it compatible with the system archiver.  To do | 
|  | /// this we emit the following header, and then emit a trailer that pads the | 
|  | /// file out to be a multiple of 16 bytes. | 
|  | /// | 
|  | /// struct bc_header { | 
|  | ///   uint32_t Magic;         // 0x0B17C0DE | 
|  | ///   uint32_t Version;       // Version, currently always 0. | 
|  | ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file. | 
|  | ///   uint32_t BitcodeSize;   // Size of traditional bitcode file. | 
|  | ///   uint32_t CPUType;       // CPU specifier. | 
|  | ///   ... potentially more later ... | 
|  | /// }; | 
|  | static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, | 
|  | const Triple &TT) { | 
|  | unsigned CPUType = ~0U; | 
|  |  | 
|  | // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, | 
|  | // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic | 
|  | // number from /usr/include/mach/machine.h.  It is ok to reproduce the | 
|  | // specific constants here because they are implicitly part of the Darwin ABI. | 
|  | enum { | 
|  | DARWIN_CPU_ARCH_ABI64      = 0x01000000, | 
|  | DARWIN_CPU_TYPE_X86        = 7, | 
|  | DARWIN_CPU_TYPE_ARM        = 12, | 
|  | DARWIN_CPU_TYPE_POWERPC    = 18 | 
|  | }; | 
|  |  | 
|  | Triple::ArchType Arch = TT.getArch(); | 
|  | if (Arch == Triple::x86_64) | 
|  | CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; | 
|  | else if (Arch == Triple::x86) | 
|  | CPUType = DARWIN_CPU_TYPE_X86; | 
|  | else if (Arch == Triple::ppc) | 
|  | CPUType = DARWIN_CPU_TYPE_POWERPC; | 
|  | else if (Arch == Triple::ppc64) | 
|  | CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; | 
|  | else if (Arch == Triple::arm || Arch == Triple::thumb) | 
|  | CPUType = DARWIN_CPU_TYPE_ARM; | 
|  |  | 
|  | // Traditional Bitcode starts after header. | 
|  | assert(Buffer.size() >= BWH_HeaderSize && | 
|  | "Expected header size to be reserved"); | 
|  | unsigned BCOffset = BWH_HeaderSize; | 
|  | unsigned BCSize = Buffer.size() - BWH_HeaderSize; | 
|  |  | 
|  | // Write the magic and version. | 
|  | unsigned Position = 0; | 
|  | writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); | 
|  | writeInt32ToBuffer(0, Buffer, Position); // Version. | 
|  | writeInt32ToBuffer(BCOffset, Buffer, Position); | 
|  | writeInt32ToBuffer(BCSize, Buffer, Position); | 
|  | writeInt32ToBuffer(CPUType, Buffer, Position); | 
|  |  | 
|  | // If the file is not a multiple of 16 bytes, insert dummy padding. | 
|  | while (Buffer.size() & 15) | 
|  | Buffer.push_back(0); | 
|  | } | 
|  |  | 
|  | /// Helper to write the header common to all bitcode files. | 
|  | static void writeBitcodeHeader(BitstreamWriter &Stream) { | 
|  | // Emit the file header. | 
|  | Stream.Emit((unsigned)'B', 8); | 
|  | Stream.Emit((unsigned)'C', 8); | 
|  | Stream.Emit(0x0, 4); | 
|  | Stream.Emit(0xC, 4); | 
|  | Stream.Emit(0xE, 4); | 
|  | Stream.Emit(0xD, 4); | 
|  | } | 
|  |  | 
|  | BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) | 
|  | : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { | 
|  | writeBitcodeHeader(*Stream); | 
|  | } | 
|  |  | 
|  | BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } | 
|  |  | 
|  | void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { | 
|  | Stream->EnterSubblock(Block, 3); | 
|  |  | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(Record)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); | 
|  | auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); | 
|  |  | 
|  | Stream->ExitBlock(); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeSymtab() { | 
|  | assert(!WroteStrtab && !WroteSymtab); | 
|  |  | 
|  | // If any module has module-level inline asm, we will require a registered asm | 
|  | // parser for the target so that we can create an accurate symbol table for | 
|  | // the module. | 
|  | for (Module *M : Mods) { | 
|  | if (M->getModuleInlineAsm().empty()) | 
|  | continue; | 
|  |  | 
|  | std::string Err; | 
|  | const Triple TT(M->getTargetTriple()); | 
|  | const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); | 
|  | if (!T || !T->hasMCAsmParser()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | WroteSymtab = true; | 
|  | SmallVector<char, 0> Symtab; | 
|  | // The irsymtab::build function may be unable to create a symbol table if the | 
|  | // module is malformed (e.g. it contains an invalid alias). Writing a symbol | 
|  | // table is not required for correctness, but we still want to be able to | 
|  | // write malformed modules to bitcode files, so swallow the error. | 
|  | if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { | 
|  | consumeError(std::move(E)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, | 
|  | {Symtab.data(), Symtab.size()}); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeStrtab() { | 
|  | assert(!WroteStrtab); | 
|  |  | 
|  | std::vector<char> Strtab; | 
|  | StrtabBuilder.finalizeInOrder(); | 
|  | Strtab.resize(StrtabBuilder.getSize()); | 
|  | StrtabBuilder.write((uint8_t *)Strtab.data()); | 
|  |  | 
|  | writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, | 
|  | {Strtab.data(), Strtab.size()}); | 
|  |  | 
|  | WroteStrtab = true; | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::copyStrtab(StringRef Strtab) { | 
|  | writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); | 
|  | WroteStrtab = true; | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeModule(const Module &M, | 
|  | bool ShouldPreserveUseListOrder, | 
|  | const ModuleSummaryIndex *Index, | 
|  | bool GenerateHash, ModuleHash *ModHash) { | 
|  | assert(!WroteStrtab); | 
|  |  | 
|  | // The Mods vector is used by irsymtab::build, which requires non-const | 
|  | // Modules in case it needs to materialize metadata. But the bitcode writer | 
|  | // requires that the module is materialized, so we can cast to non-const here, | 
|  | // after checking that it is in fact materialized. | 
|  | assert(M.isMaterialized()); | 
|  | Mods.push_back(const_cast<Module *>(&M)); | 
|  |  | 
|  | ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, | 
|  | ShouldPreserveUseListOrder, Index, | 
|  | GenerateHash, ModHash); | 
|  | ModuleWriter.write(); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeIndex( | 
|  | const ModuleSummaryIndex *Index, | 
|  | const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { | 
|  | IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, | 
|  | ModuleToSummariesForIndex); | 
|  | IndexWriter.write(); | 
|  | } | 
|  |  | 
|  | /// Write the specified module to the specified output stream. | 
|  | void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, | 
|  | bool ShouldPreserveUseListOrder, | 
|  | const ModuleSummaryIndex *Index, | 
|  | bool GenerateHash, ModuleHash *ModHash) { | 
|  | SmallVector<char, 0> Buffer; | 
|  | Buffer.reserve(256*1024); | 
|  |  | 
|  | // If this is darwin or another generic macho target, reserve space for the | 
|  | // header. | 
|  | Triple TT(M.getTargetTriple()); | 
|  | if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) | 
|  | Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); | 
|  |  | 
|  | BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); | 
|  | Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, | 
|  | ModHash); | 
|  | Writer.writeSymtab(); | 
|  | Writer.writeStrtab(); | 
|  |  | 
|  | if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) | 
|  | emitDarwinBCHeaderAndTrailer(Buffer, TT); | 
|  |  | 
|  | // Write the generated bitstream to "Out". | 
|  | if (!Buffer.empty()) | 
|  | Out.write((char *)&Buffer.front(), Buffer.size()); | 
|  | } | 
|  |  | 
|  | void IndexBitcodeWriter::write() { | 
|  | Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); | 
|  |  | 
|  | writeModuleVersion(); | 
|  |  | 
|  | // Write the module paths in the combined index. | 
|  | writeModStrings(); | 
|  |  | 
|  | // Write the summary combined index records. | 
|  | writeCombinedGlobalValueSummary(); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | // Write the specified module summary index to the given raw output stream, | 
|  | // where it will be written in a new bitcode block. This is used when | 
|  | // writing the combined index file for ThinLTO. When writing a subset of the | 
|  | // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. | 
|  | void llvm::writeIndexToFile( | 
|  | const ModuleSummaryIndex &Index, raw_ostream &Out, | 
|  | const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { | 
|  | SmallVector<char, 0> Buffer; | 
|  | Buffer.reserve(256 * 1024); | 
|  |  | 
|  | BitcodeWriter Writer(Buffer); | 
|  | Writer.writeIndex(&Index, ModuleToSummariesForIndex); | 
|  | Writer.writeStrtab(); | 
|  |  | 
|  | Out.write((char *)&Buffer.front(), Buffer.size()); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Class to manage the bitcode writing for a thin link bitcode file. | 
|  | class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { | 
|  | /// ModHash is for use in ThinLTO incremental build, generated while writing | 
|  | /// the module bitcode file. | 
|  | const ModuleHash *ModHash; | 
|  |  | 
|  | public: | 
|  | ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, | 
|  | BitstreamWriter &Stream, | 
|  | const ModuleSummaryIndex &Index, | 
|  | const ModuleHash &ModHash) | 
|  | : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, | 
|  | /*ShouldPreserveUseListOrder=*/false, &Index), | 
|  | ModHash(&ModHash) {} | 
|  |  | 
|  | void write(); | 
|  |  | 
|  | private: | 
|  | void writeSimplifiedModuleInfo(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | // This function writes a simpilified module info for thin link bitcode file. | 
|  | // It only contains the source file name along with the name(the offset and | 
|  | // size in strtab) and linkage for global values. For the global value info | 
|  | // entry, in order to keep linkage at offset 5, there are three zeros used | 
|  | // as padding. | 
|  | void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { | 
|  | SmallVector<unsigned, 64> Vals; | 
|  | // Emit the module's source file name. | 
|  | { | 
|  | StringEncoding Bits = getStringEncoding(M.getSourceFileName()); | 
|  | BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); | 
|  | if (Bits == SE_Char6) | 
|  | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); | 
|  | else if (Bits == SE_Fixed7) | 
|  | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); | 
|  |  | 
|  | // MODULE_CODE_SOURCE_FILENAME: [namechar x N] | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(AbbrevOpToUse); | 
|  | unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | for (const auto P : M.getSourceFileName()) | 
|  | Vals.push_back((unsigned char)P); | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the global variable information. | 
|  | for (const GlobalVariable &GV : M.globals()) { | 
|  | // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] | 
|  | Vals.push_back(StrtabBuilder.add(GV.getName())); | 
|  | Vals.push_back(GV.getName().size()); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(getEncodedLinkage(GV)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the function proto information. | 
|  | for (const Function &F : M) { | 
|  | // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage] | 
|  | Vals.push_back(StrtabBuilder.add(F.getName())); | 
|  | Vals.push_back(F.getName().size()); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(getEncodedLinkage(F)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the alias information. | 
|  | for (const GlobalAlias &A : M.aliases()) { | 
|  | // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] | 
|  | Vals.push_back(StrtabBuilder.add(A.getName())); | 
|  | Vals.push_back(A.getName().size()); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(getEncodedLinkage(A)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the ifunc information. | 
|  | for (const GlobalIFunc &I : M.ifuncs()) { | 
|  | // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] | 
|  | Vals.push_back(StrtabBuilder.add(I.getName())); | 
|  | Vals.push_back(I.getName().size()); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(0); | 
|  | Vals.push_back(getEncodedLinkage(I)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); | 
|  | Vals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ThinLinkBitcodeWriter::write() { | 
|  | Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); | 
|  |  | 
|  | writeModuleVersion(); | 
|  |  | 
|  | writeSimplifiedModuleInfo(); | 
|  |  | 
|  | writePerModuleGlobalValueSummary(); | 
|  |  | 
|  | // Write module hash. | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeThinLinkBitcode(const Module &M, | 
|  | const ModuleSummaryIndex &Index, | 
|  | const ModuleHash &ModHash) { | 
|  | assert(!WroteStrtab); | 
|  |  | 
|  | // The Mods vector is used by irsymtab::build, which requires non-const | 
|  | // Modules in case it needs to materialize metadata. But the bitcode writer | 
|  | // requires that the module is materialized, so we can cast to non-const here, | 
|  | // after checking that it is in fact materialized. | 
|  | assert(M.isMaterialized()); | 
|  | Mods.push_back(const_cast<Module *>(&M)); | 
|  |  | 
|  | ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, | 
|  | ModHash); | 
|  | ThinLinkWriter.write(); | 
|  | } | 
|  |  | 
|  | // Write the specified thin link bitcode file to the given raw output stream, | 
|  | // where it will be written in a new bitcode block. This is used when | 
|  | // writing the per-module index file for ThinLTO. | 
|  | void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, | 
|  | const ModuleSummaryIndex &Index, | 
|  | const ModuleHash &ModHash) { | 
|  | SmallVector<char, 0> Buffer; | 
|  | Buffer.reserve(256 * 1024); | 
|  |  | 
|  | BitcodeWriter Writer(Buffer); | 
|  | Writer.writeThinLinkBitcode(M, Index, ModHash); | 
|  | Writer.writeSymtab(); | 
|  | Writer.writeStrtab(); | 
|  |  | 
|  | Out.write((char *)&Buffer.front(), Buffer.size()); | 
|  | } | 
|  |  | 
|  | static const char *getSectionNameForBitcode(const Triple &T) { | 
|  | switch (T.getObjectFormat()) { | 
|  | case Triple::MachO: | 
|  | return "__LLVM,__bitcode"; | 
|  | case Triple::COFF: | 
|  | case Triple::ELF: | 
|  | case Triple::Wasm: | 
|  | case Triple::UnknownObjectFormat: | 
|  | return ".llvmbc"; | 
|  | case Triple::GOFF: | 
|  | llvm_unreachable("GOFF is not yet implemented"); | 
|  | break; | 
|  | case Triple::SPIRV: | 
|  | llvm_unreachable("SPIRV is not yet implemented"); | 
|  | break; | 
|  | case Triple::XCOFF: | 
|  | llvm_unreachable("XCOFF is not yet implemented"); | 
|  | break; | 
|  | case Triple::DXContainer: | 
|  | llvm_unreachable("DXContainer is not yet implemented"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unimplemented ObjectFormatType"); | 
|  | } | 
|  |  | 
|  | static const char *getSectionNameForCommandline(const Triple &T) { | 
|  | switch (T.getObjectFormat()) { | 
|  | case Triple::MachO: | 
|  | return "__LLVM,__cmdline"; | 
|  | case Triple::COFF: | 
|  | case Triple::ELF: | 
|  | case Triple::Wasm: | 
|  | case Triple::UnknownObjectFormat: | 
|  | return ".llvmcmd"; | 
|  | case Triple::GOFF: | 
|  | llvm_unreachable("GOFF is not yet implemented"); | 
|  | break; | 
|  | case Triple::SPIRV: | 
|  | llvm_unreachable("SPIRV is not yet implemented"); | 
|  | break; | 
|  | case Triple::XCOFF: | 
|  | llvm_unreachable("XCOFF is not yet implemented"); | 
|  | break; | 
|  | case Triple::DXContainer: | 
|  | llvm_unreachable("DXC is not yet implemented"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Unimplemented ObjectFormatType"); | 
|  | } | 
|  |  | 
|  | void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, | 
|  | bool EmbedBitcode, bool EmbedCmdline, | 
|  | const std::vector<uint8_t> &CmdArgs) { | 
|  | // Save llvm.compiler.used and remove it. | 
|  | SmallVector<Constant *, 2> UsedArray; | 
|  | SmallVector<GlobalValue *, 4> UsedGlobals; | 
|  | Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); | 
|  | GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); | 
|  | for (auto *GV : UsedGlobals) { | 
|  | if (GV->getName() != "llvm.embedded.module" && | 
|  | GV->getName() != "llvm.cmdline") | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | } | 
|  | if (Used) | 
|  | Used->eraseFromParent(); | 
|  |  | 
|  | // Embed the bitcode for the llvm module. | 
|  | std::string Data; | 
|  | ArrayRef<uint8_t> ModuleData; | 
|  | Triple T(M.getTargetTriple()); | 
|  |  | 
|  | if (EmbedBitcode) { | 
|  | if (Buf.getBufferSize() == 0 || | 
|  | !isBitcode((const unsigned char *)Buf.getBufferStart(), | 
|  | (const unsigned char *)Buf.getBufferEnd())) { | 
|  | // If the input is LLVM Assembly, bitcode is produced by serializing | 
|  | // the module. Use-lists order need to be preserved in this case. | 
|  | llvm::raw_string_ostream OS(Data); | 
|  | llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); | 
|  | ModuleData = | 
|  | ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); | 
|  | } else | 
|  | // If the input is LLVM bitcode, write the input byte stream directly. | 
|  | ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), | 
|  | Buf.getBufferSize()); | 
|  | } | 
|  | llvm::Constant *ModuleConstant = | 
|  | llvm::ConstantDataArray::get(M.getContext(), ModuleData); | 
|  | llvm::GlobalVariable *GV = new llvm::GlobalVariable( | 
|  | M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, | 
|  | ModuleConstant); | 
|  | GV->setSection(getSectionNameForBitcode(T)); | 
|  | // Set alignment to 1 to prevent padding between two contributions from input | 
|  | // sections after linking. | 
|  | GV->setAlignment(Align(1)); | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | if (llvm::GlobalVariable *Old = | 
|  | M.getGlobalVariable("llvm.embedded.module", true)) { | 
|  | assert(Old->hasZeroLiveUses() && | 
|  | "llvm.embedded.module can only be used once in llvm.compiler.used"); | 
|  | GV->takeName(Old); | 
|  | Old->eraseFromParent(); | 
|  | } else { | 
|  | GV->setName("llvm.embedded.module"); | 
|  | } | 
|  |  | 
|  | // Skip if only bitcode needs to be embedded. | 
|  | if (EmbedCmdline) { | 
|  | // Embed command-line options. | 
|  | ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), | 
|  | CmdArgs.size()); | 
|  | llvm::Constant *CmdConstant = | 
|  | llvm::ConstantDataArray::get(M.getContext(), CmdData); | 
|  | GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, | 
|  | llvm::GlobalValue::PrivateLinkage, | 
|  | CmdConstant); | 
|  | GV->setSection(getSectionNameForCommandline(T)); | 
|  | GV->setAlignment(Align(1)); | 
|  | UsedArray.push_back( | 
|  | ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); | 
|  | if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { | 
|  | assert(Old->hasZeroLiveUses() && | 
|  | "llvm.cmdline can only be used once in llvm.compiler.used"); | 
|  | GV->takeName(Old); | 
|  | Old->eraseFromParent(); | 
|  | } else { | 
|  | GV->setName("llvm.cmdline"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UsedArray.empty()) | 
|  | return; | 
|  |  | 
|  | // Recreate llvm.compiler.used. | 
|  | ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); | 
|  | auto *NewUsed = new GlobalVariable( | 
|  | M, ATy, false, llvm::GlobalValue::AppendingLinkage, | 
|  | llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); | 
|  | NewUsed->setSection("llvm.metadata"); | 
|  | } |