|  | //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/PhiValues.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | void PhiValues::PhiValuesCallbackVH::deleted() { | 
|  | PV->invalidateValue(getValPtr()); | 
|  | } | 
|  |  | 
|  | void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { | 
|  | // We could potentially update the cached values we have with the new value, | 
|  | // but it's simpler to just treat the old value as invalidated. | 
|  | PV->invalidateValue(getValPtr()); | 
|  | } | 
|  |  | 
|  | bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, | 
|  | FunctionAnalysisManager::Invalidator &) { | 
|  | // PhiValues is invalidated if it isn't preserved. | 
|  | auto PAC = PA.getChecker<PhiValuesAnalysis>(); | 
|  | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); | 
|  | } | 
|  |  | 
|  | // The goal here is to find all of the non-phi values reachable from this phi, | 
|  | // and to do the same for all of the phis reachable from this phi, as doing so | 
|  | // is necessary anyway in order to get the values for this phi. We do this using | 
|  | // Tarjan's algorithm with Nuutila's improvements to find the strongly connected | 
|  | // components of the phi graph rooted in this phi: | 
|  | //  * All phis in a strongly connected component will have the same reachable | 
|  | //    non-phi values. The SCC may not be the maximal subgraph for that set of | 
|  | //    reachable values, but finding out that isn't really necessary (it would | 
|  | //    only reduce the amount of memory needed to store the values). | 
|  | //  * Tarjan's algorithm completes components in a bottom-up manner, i.e. it | 
|  | //    never completes a component before the components reachable from it have | 
|  | //    been completed. This means that when we complete a component we have | 
|  | //    everything we need to collect the values reachable from that component. | 
|  | //  * We collect both the non-phi values reachable from each SCC, as that's what | 
|  | //    we're ultimately interested in, and all of the reachable values, i.e. | 
|  | //    including phis, as that makes invalidateValue easier. | 
|  | void PhiValues::processPhi(const PHINode *Phi, | 
|  | SmallVectorImpl<const PHINode *> &Stack) { | 
|  | // Initialize the phi with the next depth number. | 
|  | assert(DepthMap.lookup(Phi) == 0); | 
|  | assert(NextDepthNumber != UINT_MAX); | 
|  | unsigned int RootDepthNumber = ++NextDepthNumber; | 
|  | DepthMap[Phi] = RootDepthNumber; | 
|  |  | 
|  | // Recursively process the incoming phis of this phi. | 
|  | TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this)); | 
|  | for (Value *PhiOp : Phi->incoming_values()) { | 
|  | if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) { | 
|  | // Recurse if the phi has not yet been visited. | 
|  | unsigned int OpDepthNumber = DepthMap.lookup(PhiPhiOp); | 
|  | if (OpDepthNumber == 0) { | 
|  | processPhi(PhiPhiOp, Stack); | 
|  | OpDepthNumber = DepthMap.lookup(PhiPhiOp); | 
|  | assert(OpDepthNumber != 0); | 
|  | } | 
|  | // If the phi did not become part of a component then this phi and that | 
|  | // phi are part of the same component, so adjust the depth number. | 
|  | if (!ReachableMap.count(OpDepthNumber)) | 
|  | DepthMap[Phi] = std::min(DepthMap[Phi], OpDepthNumber); | 
|  | } else { | 
|  | TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that incoming phis have been handled, push this phi to the stack. | 
|  | Stack.push_back(Phi); | 
|  |  | 
|  | // If the depth number has not changed then we've finished collecting the phis | 
|  | // of a strongly connected component. | 
|  | if (DepthMap[Phi] == RootDepthNumber) { | 
|  | // Collect the reachable values for this component. The phis of this | 
|  | // component will be those on top of the depth stack with the same or | 
|  | // greater depth number. | 
|  | ConstValueSet &Reachable = ReachableMap[RootDepthNumber]; | 
|  | while (true) { | 
|  | const PHINode *ComponentPhi = Stack.pop_back_val(); | 
|  | Reachable.insert(ComponentPhi); | 
|  |  | 
|  | for (Value *Op : ComponentPhi->incoming_values()) { | 
|  | if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) { | 
|  | // If this phi is not part of the same component then that component | 
|  | // is guaranteed to have been completed before this one. Therefore we | 
|  | // can just add its reachable values to the reachable values of this | 
|  | // component. | 
|  | unsigned int OpDepthNumber = DepthMap[PhiOp]; | 
|  | if (OpDepthNumber != RootDepthNumber) { | 
|  | auto It = ReachableMap.find(OpDepthNumber); | 
|  | if (It != ReachableMap.end()) | 
|  | Reachable.insert(It->second.begin(), It->second.end()); | 
|  | } | 
|  | } else | 
|  | Reachable.insert(Op); | 
|  | } | 
|  |  | 
|  | if (Stack.empty()) | 
|  | break; | 
|  |  | 
|  | unsigned int &ComponentDepthNumber = DepthMap[Stack.back()]; | 
|  | if (ComponentDepthNumber < RootDepthNumber) | 
|  | break; | 
|  |  | 
|  | ComponentDepthNumber = RootDepthNumber; | 
|  | } | 
|  |  | 
|  | // Filter out phis to get the non-phi reachable values. | 
|  | ValueSet &NonPhi = NonPhiReachableMap[RootDepthNumber]; | 
|  | for (const Value *V : Reachable) | 
|  | if (!isa<PHINode>(V)) | 
|  | NonPhi.insert(const_cast<Value *>(V)); | 
|  | } | 
|  | } | 
|  |  | 
|  | const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { | 
|  | unsigned int DepthNumber = DepthMap.lookup(PN); | 
|  | if (DepthNumber == 0) { | 
|  | SmallVector<const PHINode *, 8> Stack; | 
|  | processPhi(PN, Stack); | 
|  | DepthNumber = DepthMap.lookup(PN); | 
|  | assert(Stack.empty()); | 
|  | assert(DepthNumber != 0); | 
|  | } | 
|  | return NonPhiReachableMap[DepthNumber]; | 
|  | } | 
|  |  | 
|  | void PhiValues::invalidateValue(const Value *V) { | 
|  | // Components that can reach V are invalid. | 
|  | SmallVector<unsigned int, 8> InvalidComponents; | 
|  | for (auto &Pair : ReachableMap) | 
|  | if (Pair.second.count(V)) | 
|  | InvalidComponents.push_back(Pair.first); | 
|  |  | 
|  | for (unsigned int N : InvalidComponents) { | 
|  | for (const Value *V : ReachableMap[N]) | 
|  | if (const PHINode *PN = dyn_cast<PHINode>(V)) | 
|  | DepthMap.erase(PN); | 
|  | NonPhiReachableMap.erase(N); | 
|  | ReachableMap.erase(N); | 
|  | } | 
|  | // This value is no longer tracked | 
|  | auto It = TrackedValues.find_as(V); | 
|  | if (It != TrackedValues.end()) | 
|  | TrackedValues.erase(It); | 
|  | } | 
|  |  | 
|  | void PhiValues::releaseMemory() { | 
|  | DepthMap.clear(); | 
|  | NonPhiReachableMap.clear(); | 
|  | ReachableMap.clear(); | 
|  | } | 
|  |  | 
|  | void PhiValues::print(raw_ostream &OS) const { | 
|  | // Iterate through the phi nodes of the function rather than iterating through | 
|  | // DepthMap in order to get predictable ordering. | 
|  | for (const BasicBlock &BB : F) { | 
|  | for (const PHINode &PN : BB.phis()) { | 
|  | OS << "PHI "; | 
|  | PN.printAsOperand(OS, false); | 
|  | OS << " has values:\n"; | 
|  | unsigned int N = DepthMap.lookup(&PN); | 
|  | auto It = NonPhiReachableMap.find(N); | 
|  | if (It == NonPhiReachableMap.end()) | 
|  | OS << "  UNKNOWN\n"; | 
|  | else if (It->second.empty()) | 
|  | OS << "  NONE\n"; | 
|  | else | 
|  | for (Value *V : It->second) | 
|  | // Printing of an instruction prints two spaces at the start, so | 
|  | // handle instructions and everything else slightly differently in | 
|  | // order to get consistent indenting. | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | OS << *I << "\n"; | 
|  | else | 
|  | OS << "  " << *V << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | AnalysisKey PhiValuesAnalysis::Key; | 
|  | PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { | 
|  | return PhiValues(F); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses PhiValuesPrinterPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | OS << "PHI Values for function: " << F.getName() << "\n"; | 
|  | PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F); | 
|  | for (const BasicBlock &BB : F) | 
|  | for (const PHINode &PN : BB.phis()) | 
|  | PI.getValuesForPhi(&PN); | 
|  | PI.print(OS); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { | 
|  | initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool PhiValuesWrapperPass::runOnFunction(Function &F) { | 
|  | Result.reset(new PhiValues(F)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void PhiValuesWrapperPass::releaseMemory() { | 
|  | Result->releaseMemory(); | 
|  | } | 
|  |  | 
|  | void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | char PhiValuesWrapperPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, | 
|  | true) |