| //===- PWMAFunctionTest.cpp - Tests for PWMAFunction ----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains tests for PWMAFunction. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "./Utils.h" |
| |
| #include "mlir/Analysis/Presburger/PWMAFunction.h" |
| #include "mlir/Analysis/Presburger/PresburgerRelation.h" |
| #include "mlir/IR/MLIRContext.h" |
| |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| |
| using namespace mlir; |
| using namespace presburger; |
| |
| using testing::ElementsAre; |
| |
| TEST(PWAFunctionTest, isEqual) { |
| // The output expressions are different but it doesn't matter because they are |
| // equal in this domain. |
| PWMAFunction idAtZeros = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y). |
| {"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y). |
| {"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y). |
| }); |
| PWMAFunction idAtZeros2 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 20, 0}}}, // (x, 20y). |
| {"(x, y) : (y - 1 >= 0, x == 0)", {{30, 0, 0}, {0, 1, 0}}}, //(30x, y) |
| {"(x, y) : (-y - 1 > =0, x == 0)", {{30, 0, 0}, {0, 1, 0}}} //(30x, y) |
| }); |
| EXPECT_TRUE(idAtZeros.isEqual(idAtZeros2)); |
| |
| PWMAFunction notIdAtZeros = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (y == 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y). |
| {"(x, y) : (y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y) |
| {"(x, y) : (-y - 1 >= 0, x == 0)", {{1, 0, 0}, {0, 2, 0}}}, // (x, 2y) |
| }); |
| EXPECT_FALSE(idAtZeros.isEqual(notIdAtZeros)); |
| |
| // These match at their intersection but one has a bigger domain. |
| PWMAFunction idNoNegNegQuadrant = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y). |
| {"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 0, 0}, {0, 1, 0}}} // (x, y). |
| }); |
| PWMAFunction idOnlyPosX = |
| parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0)", {{1, 0, 0}, {0, 1, 0}}}, // (x, y). |
| }); |
| EXPECT_FALSE(idNoNegNegQuadrant.isEqual(idOnlyPosX)); |
| |
| // Different representations of the same domain. |
| PWMAFunction sumPlusOne = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x >= 0)", {{1, 1, 1}}}, // x + y + 1. |
| {"(x, y) : (-x - 1 >= 0, -y - 1 >= 0)", {{1, 1, 1}}}, // x + y + 1. |
| {"(x, y) : (-x - 1 >= 0, y >= 0)", {{1, 1, 1}}} // x + y + 1. |
| }); |
| PWMAFunction sumPlusOne2 = |
| parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : ()", {{1, 1, 1}}}, // x + y + 1. |
| }); |
| EXPECT_TRUE(sumPlusOne.isEqual(sumPlusOne2)); |
| |
| // Functions with zero input dimensions. |
| PWMAFunction noInputs1 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1, |
| { |
| {"() : ()", {{1}}}, // 1. |
| }); |
| PWMAFunction noInputs2 = parsePWMAF(/*numInputs=*/0, /*numOutputs=*/1, |
| { |
| {"() : ()", {{2}}}, // 1. |
| }); |
| EXPECT_TRUE(noInputs1.isEqual(noInputs1)); |
| EXPECT_FALSE(noInputs1.isEqual(noInputs2)); |
| |
| // Mismatched dimensionalities. |
| EXPECT_FALSE(noInputs1.isEqual(sumPlusOne)); |
| EXPECT_FALSE(idOnlyPosX.isEqual(sumPlusOne)); |
| |
| // Divisions. |
| // Domain is only multiples of 6; x = 6k for some k. |
| // x + 4(x/2) + 4(x/3) == 26k. |
| PWMAFunction mul2AndMul3 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x - 2*(x floordiv 2) == 0, x - 3*(x floordiv 3) == 0)", |
| {{1, 4, 4, 0}}}, // x + 4(x/2) + 4(x/3). |
| }); |
| PWMAFunction mul6 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x - 6*(x floordiv 6) == 0)", {{0, 26, 0}}}, // 26(x/6). |
| }); |
| EXPECT_TRUE(mul2AndMul3.isEqual(mul6)); |
| |
| PWMAFunction mul6diff = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 52, 0}}}, // 52(x/6). |
| }); |
| EXPECT_FALSE(mul2AndMul3.isEqual(mul6diff)); |
| |
| PWMAFunction mul5 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x - 5*(x floordiv 5) == 0)", {{0, 26, 0}}}, // 26(x/5). |
| }); |
| EXPECT_FALSE(mul2AndMul3.isEqual(mul5)); |
| } |
| |
| TEST(PWMAFunction, valueAt) { |
| PWMAFunction nonNegPWMAF = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0)", {{1, 2, 3}, {3, 4, 5}}}, // (x, y). |
| {"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y) |
| }); |
| EXPECT_THAT(*nonNegPWMAF.valueAt({2, 3}), ElementsAre(11, 23)); |
| EXPECT_THAT(*nonNegPWMAF.valueAt({-2, 3}), ElementsAre(11, 23)); |
| EXPECT_THAT(*nonNegPWMAF.valueAt({2, -3}), ElementsAre(-1, -1)); |
| EXPECT_FALSE(nonNegPWMAF.valueAt({-2, -3}).has_value()); |
| |
| PWMAFunction divPWMAF = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0, x - 2*(x floordiv 2) == 0)", |
| {{0, 2, 1, 3}, {0, 4, 3, 5}}}, // (x, y). |
| {"(x, y) : (y >= 0, -x - 1 >= 0)", {{-1, 2, 3}, {-3, 4, 5}}} // (x, y) |
| }); |
| EXPECT_THAT(*divPWMAF.valueAt({4, 3}), ElementsAre(11, 23)); |
| EXPECT_THAT(*divPWMAF.valueAt({4, -3}), ElementsAre(-1, -1)); |
| EXPECT_FALSE(divPWMAF.valueAt({3, 3}).has_value()); |
| EXPECT_FALSE(divPWMAF.valueAt({3, -3}).has_value()); |
| |
| EXPECT_THAT(*divPWMAF.valueAt({-2, 3}), ElementsAre(11, 23)); |
| EXPECT_FALSE(divPWMAF.valueAt({-2, -3}).has_value()); |
| } |
| |
| TEST(PWMAFunction, removeIdRangeRegressionTest) { |
| PWMAFunction pwmafA = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x == 0, y == 0, x - 2*(x floordiv 2) == 0, y - 2*(y " |
| "floordiv 2) == 0)", |
| {{0, 0, 0, 0, 0}}} // (0, 0) |
| }); |
| PWMAFunction pwmafB = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x - 11*y == 0, 11*x - y == 0, x - 2*(x floordiv 2) == 0, " |
| "y - 2*(y floordiv 2) == 0)", |
| {{0, 0, 0, 0, 0}}} // (0, 0) |
| }); |
| EXPECT_TRUE(pwmafA.isEqual(pwmafB)); |
| } |
| |
| TEST(PWMAFunction, eliminateRedundantLocalIdRegressionTest) { |
| PWMAFunction pwmafA = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)", |
| {{0, 1, 0, 0}}} // (0, 0) |
| }); |
| PWMAFunction pwmafB = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x - 2*(x floordiv 2) == 0, x - 2*y == 0)", |
| {{1, -1, 0, 0}}} // (0, 0) |
| }); |
| EXPECT_TRUE(pwmafA.isEqual(pwmafB)); |
| } |
| |
| TEST(PWMAFunction, unionLexMaxSimple) { |
| // func2 is better than func1, but func2's domain is empty. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{0, 1}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (1 == 0)", {{0, 2}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(func1)); |
| EXPECT_TRUE(func2.unionLexMax(func1).isEqual(func1)); |
| } |
| |
| // func2 is better than func1 on a subset of func1. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{0, 1}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (-1 - x >= 0)", {{0, 1}}}, |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, 2}}}, |
| {"(x) : (x - 11 >= 0)", {{0, 1}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result)); |
| } |
| |
| // func1 and func2 are defined over the whole domain with different outputs. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{1, 0}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{-1, 0}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0)", {{1, 0}}}, |
| {"(x) : (-1 - x >= 0)", {{-1, 0}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result)); |
| } |
| |
| // func1 and func2 have disjoint domains. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}}, |
| {"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}}, |
| {"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, 1}}}, |
| {"(x) : (x - 71 >= 0, 80 - x >= 0)", {{0, 1}}}, |
| {"(x) : (x - 20 >= 0, 41 - x >= 0)", {{0, 2}}}, |
| {"(x) : (x - 101 >= 0, 120 - x >= 0)", {{0, 2}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result)); |
| } |
| } |
| |
| TEST(PWMAFunction, unionLexMinSimple) { |
| // func2 is better than func1, but func2's domain is empty. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{0, -1}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (1 == 0)", {{0, -2}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMin(func2).isEqual(func1)); |
| EXPECT_TRUE(func2.unionLexMin(func1).isEqual(func1)); |
| } |
| |
| // func2 is better than func1 on a subset of func1. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{0, -1}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (-1 - x >= 0)", {{0, -1}}}, |
| {"(x) : (x >= 0, 10 - x >= 0)", {{0, -2}}}, |
| {"(x) : (x - 11 >= 0)", {{0, -1}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result)); |
| } |
| |
| // func1 and func2 are defined over the whole domain with different outputs. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{-1, 0}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : ()", {{1, 0}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/1, /*numOutputs=*/1, |
| { |
| {"(x) : (x >= 0)", {{-1, 0}}}, |
| {"(x) : (-1 - x >= 0)", {{1, 0}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result)); |
| } |
| } |
| |
| TEST(PWMAFunction, unionLexMaxComplex) { |
| // Union of function containing 4 different pieces of output. |
| // |
| // x >= 21 --> func1 (func2 not defined) |
| // x <= 0 --> func2 (func1 not defined) |
| // 10 <= x <= 20, y > 0 --> func1 (x + y > x - y for y > 0) |
| // 10 <= x <= 20, y <= 0 --> func2 (x + y <= x - y for y <= 0) |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x >= 10)", {{1, 1, 0}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/1, |
| { |
| {"(x, y) : (x <= 20)", {{1, -1, 0}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/1, |
| {{"(x, y) : (x >= 10, x <= 20, y >= 1)", |
| { |
| {1, 1, 0}, |
| }}, |
| {"(x, y) : (x >= 21)", |
| { |
| {1, 1, 0}, |
| }}, |
| {"(x, y) : (x <= 9)", |
| { |
| {1, -1, 0}, |
| }}, |
| {"(x, y) : (x >= 10, x <= 20, y <= 0)", |
| { |
| {1, -1, 0}, |
| }}}); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result)); |
| } |
| |
| // Functions with more than one output, with contribution from both functions. |
| // |
| // If y >= 1, func1 is better because in the first output, |
| // x + y (func1) > x (func2), when y >= 1 |
| // |
| // If y == 0, the first output is same for both functions, so we look at the |
| // second output. -2x + 4 (func1) > 2x - 2 (func2) when 0 <= x <= 1, so we |
| // take func1 for this domain and func2 for the remaining. |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0, y >= 0)", {{1, 1, 0}, {-2, 0, 4}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0, y >= 0)", {{1, 0, 0}, {2, 0, -2}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF(/*numInputs=*/2, /*numOutputs=*/2, |
| {{"(x, y) : (x >= 0, y >= 1)", |
| { |
| {1, 1, 0}, |
| {-2, 0, 4}, |
| }}, |
| {"(x, y) : (x >= 0, x <= 1, y == 0)", |
| { |
| {1, 1, 0}, |
| {-2, 0, 4}, |
| }}, |
| {"(x, y) : (x >= 2, y == 0)", |
| { |
| {1, 0, 0}, |
| {2, 0, -2}, |
| }}}); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result)); |
| } |
| |
| // Function with three boolean variables `a, b, c` used to control which |
| // output will be taken lexicographically. |
| // |
| // a == 1 --> Take func2 |
| // a == 0, b == 1 --> Take func1 |
| // a == 0, b == 0, c == 1 --> Take func2 |
| { |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/3, /*numOutputs=*/3, |
| { |
| {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c " |
| ">= 0, 1 - c >= 0)", |
| {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/3, /*numOutputs=*/3, |
| { |
| {"(a, b, c) : (a >= 0, 1 - a >= 0, b >= 0, 1 - b >= 0, c >= 0, 1 - " |
| "c >= 0)", |
| {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/3, /*numOutputs=*/3, |
| { |
| {"(a, b, c) : (a - 1 == 0, b >= 0, 1 - b >= 0, c >= 0, 1 - c >= 0)", |
| {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}}, |
| {"(a, b, c) : (a == 0, b - 1 == 0, c >= 0, 1 - c >= 0)", |
| {{0, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 0}}}, |
| {"(a, b, c) : (a == 0, b == 0, c >= 0, 1 - c >= 0)", |
| {{1, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 1, 0}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMax(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMax(func1).isEqual(result)); |
| } |
| } |
| |
| TEST(PWMAFunction, unionLexMinComplex) { |
| // Regression test checking if lexicographic tiebreak produces disjoint |
| // domains. |
| // |
| // If x == 1, func1 is better since in the first output, |
| // -x (func1) is < 0 (func2) when x == 1. |
| // |
| // If x == 0, func1 and func2 both have the same first output. So we take a |
| // look at the second output. func2 is better since in the second output, |
| // y - 1 (func2) is < y (func1). |
| PWMAFunction func1 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", |
| {{-1, 0, 0}, {0, 1, 0}}}, |
| }); |
| |
| PWMAFunction func2 = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x >= 0, x <= 1, y >= 0, y <= 1)", |
| {{0, 0, 0}, {0, 1, -1}}}, |
| }); |
| |
| PWMAFunction result = parsePWMAF( |
| /*numInputs=*/2, /*numOutputs=*/2, |
| { |
| {"(x, y) : (x == 1, y >= 0, y <= 1)", {{-1, 0, 0}, {0, 1, 0}}}, |
| {"(x, y) : (x == 0, y >= 0, y <= 1)", {{0, 0, 0}, {0, 1, -1}}}, |
| }); |
| |
| EXPECT_TRUE(func1.unionLexMin(func2).isEqual(result)); |
| EXPECT_TRUE(func2.unionLexMin(func1).isEqual(result)); |
| } |