| ; RUN: llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ | 
 | ; RUN:   | FileCheck %s | 
 | ; RUN: %if ptxas %{                                                                   \ | 
 | ; RUN:   llc < %s -march=nvptx -mcpu=sm_20 -nvptx-prec-divf32=0 -nvptx-prec-sqrtf32=0 \ | 
 | ; RUN:   | %ptxas-verify                                                              \ | 
 | ; RUN: %} | 
 |  | 
 | target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" | 
 |  | 
 | declare float @llvm.sqrt.f32(float) | 
 | declare double @llvm.sqrt.f64(double) | 
 |  | 
 | ; -- reciprocal sqrt -- | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt32 | 
 | define float @test_rsqrt32(float %a) #0 { | 
 | ; CHECK: rsqrt.approx.f32 | 
 |   %val = tail call float @llvm.sqrt.f32(float %a) | 
 |   %ret = fdiv float 1.0, %val | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt_ftz | 
 | define float @test_rsqrt_ftz(float %a) #0 #1 { | 
 | ; CHECK: rsqrt.approx.ftz.f32 | 
 |   %val = tail call float @llvm.sqrt.f32(float %a) | 
 |   %ret = fdiv float 1.0, %val | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt64 | 
 | define double @test_rsqrt64(double %a) #0 { | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %val = tail call double @llvm.sqrt.f64(double %a) | 
 |   %ret = fdiv double 1.0, %val | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt64_ftz | 
 | define double @test_rsqrt64_ftz(double %a) #0 #1 { | 
 | ; There's no rsqrt.approx.ftz.f64 instruction; we just use the non-ftz version. | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %val = tail call double @llvm.sqrt.f64(double %a) | 
 |   %ret = fdiv double 1.0, %val | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; -- sqrt -- | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32 | 
 | define float @test_sqrt32(float %a) #0 { | 
 | ; CHECK: sqrt.rn.f32 | 
 |   %ret = tail call float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32_ninf | 
 | define float @test_sqrt32_ninf(float %a) #0 { | 
 | ; CHECK: sqrt.approx.f32 | 
 |   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt_ftz | 
 | define float @test_sqrt_ftz(float %a) #0 #1 { | 
 | ; CHECK: sqrt.rn.ftz.f32 | 
 |   %ret = tail call float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt_ftz_ninf | 
 | define float @test_sqrt_ftz_ninf(float %a) #0 #1 { | 
 | ; CHECK: sqrt.approx.ftz.f32 | 
 |   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64 | 
 | define double @test_sqrt64(double %a) #0 { | 
 | ; CHECK: sqrt.rn.f64 | 
 |   %ret = tail call double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_ninf | 
 | define double @test_sqrt64_ninf(double %a) #0 { | 
 | ; There's no sqrt.approx.f64 instruction; we emit | 
 | ; reciprocal(rsqrt.approx.f64(x)).  There's no non-ftz approximate reciprocal, | 
 | ; so we just use the ftz version. | 
 | ; CHECK: rsqrt.approx.f64 | 
 | ; CHECK: rcp.approx.ftz.f64 | 
 |   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_ftz | 
 | define double @test_sqrt64_ftz(double %a) #0 #1 { | 
 | ; CHECK: sqrt.rn.f64 | 
 |   %ret = tail call double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_ftz_ninf | 
 | define double @test_sqrt64_ftz_ninf(double %a) #0 #1 { | 
 | ; There's no sqrt.approx.ftz.f64 instruction; we just use the non-ftz version. | 
 | ; CHECK: rsqrt.approx.f64 | 
 | ; CHECK: rcp.approx.ftz.f64 | 
 |   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; -- refined sqrt and rsqrt -- | 
 | ; | 
 | ; The sqrt and rsqrt refinement algorithms both emit an rsqrt.approx, followed | 
 | ; by some math. | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt32_refined | 
 | define float @test_rsqrt32_refined(float %a) #0 #2 { | 
 | ; CHECK: rsqrt.approx.f32 | 
 |   %val = tail call float @llvm.sqrt.f32(float %a) | 
 |   %ret = fdiv float 1.0, %val | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32_refined | 
 | define float @test_sqrt32_refined(float %a) #0 #2 { | 
 | ; CHECK: sqrt.rn.f32 | 
 |   %ret = tail call float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32_refined_ninf | 
 | define float @test_sqrt32_refined_ninf(float %a) #0 #2 { | 
 | ; CHECK: rsqrt.approx.f32 | 
 |   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt64_refined | 
 | define double @test_rsqrt64_refined(double %a) #0 #2 { | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %val = tail call double @llvm.sqrt.f64(double %a) | 
 |   %ret = fdiv double 1.0, %val | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_refined | 
 | define double @test_sqrt64_refined(double %a) #0 #2 { | 
 | ; CHECK: sqrt.rn.f64 | 
 |   %ret = tail call double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_refined_ninf | 
 | define double @test_sqrt64_refined_ninf(double %a) #0 #2 { | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; -- refined sqrt and rsqrt with ftz enabled -- | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt32_refined_ftz | 
 | define float @test_rsqrt32_refined_ftz(float %a) #0 #1 #2 { | 
 | ; CHECK: rsqrt.approx.ftz.f32 | 
 |   %val = tail call float @llvm.sqrt.f32(float %a) | 
 |   %ret = fdiv float 1.0, %val | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32_refined_ftz | 
 | define float @test_sqrt32_refined_ftz(float %a) #0 #1 #2 { | 
 | ; CHECK: sqrt.rn.ftz.f32 | 
 |   %ret = tail call float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt32_refined_ftz_ninf | 
 | define float @test_sqrt32_refined_ftz_ninf(float %a) #0 #1 #2 { | 
 | ; CHECK: rsqrt.approx.ftz.f32 | 
 |   %ret = tail call ninf afn float @llvm.sqrt.f32(float %a) | 
 |   ret float %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_rsqrt64_refined_ftz | 
 | define double @test_rsqrt64_refined_ftz(double %a) #0 #1 #2 { | 
 | ; There's no rsqrt.approx.ftz.f64, so we just use the non-ftz version. | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %val = tail call double @llvm.sqrt.f64(double %a) | 
 |   %ret = fdiv double 1.0, %val | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_refined_ftz | 
 | define double @test_sqrt64_refined_ftz(double %a) #0 #1 #2 { | 
 | ; CHECK: sqrt.rn.f64 | 
 |   %ret = tail call double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | ; CHECK-LABEL: test_sqrt64_refined_ftz_ninf | 
 | define double @test_sqrt64_refined_ftz_ninf(double %a) #0 #1 #2 { | 
 | ; CHECK: rsqrt.approx.f64 | 
 |   %ret = tail call ninf afn double @llvm.sqrt.f64(double %a) | 
 |   ret double %ret | 
 | } | 
 |  | 
 | attributes #0 = { "unsafe-fp-math" = "true" } | 
 | attributes #1 = { "denormal-fp-math-f32" = "preserve-sign,preserve-sign" } | 
 | attributes #2 = { "reciprocal-estimates" = "rsqrtf:1,rsqrtd:1,sqrtf:1,sqrtd:1" } |