| //===- ReshapeOpsUtils.cpp - Utilities used by structured ops -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" |
| |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Builders.h" |
| |
| #include <numeric> |
| |
| using namespace mlir; |
| |
| Optional<SmallVector<ReassociationIndices>> |
| mlir::getReassociationIndicesForReshape(ShapedType sourceType, |
| ShapedType targetType) { |
| if (sourceType.getRank() > targetType.getRank()) |
| return getReassociationIndicesForCollapse(sourceType.getShape(), |
| targetType.getShape()); |
| if (sourceType.getRank() < targetType.getRank()) |
| return getReassociationIndicesForCollapse(targetType.getShape(), |
| sourceType.getShape()); |
| return llvm::None; |
| } |
| |
| Optional<SmallVector<ReassociationIndices>> |
| mlir::getReassociationIndicesForCollapse(ArrayRef<int64_t> sourceShape, |
| ArrayRef<int64_t> targetShape) { |
| if (sourceShape.size() <= targetShape.size()) |
| return llvm::None; |
| unsigned sourceDim = 0; |
| SmallVector<ReassociationIndices> reassociationMap; |
| reassociationMap.reserve(targetShape.size()); |
| |
| ReassociationIndices currIndices; |
| int64_t prodOfCollapsedDims = 1; |
| while (sourceDim < sourceShape.size()) { |
| unsigned targetDim = reassociationMap.size(); |
| // If we have mapped all the target dimensions stop and handle the remaining |
| // tail of size-1 dimensions explictly. |
| if (targetDim == targetShape.size()) |
| break; |
| |
| int64_t currTargetShape = targetShape[targetDim]; |
| while (sourceShape[sourceDim] != ShapedType::kDynamicSize && |
| prodOfCollapsedDims * sourceShape[sourceDim] < currTargetShape && |
| sourceDim < sourceShape.size()) { |
| prodOfCollapsedDims *= sourceShape[sourceDim]; |
| currIndices.push_back(sourceDim++); |
| } |
| |
| // If the current expanded dimension is dynamic, then the collapsed |
| // dimensions should also be dynamic and product of all previous unprocessed |
| // dimensions of the expanded shape should be 1. |
| if (sourceShape[sourceDim] == ShapedType::kDynamicSize && |
| (currTargetShape != ShapedType::kDynamicSize || |
| prodOfCollapsedDims != 1)) |
| return llvm::None; |
| |
| // If the collapsed dim is dynamic, the current expanded dim should also |
| // be dynamic. |
| if (currTargetShape == ShapedType::kDynamicSize && |
| sourceShape[sourceDim] != ShapedType::kDynamicSize) |
| return llvm::None; |
| |
| // For static shapes, if the product of dimensions of the expanded shape |
| // should match the collapsed dimension shape. |
| if (prodOfCollapsedDims * sourceShape[sourceDim] != currTargetShape) |
| return llvm::None; |
| |
| currIndices.push_back(sourceDim++); |
| reassociationMap.emplace_back(ReassociationIndices{}); |
| std::swap(reassociationMap.back(), currIndices); |
| prodOfCollapsedDims = 1; |
| } |
| // All the dimensions in the target must have been processed. |
| if (reassociationMap.size() != targetShape.size()) |
| return llvm::None; |
| // Process any remaining entries in the source shape. They all need to be |
| // 1 or dynamic. |
| for (; sourceDim < sourceShape.size(); sourceDim++) { |
| if (sourceShape[sourceDim] != ShapedType::kDynamicSize && |
| sourceShape[sourceDim] != 1) |
| return llvm::None; |
| // The map is empty when the target type is a scalar. |
| if (!reassociationMap.empty()) |
| reassociationMap.back().push_back(sourceDim); |
| } |
| return reassociationMap; |
| } |
| |
| Optional<SmallVector<ReassociationIndices>> mlir::composeReassociationIndices( |
| ArrayRef<ReassociationIndices> producerReassociations, |
| ArrayRef<ReassociationIndices> consumerReassociations, |
| MLIRContext *context) { |
| SmallVector<ReassociationIndices> composedIndices; |
| // Make the producer the larger sized vector. If they are of same size, the |
| // resulting reshape is not a supported reshape op. |
| if (producerReassociations.size() == consumerReassociations.size()) |
| return llvm::None; |
| if (producerReassociations.size() < consumerReassociations.size()) |
| std::swap(producerReassociations, consumerReassociations); |
| |
| // Handle the corner case of the result being a rank 0 shaped type. Return an |
| // empty reassociation. |
| if (consumerReassociations.empty()) |
| return composedIndices; |
| |
| size_t consumerDims = std::accumulate( |
| consumerReassociations.begin(), consumerReassociations.end(), 0, |
| [](size_t all, ReassociationIndicesRef indices) { |
| return all + indices.size(); |
| }); |
| if (producerReassociations.size() != consumerDims) |
| return llvm::None; |
| |
| for (ReassociationIndicesRef consumerIndices : consumerReassociations) { |
| ReassociationIndices reassociations; |
| for (int64_t consumerIndex : consumerIndices) { |
| llvm::append_range(reassociations, producerReassociations[consumerIndex]); |
| } |
| composedIndices.push_back(std::move(reassociations)); |
| } |
| return composedIndices; |
| } |
| |
| SmallVector<SmallVector<AffineExpr, 2>, 2> |
| mlir::convertReassociationIndicesToExprs( |
| MLIRContext *context, ArrayRef<ReassociationIndices> reassociationIndices) { |
| SmallVector<SmallVector<AffineExpr, 2>, 2> reassociationMaps; |
| for (const auto &indices : reassociationIndices) { |
| SmallVector<AffineExpr, 2> reassociationMap; |
| reassociationMap.reserve(indices.size()); |
| for (int64_t index : indices) |
| reassociationMap.push_back(mlir::getAffineDimExpr(index, context)); |
| reassociationMaps.push_back(std::move(reassociationMap)); |
| } |
| return reassociationMaps; |
| } |
| |
| template <typename AffineExprTy> |
| unsigned getMaxPosOfType(ArrayRef<ReassociationExprs> exprArrays) { |
| unsigned pos = 0; |
| for (const auto &exprs : exprArrays) { |
| for (auto expr : exprs) { |
| expr.walk([&pos](AffineExpr e) { |
| if (auto d = e.dyn_cast<AffineExprTy>()) |
| pos = std::max(pos, d.getPosition()); |
| }); |
| } |
| } |
| return pos; |
| } |
| |
| ArrayAttr mlir::getReassociationIndicesAttribute( |
| OpBuilder &b, ArrayRef<ReassociationIndices> reassociation) { |
| SmallVector<Attribute, 4> reassociationAttr = |
| llvm::to_vector<4>(llvm::map_range( |
| reassociation, [&](const ReassociationIndices &indices) -> Attribute { |
| return b.getI64ArrayAttr(indices).cast<Attribute>(); |
| })); |
| return b.getArrayAttr(reassociationAttr); |
| } |
| |
| SmallVector<ReassociationIndices, 2> mlir::convertReassociationMapsToIndices( |
| OpBuilder &b, ArrayRef<ReassociationExprs> reassociationExprs) { |
| SmallVector<ReassociationIndices, 2> reassociationIndices; |
| for (const auto &exprs : reassociationExprs) { |
| ReassociationIndices indices; |
| indices.reserve(exprs.size()); |
| for (const auto &expr : exprs) |
| indices.push_back(expr.cast<AffineDimExpr>().getPosition()); |
| reassociationIndices.push_back(indices); |
| } |
| return reassociationIndices; |
| } |
| |
| SmallVector<AffineMap, 4> |
| mlir::getSymbolLessAffineMaps(ArrayRef<ReassociationExprs> reassociation) { |
| unsigned maxDim = getMaxPosOfType<AffineDimExpr>(reassociation); |
| assert(getMaxPosOfType<AffineSymbolExpr>(reassociation) == 0 && |
| "Expected symbol-less expressions"); |
| SmallVector<AffineMap, 4> maps; |
| maps.reserve(reassociation.size()); |
| for (const auto &exprs : reassociation) { |
| assert(!exprs.empty()); |
| maps.push_back(AffineMap::get(maxDim + 1, 0, exprs, exprs[0].getContext())); |
| } |
| return maps; |
| } |
| |
| bool mlir::isReassociationValid(ArrayRef<AffineMap> reassociation, |
| int *invalidIndex) { |
| if (reassociation.empty()) |
| return true; |
| unsigned nDims = reassociation[0].getNumDims(); |
| unsigned nextExpectedDim = 0; |
| for (const auto &it : llvm::enumerate(reassociation)) { |
| auto m = it.value(); |
| if (m.getNumDims() != nDims || m.getNumSymbols() != 0) { |
| if (invalidIndex) |
| *invalidIndex = it.index(); |
| return false; |
| } |
| for (auto e : m.getResults()) { |
| auto d = e.dyn_cast<AffineDimExpr>(); |
| if (!d || d.getPosition() != nextExpectedDim++) { |
| if (invalidIndex) |
| *invalidIndex = it.index(); |
| return false; |
| } |
| } |
| } |
| if (nextExpectedDim != nDims) { |
| if (invalidIndex) |
| *invalidIndex = reassociation.size() - 1; |
| return false; |
| } |
| return true; |
| } |
| |
| LogicalResult mlir::reshapeLikeShapesAreCompatible( |
| function_ref<LogicalResult(const Twine &)> emitError, |
| ArrayRef<int64_t> collapsedShape, ArrayRef<int64_t> expandedShape, |
| ArrayRef<ReassociationIndices> reassociationMaps, bool isExpandingReshape) { |
| unsigned expandedDimStart = 0; |
| for (const auto &map : llvm::enumerate(reassociationMaps)) { |
| Optional<int64_t> dynamicShape; |
| int64_t linearizedStaticShape = 1; |
| for (const auto &dim : llvm::enumerate( |
| expandedShape.slice(expandedDimStart, map.value().size()))) { |
| if (ShapedType::isDynamic(dim.value())) { |
| if (isExpandingReshape && dynamicShape) { |
| return emitError("invalid to have a single dimension (" + |
| Twine(map.index()) + |
| ") expanded into multiple dynamic dims (" + |
| Twine(expandedDimStart + dynamicShape.value()) + |
| "," + Twine(expandedDimStart + dim.index()) + ")"); |
| } |
| dynamicShape = dim.index(); |
| } else { |
| linearizedStaticShape *= dim.value(); |
| } |
| } |
| if (dynamicShape) { |
| if (!ShapedType::isDynamic(collapsedShape[map.index()])) { |
| return emitError( |
| "expected dimension " + Twine(map.index()) + |
| " of collapsed type to be dynamic since one or more of the " |
| "corresponding dimensions in the expanded type is dynamic"); |
| } |
| } else { |
| if (collapsedShape[map.index()] != linearizedStaticShape) { |
| return emitError("expected dimension " + Twine(map.index()) + |
| " of collapsed type to be static value of " + |
| Twine(linearizedStaticShape)); |
| } |
| } |
| expandedDimStart += map.value().size(); |
| } |
| return success(); |
| } |
| |
| bool mlir::hasNonIdentityLayout(Type type) { |
| if (auto memrefType = type.dyn_cast<MemRefType>()) |
| return !memrefType.getLayout().isIdentity(); |
| return false; |
| } |