blob: 11ff2a00fcba1db7064978f03a99f202085dcd71 [file] [log] [blame] [edit]
//===- TosaOps.cpp - MLIR Dialect for TOSA --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements the TOSA Specification:
// https://developer.mlplatform.org/w/tosa/
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::tosa;
#include "mlir/Dialect/Tosa/IR/TosaOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// Tosa dialect interface includes.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaInterfaces.cpp.inc"
namespace {
//===----------------------------------------------------------------------===//
// Dialect Function Inliner Interface.
//===----------------------------------------------------------------------===//
struct TosaInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks.
//===--------------------------------------------------------------------===//
/// All operations can be inlined by default.
bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned,
BlockAndValueMapping &map) const final {
return true;
}
/// All regions with If and While parent operators can be inlined.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
BlockAndValueMapping &map) const final {
return (isa<tosa::IfOp>(dest->getParentOp()) ||
isa<tosa::WhileOp>(dest->getParentOp()));
}
};
} // namespace
//===----------------------------------------------------------------------===//
// TOSA control flow support.
//===----------------------------------------------------------------------===//
/// Returns the while loop body.
Region &tosa::WhileOp::getLoopBody() { return getBody(); }
//===----------------------------------------------------------------------===//
// Tosa dialect initialization.
//===----------------------------------------------------------------------===//
void TosaDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
>();
addInterfaces<TosaInlinerInterface>();
}
Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value,
Type type, Location loc) {
// Tosa dialect constants only support ElementsAttr unlike standard dialect
// constant which supports all attributes.
if (value.isa<ElementsAttr>())
return builder.create<tosa::ConstOp>(loc, type, value.cast<ElementsAttr>());
return nullptr;
}
//===----------------------------------------------------------------------===//
// TOSA Operator Verifiers.
//===----------------------------------------------------------------------===//
template <typename T>
static LogicalResult verifyConvOp(T op) {
// All TOSA conv ops have an input() and weight().
auto inputType =
op.getInput().getType().template dyn_cast<RankedTensorType>();
auto weightType =
op.getWeight().getType().template dyn_cast<RankedTensorType>();
// Must be ranked tensor types
if (!inputType) {
op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
return failure();
}
if (!weightType) {
op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
return failure();
}
auto inputEType = inputType.getElementType();
auto weightEType = weightType.getElementType();
bool inputIsQuant = !inputEType.template isa<FloatType>();
bool weightIsQuant = !weightEType.template isa<FloatType>();
// Either both must be quantized or both unquantized.
if (inputIsQuant != weightIsQuant) {
op.emitOpError(
"expect both input and weight to be float or not together, got ")
<< inputEType << " and " << weightEType;
return failure();
}
// Quantized type must have constructed the quantizationattr, and unquantized
// types should not have a quantizationattr.
if ((inputIsQuant && !op.getQuantizationInfo()) ||
(!inputIsQuant && op.getQuantizationInfo())) {
op.emitOpError("quantizationattr is required for quantized type, and not "
"allowed for float type");
return failure();
}
return success();
}
LogicalResult tosa::AvgPool2dOp::verify() {
auto inputETy = getInput().getType().cast<ShapedType>().getElementType();
auto resultETy = getType().cast<ShapedType>().getElementType();
if (auto quantType = inputETy.dyn_cast<mlir::quant::UniformQuantizedType>())
inputETy = quantType.getStorageType();
if (auto quantType = resultETy.dyn_cast<mlir::quant::UniformQuantizedType>())
resultETy = quantType.getStorageType();
if (inputETy.isF32() && resultETy.isF32())
return success();
if (inputETy.isInteger(8) && resultETy.isInteger(8))
return success();
if (inputETy.isInteger(16) && resultETy.isInteger(16))
return success();
return emitOpError("input/output element types are incompatible.");
}
//===----------------------------------------------------------------------===//
// TOSA Operator Quantization Builders.
//===----------------------------------------------------------------------===//
/// This builder is called on all convolution operators except TransposeConv,
/// which has specialized output shape semantics. The builder also defines the
/// bitwidth of the output given the bit width of the input & weight content.
static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input, Value weight,
Value bias, ArrayAttr pad,
ArrayAttr stride, ArrayAttr dilation) {
result.addOperands({input, weight, bias});
result.addAttribute("pad", pad);
result.addAttribute("stride", stride);
result.addAttribute("dilation", dilation);
auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// Handles tosa.transpose_conv2d which has outpad and output shape attributes.
static void buildTransConvOpWithQuantInfo(OpBuilder &builder,
OperationState &result,
Type outputType, Value input,
Value weight, Value bias,
ArrayAttr outpad, ArrayAttr stride,
ArrayAttr outputShape) {
result.addOperands({input, weight, bias});
result.addAttribute("out_pad", outpad);
result.addAttribute("stride", stride);
result.addAttribute("out_shape", outputShape);
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// The tosa.fully_connected op has its own builder as it does not have
/// strides/dilation/padding.
static void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input, Value weight,
Value bias) {
result.addOperands({input, weight, bias});
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// The tosa.matmul op is also intended to be generated where a fully_connected
/// op must be constructed where the weight is not a constant. In this case,
/// the fully_connected op must be expressed using matmul.
/// TODO: Add link to the leglization document explaining this.
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
Value a, Value b) {
result.addOperands({a, b});
auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
auto inputType = a.getType().dyn_cast<ShapedType>();
assert(inputType && "Input must be a shaped tensor type!");
auto inputQType = inputType.getElementType()
.dyn_cast<mlir::quant::UniformQuantizedType>();
assert(inputQType && "Tensor must have quantized datatype!");
unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
auto outputShapedType = outputType.dyn_cast<ShapedType>();
assert(outputShapedType && "Output must be a shaped type");
IntegerType accElementType;
if (inputBits == 16)
accElementType = builder.getIntegerType(48);
else
accElementType = builder.getI32Type();
auto accType = outputShapedType.clone(accElementType);
result.addTypes(accType);
} else {
result.addTypes(outputType);
}
}
/// Both the tosa.avg_pool2d and unary ops use the same UnaruOpQuantizationAttr
/// but avg_pool operator has its own builder as it has additional parameters
/// not part of the unary ops.
static void buildAvgPool2dOpWithQuantInfo(OpBuilder &builder,
OperationState &result,
Type outputType, Value input,
ArrayAttr kernel, ArrayAttr stride,
ArrayAttr pad) {
result.addOperands(input);
result.addAttribute("kernel", kernel);
result.addAttribute("stride", stride);
result.addAttribute("pad", pad);
auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on single-parameter unary operators that have scale
/// relationship between their input and output, expressed by the
/// UnaryOpQuantizationAttr.
static void buildUnaryOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
Value input) {
result.addOperands(input);
auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on TOSA pad operator that needs to create its own
/// OptionalAttr quantization_attr parameter to scale the padding values
/// correctly. No pad_const is interpreted as zero-padding.
static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input,
Value paddings) {
result.addOperands({input, paddings});
auto quantAttr = buildPadOpQuantizationAttr(builder, input);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on TOSA pad operator when an explicit pad_const
/// value is passed in. It also optionally constructs quantization_attr.
static void buildExplicitValuePadOpWithQuantInfo(OpBuilder &builder,
OperationState &result,
Type outputType, Value input,
Value paddings,
Value padConst) {
result.addOperands({input, paddings, padConst});
auto quantAttr = buildPadOpQuantizationAttr(builder, input);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
//===----------------------------------------------------------------------===//
// TOSA Operator Return Type Inference.
//===----------------------------------------------------------------------===//
static void getI64Values(ArrayAttr arrayAttr, SmallVector<int64_t> &values) {
for (auto it : arrayAttr) {
values.push_back(it.cast<IntegerAttr>().getValue().getSExtValue());
}
}
static void getF64Values(ArrayAttr arrayAttr, SmallVector<double> &values) {
for (auto it : arrayAttr) {
values.push_back(it.cast<FloatAttr>().getValueAsDouble());
}
}
LogicalResult tosa::ArgMaxOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
IntegerAttr axis = attributes.get("axis").cast<IntegerAttr>();
int32_t axisVal = axis.getValue().getSExtValue();
if (!inputShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
SmallVector<int64_t> outShape;
outShape.reserve(inputShape.getRank() - 1);
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
if (i == axisVal)
continue;
outShape.push_back(inputShape.getDimSize(i));
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult tosa::ConcatOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
// Infer all dimension sizes by reducing based on inputs.
int32_t axis =
attributes.get("axis").cast<IntegerAttr>().getValue().getSExtValue();
llvm::SmallVector<int64_t> outputShape;
bool hasRankedInput = false;
for (auto operand : operands) {
ShapeAdaptor operandShape = operands.getShape(operand);
if (!operandShape.hasRank())
continue;
// Copy the Operand's rank.
if (!hasRankedInput)
outputShape.resize(operandShape.getRank(), ShapedType::kDynamicSize);
// Copy shapes until the dim is non-dynamic.
for (int i = 0, s = operandShape.getRank(); i < s; i++) {
if (i == axis || operandShape.isDynamicDim(i))
continue;
if (outputShape[i] == ShapedType::kDynamicSize)
outputShape[i] = operandShape.getDimSize(i);
if (outputShape[i] != operandShape.getDimSize(i))
return failure();
}
hasRankedInput = true;
}
if (!hasRankedInput) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
// Determine the dimension size along the concatenation axis.
int concatDimSize = 0;
for (auto operand : operands) {
ShapeAdaptor operandShape = operands.getShape(operand);
// We need to know the length of the concatenation axis of all inputs to
// determine the dimension size of the output shape.
if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) {
concatDimSize = ShapedType::kDynamicSize;
break;
}
concatDimSize += operandShape.getDimSize(axis);
}
outputShape[axis] = concatDimSize;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
ShapeAdaptor weightShape = operands.getShape(1);
ShapeAdaptor biasShape = operands.getShape(2);
// All shapes are dynamic.
SmallVector<int64_t> outShape;
outShape.resize(2, ShapedType::kDynamicSize);
if (inputShape.hasRank()) {
outShape[0] = inputShape.getDimSize(0);
}
if (weightShape.hasRank()) {
outShape[1] = weightShape.getDimSize(0);
}
if (biasShape.hasRank()) {
outShape[1] = outShape[1] == ShapedType::kDynamicSize
? biasShape.getDimSize(0)
: outShape[1];
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult FullyConnectedOp::verify() { return verifyConvOp(*this); }
LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor lhsShape = operands.getShape(0);
ShapeAdaptor rhsShape = operands.getShape(1);
// All shapes are dynamic.
SmallVector<int64_t> outShape;
outShape.resize(3, ShapedType::kDynamicSize);
if (lhsShape.hasRank()) {
outShape[0] = lhsShape.getDimSize(0);
outShape[1] = lhsShape.getDimSize(1);
}
if (rhsShape.hasRank()) {
outShape[0] = outShape[0] == ShapedType::kDynamicSize
? rhsShape.getDimSize(0)
: outShape[0];
outShape[2] = rhsShape.getDimSize(2);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult tosa::PadOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
ShapeAdaptor paddingShape = operands.getShape(1);
SmallVector<int64_t> outputShape;
// If both inputs have unknown shape, we cannot determine the shape of the
// output.
if (!inputShape.hasRank() && !paddingShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
// If the input rank is unknown we can info the output rank using the padding
// shape's first dim.
if (!inputShape.hasRank()) {
if (paddingShape.isDynamicDim(0)) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
outputShape.resize(paddingShape.getDimSize(0), ShapedType::kDynamicSize);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
DenseIntElementsAttr paddings;
// If the paddings value is not a constant, all dimensions must be dynamic.
if (!matchPattern(operands[1], m_Constant(&paddings))) {
outputShape.resize(inputShape.getRank(), ShapedType::kDynamicSize);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
SmallVector<int64_t> paddingValues;
for (auto val : paddings) {
paddingValues.push_back(val.getSExtValue());
}
outputShape.reserve(inputShape.getRank());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
if (inputShape.isDynamicDim(i)) {
outputShape.push_back(ShapedType::kDynamicSize);
continue;
}
outputShape.push_back(inputShape.getDimSize(i) + paddingValues[i * 2] +
paddingValues[i * 2 + 1]);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::SliceOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ArrayAttr sizes = SliceOpAdaptor(operands, attributes).getSize();
SmallVector<int64_t> outputShape;
outputShape.reserve(sizes.size());
for (auto val : sizes) {
outputShape.push_back(val.cast<IntegerAttr>().getValue().getSExtValue());
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::TableOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
if (!inputShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
inferredReturnShapes.resize(1);
inputShape.getDims(inferredReturnShapes[0]);
return success();
}
LogicalResult tosa::TileOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
TileOpAdaptor adaptor(operands, attributes);
ArrayAttr multiples = adaptor.getMultiples();
ShapeAdaptor inputShape = operands.getShape(0);
SmallVector<int64_t> outputShape;
if (!inputShape.hasRank()) {
outputShape.resize(multiples.size(), ShapedType::kDynamicSize);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// We need the multiple values to determine the output shape.
SmallVector<int64_t> multipleValues;
multipleValues.reserve(multiples.size());
for (auto val : multiples) {
multipleValues.push_back(val.cast<IntegerAttr>().getValue().getSExtValue());
}
// Any non dynamic dimension can be multiplied to a known size.
outputShape.reserve(multiples.size());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
int dim = inputShape.getDimSize(i);
if (dim != ShapedType::kDynamicSize)
dim *= multipleValues[i];
outputShape.push_back(dim);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::ReshapeOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ReshapeOpAdaptor adaptor(operands, attributes);
ShapeAdaptor inputShape = operands.getShape(0);
ArrayAttr newShape = adaptor.getNewShape();
llvm::SmallVector<int64_t> newShapeValue;
getI64Values(newShape, newShapeValue);
// We cannot infer from the total number of elements so we must take the
// shape attribute as exact.
if (!inputShape.hasRank() || !inputShape.hasStaticShape()) {
inferredReturnShapes.push_back(ShapedTypeComponents(newShapeValue));
return success();
}
// Determine the number of elements covered by the slice of all static
// dimensions. This allows us to infer the length of the remaining dynamic
// dimension.
int64_t numElements = inputShape.getNumElements();
int64_t staticMul = 1;
for (auto val : newShapeValue) {
if (val != ShapedType::kDynamicSize) {
staticMul *= val;
}
}
// Determine the length of the dynamic dimension.
for (auto &val : newShapeValue) {
if (val == ShapedType::kDynamicSize)
val = numElements / staticMul;
}
inferredReturnShapes.push_back(ShapedTypeComponents(newShapeValue));
return success();
}
LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
ShapeAdaptor permsShape = operands.getShape(1);
// If input rank and permutation length is unknown, the output rank is
// unknown.
if (!inputShape.hasRank() || !permsShape.hasRank() ||
permsShape.isDynamicDim(0)) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
// This would imply the number of permutations does not match the rank of the
// input which is illegal.
if (permsShape.getDimSize(0) != inputShape.getRank()) {
return failure();
}
// Without the input dims we cannot determine the output dim sizes but we
// can determine the output rank.
SmallVector<int64_t> outputShape;
if (!inputShape.hasRank()) {
outputShape.resize(permsShape.getDimSize(0), ShapedType::kDynamicSize);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Rank-0 means no permutations matter.
if (inputShape.getRank() == 0) {
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Check whether the input dimensions are all the same.
bool allTheSame = true;
for (int i = 1, s = inputShape.getRank(); i < s; i++) {
if (inputShape.getDimSize(0) != inputShape.getDimSize(i)) {
allTheSame = false;
break;
}
}
// If all of the input dimensions are the same we don't care about the
// permutation.
if (allTheSame) {
outputShape.resize(inputShape.getRank(), inputShape.getDimSize(0));
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
outputShape.resize(inputShape.getRank(), ShapedType::kDynamicSize);
// If the permuations are a constant we can directly determine the output
// shape.
if (ShapeAdaptor permShape = operands.getValueAsShape(1)) {
outputShape.reserve(inputShape.getRank());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
outputShape[i] = inputShape.getDimSize(permShape.getDimSize(i));
}
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::GatherOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(3, ShapedType::kDynamicSize);
ShapeAdaptor valuesShape = operands.getShape(0);
if (valuesShape.hasRank()) {
outputShape[0] = valuesShape.getDimSize(0);
outputShape[2] = valuesShape.getDimSize(2);
}
ShapeAdaptor indicesShape = operands.getShape(1);
if (indicesShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamicSize)
outputShape[0] = indicesShape.getDimSize(0);
if (outputShape[1] == ShapedType::kDynamicSize)
outputShape[1] = indicesShape.getDimSize(1);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ResizeOpAdaptor adaptor(operands, attributes);
llvm::SmallVector<int64_t, 4> outputShape;
outputShape.resize(4, ShapedType::kDynamicSize);
int32_t inHeight = ShapedType::kDynamicSize;
int32_t inWidth = ShapedType::kDynamicSize;
ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
outputShape[3] = inputShape.getDimSize(3);
inHeight = inputShape.getDimSize(1);
inWidth = inputShape.getDimSize(2);
}
int32_t shift = adaptor.getShift();
llvm::SmallVector<int64_t> newShape;
getI64Values(adaptor.getOutputSize(), newShape);
outputShape[1] = newShape[0];
outputShape[2] = newShape[1];
llvm::SmallVector<int64_t> strideInt;
llvm::SmallVector<int64_t> offsetInt;
llvm::SmallVector<double> strideFp;
llvm::SmallVector<double> offsetFp;
getI64Values(adaptor.getOffset(), offsetInt);
getF64Values(adaptor.getOffsetFp(), offsetFp);
getI64Values(adaptor.getStride(), strideInt);
getF64Values(adaptor.getStrideFp(), strideFp);
// If we have a 0 zero in integers we know that the resize indexing needs to
// be performed in floating point. Use the floating point varient to compute
// the resize shape.
bool fpMode = strideInt[0] == 0;
// We can compute the output shape if attribute specifies unknown dimensions
// based on the offset and stride. If we perfectly line up to the last index
// we need to round up the size to include it.
if (outputShape[1] == ShapedType::kDynamicSize && inHeight >= 0 && fpMode) {
float sizeFp = (inHeight - offsetFp[0] - 1) / strideFp[0];
float round = std::floor(sizeFp) == sizeFp ? 1 : 0;
outputShape[1] = std::ceil(sizeFp) + round;
}
if (outputShape[2] == ShapedType::kDynamicSize && inWidth >= 0 && fpMode) {
float sizeFp = (inWidth - offsetFp[1] - 1) / strideFp[1];
float round = std::floor(sizeFp) == sizeFp ? 1 : 0;
outputShape[2] = std::ceil(sizeFp) + round;
}
if (outputShape[1] == ShapedType::kDynamicSize && inHeight >= 0 && !fpMode) {
int64_t size = (inHeight - 1);
size = ((size << shift) - offsetInt[0]) / strideInt[0];
outputShape[1] = size + 1;
}
if (outputShape[2] == ShapedType::kDynamicSize && inWidth >= 0 && !fpMode) {
int64_t size = (inWidth - 1);
size = ((size << shift) - offsetInt[1]) / strideInt[1];
outputShape[2] = size + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::ScatterOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(3, ShapedType::kDynamicSize);
ShapeAdaptor valuesInShape = operands.getShape(0);
if (valuesInShape.hasRank()) {
outputShape[0] = valuesInShape.getDimSize(0);
outputShape[1] = valuesInShape.getDimSize(1);
outputShape[2] = valuesInShape.getDimSize(2);
}
ShapeAdaptor indicesShape = operands.getShape(1);
if (indicesShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamicSize)
outputShape[0] = indicesShape.getDimSize(0);
}
ShapeAdaptor inputShape = operands.getShape(2);
if (inputShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamicSize)
outputShape[0] = inputShape.getDimSize(0);
if (outputShape[2] == ShapedType::kDynamicSize)
outputShape[2] = inputShape.getDimSize(2);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
static LogicalResult ReduceInferReturnTypes(
ShapeAdaptor operandShape, IntegerAttr axis,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
if (!operandShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
SmallVector<int64_t> outputShape;
operandShape.getDims(outputShape);
int64_t axisVal = axis.getValue().getSExtValue();
outputShape[axisVal] = 1;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
#define REDUCE_SHAPE_INFER(OP) \
LogicalResult OP::inferReturnTypeComponents( \
MLIRContext *context, ::llvm::Optional<Location> location, \
ValueShapeRange operands, DictionaryAttr attributes, \
RegionRange regions, \
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
return ReduceInferReturnTypes(operands.getShape(0), \
attributes.get("axis").cast<IntegerAttr>(), \
inferredReturnShapes); \
}
REDUCE_SHAPE_INFER(tosa::ReduceAllOp)
REDUCE_SHAPE_INFER(tosa::ReduceAnyOp)
REDUCE_SHAPE_INFER(tosa::ReduceMaxOp)
REDUCE_SHAPE_INFER(tosa::ReduceMinOp)
REDUCE_SHAPE_INFER(tosa::ReduceProdOp)
REDUCE_SHAPE_INFER(tosa::ReduceSumOp)
#undef REDUCE_SHAPE_INFER
static LogicalResult resolveBroadcastShape(const ValueShapeRange &operands,
SmallVector<int64_t> &outShape) {
int64_t outRank = 0;
for (int i = 0, e = operands.size(); i != e; ++i) {
auto shape = operands.getShape(i);
if (!shape.hasRank()) {
return failure();
}
outRank = std::max<int64_t>(outRank, shape.getRank());
}
outShape.resize(outRank, 1);
for (int i = 0, e = operands.size(); i != e; ++i) {
auto shape = operands.getShape(i);
auto rankDiff = outShape.size() - shape.getRank();
for (size_t i = 0, e = shape.getRank(); i < e; ++i) {
auto dim1 = outShape[i + rankDiff];
auto dim2 = shape.getDimSize(i);
auto resolvedDim = dim1;
if (dim1 == 1) {
resolvedDim = dim2;
} else if (dim2 == 1) {
resolvedDim = dim1;
} else if (dim1 != dim2) {
return failure();
}
outShape[i + rankDiff] = resolvedDim;
}
}
return success();
}
static LogicalResult NAryInferReturnTypes(
const ValueShapeRange &operands,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outShape;
if (resolveBroadcastShape(operands, outShape).failed()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
} else {
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
}
return success();
}
#define NARY_SHAPE_INFER(OP) \
LogicalResult OP::inferReturnTypeComponents( \
MLIRContext *context, ::llvm::Optional<Location> location, \
ValueShapeRange operands, DictionaryAttr attributes, \
RegionRange regions, \
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
return NAryInferReturnTypes(operands, inferredReturnShapes); \
}
NARY_SHAPE_INFER(tosa::AbsOp)
NARY_SHAPE_INFER(tosa::AddOp)
NARY_SHAPE_INFER(tosa::ArithmeticRightShiftOp)
NARY_SHAPE_INFER(tosa::BitwiseAndOp)
NARY_SHAPE_INFER(tosa::BitwiseOrOp)
NARY_SHAPE_INFER(tosa::BitwiseXorOp)
NARY_SHAPE_INFER(tosa::BitwiseNotOp)
NARY_SHAPE_INFER(tosa::CastOp)
NARY_SHAPE_INFER(tosa::CeilOp)
NARY_SHAPE_INFER(tosa::ClampOp)
NARY_SHAPE_INFER(tosa::ClzOp)
NARY_SHAPE_INFER(tosa::DivOp)
NARY_SHAPE_INFER(tosa::EqualOp)
NARY_SHAPE_INFER(tosa::ExpOp)
NARY_SHAPE_INFER(tosa::FloorOp)
NARY_SHAPE_INFER(tosa::GreaterEqualOp)
NARY_SHAPE_INFER(tosa::GreaterOp)
NARY_SHAPE_INFER(tosa::IdentityOp)
NARY_SHAPE_INFER(tosa::LogOp)
NARY_SHAPE_INFER(tosa::LogicalAndOp)
NARY_SHAPE_INFER(tosa::LogicalLeftShiftOp)
NARY_SHAPE_INFER(tosa::LogicalNotOp)
NARY_SHAPE_INFER(tosa::LogicalOrOp)
NARY_SHAPE_INFER(tosa::LogicalRightShiftOp)
NARY_SHAPE_INFER(tosa::LogicalXorOp)
NARY_SHAPE_INFER(tosa::MaximumOp)
NARY_SHAPE_INFER(tosa::MinimumOp)
NARY_SHAPE_INFER(tosa::MulOp)
NARY_SHAPE_INFER(tosa::NegateOp)
NARY_SHAPE_INFER(tosa::PowOp)
NARY_SHAPE_INFER(tosa::ReciprocalOp)
NARY_SHAPE_INFER(tosa::ReluNOp)
NARY_SHAPE_INFER(tosa::RescaleOp)
NARY_SHAPE_INFER(tosa::ReverseOp)
NARY_SHAPE_INFER(tosa::RsqrtOp)
NARY_SHAPE_INFER(tosa::SelectOp)
NARY_SHAPE_INFER(tosa::SubOp)
NARY_SHAPE_INFER(tosa::TanhOp)
NARY_SHAPE_INFER(tosa::SigmoidOp)
#undef PRED_SHAPE_INFER
static LogicalResult poolingInferReturnTypes(
const ValueShapeRange &operands, DictionaryAttr attributes,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape = operands.getShape(0);
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(4, -1);
// We only know the rank if the input type is unranked.
if (!inputShape) {
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Batch and number of channels are identical for pooling layer.
outputShape[0] = inputShape.getDimSize(0);
outputShape[3] = inputShape.getDimSize(3);
int32_t height = inputShape.getDimSize(1);
int32_t width = inputShape.getDimSize(2);
llvm::SmallVector<int64_t> kernel;
llvm::SmallVector<int64_t> stride;
llvm::SmallVector<int64_t> pad;
getI64Values(attributes.get("kernel").cast<ArrayAttr>(), kernel);
getI64Values(attributes.get("stride").cast<ArrayAttr>(), stride);
getI64Values(attributes.get("pad").cast<ArrayAttr>(), pad);
if (height != -1) {
int32_t padded = height + pad[0] + pad[1] - kernel[0];
outputShape[1] = padded / stride[0] + 1;
}
if (width != -1) {
int32_t padded = width + pad[2] + pad[3] - kernel[1];
outputShape[2] = padded / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamicSize);
Conv2DOp::Adaptor adaptor(operands.getValues(), attributes);
int32_t inputWidth = ShapedType::kDynamicSize;
int32_t inputHeight = ShapedType::kDynamicSize;
int32_t weightWidth = ShapedType::kDynamicSize;
int32_t weightHeight = ShapedType::kDynamicSize;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
if (weightShape.hasRank()) {
outputShape[3] = weightShape.getDimSize(0);
weightHeight = weightShape.getDimSize(1);
weightWidth = weightShape.getDimSize(2);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::SmallVector<int64_t> dilation;
llvm::SmallVector<int64_t> padding;
llvm::SmallVector<int64_t> stride;
getI64Values(adaptor.getDilation(), dilation);
getI64Values(adaptor.getPad(), padding);
getI64Values(adaptor.getStride(), stride);
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int32_t inputSize = inputHeight + padding[0] + padding[1];
int32_t filterSize = (weightHeight - 1) * dilation[0] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int32_t inputSize = inputWidth + padding[2] + padding[3];
int32_t filterSize = (weightWidth - 1) * dilation[1] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv2DOp::verify() { return verifyConvOp(*this); }
LogicalResult Conv3DOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamicSize);
Conv2DOp::Adaptor adaptor(operands.getValues(), attributes);
int32_t inputWidth = ShapedType::kDynamicSize;
int32_t inputHeight = ShapedType::kDynamicSize;
int32_t inputDepth = ShapedType::kDynamicSize;
int32_t weightWidth = ShapedType::kDynamicSize;
int32_t weightHeight = ShapedType::kDynamicSize;
int32_t weightDepth = ShapedType::kDynamicSize;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
inputDepth = inputShape.getDimSize(3);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
if (weightShape.hasRank()) {
outputShape[4] = weightShape.getDimSize(0);
weightHeight = weightShape.getDimSize(1);
weightWidth = weightShape.getDimSize(2);
weightDepth = weightShape.getDimSize(3);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
if (biasShape.hasRank()) {
outputShape[4] =
(outputShape[4] == -1) ? biasShape.getDimSize(0) : outputShape[4];
}
llvm::SmallVector<int64_t> dilation;
llvm::SmallVector<int64_t> padding;
llvm::SmallVector<int64_t> stride;
getI64Values(adaptor.getDilation(), dilation);
getI64Values(adaptor.getPad(), padding);
getI64Values(adaptor.getStride(), stride);
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int32_t inputSize = inputHeight + padding[0] + padding[1];
int32_t filterSize = (weightHeight - 1) * dilation[0] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int32_t inputSize = inputWidth + padding[2] + padding[3];
int32_t filterSize = (weightWidth - 1) * dilation[1] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
if (!ShapedType::isDynamic(inputDepth) &&
!ShapedType::isDynamic(weightDepth)) {
int32_t inputSize = inputDepth + padding[4] + padding[5];
int32_t filterSize = (weightDepth - 1) * dilation[2] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[3] = (unstridedResult - 1) / stride[2] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv3DOp::verify() { return verifyConvOp(*this); }
LogicalResult AvgPool2dOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
return poolingInferReturnTypes(operands, attributes, inferredReturnShapes);
}
LogicalResult MaxPool2dOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
return poolingInferReturnTypes(operands, attributes, inferredReturnShapes);
}
LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamicSize);
DepthwiseConv2DOp::Adaptor adaptor(operands.getValues(), attributes);
int32_t inputWidth = ShapedType::kDynamicSize;
int32_t inputHeight = ShapedType::kDynamicSize;
int32_t inputChannels = ShapedType::kDynamicSize;
int32_t weightWidth = ShapedType::kDynamicSize;
int32_t weightHeight = ShapedType::kDynamicSize;
int32_t depthChannels = ShapedType::kDynamicSize;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
inputChannels = inputShape.getDimSize(3);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape = operands.getShape(adaptor.getWeight());
if (weightShape.hasRank()) {
weightHeight = weightShape.getDimSize(0);
weightWidth = weightShape.getDimSize(1);
inputChannels = ShapedType::isDynamic(inputChannels)
? weightShape.getDimSize(2)
: inputChannels;
depthChannels = weightShape.getDimSize(3);
}
// If both inputChannels and depthChannels are available we can determine
// the output channels.
if (!ShapedType::isDynamic(inputChannels) &&
!ShapedType::isDynamic(depthChannels)) {
outputShape[3] = inputChannels * depthChannels;
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape = operands.getShape(adaptor.getBias());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::SmallVector<int64_t> dilation;
llvm::SmallVector<int64_t> padding;
llvm::SmallVector<int64_t> stride;
getI64Values(adaptor.getDilation(), dilation);
getI64Values(adaptor.getPad(), padding);
getI64Values(adaptor.getStride(), stride);
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int32_t inputSize = inputHeight + padding[0] + padding[1];
int32_t filterSize = (weightHeight - 1) * dilation[0] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int32_t inputSize = inputWidth + padding[2] + padding[3];
int32_t filterSize = (weightWidth - 1) * dilation[1] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult DepthwiseConv2DOp::verify() { return verifyConvOp(*this); }
LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
TransposeConv2DOp::Adaptor adaptor(operands.getValues(), attributes);
llvm::SmallVector<int64_t> outputShape;
getI64Values(adaptor.getOutShape(), outputShape);
int32_t inputWidth = ShapedType::kDynamicSize;
int32_t inputHeight = ShapedType::kDynamicSize;
int32_t weightWidth = ShapedType::kDynamicSize;
int32_t weightHeight = ShapedType::kDynamicSize;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape = operands.getShape(adaptor.getInput());
if (inputShape.hasRank()) {
outputShape[0] = ShapedType::isDynamic(outputShape[0])
? inputShape.getDimSize(0)
: outputShape[0];
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape = operands.getShape(adaptor.getFilter());
if (weightShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? weightShape.getDimSize(0)
: outputShape[3];
weightHeight = weightShape.getDimSize(1);
weightWidth = weightShape.getDimSize(2);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape = operands.getShape(adaptor.getInput());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::SmallVector<int64_t> padding;
llvm::SmallVector<int64_t> stride;
getI64Values(adaptor.getOutPad(), padding);
getI64Values(adaptor.getStride(), stride);
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int32_t calculateSize =
(inputHeight - 1) * stride[0] - padding[0] - padding[1] + weightHeight;
outputShape[1] = outputShape[1] == -1 ? calculateSize : outputShape[1];
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int32_t calculateSize =
(inputWidth - 1) * stride[1] - padding[2] - padding[3] + weightWidth;
outputShape[2] = outputShape[2] == -1 ? calculateSize : outputShape[2];
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult IfOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<tosa::YieldOp> yieldOps;
for (Region *region : regions) {
for (auto &block : *region)
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
yieldOps.push_back(returnOp);
}
if (yieldOps.empty())
return failure();
// Get the initial type information for the yield op.
llvm::SmallVector<ValueKnowledge> resultKnowledge;
resultKnowledge.reserve(yieldOps.front().getNumOperands());
for (auto operand : yieldOps.front().getOperands()) {
resultKnowledge.push_back(
ValueKnowledge::getKnowledgeFromType(operand.getType()));
}
for (auto yieldOp : yieldOps) {
if (resultKnowledge.size() != yieldOp.getNumOperands())
return failure();
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
int32_t index = it.index();
auto meet = ValueKnowledge::meet(
resultKnowledge[index],
ValueKnowledge::getKnowledgeFromType(it.value().getType()));
if (!meet)
continue;
resultKnowledge[index] = meet;
}
}
for (const ValueKnowledge &result : resultKnowledge) {
inferredReturnShapes.push_back(result.getShapedTypeComponents());
}
return success();
}
LogicalResult WhileOp::inferReturnTypeComponents(
MLIRContext *context, ::llvm::Optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<tosa::YieldOp> yieldOps;
for (auto &block : *regions[1])
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
yieldOps.push_back(returnOp);
// TOSA's while must have a tosa.yield as its terminator. If not found this
// tosa.while is invalid.
if (yieldOps.empty())
return failure();
// Get the initial type information from the operand types.
llvm::SmallVector<ValueKnowledge> resultKnowledge;
resultKnowledge.reserve(yieldOps.front().getNumOperands());
for (auto operand : yieldOps.front().getOperands()) {
resultKnowledge.push_back(
ValueKnowledge::getKnowledgeFromType(operand.getType()));
}
for (auto yieldOp : yieldOps) {
if (resultKnowledge.size() != yieldOp.getNumOperands())
return failure();
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
int32_t index = it.index();
if (auto meet = ValueKnowledge::meet(
resultKnowledge[index],
ValueKnowledge::getKnowledgeFromType(it.value().getType()))) {
resultKnowledge[index] = meet;
}
}
}
for (const ValueKnowledge &result : resultKnowledge) {
inferredReturnShapes.push_back(result.getShapedTypeComponents());
}
return success();
}
//===----------------------------------------------------------------------===//
// TOSA Attribute Definitions.
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
//===----------------------------------------------------------------------===//
// TOSA Operator Definitions.
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"