| """Generate a mock model for LLVM tests for Register Allocation. |
| The generated model is not a neural net - it is just a tf.function with the |
| correct input and output parameters. By construction, the mock model will always |
| output the first liverange that can be evicted. |
| """ |
| import os |
| import sys |
| import tensorflow as tf |
| POLICY_DECISION_LABEL = 'index_to_evict' |
| POLICY_OUTPUT_SPEC = """ |
| [ |
| { |
| "logging_name": "index_to_evict", |
| "tensor_spec": { |
| "name": "StatefulPartitionedCall", |
| "port": 0, |
| "type": "int64_t", |
| "shape": [ |
| 1 |
| ] |
| } |
| } |
| ] |
| """ |
| PER_REGISTER_INT64_FEATURE_LIST = [ |
| 'mask', 'is_hint', 'is_local', 'is_free', 'max_stage', 'min_stage' |
| ] |
| PER_REGISTER_FLOAT32_FEATURE_LIST = ['nr_urgent', |
| 'weighed_reads_by_max', 'weighed_writes_by_max', |
| 'weighed_read_writes_by_max', 'weighed_indvars_by_max', |
| 'hint_weights_by_max', 'start_bb_freq_by_max', 'end_bb_freq_by_max', |
| 'hottest_bb_freq_by_max', 'liverange_size', 'use_def_density', |
| 'nr_defs_and_uses', 'nr_broken_hints', 'nr_rematerializable' |
| ] |
| PER_REGISTER_FEATURE_LIST = PER_REGISTER_FLOAT32_FEATURE_LIST + \ |
| PER_REGISTER_INT64_FEATURE_LIST |
| CONTEXT_FEATURE_LIST = ('progress', 'discount', 'reward', 'step_type') |
| NUM_REGISTERS = 33 |
| |
| |
| def get_input_signature(): |
| """Returns (time_step_spec, action_spec) for LLVM register allocation.""" |
| inputs = dict( |
| (key, tf.TensorSpec(dtype=tf.int64, shape=(NUM_REGISTERS), name=key)) |
| for key in PER_REGISTER_INT64_FEATURE_LIST) |
| inputs.update( |
| dict((key, |
| tf.TensorSpec(dtype=tf.float32, shape=(NUM_REGISTERS), name=key)) |
| for key in PER_REGISTER_FLOAT32_FEATURE_LIST)) |
| inputs['progress'] = tf.TensorSpec( |
| dtype=tf.float32, shape=(), name='progress') |
| inputs.update( |
| dict((key, tf.TensorSpec(dtype=tf.float32, shape=(), name=key)) |
| for key in ['discount', 'reward'])) |
| inputs.update( |
| dict((key, tf.TensorSpec(dtype=tf.int32, shape=(), name=key)) |
| for key in ['step_type'])) |
| return inputs |
| |
| |
| def get_output_spec_path(path): |
| return os.path.join(path, 'output_spec.json') |
| |
| |
| def build_mock_model(path): |
| """Build and save the mock model with the given signature.""" |
| module = tf.Module() |
| # We have to set this useless variable in order for the TF C API to correctly |
| # intake it |
| module.var = tf.Variable(0, dtype=tf.int64) |
| |
| def action(*inputs): |
| s1 = tf.reduce_sum([ |
| tf.cast(inputs[0][key], tf.float32) for key in PER_REGISTER_FEATURE_LIST |
| ], |
| axis=0) |
| s2 = tf.reduce_sum( |
| [tf.cast(inputs[0][key], tf.float32) for key in CONTEXT_FEATURE_LIST]) |
| # Add a large number so s won't be 0. |
| s = s1 + s2 + 123456789.123456789 |
| # Equals to mask feature. |
| mask_alias = tf.not_equal(s * tf.cast(inputs[0]['mask'], tf.float32), 0) |
| result = tf.math.argmax(mask_alias, axis=-1) + module.var |
| return {POLICY_DECISION_LABEL: result} |
| module.action = tf.function()(action) |
| action = { |
| 'action': module.action.get_concrete_function(get_input_signature()) |
| } |
| tf.saved_model.save(module, path, signatures=action) |
| output_spec_path = get_output_spec_path(path) |
| with open(output_spec_path, 'w') as f: |
| print(f'Writing output spec to {output_spec_path}.') |
| f.write(POLICY_OUTPUT_SPEC) |
| |
| |
| def main(argv): |
| assert len(argv) == 2 |
| model_path = argv[1] |
| build_mock_model(model_path) |
| |
| |
| if __name__ == '__main__': |
| main(sys.argv) |