| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file implements decl-related attribute processing. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/AST/ASTConsumer.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/ASTMutationListener.h" | 
 | #include "clang/AST/CXXInheritance.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclTemplate.h" | 
 | #include "clang/AST/Expr.h" | 
 | #include "clang/AST/ExprCXX.h" | 
 | #include "clang/AST/Mangle.h" | 
 | #include "clang/AST/RecursiveASTVisitor.h" | 
 | #include "clang/AST/Type.h" | 
 | #include "clang/Basic/CharInfo.h" | 
 | #include "clang/Basic/DarwinSDKInfo.h" | 
 | #include "clang/Basic/SourceLocation.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetBuiltins.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/Lex/Preprocessor.h" | 
 | #include "clang/Sema/DeclSpec.h" | 
 | #include "clang/Sema/DelayedDiagnostic.h" | 
 | #include "clang/Sema/Initialization.h" | 
 | #include "clang/Sema/Lookup.h" | 
 | #include "clang/Sema/ParsedAttr.h" | 
 | #include "clang/Sema/Scope.h" | 
 | #include "clang/Sema/ScopeInfo.h" | 
 | #include "clang/Sema/SemaInternal.h" | 
 | #include "llvm/ADT/Optional.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/IR/Assumptions.h" | 
 | #include "llvm/MC/MCSectionMachO.h" | 
 | #include "llvm/Support/Error.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | using namespace clang; | 
 | using namespace sema; | 
 |  | 
 | namespace AttributeLangSupport { | 
 |   enum LANG { | 
 |     C, | 
 |     Cpp, | 
 |     ObjC | 
 |   }; | 
 | } // end namespace AttributeLangSupport | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Helper functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isFunctionOrMethod - Return true if the given decl has function | 
 | /// type (function or function-typed variable) or an Objective-C | 
 | /// method. | 
 | static bool isFunctionOrMethod(const Decl *D) { | 
 |   return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D); | 
 | } | 
 |  | 
 | /// Return true if the given decl has function type (function or | 
 | /// function-typed variable) or an Objective-C method or a block. | 
 | static bool isFunctionOrMethodOrBlock(const Decl *D) { | 
 |   return isFunctionOrMethod(D) || isa<BlockDecl>(D); | 
 | } | 
 |  | 
 | /// Return true if the given decl has a declarator that should have | 
 | /// been processed by Sema::GetTypeForDeclarator. | 
 | static bool hasDeclarator(const Decl *D) { | 
 |   // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. | 
 |   return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) || | 
 |          isa<ObjCPropertyDecl>(D); | 
 | } | 
 |  | 
 | /// hasFunctionProto - Return true if the given decl has a argument | 
 | /// information. This decl should have already passed | 
 | /// isFunctionOrMethod or isFunctionOrMethodOrBlock. | 
 | static bool hasFunctionProto(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return isa<FunctionProtoType>(FnTy); | 
 |   return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D); | 
 | } | 
 |  | 
 | /// getFunctionOrMethodNumParams - Return number of function or method | 
 | /// parameters. It is an error to call this on a K&R function (use | 
 | /// hasFunctionProto first). | 
 | static unsigned getFunctionOrMethodNumParams(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->getNumParams(); | 
 |   if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->getNumParams(); | 
 |   return cast<ObjCMethodDecl>(D)->param_size(); | 
 | } | 
 |  | 
 | static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, | 
 |                                                    unsigned Idx) { | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
 |     return FD->getParamDecl(Idx); | 
 |   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
 |     return MD->getParamDecl(Idx); | 
 |   if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->getParamDecl(Idx); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->getParamType(Idx); | 
 |   if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->getParamDecl(Idx)->getType(); | 
 |  | 
 |   return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType(); | 
 | } | 
 |  | 
 | static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { | 
 |   if (auto *PVD = getFunctionOrMethodParam(D, Idx)) | 
 |     return PVD->getSourceRange(); | 
 |   return SourceRange(); | 
 | } | 
 |  | 
 | static QualType getFunctionOrMethodResultType(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return FnTy->getReturnType(); | 
 |   return cast<ObjCMethodDecl>(D)->getReturnType(); | 
 | } | 
 |  | 
 | static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
 |     return FD->getReturnTypeSourceRange(); | 
 |   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
 |     return MD->getReturnTypeSourceRange(); | 
 |   return SourceRange(); | 
 | } | 
 |  | 
 | static bool isFunctionOrMethodVariadic(const Decl *D) { | 
 |   if (const FunctionType *FnTy = D->getFunctionType()) | 
 |     return cast<FunctionProtoType>(FnTy)->isVariadic(); | 
 |   if (const auto *BD = dyn_cast<BlockDecl>(D)) | 
 |     return BD->isVariadic(); | 
 |   return cast<ObjCMethodDecl>(D)->isVariadic(); | 
 | } | 
 |  | 
 | static bool isInstanceMethod(const Decl *D) { | 
 |   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D)) | 
 |     return MethodDecl->isInstance(); | 
 |   return false; | 
 | } | 
 |  | 
 | static inline bool isNSStringType(QualType T, ASTContext &Ctx, | 
 |                                   bool AllowNSAttributedString = false) { | 
 |   const auto *PT = T->getAs<ObjCObjectPointerType>(); | 
 |   if (!PT) | 
 |     return false; | 
 |  | 
 |   ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); | 
 |   if (!Cls) | 
 |     return false; | 
 |  | 
 |   IdentifierInfo* ClsName = Cls->getIdentifier(); | 
 |  | 
 |   if (AllowNSAttributedString && | 
 |       ClsName == &Ctx.Idents.get("NSAttributedString")) | 
 |     return true; | 
 |   // FIXME: Should we walk the chain of classes? | 
 |   return ClsName == &Ctx.Idents.get("NSString") || | 
 |          ClsName == &Ctx.Idents.get("NSMutableString"); | 
 | } | 
 |  | 
 | static inline bool isCFStringType(QualType T, ASTContext &Ctx) { | 
 |   const auto *PT = T->getAs<PointerType>(); | 
 |   if (!PT) | 
 |     return false; | 
 |  | 
 |   const auto *RT = PT->getPointeeType()->getAs<RecordType>(); | 
 |   if (!RT) | 
 |     return false; | 
 |  | 
 |   const RecordDecl *RD = RT->getDecl(); | 
 |   if (RD->getTagKind() != TTK_Struct) | 
 |     return false; | 
 |  | 
 |   return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); | 
 | } | 
 |  | 
 | static unsigned getNumAttributeArgs(const ParsedAttr &AL) { | 
 |   // FIXME: Include the type in the argument list. | 
 |   return AL.getNumArgs() + AL.hasParsedType(); | 
 | } | 
 |  | 
 | /// A helper function to provide Attribute Location for the Attr types | 
 | /// AND the ParsedAttr. | 
 | template <typename AttrInfo> | 
 | static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation> | 
 | getAttrLoc(const AttrInfo &AL) { | 
 |   return AL.getLocation(); | 
 | } | 
 | static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } | 
 |  | 
 | /// If Expr is a valid integer constant, get the value of the integer | 
 | /// expression and return success or failure. May output an error. | 
 | /// | 
 | /// Negative argument is implicitly converted to unsigned, unless | 
 | /// \p StrictlyUnsigned is true. | 
 | template <typename AttrInfo> | 
 | static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, | 
 |                                 uint32_t &Val, unsigned Idx = UINT_MAX, | 
 |                                 bool StrictlyUnsigned = false) { | 
 |   Optional<llvm::APSInt> I = llvm::APSInt(32); | 
 |   if (Expr->isTypeDependent() || | 
 |       !(I = Expr->getIntegerConstantExpr(S.Context))) { | 
 |     if (Idx != UINT_MAX) | 
 |       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) | 
 |           << &AI << Idx << AANT_ArgumentIntegerConstant | 
 |           << Expr->getSourceRange(); | 
 |     else | 
 |       S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) | 
 |           << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!I->isIntN(32)) { | 
 |     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) | 
 |         << toString(*I, 10, false) << 32 << /* Unsigned */ 1; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (StrictlyUnsigned && I->isSigned() && I->isNegative()) { | 
 |     S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) | 
 |         << &AI << /*non-negative*/ 1; | 
 |     return false; | 
 |   } | 
 |  | 
 |   Val = (uint32_t)I->getZExtValue(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Wrapper around checkUInt32Argument, with an extra check to be sure | 
 | /// that the result will fit into a regular (signed) int. All args have the same | 
 | /// purpose as they do in checkUInt32Argument. | 
 | template <typename AttrInfo> | 
 | static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, | 
 |                                      int &Val, unsigned Idx = UINT_MAX) { | 
 |   uint32_t UVal; | 
 |   if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) | 
 |     return false; | 
 |  | 
 |   if (UVal > (uint32_t)std::numeric_limits<int>::max()) { | 
 |     llvm::APSInt I(32); // for toString | 
 |     I = UVal; | 
 |     S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) | 
 |         << toString(I, 10, false) << 32 << /* Unsigned */ 0; | 
 |     return false; | 
 |   } | 
 |  | 
 |   Val = UVal; | 
 |   return true; | 
 | } | 
 |  | 
 | /// Diagnose mutually exclusive attributes when present on a given | 
 | /// declaration. Returns true if diagnosed. | 
 | template <typename AttrTy> | 
 | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *A = D->getAttr<AttrTy>()) { | 
 |     S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; | 
 |     S.Diag(A->getLocation(), diag::note_conflicting_attribute); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | template <typename AttrTy> | 
 | static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { | 
 |   if (const auto *A = D->getAttr<AttrTy>()) { | 
 |     S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL | 
 |                                                                       << A; | 
 |     S.Diag(A->getLocation(), diag::note_conflicting_attribute); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if IdxExpr is a valid parameter index for a function or | 
 | /// instance method D.  May output an error. | 
 | /// | 
 | /// \returns true if IdxExpr is a valid index. | 
 | template <typename AttrInfo> | 
 | static bool checkFunctionOrMethodParameterIndex( | 
 |     Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, | 
 |     const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { | 
 |   assert(isFunctionOrMethodOrBlock(D)); | 
 |  | 
 |   // In C++ the implicit 'this' function parameter also counts. | 
 |   // Parameters are counted from one. | 
 |   bool HP = hasFunctionProto(D); | 
 |   bool HasImplicitThisParam = isInstanceMethod(D); | 
 |   bool IV = HP && isFunctionOrMethodVariadic(D); | 
 |   unsigned NumParams = | 
 |       (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; | 
 |  | 
 |   Optional<llvm::APSInt> IdxInt; | 
 |   if (IdxExpr->isTypeDependent() || | 
 |       !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) { | 
 |     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) | 
 |         << &AI << AttrArgNum << AANT_ArgumentIntegerConstant | 
 |         << IdxExpr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX); | 
 |   if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { | 
 |     S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) | 
 |         << &AI << AttrArgNum << IdxExpr->getSourceRange(); | 
 |     return false; | 
 |   } | 
 |   if (HasImplicitThisParam && !CanIndexImplicitThis) { | 
 |     if (IdxSource == 1) { | 
 |       S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) | 
 |           << &AI << IdxExpr->getSourceRange(); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   Idx = ParamIdx(IdxSource, D); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. | 
 | /// If not emit an error and return false. If the argument is an identifier it | 
 | /// will emit an error with a fixit hint and treat it as if it was a string | 
 | /// literal. | 
 | bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, | 
 |                                           StringRef &Str, | 
 |                                           SourceLocation *ArgLocation) { | 
 |   // Look for identifiers. If we have one emit a hint to fix it to a literal. | 
 |   if (AL.isArgIdent(ArgNum)) { | 
 |     IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); | 
 |     Diag(Loc->Loc, diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentString | 
 |         << FixItHint::CreateInsertion(Loc->Loc, "\"") | 
 |         << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); | 
 |     Str = Loc->Ident->getName(); | 
 |     if (ArgLocation) | 
 |       *ArgLocation = Loc->Loc; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Now check for an actual string literal. | 
 |   Expr *ArgExpr = AL.getArgAsExpr(ArgNum); | 
 |   const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); | 
 |   if (ArgLocation) | 
 |     *ArgLocation = ArgExpr->getBeginLoc(); | 
 |  | 
 |   if (!Literal || !Literal->isAscii()) { | 
 |     Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentString; | 
 |     return false; | 
 |   } | 
 |  | 
 |   Str = Literal->getString(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Applies the given attribute to the Decl without performing any | 
 | /// additional semantic checking. | 
 | template <typename AttrType> | 
 | static void handleSimpleAttribute(Sema &S, Decl *D, | 
 |                                   const AttributeCommonInfo &CI) { | 
 |   D->addAttr(::new (S.Context) AttrType(S.Context, CI)); | 
 | } | 
 |  | 
 | template <typename... DiagnosticArgs> | 
 | static const Sema::SemaDiagnosticBuilder& | 
 | appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { | 
 |   return Bldr; | 
 | } | 
 |  | 
 | template <typename T, typename... DiagnosticArgs> | 
 | static const Sema::SemaDiagnosticBuilder& | 
 | appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg, | 
 |                   DiagnosticArgs &&... ExtraArgs) { | 
 |   return appendDiagnostics(Bldr << std::forward<T>(ExtraArg), | 
 |                            std::forward<DiagnosticArgs>(ExtraArgs)...); | 
 | } | 
 |  | 
 | /// Add an attribute @c AttrType to declaration @c D, provided that | 
 | /// @c PassesCheck is true. | 
 | /// Otherwise, emit diagnostic @c DiagID, passing in all parameters | 
 | /// specified in @c ExtraArgs. | 
 | template <typename AttrType, typename... DiagnosticArgs> | 
 | static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, | 
 |                                             const AttributeCommonInfo &CI, | 
 |                                             bool PassesCheck, unsigned DiagID, | 
 |                                             DiagnosticArgs &&... ExtraArgs) { | 
 |   if (!PassesCheck) { | 
 |     Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); | 
 |     appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...); | 
 |     return; | 
 |   } | 
 |   handleSimpleAttribute<AttrType>(S, D, CI); | 
 | } | 
 |  | 
 | /// Check if the passed-in expression is of type int or bool. | 
 | static bool isIntOrBool(Expr *Exp) { | 
 |   QualType QT = Exp->getType(); | 
 |   return QT->isBooleanType() || QT->isIntegerType(); | 
 | } | 
 |  | 
 |  | 
 | // Check to see if the type is a smart pointer of some kind.  We assume | 
 | // it's a smart pointer if it defines both operator-> and operator*. | 
 | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { | 
 |   auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, | 
 |                                           OverloadedOperatorKind Op) { | 
 |     DeclContextLookupResult Result = | 
 |         Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); | 
 |     return !Result.empty(); | 
 |   }; | 
 |  | 
 |   const RecordDecl *Record = RT->getDecl(); | 
 |   bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); | 
 |   bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); | 
 |   if (foundStarOperator && foundArrowOperator) | 
 |     return true; | 
 |  | 
 |   const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); | 
 |   if (!CXXRecord) | 
 |     return false; | 
 |  | 
 |   for (auto BaseSpecifier : CXXRecord->bases()) { | 
 |     if (!foundStarOperator) | 
 |       foundStarOperator = IsOverloadedOperatorPresent( | 
 |           BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); | 
 |     if (!foundArrowOperator) | 
 |       foundArrowOperator = IsOverloadedOperatorPresent( | 
 |           BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); | 
 |   } | 
 |  | 
 |   if (foundStarOperator && foundArrowOperator) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check if passed in Decl is a pointer type. | 
 | /// Note that this function may produce an error message. | 
 | /// \return true if the Decl is a pointer type; false otherwise | 
 | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, | 
 |                                        const ParsedAttr &AL) { | 
 |   const auto *VD = cast<ValueDecl>(D); | 
 |   QualType QT = VD->getType(); | 
 |   if (QT->isAnyPointerType()) | 
 |     return true; | 
 |  | 
 |   if (const auto *RT = QT->getAs<RecordType>()) { | 
 |     // If it's an incomplete type, it could be a smart pointer; skip it. | 
 |     // (We don't want to force template instantiation if we can avoid it, | 
 |     // since that would alter the order in which templates are instantiated.) | 
 |     if (RT->isIncompleteType()) | 
 |       return true; | 
 |  | 
 |     if (threadSafetyCheckIsSmartPointer(S, RT)) | 
 |       return true; | 
 |   } | 
 |  | 
 |   S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; | 
 |   return false; | 
 | } | 
 |  | 
 | /// Checks that the passed in QualType either is of RecordType or points | 
 | /// to RecordType. Returns the relevant RecordType, null if it does not exit. | 
 | static const RecordType *getRecordType(QualType QT) { | 
 |   if (const auto *RT = QT->getAs<RecordType>()) | 
 |     return RT; | 
 |  | 
 |   // Now check if we point to record type. | 
 |   if (const auto *PT = QT->getAs<PointerType>()) | 
 |     return PT->getPointeeType()->getAs<RecordType>(); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | template <typename AttrType> | 
 | static bool checkRecordDeclForAttr(const RecordDecl *RD) { | 
 |   // Check if the record itself has the attribute. | 
 |   if (RD->hasAttr<AttrType>()) | 
 |     return true; | 
 |  | 
 |   // Else check if any base classes have the attribute. | 
 |   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { | 
 |     if (!CRD->forallBases([](const CXXRecordDecl *Base) { | 
 |           return !Base->hasAttr<AttrType>(); | 
 |         })) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { | 
 |   const RecordType *RT = getRecordType(Ty); | 
 |  | 
 |   if (!RT) | 
 |     return false; | 
 |  | 
 |   // Don't check for the capability if the class hasn't been defined yet. | 
 |   if (RT->isIncompleteType()) | 
 |     return true; | 
 |  | 
 |   // Allow smart pointers to be used as capability objects. | 
 |   // FIXME -- Check the type that the smart pointer points to. | 
 |   if (threadSafetyCheckIsSmartPointer(S, RT)) | 
 |     return true; | 
 |  | 
 |   return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); | 
 | } | 
 |  | 
 | static bool checkTypedefTypeForCapability(QualType Ty) { | 
 |   const auto *TD = Ty->getAs<TypedefType>(); | 
 |   if (!TD) | 
 |     return false; | 
 |  | 
 |   TypedefNameDecl *TN = TD->getDecl(); | 
 |   if (!TN) | 
 |     return false; | 
 |  | 
 |   return TN->hasAttr<CapabilityAttr>(); | 
 | } | 
 |  | 
 | static bool typeHasCapability(Sema &S, QualType Ty) { | 
 |   if (checkTypedefTypeForCapability(Ty)) | 
 |     return true; | 
 |  | 
 |   if (checkRecordTypeForCapability(S, Ty)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { | 
 |   // Capability expressions are simple expressions involving the boolean logic | 
 |   // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once | 
 |   // a DeclRefExpr is found, its type should be checked to determine whether it | 
 |   // is a capability or not. | 
 |  | 
 |   if (const auto *E = dyn_cast<CastExpr>(Ex)) | 
 |     return isCapabilityExpr(S, E->getSubExpr()); | 
 |   else if (const auto *E = dyn_cast<ParenExpr>(Ex)) | 
 |     return isCapabilityExpr(S, E->getSubExpr()); | 
 |   else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { | 
 |     if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || | 
 |         E->getOpcode() == UO_Deref) | 
 |       return isCapabilityExpr(S, E->getSubExpr()); | 
 |     return false; | 
 |   } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { | 
 |     if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) | 
 |       return isCapabilityExpr(S, E->getLHS()) && | 
 |              isCapabilityExpr(S, E->getRHS()); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return typeHasCapability(S, Ex->getType()); | 
 | } | 
 |  | 
 | /// Checks that all attribute arguments, starting from Sidx, resolve to | 
 | /// a capability object. | 
 | /// \param Sidx The attribute argument index to start checking with. | 
 | /// \param ParamIdxOk Whether an argument can be indexing into a function | 
 | /// parameter list. | 
 | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, | 
 |                                            const ParsedAttr &AL, | 
 |                                            SmallVectorImpl<Expr *> &Args, | 
 |                                            unsigned Sidx = 0, | 
 |                                            bool ParamIdxOk = false) { | 
 |   if (Sidx == AL.getNumArgs()) { | 
 |     // If we don't have any capability arguments, the attribute implicitly | 
 |     // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're | 
 |     // a non-static method, and that the class is a (scoped) capability. | 
 |     const auto *MD = dyn_cast<const CXXMethodDecl>(D); | 
 |     if (MD && !MD->isStatic()) { | 
 |       const CXXRecordDecl *RD = MD->getParent(); | 
 |       // FIXME -- need to check this again on template instantiation | 
 |       if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && | 
 |           !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) | 
 |         S.Diag(AL.getLoc(), | 
 |                diag::warn_thread_attribute_not_on_capability_member) | 
 |             << AL << MD->getParent(); | 
 |     } else { | 
 |       S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) | 
 |           << AL; | 
 |     } | 
 |   } | 
 |  | 
 |   for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { | 
 |     Expr *ArgExp = AL.getArgAsExpr(Idx); | 
 |  | 
 |     if (ArgExp->isTypeDependent()) { | 
 |       // FIXME -- need to check this again on template instantiation | 
 |       Args.push_back(ArgExp); | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { | 
 |       if (StrLit->getLength() == 0 || | 
 |           (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { | 
 |         // Pass empty strings to the analyzer without warnings. | 
 |         // Treat "*" as the universal lock. | 
 |         Args.push_back(ArgExp); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // We allow constant strings to be used as a placeholder for expressions | 
 |       // that are not valid C++ syntax, but warn that they are ignored. | 
 |       S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; | 
 |       Args.push_back(ArgExp); | 
 |       continue; | 
 |     } | 
 |  | 
 |     QualType ArgTy = ArgExp->getType(); | 
 |  | 
 |     // A pointer to member expression of the form  &MyClass::mu is treated | 
 |     // specially -- we need to look at the type of the member. | 
 |     if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) | 
 |       if (UOp->getOpcode() == UO_AddrOf) | 
 |         if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) | 
 |           if (DRE->getDecl()->isCXXInstanceMember()) | 
 |             ArgTy = DRE->getDecl()->getType(); | 
 |  | 
 |     // First see if we can just cast to record type, or pointer to record type. | 
 |     const RecordType *RT = getRecordType(ArgTy); | 
 |  | 
 |     // Now check if we index into a record type function param. | 
 |     if(!RT && ParamIdxOk) { | 
 |       const auto *FD = dyn_cast<FunctionDecl>(D); | 
 |       const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); | 
 |       if(FD && IL) { | 
 |         unsigned int NumParams = FD->getNumParams(); | 
 |         llvm::APInt ArgValue = IL->getValue(); | 
 |         uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); | 
 |         uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; | 
 |         if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { | 
 |           S.Diag(AL.getLoc(), | 
 |                  diag::err_attribute_argument_out_of_bounds_extra_info) | 
 |               << AL << Idx + 1 << NumParams; | 
 |           continue; | 
 |         } | 
 |         ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); | 
 |       } | 
 |     } | 
 |  | 
 |     // If the type does not have a capability, see if the components of the | 
 |     // expression have capabilities. This allows for writing C code where the | 
 |     // capability may be on the type, and the expression is a capability | 
 |     // boolean logic expression. Eg) requires_capability(A || B && !C) | 
 |     if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) | 
 |       S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) | 
 |           << AL << ArgTy; | 
 |  | 
 |     Args.push_back(ArgExp); | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Attribute Implementations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!threadSafetyCheckIsPointer(S, D, AL)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                      Expr *&Arg) { | 
 |   SmallVector<Expr *, 1> Args; | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size != 1) | 
 |     return false; | 
 |  | 
 |   Arg = Args[0]; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *Arg = nullptr; | 
 |   if (!checkGuardedByAttrCommon(S, D, AL, Arg)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); | 
 | } | 
 |  | 
 | static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *Arg = nullptr; | 
 |   if (!checkGuardedByAttrCommon(S, D, AL, Arg)) | 
 |     return; | 
 |  | 
 |   if (!threadSafetyCheckIsPointer(S, D, AL)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); | 
 | } | 
 |  | 
 | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                         SmallVectorImpl<Expr *> &Args) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return false; | 
 |  | 
 |   // Check that this attribute only applies to lockable types. | 
 |   QualType QT = cast<ValueDecl>(D)->getType(); | 
 |   if (!QT->isDependentType() && !typeHasCapability(S, QT)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Check that all arguments are lockable objects. | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
 |   if (Args.empty()) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<Expr *, 1> Args; | 
 |   if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   Expr **StartArg = &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |                  AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); | 
 | } | 
 |  | 
 | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<Expr *, 1> Args; | 
 |   if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   Expr **StartArg = &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |                  AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); | 
 | } | 
 |  | 
 | static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                    SmallVectorImpl<Expr *> &Args) { | 
 |   // zero or more arguments ok | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<Expr *, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   unsigned Size = Args.size(); | 
 |   Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |                  AssertSharedLockAttr(S.Context, AL, StartArg, Size)); | 
 | } | 
 |  | 
 | static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, | 
 |                                           const ParsedAttr &AL) { | 
 |   SmallVector<Expr *, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   unsigned Size = Args.size(); | 
 |   Expr **StartArg = Size == 0 ? nullptr : &Args[0]; | 
 |   D->addAttr(::new (S.Context) | 
 |                  AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); | 
 | } | 
 |  | 
 | /// Checks to be sure that the given parameter number is in bounds, and | 
 | /// is an integral type. Will emit appropriate diagnostics if this returns | 
 | /// false. | 
 | /// | 
 | /// AttrArgNo is used to actually retrieve the argument, so it's base-0. | 
 | template <typename AttrInfo> | 
 | static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, | 
 |                                     unsigned AttrArgNo) { | 
 |   assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); | 
 |   Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); | 
 |   ParamIdx Idx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg, | 
 |                                            Idx)) | 
 |     return false; | 
 |  | 
 |   QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
 |   if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { | 
 |     SourceLocation SrcLoc = AttrArg->getBeginLoc(); | 
 |     S.Diag(SrcLoc, diag::err_attribute_integers_only) | 
 |         << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex()); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) | 
 |     return; | 
 |  | 
 |   assert(isFunctionOrMethod(D) && hasFunctionProto(D)); | 
 |  | 
 |   QualType RetTy = getFunctionOrMethodResultType(D); | 
 |   if (!RetTy->isPointerType()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   const Expr *SizeExpr = AL.getArgAsExpr(0); | 
 |   int SizeArgNoVal; | 
 |   // Parameter indices are 1-indexed, hence Index=1 | 
 |   if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) | 
 |     return; | 
 |   if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0)) | 
 |     return; | 
 |   ParamIdx SizeArgNo(SizeArgNoVal, D); | 
 |  | 
 |   ParamIdx NumberArgNo; | 
 |   if (AL.getNumArgs() == 2) { | 
 |     const Expr *NumberExpr = AL.getArgAsExpr(1); | 
 |     int Val; | 
 |     // Parameter indices are 1-based, hence Index=2 | 
 |     if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) | 
 |       return; | 
 |     if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1)) | 
 |       return; | 
 |     NumberArgNo = ParamIdx(Val, D); | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); | 
 | } | 
 |  | 
 | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                       SmallVectorImpl<Expr *> &Args) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return false; | 
 |  | 
 |   if (!isIntOrBool(AL.getArgAsExpr(0))) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIntOrBool; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, | 
 |                                             const ParsedAttr &AL) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( | 
 |       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); | 
 | } | 
 |  | 
 | static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, | 
 |                                                const ParsedAttr &AL) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( | 
 |       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); | 
 | } | 
 |  | 
 | static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // check that the argument is lockable object | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size == 0) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); | 
 | } | 
 |  | 
 | static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
 |   unsigned Size = Args.size(); | 
 |   if (Size == 0) | 
 |     return; | 
 |   Expr **StartArg = &Args[0]; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  LocksExcludedAttr(S.Context, AL, StartArg, Size)); | 
 | } | 
 |  | 
 | static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                        Expr *&Cond, StringRef &Msg) { | 
 |   Cond = AL.getArgAsExpr(0); | 
 |   if (!Cond->isTypeDependent()) { | 
 |     ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); | 
 |     if (Converted.isInvalid()) | 
 |       return false; | 
 |     Cond = Converted.get(); | 
 |   } | 
 |  | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) | 
 |     return false; | 
 |  | 
 |   if (Msg.empty()) | 
 |     Msg = "<no message provided>"; | 
 |  | 
 |   SmallVector<PartialDiagnosticAt, 8> Diags; | 
 |   if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && | 
 |       !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), | 
 |                                                 Diags)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; | 
 |     for (const PartialDiagnosticAt &PDiag : Diags) | 
 |       S.Diag(PDiag.first, PDiag.second); | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   S.Diag(AL.getLoc(), diag::ext_clang_enable_if); | 
 |  | 
 |   Expr *Cond; | 
 |   StringRef Msg; | 
 |   if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) | 
 |     D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); | 
 | } | 
 |  | 
 | static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef NewUserDiagnostic; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic)) | 
 |     return; | 
 |   if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic)) | 
 |     D->addAttr(EA); | 
 | } | 
 |  | 
 | namespace { | 
 | /// Determines if a given Expr references any of the given function's | 
 | /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). | 
 | class ArgumentDependenceChecker | 
 |     : public RecursiveASTVisitor<ArgumentDependenceChecker> { | 
 | #ifndef NDEBUG | 
 |   const CXXRecordDecl *ClassType; | 
 | #endif | 
 |   llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; | 
 |   bool Result; | 
 |  | 
 | public: | 
 |   ArgumentDependenceChecker(const FunctionDecl *FD) { | 
 | #ifndef NDEBUG | 
 |     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) | 
 |       ClassType = MD->getParent(); | 
 |     else | 
 |       ClassType = nullptr; | 
 | #endif | 
 |     Parms.insert(FD->param_begin(), FD->param_end()); | 
 |   } | 
 |  | 
 |   bool referencesArgs(Expr *E) { | 
 |     Result = false; | 
 |     TraverseStmt(E); | 
 |     return Result; | 
 |   } | 
 |  | 
 |   bool VisitCXXThisExpr(CXXThisExpr *E) { | 
 |     assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && | 
 |            "`this` doesn't refer to the enclosing class?"); | 
 |     Result = true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool VisitDeclRefExpr(DeclRefExpr *DRE) { | 
 |     if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) | 
 |       if (Parms.count(PVD)) { | 
 |         Result = true; | 
 |         return false; | 
 |       } | 
 |     return true; | 
 |   } | 
 | }; | 
 | } | 
 |  | 
 | static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   const auto *DeclFD = cast<FunctionDecl>(D); | 
 |  | 
 |   if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD)) | 
 |     if (!MethodDecl->isStatic()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL; | 
 |       return; | 
 |     } | 
 |  | 
 |   auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { | 
 |     SourceLocation Loc = [&]() { | 
 |       auto Union = AL.getArg(Index - 1); | 
 |       if (Union.is<Expr *>()) | 
 |         return Union.get<Expr *>()->getBeginLoc(); | 
 |       return Union.get<IdentifierLoc *>()->Loc; | 
 |     }(); | 
 |  | 
 |     S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T; | 
 |   }; | 
 |  | 
 |   FunctionDecl *AttrFD = [&]() -> FunctionDecl * { | 
 |     if (!AL.isArgExpr(0)) | 
 |       return nullptr; | 
 |     auto *F = dyn_cast_or_null<DeclRefExpr>(AL.getArgAsExpr(0)); | 
 |     if (!F) | 
 |       return nullptr; | 
 |     return dyn_cast_or_null<FunctionDecl>(F->getFoundDecl()); | 
 |   }(); | 
 |  | 
 |   if (!AttrFD || !AttrFD->getBuiltinID(true)) { | 
 |     DiagnoseType(1, AANT_ArgumentBuiltinFunction); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for) | 
 |         << AL << AttrFD << AttrFD->getNumParams(); | 
 |     return; | 
 |   } | 
 |  | 
 |   SmallVector<unsigned, 8> Indices; | 
 |  | 
 |   for (unsigned I = 1; I < AL.getNumArgs(); ++I) { | 
 |     if (!AL.isArgExpr(I)) { | 
 |       DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); | 
 |       return; | 
 |     } | 
 |  | 
 |     const Expr *IndexExpr = AL.getArgAsExpr(I); | 
 |     uint32_t Index; | 
 |  | 
 |     if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false)) | 
 |       return; | 
 |  | 
 |     if (Index > DeclFD->getNumParams()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function) | 
 |           << AL << Index << DeclFD << DeclFD->getNumParams(); | 
 |       return; | 
 |     } | 
 |  | 
 |     QualType T1 = AttrFD->getParamDecl(I - 1)->getType(); | 
 |     QualType T2 = DeclFD->getParamDecl(Index - 1)->getType(); | 
 |  | 
 |     if (T1.getCanonicalType().getUnqualifiedType() != | 
 |         T2.getCanonicalType().getUnqualifiedType()) { | 
 |       S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types) | 
 |           << AL << Index << DeclFD << T2 << I << AttrFD << T1; | 
 |       return; | 
 |     } | 
 |  | 
 |     Indices.push_back(Index - 1); | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr( | 
 |       S.Context, AL, AttrFD, Indices.data(), Indices.size())); | 
 | } | 
 |  | 
 | static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); | 
 |  | 
 |   Expr *Cond; | 
 |   StringRef Msg; | 
 |   if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) | 
 |     return; | 
 |  | 
 |   StringRef DiagTypeStr; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) | 
 |     return; | 
 |  | 
 |   DiagnoseIfAttr::DiagnosticType DiagType; | 
 |   if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { | 
 |     S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), | 
 |            diag::err_diagnose_if_invalid_diagnostic_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   bool ArgDependent = false; | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) | 
 |     ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); | 
 |   D->addAttr(::new (S.Context) DiagnoseIfAttr( | 
 |       S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D))); | 
 | } | 
 |  | 
 | static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   static constexpr const StringRef kWildcard = "*"; | 
 |  | 
 |   llvm::SmallVector<StringRef, 16> Names; | 
 |   bool HasWildcard = false; | 
 |  | 
 |   const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { | 
 |     if (Name == kWildcard) | 
 |       HasWildcard = true; | 
 |     Names.push_back(Name); | 
 |   }; | 
 |  | 
 |   // Add previously defined attributes. | 
 |   if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) | 
 |     for (StringRef BuiltinName : NBA->builtinNames()) | 
 |       AddBuiltinName(BuiltinName); | 
 |  | 
 |   // Add current attributes. | 
 |   if (AL.getNumArgs() == 0) | 
 |     AddBuiltinName(kWildcard); | 
 |   else | 
 |     for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
 |       StringRef BuiltinName; | 
 |       SourceLocation LiteralLoc; | 
 |       if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) | 
 |         return; | 
 |  | 
 |       if (Builtin::Context::isBuiltinFunc(BuiltinName)) | 
 |         AddBuiltinName(BuiltinName); | 
 |       else | 
 |         S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) | 
 |             << BuiltinName << AL; | 
 |     } | 
 |  | 
 |   // Repeating the same attribute is fine. | 
 |   llvm::sort(Names); | 
 |   Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); | 
 |  | 
 |   // Empty no_builtin must be on its own. | 
 |   if (HasWildcard && Names.size() > 1) | 
 |     S.Diag(D->getLocation(), | 
 |            diag::err_attribute_no_builtin_wildcard_or_builtin_name) | 
 |         << AL; | 
 |  | 
 |   if (D->hasAttr<NoBuiltinAttr>()) | 
 |     D->dropAttr<NoBuiltinAttr>(); | 
 |   D->addAttr(::new (S.Context) | 
 |                  NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); | 
 | } | 
 |  | 
 | static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (D->hasAttr<PassObjectSizeAttr>()) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = AL.getArgAsExpr(0); | 
 |   uint32_t Type; | 
 |   if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) | 
 |     return; | 
 |  | 
 |   // pass_object_size's argument is passed in as the second argument of | 
 |   // __builtin_object_size. So, it has the same constraints as that second | 
 |   // argument; namely, it must be in the range [0, 3]. | 
 |   if (Type > 3) { | 
 |     S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) | 
 |         << AL << 0 << 3 << E->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // pass_object_size is only supported on constant pointer parameters; as a | 
 |   // kindness to users, we allow the parameter to be non-const for declarations. | 
 |   // At this point, we have no clue if `D` belongs to a function declaration or | 
 |   // definition, so we defer the constness check until later. | 
 |   if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); | 
 | } | 
 |  | 
 | static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   ConsumableAttr::ConsumedState DefaultState; | 
 |  | 
 |   if (AL.isArgIdent(0)) { | 
 |     IdentifierLoc *IL = AL.getArgAsIdent(0); | 
 |     if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
 |                                                    DefaultState)) { | 
 |       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL | 
 |                                                                << IL->Ident; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); | 
 | } | 
 |  | 
 | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, | 
 |                                     const ParsedAttr &AL) { | 
 |   QualType ThisType = MD->getThisType()->getPointeeType(); | 
 |  | 
 |   if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { | 
 |     if (!RD->hasAttr<ConsumableAttr>()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; | 
 |  | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
 |     return; | 
 |  | 
 |   SmallVector<CallableWhenAttr::ConsumedState, 3> States; | 
 |   for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { | 
 |     CallableWhenAttr::ConsumedState CallableState; | 
 |  | 
 |     StringRef StateString; | 
 |     SourceLocation Loc; | 
 |     if (AL.isArgIdent(ArgIndex)) { | 
 |       IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); | 
 |       StateString = Ident->Ident->getName(); | 
 |       Loc = Ident->Loc; | 
 |     } else { | 
 |       if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) | 
 |         return; | 
 |     } | 
 |  | 
 |     if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, | 
 |                                                      CallableState)) { | 
 |       S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; | 
 |       return; | 
 |     } | 
 |  | 
 |     States.push_back(CallableState); | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  CallableWhenAttr(S.Context, AL, States.data(), States.size())); | 
 | } | 
 |  | 
 | static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   ParamTypestateAttr::ConsumedState ParamState; | 
 |  | 
 |   if (AL.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
 |     StringRef StateString = Ident->Ident->getName(); | 
 |  | 
 |     if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, | 
 |                                                        ParamState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) | 
 |           << AL << StateString; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: This check is currently being done in the analysis.  It can be | 
 |   //        enabled here only after the parser propagates attributes at | 
 |   //        template specialization definition, not declaration. | 
 |   //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); | 
 |   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
 |   // | 
 |   //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
 |   //    S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
 |   //      ReturnType.getAsString(); | 
 |   //    return; | 
 |   //} | 
 |  | 
 |   D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); | 
 | } | 
 |  | 
 | static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   ReturnTypestateAttr::ConsumedState ReturnState; | 
 |  | 
 |   if (AL.isArgIdent(0)) { | 
 |     IdentifierLoc *IL = AL.getArgAsIdent(0); | 
 |     if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), | 
 |                                                         ReturnState)) { | 
 |       S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL | 
 |                                                                << IL->Ident; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: This check is currently being done in the analysis.  It can be | 
 |   //        enabled here only after the parser propagates attributes at | 
 |   //        template specialization definition, not declaration. | 
 |   //QualType ReturnType; | 
 |   // | 
 |   //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { | 
 |   //  ReturnType = Param->getType(); | 
 |   // | 
 |   //} else if (const CXXConstructorDecl *Constructor = | 
 |   //             dyn_cast<CXXConstructorDecl>(D)) { | 
 |   //  ReturnType = Constructor->getThisType()->getPointeeType(); | 
 |   // | 
 |   //} else { | 
 |   // | 
 |   //  ReturnType = cast<FunctionDecl>(D)->getCallResultType(); | 
 |   //} | 
 |   // | 
 |   //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); | 
 |   // | 
 |   //if (!RD || !RD->hasAttr<ConsumableAttr>()) { | 
 |   //    S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << | 
 |   //      ReturnType.getAsString(); | 
 |   //    return; | 
 |   //} | 
 |  | 
 |   D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); | 
 | } | 
 |  | 
 | static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
 |     return; | 
 |  | 
 |   SetTypestateAttr::ConsumedState NewState; | 
 |   if (AL.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
 |     StringRef Param = Ident->Ident->getName(); | 
 |     if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL | 
 |                                                                   << Param; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); | 
 | } | 
 |  | 
 | static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) | 
 |     return; | 
 |  | 
 |   TestTypestateAttr::ConsumedState TestState; | 
 |   if (AL.isArgIdent(0)) { | 
 |     IdentifierLoc *Ident = AL.getArgAsIdent(0); | 
 |     StringRef Param = Ident->Ident->getName(); | 
 |     if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { | 
 |       S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL | 
 |                                                                   << Param; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); | 
 | } | 
 |  | 
 | static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Remember this typedef decl, we will need it later for diagnostics. | 
 |   S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); | 
 | } | 
 |  | 
 | static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (auto *TD = dyn_cast<TagDecl>(D)) | 
 |     TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); | 
 |   else if (auto *FD = dyn_cast<FieldDecl>(D)) { | 
 |     bool BitfieldByteAligned = (!FD->getType()->isDependentType() && | 
 |                                 !FD->getType()->isIncompleteType() && | 
 |                                 FD->isBitField() && | 
 |                                 S.Context.getTypeAlign(FD->getType()) <= 8); | 
 |  | 
 |     if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { | 
 |       if (BitfieldByteAligned) | 
 |         // The PS4 target needs to maintain ABI backwards compatibility. | 
 |         S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) | 
 |             << AL << FD->getType(); | 
 |       else | 
 |         FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); | 
 |     } else { | 
 |       // Report warning about changed offset in the newer compiler versions. | 
 |       if (BitfieldByteAligned) | 
 |         S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); | 
 |  | 
 |       FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); | 
 |     } | 
 |  | 
 |   } else | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; | 
 | } | 
 |  | 
 | static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   auto *RD = cast<CXXRecordDecl>(D); | 
 |   ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); | 
 |   assert(CTD && "attribute does not appertain to this declaration"); | 
 |  | 
 |   ParsedType PT = AL.getTypeArg(); | 
 |   TypeSourceInfo *TSI = nullptr; | 
 |   QualType T = S.GetTypeFromParser(PT, &TSI); | 
 |   if (!TSI) | 
 |     TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc()); | 
 |  | 
 |   if (!T.hasQualifiers() && T->isTypedefNameType()) { | 
 |     // Find the template name, if this type names a template specialization. | 
 |     const TemplateDecl *Template = nullptr; | 
 |     if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>( | 
 |             T->getAsCXXRecordDecl())) { | 
 |       Template = CTSD->getSpecializedTemplate(); | 
 |     } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) { | 
 |       while (TST && TST->isTypeAlias()) | 
 |         TST = TST->getAliasedType()->getAs<TemplateSpecializationType>(); | 
 |       if (TST) | 
 |         Template = TST->getTemplateName().getAsTemplateDecl(); | 
 |     } | 
 |  | 
 |     if (Template && declaresSameEntity(Template, CTD)) { | 
 |       D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid) | 
 |       << T << CTD; | 
 |   if (const auto *TT = T->getAs<TypedefType>()) | 
 |     S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at) | 
 |         << TT->getDecl(); | 
 | } | 
 |  | 
 | static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // The IBOutlet/IBOutletCollection attributes only apply to instance | 
 |   // variables or properties of Objective-C classes.  The outlet must also | 
 |   // have an object reference type. | 
 |   if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) { | 
 |     if (!VD->getType()->getAs<ObjCObjectPointerType>()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) | 
 |           << AL << VD->getType() << 0; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
 |     if (!PD->getType()->getAs<ObjCObjectPointerType>()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) | 
 |           << AL << PD->getType() << 1; | 
 |       return false; | 
 |     } | 
 |   } | 
 |   else { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!checkIBOutletCommon(S, D, AL)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |  | 
 |   // The iboutletcollection attribute can have zero or one arguments. | 
 |   if (AL.getNumArgs() > 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!checkIBOutletCommon(S, D, AL)) | 
 |     return; | 
 |  | 
 |   ParsedType PT; | 
 |  | 
 |   if (AL.hasParsedType()) | 
 |     PT = AL.getTypeArg(); | 
 |   else { | 
 |     PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), | 
 |                        S.getScopeForContext(D->getDeclContext()->getParent())); | 
 |     if (!PT) { | 
 |       S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   TypeSourceInfo *QTLoc = nullptr; | 
 |   QualType QT = S.GetTypeFromParser(PT, &QTLoc); | 
 |   if (!QTLoc) | 
 |     QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); | 
 |  | 
 |   // Diagnose use of non-object type in iboutletcollection attribute. | 
 |   // FIXME. Gnu attribute extension ignores use of builtin types in | 
 |   // attributes. So, __attribute__((iboutletcollection(char))) will be | 
 |   // treated as __attribute__((iboutletcollection())). | 
 |   if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { | 
 |     S.Diag(AL.getLoc(), | 
 |            QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype | 
 |                                : diag::err_iboutletcollection_type) << QT; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); | 
 | } | 
 |  | 
 | bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { | 
 |   if (RefOkay) { | 
 |     if (T->isReferenceType()) | 
 |       return true; | 
 |   } else { | 
 |     T = T.getNonReferenceType(); | 
 |   } | 
 |  | 
 |   // The nonnull attribute, and other similar attributes, can be applied to a | 
 |   // transparent union that contains a pointer type. | 
 |   if (const RecordType *UT = T->getAsUnionType()) { | 
 |     if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { | 
 |       RecordDecl *UD = UT->getDecl(); | 
 |       for (const auto *I : UD->fields()) { | 
 |         QualType QT = I->getType(); | 
 |         if (QT->isAnyPointerType() || QT->isBlockPointerType()) | 
 |           return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return T->isAnyPointerType() || T->isBlockPointerType(); | 
 | } | 
 |  | 
 | static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, | 
 |                                 SourceRange AttrParmRange, | 
 |                                 SourceRange TypeRange, | 
 |                                 bool isReturnValue = false) { | 
 |   if (!S.isValidPointerAttrType(T)) { | 
 |     if (isReturnValue) | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) | 
 |           << AL << AttrParmRange << TypeRange; | 
 |     else | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) | 
 |           << AL << AttrParmRange << TypeRange << 0; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<ParamIdx, 8> NonNullArgs; | 
 |   for (unsigned I = 0; I < AL.getNumArgs(); ++I) { | 
 |     Expr *Ex = AL.getArgAsExpr(I); | 
 |     ParamIdx Idx; | 
 |     if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) | 
 |       return; | 
 |  | 
 |     // Is the function argument a pointer type? | 
 |     if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && | 
 |         !attrNonNullArgCheck( | 
 |             S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, | 
 |             Ex->getSourceRange(), | 
 |             getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) | 
 |       continue; | 
 |  | 
 |     NonNullArgs.push_back(Idx); | 
 |   } | 
 |  | 
 |   // If no arguments were specified to __attribute__((nonnull)) then all pointer | 
 |   // arguments have a nonnull attribute; warn if there aren't any. Skip this | 
 |   // check if the attribute came from a macro expansion or a template | 
 |   // instantiation. | 
 |   if (NonNullArgs.empty() && AL.getLoc().isFileID() && | 
 |       !S.inTemplateInstantiation()) { | 
 |     bool AnyPointers = isFunctionOrMethodVariadic(D); | 
 |     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); | 
 |          I != E && !AnyPointers; ++I) { | 
 |       QualType T = getFunctionOrMethodParamType(D, I); | 
 |       if (T->isDependentType() || S.isValidPointerAttrType(T)) | 
 |         AnyPointers = true; | 
 |     } | 
 |  | 
 |     if (!AnyPointers) | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); | 
 |   } | 
 |  | 
 |   ParamIdx *Start = NonNullArgs.data(); | 
 |   unsigned Size = NonNullArgs.size(); | 
 |   llvm::array_pod_sort(Start, Start + Size); | 
 |   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); | 
 | } | 
 |  | 
 | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, | 
 |                                        const ParsedAttr &AL) { | 
 |   if (AL.getNumArgs() > 0) { | 
 |     if (D->getFunctionType()) { | 
 |       handleNonNullAttr(S, D, AL); | 
 |     } else { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) | 
 |         << D->getSourceRange(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   // Is the argument a pointer type? | 
 |   if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), | 
 |                            D->getSourceRange())) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); | 
 | } | 
 |  | 
 | static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   QualType ResultType = getFunctionOrMethodResultType(D); | 
 |   SourceRange SR = getFunctionOrMethodResultSourceRange(D); | 
 |   if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, | 
 |                            /* isReturnValue */ true)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (D->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   // noescape only applies to pointer types. | 
 |   QualType T = cast<ParmVarDecl>(D)->getType(); | 
 |   if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) | 
 |         << AL << AL.getRange() << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *E = AL.getArgAsExpr(0), | 
 |        *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; | 
 |   S.AddAssumeAlignedAttr(D, AL, E, OE); | 
 | } | 
 |  | 
 | static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); | 
 | } | 
 |  | 
 | void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, | 
 |                                 Expr *OE) { | 
 |   QualType ResultType = getFunctionOrMethodResultType(D); | 
 |   SourceRange SR = getFunctionOrMethodResultSourceRange(D); | 
 |  | 
 |   AssumeAlignedAttr TmpAttr(Context, CI, E, OE); | 
 |   SourceLocation AttrLoc = TmpAttr.getLocation(); | 
 |  | 
 |   if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { | 
 |     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) | 
 |         << &TmpAttr << TmpAttr.getRange() << SR; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!E->isValueDependent()) { | 
 |     Optional<llvm::APSInt> I = llvm::APSInt(64); | 
 |     if (!(I = E->getIntegerConstantExpr(Context))) { | 
 |       if (OE) | 
 |         Diag(AttrLoc, diag::err_attribute_argument_n_type) | 
 |           << &TmpAttr << 1 << AANT_ArgumentIntegerConstant | 
 |           << E->getSourceRange(); | 
 |       else | 
 |         Diag(AttrLoc, diag::err_attribute_argument_type) | 
 |           << &TmpAttr << AANT_ArgumentIntegerConstant | 
 |           << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!I->isPowerOf2()) { | 
 |       Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (*I > Sema::MaximumAlignment) | 
 |       Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) | 
 |           << CI.getRange() << Sema::MaximumAlignment; | 
 |   } | 
 |  | 
 |   if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) { | 
 |     Diag(AttrLoc, diag::err_attribute_argument_n_type) | 
 |         << &TmpAttr << 2 << AANT_ArgumentIntegerConstant | 
 |         << OE->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); | 
 | } | 
 |  | 
 | void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                              Expr *ParamExpr) { | 
 |   QualType ResultType = getFunctionOrMethodResultType(D); | 
 |  | 
 |   AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); | 
 |   SourceLocation AttrLoc = CI.getLoc(); | 
 |  | 
 |   if (!ResultType->isDependentType() && | 
 |       !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { | 
 |     Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) | 
 |         << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); | 
 |     return; | 
 |   } | 
 |  | 
 |   ParamIdx Idx; | 
 |   const auto *FuncDecl = cast<FunctionDecl>(D); | 
 |   if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, | 
 |                                            /*AttrArgNum=*/1, ParamExpr, Idx)) | 
 |     return; | 
 |  | 
 |   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
 |   if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && | 
 |       !Ty->isAlignValT()) { | 
 |     Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) | 
 |         << &TmpAttr | 
 |         << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); | 
 | } | 
 |  | 
 | /// Check if \p AssumptionStr is a known assumption and warn if not. | 
 | static void checkAssumptionAttr(Sema &S, SourceLocation Loc, | 
 |                                 StringRef AssumptionStr) { | 
 |   if (llvm::KnownAssumptionStrings.count(AssumptionStr)) | 
 |     return; | 
 |  | 
 |   unsigned BestEditDistance = 3; | 
 |   StringRef Suggestion; | 
 |   for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) { | 
 |     unsigned EditDistance = | 
 |         AssumptionStr.edit_distance(KnownAssumptionIt.getKey()); | 
 |     if (EditDistance < BestEditDistance) { | 
 |       Suggestion = KnownAssumptionIt.getKey(); | 
 |       BestEditDistance = EditDistance; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!Suggestion.empty()) | 
 |     S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested) | 
 |         << AssumptionStr << Suggestion; | 
 |   else | 
 |     S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr; | 
 | } | 
 |  | 
 | static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Handle the case where the attribute has a text message. | 
 |   StringRef Str; | 
 |   SourceLocation AttrStrLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc)) | 
 |     return; | 
 |  | 
 |   checkAssumptionAttr(S, AttrStrLoc, Str); | 
 |  | 
 |   D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | /// Normalize the attribute, __foo__ becomes foo. | 
 | /// Returns true if normalization was applied. | 
 | static bool normalizeName(StringRef &AttrName) { | 
 |   if (AttrName.size() > 4 && AttrName.startswith("__") && | 
 |       AttrName.endswith("__")) { | 
 |     AttrName = AttrName.drop_front(2).drop_back(2); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // This attribute must be applied to a function declaration. The first | 
 |   // argument to the attribute must be an identifier, the name of the resource, | 
 |   // for example: malloc. The following arguments must be argument indexes, the | 
 |   // arguments must be of integer type for Returns, otherwise of pointer type. | 
 |   // The difference between Holds and Takes is that a pointer may still be used | 
 |   // after being held. free() should be __attribute((ownership_takes)), whereas | 
 |   // a list append function may well be __attribute((ownership_holds)). | 
 |  | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Figure out our Kind. | 
 |   OwnershipAttr::OwnershipKind K = | 
 |       OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); | 
 |  | 
 |   // Check arguments. | 
 |   switch (K) { | 
 |   case OwnershipAttr::Takes: | 
 |   case OwnershipAttr::Holds: | 
 |     if (AL.getNumArgs() < 2) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   case OwnershipAttr::Returns: | 
 |     if (AL.getNumArgs() > 2) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; | 
 |  | 
 |   StringRef ModuleName = Module->getName(); | 
 |   if (normalizeName(ModuleName)) { | 
 |     Module = &S.PP.getIdentifierTable().get(ModuleName); | 
 |   } | 
 |  | 
 |   SmallVector<ParamIdx, 8> OwnershipArgs; | 
 |   for (unsigned i = 1; i < AL.getNumArgs(); ++i) { | 
 |     Expr *Ex = AL.getArgAsExpr(i); | 
 |     ParamIdx Idx; | 
 |     if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) | 
 |       return; | 
 |  | 
 |     // Is the function argument a pointer type? | 
 |     QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
 |     int Err = -1;  // No error | 
 |     switch (K) { | 
 |       case OwnershipAttr::Takes: | 
 |       case OwnershipAttr::Holds: | 
 |         if (!T->isAnyPointerType() && !T->isBlockPointerType()) | 
 |           Err = 0; | 
 |         break; | 
 |       case OwnershipAttr::Returns: | 
 |         if (!T->isIntegerType()) | 
 |           Err = 1; | 
 |         break; | 
 |     } | 
 |     if (-1 != Err) { | 
 |       S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err | 
 |                                                     << Ex->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Check we don't have a conflict with another ownership attribute. | 
 |     for (const auto *I : D->specific_attrs<OwnershipAttr>()) { | 
 |       // Cannot have two ownership attributes of different kinds for the same | 
 |       // index. | 
 |       if (I->getOwnKind() != K && I->args_end() != | 
 |           std::find(I->args_begin(), I->args_end(), Idx)) { | 
 |         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; | 
 |         return; | 
 |       } else if (K == OwnershipAttr::Returns && | 
 |                  I->getOwnKind() == OwnershipAttr::Returns) { | 
 |         // A returns attribute conflicts with any other returns attribute using | 
 |         // a different index. | 
 |         if (!llvm::is_contained(I->args(), Idx)) { | 
 |           S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) | 
 |               << I->args_begin()->getSourceIndex(); | 
 |           if (I->args_size()) | 
 |             S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) | 
 |                 << Idx.getSourceIndex() << Ex->getSourceRange(); | 
 |           return; | 
 |         } | 
 |       } | 
 |     } | 
 |     OwnershipArgs.push_back(Idx); | 
 |   } | 
 |  | 
 |   ParamIdx *Start = OwnershipArgs.data(); | 
 |   unsigned Size = OwnershipArgs.size(); | 
 |   llvm::array_pod_sort(Start, Start + Size); | 
 |   D->addAttr(::new (S.Context) | 
 |                  OwnershipAttr(S.Context, AL, Module, Start, Size)); | 
 | } | 
 |  | 
 | static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Check the attribute arguments. | 
 |   if (AL.getNumArgs() > 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // gcc rejects | 
 |   // class c { | 
 |   //   static int a __attribute__((weakref ("v2"))); | 
 |   //   static int b() __attribute__((weakref ("f3"))); | 
 |   // }; | 
 |   // and ignores the attributes of | 
 |   // void f(void) { | 
 |   //   static int a __attribute__((weakref ("v2"))); | 
 |   // } | 
 |   // we reject them | 
 |   const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); | 
 |   if (!Ctx->isFileContext()) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) | 
 |         << cast<NamedDecl>(D); | 
 |     return; | 
 |   } | 
 |  | 
 |   // The GCC manual says | 
 |   // | 
 |   // At present, a declaration to which `weakref' is attached can only | 
 |   // be `static'. | 
 |   // | 
 |   // It also says | 
 |   // | 
 |   // Without a TARGET, | 
 |   // given as an argument to `weakref' or to `alias', `weakref' is | 
 |   // equivalent to `weak'. | 
 |   // | 
 |   // gcc 4.4.1 will accept | 
 |   // int a7 __attribute__((weakref)); | 
 |   // as | 
 |   // int a7 __attribute__((weak)); | 
 |   // This looks like a bug in gcc. We reject that for now. We should revisit | 
 |   // it if this behaviour is actually used. | 
 |  | 
 |   // GCC rejects | 
 |   // static ((alias ("y"), weakref)). | 
 |   // Should we? How to check that weakref is before or after alias? | 
 |  | 
 |   // FIXME: it would be good for us to keep the WeakRefAttr as-written instead | 
 |   // of transforming it into an AliasAttr.  The WeakRefAttr never uses the | 
 |   // StringRef parameter it was given anyway. | 
 |   StringRef Str; | 
 |   if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     // GCC will accept anything as the argument of weakref. Should we | 
 |     // check for an existing decl? | 
 |     D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); | 
 |  | 
 |   D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   // Aliases should be on declarations, not definitions. | 
 |   const auto *FD = cast<FunctionDecl>(D); | 
 |   if (FD->isThisDeclarationADefinition()) { | 
 |     S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { | 
 |     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); | 
 |     return; | 
 |   } | 
 |   if (S.Context.getTargetInfo().getTriple().isNVPTX()) { | 
 |     S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); | 
 |   } | 
 |  | 
 |   // Aliases should be on declarations, not definitions. | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->isThisDeclarationADefinition()) { | 
 |       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     const auto *VD = cast<VarDecl>(D); | 
 |     if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { | 
 |       S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Mark target used to prevent unneeded-internal-declaration warnings. | 
 |   if (!S.LangOpts.CPlusPlus) { | 
 |     // FIXME: demangle Str for C++, as the attribute refers to the mangled | 
 |     // linkage name, not the pre-mangled identifier. | 
 |     const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc()); | 
 |     LookupResult LR(S, target, Sema::LookupOrdinaryName); | 
 |     if (S.LookupQualifiedName(LR, S.getCurLexicalContext())) | 
 |       for (NamedDecl *ND : LR) | 
 |         ND->markUsed(S.Context); | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Model; | 
 |   SourceLocation LiteralLoc; | 
 |   // Check that it is a string. | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // Check that the value. | 
 |   if (Model != "global-dynamic" && Model != "local-dynamic" | 
 |       && Model != "initial-exec" && Model != "local-exec") { | 
 |     S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (S.Context.getTargetInfo().getTriple().isOSAIX() && | 
 |       Model != "global-dynamic") { | 
 |     S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); | 
 | } | 
 |  | 
 | static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   QualType ResultType = getFunctionOrMethodResultType(D); | 
 |   if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { | 
 |     D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); | 
 |     return; | 
 |   } | 
 |  | 
 |   S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) | 
 |       << AL << getFunctionOrMethodResultSourceRange(D); | 
 | } | 
 |  | 
 | static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Ensure we don't combine these with themselves, since that causes some | 
 |   // confusing behavior. | 
 |   if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { | 
 |     if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL)) | 
 |       return; | 
 |  | 
 |     if (const auto *Other = D->getAttr<CPUDispatchAttr>()) { | 
 |       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; | 
 |       S.Diag(Other->getLocation(), diag::note_conflicting_attribute); | 
 |       return; | 
 |     } | 
 |   } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { | 
 |     if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL)) | 
 |       return; | 
 |  | 
 |     if (const auto *Other = D->getAttr<CPUSpecificAttr>()) { | 
 |       S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; | 
 |       S.Diag(Other->getLocation(), diag::note_conflicting_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   FunctionDecl *FD = cast<FunctionDecl>(D); | 
 |  | 
 |   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |     if (MD->getParent()->isLambda()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   SmallVector<IdentifierInfo *, 8> CPUs; | 
 |   for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { | 
 |     if (!AL.isArgIdent(ArgNo)) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |           << AL << AANT_ArgumentIdentifier; | 
 |       return; | 
 |     } | 
 |  | 
 |     IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); | 
 |     StringRef CPUName = CPUArg->Ident->getName().trim(); | 
 |  | 
 |     if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { | 
 |       S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) | 
 |           << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); | 
 |       return; | 
 |     } | 
 |  | 
 |     const TargetInfo &Target = S.Context.getTargetInfo(); | 
 |     if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { | 
 |           return Target.CPUSpecificManglingCharacter(CPUName) == | 
 |                  Target.CPUSpecificManglingCharacter(Cur->getName()); | 
 |         })) { | 
 |       S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); | 
 |       return; | 
 |     } | 
 |     CPUs.push_back(CPUArg->Ident); | 
 |   } | 
 |  | 
 |   FD->setIsMultiVersion(true); | 
 |   if (AL.getKind() == ParsedAttr::AT_CPUSpecific) | 
 |     D->addAttr(::new (S.Context) | 
 |                    CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); | 
 |   else | 
 |     D->addAttr(::new (S.Context) | 
 |                    CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); | 
 | } | 
 |  | 
 | static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (S.LangOpts.CPlusPlus) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |         << AL << AttributeLangSupport::Cpp; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CommonAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   const auto *FD = cast<FunctionDecl>(D); | 
 |   if (!FD->isExternallyVisible()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (AL.isDeclspecAttribute()) { | 
 |     const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); | 
 |     const auto &Arch = Triple.getArch(); | 
 |     if (Arch != llvm::Triple::x86 && | 
 |         (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) | 
 |           << AL << Triple.getArchName(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   if (!isa<ObjCMethodDecl>(D)) { | 
 |     S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << Attrs << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); | 
 | } | 
 |  | 
 | static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { | 
 |   if (!S.getLangOpts().CFProtectionBranch) | 
 |     S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); | 
 |   else | 
 |     handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); | 
 | } | 
 |  | 
 | bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { | 
 |   if (!Attrs.checkExactlyNumArgs(*this, 0)) { | 
 |     Attrs.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Sema::CheckAttrTarget(const ParsedAttr &AL) { | 
 |   // Check whether the attribute is valid on the current target. | 
 |   if (!AL.existsInTarget(Context.getTargetInfo())) { | 
 |     Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) | 
 |         << AL << AL.getRange(); | 
 |     AL.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |  | 
 |   // The checking path for 'noreturn' and 'analyzer_noreturn' are different | 
 |   // because 'analyzer_noreturn' does not impact the type. | 
 |   if (!isFunctionOrMethodOrBlock(D)) { | 
 |     ValueDecl *VD = dyn_cast<ValueDecl>(D); | 
 |     if (!VD || (!VD->getType()->isBlockPointerType() && | 
 |                 !VD->getType()->isFunctionPointerType())) { | 
 |       S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax() | 
 |                               ? diag::err_attribute_wrong_decl_type | 
 |                               : diag::warn_attribute_wrong_decl_type) | 
 |           << AL << ExpectedFunctionMethodOrBlock; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | // PS3 PPU-specific. | 
 | static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   /* | 
 |     Returning a Vector Class in Registers | 
 |  | 
 |     According to the PPU ABI specifications, a class with a single member of | 
 |     vector type is returned in memory when used as the return value of a | 
 |     function. | 
 |     This results in inefficient code when implementing vector classes. To return | 
 |     the value in a single vector register, add the vecreturn attribute to the | 
 |     class definition. This attribute is also applicable to struct types. | 
 |  | 
 |     Example: | 
 |  | 
 |     struct Vector | 
 |     { | 
 |       __vector float xyzw; | 
 |     } __attribute__((vecreturn)); | 
 |  | 
 |     Vector Add(Vector lhs, Vector rhs) | 
 |     { | 
 |       Vector result; | 
 |       result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); | 
 |       return result; // This will be returned in a register | 
 |     } | 
 |   */ | 
 |   if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { | 
 |     S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; | 
 |     return; | 
 |   } | 
 |  | 
 |   const auto *R = cast<RecordDecl>(D); | 
 |   int count = 0; | 
 |  | 
 |   if (!isa<CXXRecordDecl>(R)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!cast<CXXRecordDecl>(R)->isPOD()) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); | 
 |     return; | 
 |   } | 
 |  | 
 |   for (const auto *I : R->fields()) { | 
 |     if ((count == 1) || !I->getType()->isVectorType()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); | 
 |       return; | 
 |     } | 
 |     count++; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, | 
 |                                  const ParsedAttr &AL) { | 
 |   if (isa<ParmVarDecl>(D)) { | 
 |     // [[carries_dependency]] can only be applied to a parameter if it is a | 
 |     // parameter of a function declaration or lambda. | 
 |     if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { | 
 |       S.Diag(AL.getLoc(), | 
 |              diag::err_carries_dependency_param_not_function_decl); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); | 
 |  | 
 |   // If this is spelled as the standard C++17 attribute, but not in C++17, warn | 
 |   // about using it as an extension. | 
 |   if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) | 
 |     S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; | 
 |  | 
 |   D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t priority = ConstructorAttr::DefaultPriority; | 
 |   if (AL.getNumArgs() && | 
 |       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); | 
 | } | 
 |  | 
 | static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t priority = DestructorAttr::DefaultPriority; | 
 |   if (AL.getNumArgs() && | 
 |       !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); | 
 | } | 
 |  | 
 | template <typename AttrTy> | 
 | static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Handle the case where the attribute has a text message. | 
 |   StringRef Str; | 
 |   if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, | 
 |                                           const ParsedAttr &AL) { | 
 |   if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) { | 
 |     S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) | 
 |         << AL << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, | 
 |                                   IdentifierInfo *Platform, | 
 |                                   VersionTuple Introduced, | 
 |                                   VersionTuple Deprecated, | 
 |                                   VersionTuple Obsoleted) { | 
 |   StringRef PlatformName | 
 |     = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); | 
 |   if (PlatformName.empty()) | 
 |     PlatformName = Platform->getName(); | 
 |  | 
 |   // Ensure that Introduced <= Deprecated <= Obsoleted (although not all | 
 |   // of these steps are needed). | 
 |   if (!Introduced.empty() && !Deprecated.empty() && | 
 |       !(Introduced <= Deprecated)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 1 << PlatformName << Deprecated.getAsString() | 
 |       << 0 << Introduced.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!Introduced.empty() && !Obsoleted.empty() && | 
 |       !(Introduced <= Obsoleted)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 2 << PlatformName << Obsoleted.getAsString() | 
 |       << 0 << Introduced.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (!Deprecated.empty() && !Obsoleted.empty() && | 
 |       !(Deprecated <= Obsoleted)) { | 
 |     S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) | 
 |       << 2 << PlatformName << Obsoleted.getAsString() | 
 |       << 1 << Deprecated.getAsString(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check whether the two versions match. | 
 | /// | 
 | /// If either version tuple is empty, then they are assumed to match. If | 
 | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. | 
 | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, | 
 |                           bool BeforeIsOkay) { | 
 |   if (X.empty() || Y.empty()) | 
 |     return true; | 
 |  | 
 |   if (X == Y) | 
 |     return true; | 
 |  | 
 |   if (BeforeIsOkay && X < Y) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | AvailabilityAttr *Sema::mergeAvailabilityAttr( | 
 |     NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, | 
 |     bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, | 
 |     VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, | 
 |     bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, | 
 |     int Priority) { | 
 |   VersionTuple MergedIntroduced = Introduced; | 
 |   VersionTuple MergedDeprecated = Deprecated; | 
 |   VersionTuple MergedObsoleted = Obsoleted; | 
 |   bool FoundAny = false; | 
 |   bool OverrideOrImpl = false; | 
 |   switch (AMK) { | 
 |   case AMK_None: | 
 |   case AMK_Redeclaration: | 
 |     OverrideOrImpl = false; | 
 |     break; | 
 |  | 
 |   case AMK_Override: | 
 |   case AMK_ProtocolImplementation: | 
 |   case AMK_OptionalProtocolImplementation: | 
 |     OverrideOrImpl = true; | 
 |     break; | 
 |   } | 
 |  | 
 |   if (D->hasAttrs()) { | 
 |     AttrVec &Attrs = D->getAttrs(); | 
 |     for (unsigned i = 0, e = Attrs.size(); i != e;) { | 
 |       const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); | 
 |       if (!OldAA) { | 
 |         ++i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       IdentifierInfo *OldPlatform = OldAA->getPlatform(); | 
 |       if (OldPlatform != Platform) { | 
 |         ++i; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // If there is an existing availability attribute for this platform that | 
 |       // has a lower priority use the existing one and discard the new | 
 |       // attribute. | 
 |       if (OldAA->getPriority() < Priority) | 
 |         return nullptr; | 
 |  | 
 |       // If there is an existing attribute for this platform that has a higher | 
 |       // priority than the new attribute then erase the old one and continue | 
 |       // processing the attributes. | 
 |       if (OldAA->getPriority() > Priority) { | 
 |         Attrs.erase(Attrs.begin() + i); | 
 |         --e; | 
 |         continue; | 
 |       } | 
 |  | 
 |       FoundAny = true; | 
 |       VersionTuple OldIntroduced = OldAA->getIntroduced(); | 
 |       VersionTuple OldDeprecated = OldAA->getDeprecated(); | 
 |       VersionTuple OldObsoleted = OldAA->getObsoleted(); | 
 |       bool OldIsUnavailable = OldAA->getUnavailable(); | 
 |  | 
 |       if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || | 
 |           !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || | 
 |           !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || | 
 |           !(OldIsUnavailable == IsUnavailable || | 
 |             (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { | 
 |         if (OverrideOrImpl) { | 
 |           int Which = -1; | 
 |           VersionTuple FirstVersion; | 
 |           VersionTuple SecondVersion; | 
 |           if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { | 
 |             Which = 0; | 
 |             FirstVersion = OldIntroduced; | 
 |             SecondVersion = Introduced; | 
 |           } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { | 
 |             Which = 1; | 
 |             FirstVersion = Deprecated; | 
 |             SecondVersion = OldDeprecated; | 
 |           } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { | 
 |             Which = 2; | 
 |             FirstVersion = Obsoleted; | 
 |             SecondVersion = OldObsoleted; | 
 |           } | 
 |  | 
 |           if (Which == -1) { | 
 |             Diag(OldAA->getLocation(), | 
 |                  diag::warn_mismatched_availability_override_unavail) | 
 |               << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) | 
 |               << (AMK == AMK_Override); | 
 |           } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { | 
 |             // Allow different 'introduced' / 'obsoleted' availability versions | 
 |             // on a method that implements an optional protocol requirement. It | 
 |             // makes less sense to allow this for 'deprecated' as the user can't | 
 |             // see if the method is 'deprecated' as 'respondsToSelector' will | 
 |             // still return true when the method is deprecated. | 
 |             ++i; | 
 |             continue; | 
 |           } else { | 
 |             Diag(OldAA->getLocation(), | 
 |                  diag::warn_mismatched_availability_override) | 
 |               << Which | 
 |               << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) | 
 |               << FirstVersion.getAsString() << SecondVersion.getAsString() | 
 |               << (AMK == AMK_Override); | 
 |           } | 
 |           if (AMK == AMK_Override) | 
 |             Diag(CI.getLoc(), diag::note_overridden_method); | 
 |           else | 
 |             Diag(CI.getLoc(), diag::note_protocol_method); | 
 |         } else { | 
 |           Diag(OldAA->getLocation(), diag::warn_mismatched_availability); | 
 |           Diag(CI.getLoc(), diag::note_previous_attribute); | 
 |         } | 
 |  | 
 |         Attrs.erase(Attrs.begin() + i); | 
 |         --e; | 
 |         continue; | 
 |       } | 
 |  | 
 |       VersionTuple MergedIntroduced2 = MergedIntroduced; | 
 |       VersionTuple MergedDeprecated2 = MergedDeprecated; | 
 |       VersionTuple MergedObsoleted2 = MergedObsoleted; | 
 |  | 
 |       if (MergedIntroduced2.empty()) | 
 |         MergedIntroduced2 = OldIntroduced; | 
 |       if (MergedDeprecated2.empty()) | 
 |         MergedDeprecated2 = OldDeprecated; | 
 |       if (MergedObsoleted2.empty()) | 
 |         MergedObsoleted2 = OldObsoleted; | 
 |  | 
 |       if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, | 
 |                                 MergedIntroduced2, MergedDeprecated2, | 
 |                                 MergedObsoleted2)) { | 
 |         Attrs.erase(Attrs.begin() + i); | 
 |         --e; | 
 |         continue; | 
 |       } | 
 |  | 
 |       MergedIntroduced = MergedIntroduced2; | 
 |       MergedDeprecated = MergedDeprecated2; | 
 |       MergedObsoleted = MergedObsoleted2; | 
 |       ++i; | 
 |     } | 
 |   } | 
 |  | 
 |   if (FoundAny && | 
 |       MergedIntroduced == Introduced && | 
 |       MergedDeprecated == Deprecated && | 
 |       MergedObsoleted == Obsoleted) | 
 |     return nullptr; | 
 |  | 
 |   // Only create a new attribute if !OverrideOrImpl, but we want to do | 
 |   // the checking. | 
 |   if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, | 
 |                              MergedDeprecated, MergedObsoleted) && | 
 |       !OverrideOrImpl) { | 
 |     auto *Avail = ::new (Context) AvailabilityAttr( | 
 |         Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, | 
 |         Message, IsStrict, Replacement, Priority); | 
 |     Avail->setImplicit(Implicit); | 
 |     return Avail; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>( | 
 |           D)) { | 
 |     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) | 
 |         << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!AL.checkExactlyNumArgs(S, 1)) | 
 |     return; | 
 |   IdentifierLoc *Platform = AL.getArgAsIdent(0); | 
 |  | 
 |   IdentifierInfo *II = Platform->Ident; | 
 |   if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) | 
 |     S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) | 
 |       << Platform->Ident; | 
 |  | 
 |   auto *ND = dyn_cast<NamedDecl>(D); | 
 |   if (!ND) // We warned about this already, so just return. | 
 |     return; | 
 |  | 
 |   AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); | 
 |   AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); | 
 |   AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); | 
 |   bool IsUnavailable = AL.getUnavailableLoc().isValid(); | 
 |   bool IsStrict = AL.getStrictLoc().isValid(); | 
 |   StringRef Str; | 
 |   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr())) | 
 |     Str = SE->getString(); | 
 |   StringRef Replacement; | 
 |   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr())) | 
 |     Replacement = SE->getString(); | 
 |  | 
 |   if (II->isStr("swift")) { | 
 |     if (Introduced.isValid() || Obsoleted.isValid() || | 
 |         (!IsUnavailable && !Deprecated.isValid())) { | 
 |       S.Diag(AL.getLoc(), | 
 |              diag::warn_availability_swift_unavailable_deprecated_only); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (II->isStr("fuchsia")) { | 
 |     Optional<unsigned> Min, Sub; | 
 |     if ((Min = Introduced.Version.getMinor()) || | 
 |         (Sub = Introduced.Version.getSubminor())) { | 
 |       S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   int PriorityModifier = AL.isPragmaClangAttribute() | 
 |                              ? Sema::AP_PragmaClangAttribute | 
 |                              : Sema::AP_Explicit; | 
 |   AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( | 
 |       ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, | 
 |       Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, | 
 |       Sema::AMK_None, PriorityModifier); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 |  | 
 |   // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning | 
 |   // matches before the start of the watchOS platform. | 
 |   if (S.Context.getTargetInfo().getTriple().isWatchOS()) { | 
 |     IdentifierInfo *NewII = nullptr; | 
 |     if (II->getName() == "ios") | 
 |       NewII = &S.Context.Idents.get("watchos"); | 
 |     else if (II->getName() == "ios_app_extension") | 
 |       NewII = &S.Context.Idents.get("watchos_app_extension"); | 
 |  | 
 |     if (NewII) { | 
 |       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); | 
 |       const auto *IOSToWatchOSMapping = | 
 |           SDKInfo ? SDKInfo->getVersionMapping( | 
 |                         DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) | 
 |                   : nullptr; | 
 |  | 
 |       auto adjustWatchOSVersion = | 
 |           [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { | 
 |         if (Version.empty()) | 
 |           return Version; | 
 |         auto MinimumWatchOSVersion = VersionTuple(2, 0); | 
 |  | 
 |         if (IOSToWatchOSMapping) { | 
 |           if (auto MappedVersion = IOSToWatchOSMapping->map( | 
 |                   Version, MinimumWatchOSVersion, None)) { | 
 |             return MappedVersion.getValue(); | 
 |           } | 
 |         } | 
 |  | 
 |         auto Major = Version.getMajor(); | 
 |         auto NewMajor = Major >= 9 ? Major - 7 : 0; | 
 |         if (NewMajor >= 2) { | 
 |           if (Version.getMinor().hasValue()) { | 
 |             if (Version.getSubminor().hasValue()) | 
 |               return VersionTuple(NewMajor, Version.getMinor().getValue(), | 
 |                                   Version.getSubminor().getValue()); | 
 |             else | 
 |               return VersionTuple(NewMajor, Version.getMinor().getValue()); | 
 |           } | 
 |           return VersionTuple(NewMajor); | 
 |         } | 
 |  | 
 |         return MinimumWatchOSVersion; | 
 |       }; | 
 |  | 
 |       auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); | 
 |       auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); | 
 |       auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); | 
 |  | 
 |       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( | 
 |           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, | 
 |           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, | 
 |           Sema::AMK_None, | 
 |           PriorityModifier + Sema::AP_InferredFromOtherPlatform); | 
 |       if (NewAttr) | 
 |         D->addAttr(NewAttr); | 
 |     } | 
 |   } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { | 
 |     // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning | 
 |     // matches before the start of the tvOS platform. | 
 |     IdentifierInfo *NewII = nullptr; | 
 |     if (II->getName() == "ios") | 
 |       NewII = &S.Context.Idents.get("tvos"); | 
 |     else if (II->getName() == "ios_app_extension") | 
 |       NewII = &S.Context.Idents.get("tvos_app_extension"); | 
 |  | 
 |     if (NewII) { | 
 |       const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); | 
 |       const auto *IOSToTvOSMapping = | 
 |           SDKInfo ? SDKInfo->getVersionMapping( | 
 |                         DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) | 
 |                   : nullptr; | 
 |  | 
 |       auto AdjustTvOSVersion = | 
 |           [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { | 
 |         if (Version.empty()) | 
 |           return Version; | 
 |  | 
 |         if (IOSToTvOSMapping) { | 
 |           if (auto MappedVersion = | 
 |                   IOSToTvOSMapping->map(Version, VersionTuple(0, 0), None)) { | 
 |             return MappedVersion.getValue(); | 
 |           } | 
 |         } | 
 |         return Version; | 
 |       }; | 
 |  | 
 |       auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); | 
 |       auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); | 
 |       auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); | 
 |  | 
 |       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( | 
 |           ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, | 
 |           NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, | 
 |           Sema::AMK_None, | 
 |           PriorityModifier + Sema::AP_InferredFromOtherPlatform); | 
 |       if (NewAttr) | 
 |         D->addAttr(NewAttr); | 
 |     } | 
 |   } else if (S.Context.getTargetInfo().getTriple().getOS() == | 
 |                  llvm::Triple::IOS && | 
 |              S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { | 
 |     auto GetSDKInfo = [&]() { | 
 |       return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(), | 
 |                                                        "macOS"); | 
 |     }; | 
 |  | 
 |     // Transcribe "ios" to "maccatalyst" (and add a new attribute). | 
 |     IdentifierInfo *NewII = nullptr; | 
 |     if (II->getName() == "ios") | 
 |       NewII = &S.Context.Idents.get("maccatalyst"); | 
 |     else if (II->getName() == "ios_app_extension") | 
 |       NewII = &S.Context.Idents.get("maccatalyst_app_extension"); | 
 |     if (NewII) { | 
 |       auto MinMacCatalystVersion = [](const VersionTuple &V) { | 
 |         if (V.empty()) | 
 |           return V; | 
 |         if (V.getMajor() < 13 || | 
 |             (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) | 
 |           return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. | 
 |         return V; | 
 |       }; | 
 |       AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( | 
 |           ND, AL.getRange(), NewII, true /*Implicit*/, | 
 |           MinMacCatalystVersion(Introduced.Version), | 
 |           MinMacCatalystVersion(Deprecated.Version), | 
 |           MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str, | 
 |           IsStrict, Replacement, Sema::AMK_None, | 
 |           PriorityModifier + Sema::AP_InferredFromOtherPlatform); | 
 |       if (NewAttr) | 
 |         D->addAttr(NewAttr); | 
 |     } else if (II->getName() == "macos" && GetSDKInfo() && | 
 |                (!Introduced.Version.empty() || !Deprecated.Version.empty() || | 
 |                 !Obsoleted.Version.empty())) { | 
 |       if (const auto *MacOStoMacCatalystMapping = | 
 |               GetSDKInfo()->getVersionMapping( | 
 |                   DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { | 
 |         // Infer Mac Catalyst availability from the macOS availability attribute | 
 |         // if it has versioned availability. Don't infer 'unavailable'. This | 
 |         // inferred availability has lower priority than the other availability | 
 |         // attributes that are inferred from 'ios'. | 
 |         NewII = &S.Context.Idents.get("maccatalyst"); | 
 |         auto RemapMacOSVersion = | 
 |             [&](const VersionTuple &V) -> Optional<VersionTuple> { | 
 |           if (V.empty()) | 
 |             return None; | 
 |           // API_TO_BE_DEPRECATED is 100000. | 
 |           if (V.getMajor() == 100000) | 
 |             return VersionTuple(100000); | 
 |           // The minimum iosmac version is 13.1 | 
 |           return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None); | 
 |         }; | 
 |         Optional<VersionTuple> NewIntroduced = | 
 |                                    RemapMacOSVersion(Introduced.Version), | 
 |                                NewDeprecated = | 
 |                                    RemapMacOSVersion(Deprecated.Version), | 
 |                                NewObsoleted = | 
 |                                    RemapMacOSVersion(Obsoleted.Version); | 
 |         if (NewIntroduced || NewDeprecated || NewObsoleted) { | 
 |           auto VersionOrEmptyVersion = | 
 |               [](const Optional<VersionTuple> &V) -> VersionTuple { | 
 |             return V ? *V : VersionTuple(); | 
 |           }; | 
 |           AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( | 
 |               ND, AL.getRange(), NewII, true /*Implicit*/, | 
 |               VersionOrEmptyVersion(NewIntroduced), | 
 |               VersionOrEmptyVersion(NewDeprecated), | 
 |               VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str, | 
 |               IsStrict, Replacement, Sema::AMK_None, | 
 |               PriorityModifier + Sema::AP_InferredFromOtherPlatform + | 
 |                   Sema::AP_InferredFromOtherPlatform); | 
 |           if (NewAttr) | 
 |             D->addAttr(NewAttr); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, | 
 |                                            const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3)) | 
 |     return; | 
 |  | 
 |   StringRef Language; | 
 |   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0))) | 
 |     Language = SE->getString(); | 
 |   StringRef DefinedIn; | 
 |   if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1))) | 
 |     DefinedIn = SE->getString(); | 
 |   bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; | 
 |  | 
 |   D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( | 
 |       S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration)); | 
 | } | 
 |  | 
 | template <class T> | 
 | static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, | 
 |                               typename T::VisibilityType value) { | 
 |   T *existingAttr = D->getAttr<T>(); | 
 |   if (existingAttr) { | 
 |     typename T::VisibilityType existingValue = existingAttr->getVisibility(); | 
 |     if (existingValue == value) | 
 |       return nullptr; | 
 |     S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); | 
 |     S.Diag(CI.getLoc(), diag::note_previous_attribute); | 
 |     D->dropAttr<T>(); | 
 |   } | 
 |   return ::new (S.Context) T(S.Context, CI, value); | 
 | } | 
 |  | 
 | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, | 
 |                                           const AttributeCommonInfo &CI, | 
 |                                           VisibilityAttr::VisibilityType Vis) { | 
 |   return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); | 
 | } | 
 |  | 
 | TypeVisibilityAttr * | 
 | Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                               TypeVisibilityAttr::VisibilityType Vis) { | 
 |   return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); | 
 | } | 
 |  | 
 | static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, | 
 |                                  bool isTypeVisibility) { | 
 |   // Visibility attributes don't mean anything on a typedef. | 
 |   if (isa<TypedefNameDecl>(D)) { | 
 |     S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   // 'type_visibility' can only go on a type or namespace. | 
 |   if (isTypeVisibility && | 
 |       !(isa<TagDecl>(D) || | 
 |         isa<ObjCInterfaceDecl>(D) || | 
 |         isa<NamespaceDecl>(D))) { | 
 |     S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) | 
 |         << AL << ExpectedTypeOrNamespace; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check that the argument is a string literal. | 
 |   StringRef TypeStr; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   VisibilityAttr::VisibilityType type; | 
 |   if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { | 
 |     S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL | 
 |                                                                 << TypeStr; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Complain about attempts to use protected visibility on targets | 
 |   // (like Darwin) that don't support it. | 
 |   if (type == VisibilityAttr::Protected && | 
 |       !S.Context.getTargetInfo().hasProtectedVisibility()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); | 
 |     type = VisibilityAttr::Default; | 
 |   } | 
 |  | 
 |   Attr *newAttr; | 
 |   if (isTypeVisibility) { | 
 |     newAttr = S.mergeTypeVisibilityAttr( | 
 |         D, AL, (TypeVisibilityAttr::VisibilityType)type); | 
 |   } else { | 
 |     newAttr = S.mergeVisibilityAttr(D, AL, type); | 
 |   } | 
 |   if (newAttr) | 
 |     D->addAttr(newAttr); | 
 | } | 
 |  | 
 | static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // objc_direct cannot be set on methods declared in the context of a protocol | 
 |   if (isa<ObjCProtocolDecl>(D->getDeclContext())) { | 
 |     S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { | 
 |     handleSimpleAttribute<ObjCDirectAttr>(S, D, AL); | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; | 
 |   } | 
 | } | 
 |  | 
 | static void handleObjCDirectMembersAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { | 
 |     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; | 
 |   } | 
 | } | 
 |  | 
 | static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *M = cast<ObjCMethodDecl>(D); | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierLoc *IL = AL.getArgAsIdent(0); | 
 |   ObjCMethodFamilyAttr::FamilyKind F; | 
 |   if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { | 
 |     S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (F == ObjCMethodFamilyAttr::OMF_init && | 
 |       !M->getReturnType()->isObjCObjectPointerType()) { | 
 |     S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) | 
 |         << M->getReturnType(); | 
 |     // Ignore the attribute. | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); | 
 | } | 
 |  | 
 | static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |     QualType T = TD->getUnderlyingType(); | 
 |     if (!T->isCARCBridgableType()) { | 
 |       S.Diag(TD->getLocation(), diag::err_nsobject_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |   else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
 |     QualType T = PD->getType(); | 
 |     if (!T->isCARCBridgableType()) { | 
 |       S.Diag(PD->getLocation(), diag::err_nsobject_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |   else { | 
 |     // It is okay to include this attribute on properties, e.g.: | 
 |     // | 
 |     //  @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); | 
 |     // | 
 |     // In this case it follows tradition and suppresses an error in the above | 
 |     // case. | 
 |     S.Diag(D->getLocation(), diag::warn_nsobject_attribute); | 
 |   } | 
 |   D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |     QualType T = TD->getUnderlyingType(); | 
 |     if (!T->isObjCObjectPointerType()) { | 
 |       S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(D->getLocation(), diag::warn_independentclass_attribute); | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   BlocksAttr::BlockType type; | 
 |   if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); | 
 | } | 
 |  | 
 | static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; | 
 |   if (AL.getNumArgs() > 0) { | 
 |     Expr *E = AL.getArgAsExpr(0); | 
 |     Optional<llvm::APSInt> Idx = llvm::APSInt(32); | 
 |     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |           << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (Idx->isSigned() && Idx->isNegative()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     sentinel = Idx->getZExtValue(); | 
 |   } | 
 |  | 
 |   unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; | 
 |   if (AL.getNumArgs() > 1) { | 
 |     Expr *E = AL.getArgAsExpr(1); | 
 |     Optional<llvm::APSInt> Idx = llvm::APSInt(32); | 
 |     if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |           << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |     nullPos = Idx->getZExtValue(); | 
 |  | 
 |     if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { | 
 |       // FIXME: This error message could be improved, it would be nice | 
 |       // to say what the bounds actually are. | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     const FunctionType *FT = FD->getType()->castAs<FunctionType>(); | 
 |     if (isa<FunctionNoProtoType>(FT)) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
 |       return; | 
 |     } | 
 |   } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
 |     if (!MD->isVariadic()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; | 
 |       return; | 
 |     } | 
 |   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { | 
 |     if (!BD->isVariadic()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; | 
 |       return; | 
 |     } | 
 |   } else if (const auto *V = dyn_cast<VarDecl>(D)) { | 
 |     QualType Ty = V->getType(); | 
 |     if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { | 
 |       const FunctionType *FT = Ty->isFunctionPointerType() | 
 |                                    ? D->getFunctionType() | 
 |                                    : Ty->castAs<BlockPointerType>() | 
 |                                          ->getPointeeType() | 
 |                                          ->castAs<FunctionType>(); | 
 |       if (!cast<FunctionProtoType>(FT)->isVariadic()) { | 
 |         int m = Ty->isFunctionPointerType() ? 0 : 1; | 
 |         S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; | 
 |         return; | 
 |       } | 
 |     } else { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |           << AL << ExpectedFunctionMethodOrBlock; | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << AL << ExpectedFunctionMethodOrBlock; | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); | 
 | } | 
 |  | 
 | static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (D->getFunctionType() && | 
 |       D->getFunctionType()->getReturnType()->isVoidType() && | 
 |       !isa<CXXConstructorDecl>(D)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; | 
 |     return; | 
 |   } | 
 |   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | 
 |     if (MD->getReturnType()->isVoidType()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; | 
 |       return; | 
 |     } | 
 |  | 
 |   StringRef Str; | 
 |   if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { | 
 |     // The standard attribute cannot be applied to variable declarations such | 
 |     // as a function pointer. | 
 |     if (isa<VarDecl>(D)) | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) | 
 |           << AL << "functions, classes, or enumerations"; | 
 |  | 
 |     // If this is spelled as the standard C++17 attribute, but not in C++17, | 
 |     // warn about using it as an extension. If there are attribute arguments, | 
 |     // then claim it's a C++2a extension instead. | 
 |     // FIXME: If WG14 does not seem likely to adopt the same feature, add an | 
 |     // extension warning for C2x mode. | 
 |     const LangOptions &LO = S.getLangOpts(); | 
 |     if (AL.getNumArgs() == 1) { | 
 |       if (LO.CPlusPlus && !LO.CPlusPlus20) | 
 |         S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; | 
 |  | 
 |       // Since this this is spelled [[nodiscard]], get the optional string | 
 |       // literal. If in C++ mode, but not in C++2a mode, diagnose as an | 
 |       // extension. | 
 |       // FIXME: C2x should support this feature as well, even as an extension. | 
 |       if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) | 
 |         return; | 
 |     } else if (LO.CPlusPlus && !LO.CPlusPlus17) | 
 |       S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // weak_import only applies to variable & function declarations. | 
 |   bool isDef = false; | 
 |   if (!D->canBeWeakImported(isDef)) { | 
 |     if (isDef) | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) | 
 |         << "weak_import"; | 
 |     else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || | 
 |              (S.Context.getTargetInfo().getTriple().isOSDarwin() && | 
 |               (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { | 
 |       // Nothing to warn about here. | 
 |     } else | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |           << AL << ExpectedVariableOrFunction; | 
 |  | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | // Handles reqd_work_group_size and work_group_size_hint. | 
 | template <typename WorkGroupAttr> | 
 | static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t WGSize[3]; | 
 |   for (unsigned i = 0; i < 3; ++i) { | 
 |     const Expr *E = AL.getArgAsExpr(i); | 
 |     if (!checkUInt32Argument(S, AL, E, WGSize[i], i, | 
 |                              /*StrictlyUnsigned=*/true)) | 
 |       return; | 
 |     if (WGSize[i] == 0) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) | 
 |           << AL << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); | 
 |   if (Existing && !(Existing->getXDim() == WGSize[0] && | 
 |                     Existing->getYDim() == WGSize[1] && | 
 |                     Existing->getZDim() == WGSize[2])) | 
 |     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); | 
 | } | 
 |  | 
 | // Handles intel_reqd_sub_group_size. | 
 | static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t SGSize; | 
 |   const Expr *E = AL.getArgAsExpr(0); | 
 |   if (!checkUInt32Argument(S, AL, E, SGSize)) | 
 |     return; | 
 |   if (SGSize == 0) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) | 
 |         << AL << E->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   OpenCLIntelReqdSubGroupSizeAttr *Existing = | 
 |       D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>(); | 
 |   if (Existing && Existing->getSubGroupSize() != SGSize) | 
 |     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); | 
 | } | 
 |  | 
 | static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.hasParsedType()) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   TypeSourceInfo *ParmTSI = nullptr; | 
 |   QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); | 
 |   assert(ParmTSI && "no type source info for attribute argument"); | 
 |  | 
 |   if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && | 
 |       (ParmType->isBooleanType() || | 
 |        !ParmType->isIntegralType(S.getASTContext()))) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { | 
 |     if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { | 
 |       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); | 
 | } | 
 |  | 
 | SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                     StringRef Name) { | 
 |   // Explicit or partial specializations do not inherit | 
 |   // the section attribute from the primary template. | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && | 
 |         FD->isFunctionTemplateSpecialization()) | 
 |       return nullptr; | 
 |   } | 
 |   if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { | 
 |     if (ExistingAttr->getName() == Name) | 
 |       return nullptr; | 
 |     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) | 
 |          << 1 /*section*/; | 
 |     Diag(CI.getLoc(), diag::note_previous_attribute); | 
 |     return nullptr; | 
 |   } | 
 |   return ::new (Context) SectionAttr(Context, CI, Name); | 
 | } | 
 |  | 
 | /// Used to implement to perform semantic checking on | 
 | /// attribute((section("foo"))) specifiers. | 
 | /// | 
 | /// In this case, "foo" is passed in to be checked.  If the section | 
 | /// specifier is invalid, return an Error that indicates the problem. | 
 | /// | 
 | /// This is a simple quality of implementation feature to catch errors | 
 | /// and give good diagnostics in cases when the assembler or code generator | 
 | /// would otherwise reject the section specifier. | 
 | llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { | 
 |   if (!Context.getTargetInfo().getTriple().isOSDarwin()) | 
 |     return llvm::Error::success(); | 
 |  | 
 |   // Let MCSectionMachO validate this. | 
 |   StringRef Segment, Section; | 
 |   unsigned TAA, StubSize; | 
 |   bool HasTAA; | 
 |   return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section, | 
 |                                                      TAA, HasTAA, StubSize); | 
 | } | 
 |  | 
 | bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { | 
 |   if (llvm::Error E = isValidSectionSpecifier(SecName)) { | 
 |     Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) | 
 |         << toString(std::move(E)) << 1 /*'section'*/; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Make sure that there is a string literal as the sections's single | 
 |   // argument. | 
 |   StringRef Str; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   if (!S.checkSectionName(LiteralLoc, Str)) | 
 |     return; | 
 |  | 
 |   SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); | 
 |   if (NewAttr) { | 
 |     D->addAttr(NewAttr); | 
 |     if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl, | 
 |             ObjCPropertyDecl>(D)) | 
 |       S.UnifySection(NewAttr->getName(), | 
 |                      ASTContext::PSF_Execute | ASTContext::PSF_Read, | 
 |                      cast<NamedDecl>(D)); | 
 |   } | 
 | } | 
 |  | 
 | // This is used for `__declspec(code_seg("segname"))` on a decl. | 
 | // `#pragma code_seg("segname")` uses checkSectionName() instead. | 
 | static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, | 
 |                              StringRef CodeSegName) { | 
 |   if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) { | 
 |     S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) | 
 |         << toString(std::move(E)) << 0 /*'code-seg'*/; | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                     StringRef Name) { | 
 |   // Explicit or partial specializations do not inherit | 
 |   // the code_seg attribute from the primary template. | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->isFunctionTemplateSpecialization()) | 
 |       return nullptr; | 
 |   } | 
 |   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { | 
 |     if (ExistingAttr->getName() == Name) | 
 |       return nullptr; | 
 |     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) | 
 |          << 0 /*codeseg*/; | 
 |     Diag(CI.getLoc(), diag::note_previous_attribute); | 
 |     return nullptr; | 
 |   } | 
 |   return ::new (Context) CodeSegAttr(Context, CI, Name); | 
 | } | 
 |  | 
 | static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Str; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) | 
 |     return; | 
 |   if (!checkCodeSegName(S, LiteralLoc, Str)) | 
 |     return; | 
 |   if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { | 
 |     if (!ExistingAttr->isImplicit()) { | 
 |       S.Diag(AL.getLoc(), | 
 |              ExistingAttr->getName() == Str | 
 |              ? diag::warn_duplicate_codeseg_attribute | 
 |              : diag::err_conflicting_codeseg_attribute); | 
 |       return; | 
 |     } | 
 |     D->dropAttr<CodeSegAttr>(); | 
 |   } | 
 |   if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) | 
 |     D->addAttr(CSA); | 
 | } | 
 |  | 
 | // Check for things we'd like to warn about. Multiversioning issues are | 
 | // handled later in the process, once we know how many exist. | 
 | bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { | 
 |   enum FirstParam { Unsupported, Duplicate, Unknown }; | 
 |   enum SecondParam { None, Architecture, Tune }; | 
 |   enum ThirdParam { Target, TargetClones }; | 
 |   if (AttrStr.contains("fpmath=")) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unsupported << None << "fpmath=" << Target; | 
 |  | 
 |   // Diagnose use of tune if target doesn't support it. | 
 |   if (!Context.getTargetInfo().supportsTargetAttributeTune() && | 
 |       AttrStr.contains("tune=")) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unsupported << None << "tune=" << Target; | 
 |  | 
 |   ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); | 
 |  | 
 |   if (!ParsedAttrs.Architecture.empty() && | 
 |       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unknown << Architecture << ParsedAttrs.Architecture << Target; | 
 |  | 
 |   if (!ParsedAttrs.Tune.empty() && | 
 |       !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unknown << Tune << ParsedAttrs.Tune << Target; | 
 |  | 
 |   if (ParsedAttrs.DuplicateArchitecture) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Duplicate << None << "arch=" << Target; | 
 |   if (ParsedAttrs.DuplicateTune) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Duplicate << None << "tune=" << Target; | 
 |  | 
 |   for (const auto &Feature : ParsedAttrs.Features) { | 
 |     auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. | 
 |     if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) | 
 |       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |              << Unsupported << None << CurFeature << Target; | 
 |   } | 
 |  | 
 |   TargetInfo::BranchProtectionInfo BPI; | 
 |   StringRef DiagMsg; | 
 |   if (ParsedAttrs.BranchProtection.empty()) | 
 |     return false; | 
 |   if (!Context.getTargetInfo().validateBranchProtection( | 
 |           ParsedAttrs.BranchProtection, ParsedAttrs.Architecture, BPI, | 
 |           DiagMsg)) { | 
 |     if (DiagMsg.empty()) | 
 |       return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |              << Unsupported << None << "branch-protection" << Target; | 
 |     return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) | 
 |            << DiagMsg; | 
 |   } | 
 |   if (!DiagMsg.empty()) | 
 |     Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Str; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || | 
 |       S.checkTargetAttr(LiteralLoc, Str)) | 
 |     return; | 
 |  | 
 |   TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); | 
 |   D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | bool Sema::checkTargetClonesAttrString(SourceLocation LiteralLoc, StringRef Str, | 
 |                                        const StringLiteral *Literal, | 
 |                                        bool &HasDefault, bool &HasCommas, | 
 |                                        SmallVectorImpl<StringRef> &Strings) { | 
 |   enum FirstParam { Unsupported, Duplicate, Unknown }; | 
 |   enum SecondParam { None, Architecture, Tune }; | 
 |   enum ThirdParam { Target, TargetClones }; | 
 |   HasCommas = HasCommas || Str.contains(','); | 
 |   // Warn on empty at the beginning of a string. | 
 |   if (Str.size() == 0) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unsupported << None << "" << TargetClones; | 
 |  | 
 |   std::pair<StringRef, StringRef> Parts = {{}, Str}; | 
 |   while (!Parts.second.empty()) { | 
 |     Parts = Parts.second.split(','); | 
 |     StringRef Cur = Parts.first.trim(); | 
 |     SourceLocation CurLoc = Literal->getLocationOfByte( | 
 |         Cur.data() - Literal->getString().data(), getSourceManager(), | 
 |         getLangOpts(), Context.getTargetInfo()); | 
 |  | 
 |     bool DefaultIsDupe = false; | 
 |     if (Cur.empty()) | 
 |       return Diag(CurLoc, diag::warn_unsupported_target_attribute) | 
 |              << Unsupported << None << "" << TargetClones; | 
 |  | 
 |     if (Cur.startswith("arch=")) { | 
 |       if (!Context.getTargetInfo().isValidCPUName( | 
 |               Cur.drop_front(sizeof("arch=") - 1))) | 
 |         return Diag(CurLoc, diag::warn_unsupported_target_attribute) | 
 |                << Unsupported << Architecture | 
 |                << Cur.drop_front(sizeof("arch=") - 1) << TargetClones; | 
 |     } else if (Cur == "default") { | 
 |       DefaultIsDupe = HasDefault; | 
 |       HasDefault = true; | 
 |     } else if (!Context.getTargetInfo().isValidFeatureName(Cur)) | 
 |       return Diag(CurLoc, diag::warn_unsupported_target_attribute) | 
 |              << Unsupported << None << Cur << TargetClones; | 
 |  | 
 |     if (llvm::find(Strings, Cur) != Strings.end() || DefaultIsDupe) | 
 |       Diag(CurLoc, diag::warn_target_clone_duplicate_options); | 
 |     // Note: Add even if there are duplicates, since it changes name mangling. | 
 |     Strings.push_back(Cur); | 
 |   } | 
 |  | 
 |   if (Str.rtrim().endswith(",")) | 
 |     return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) | 
 |            << Unsupported << None << "" << TargetClones; | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Ensure we don't combine these with themselves, since that causes some | 
 |   // confusing behavior. | 
 |   if (const auto *Other = D->getAttr<TargetClonesAttr>()) { | 
 |     S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; | 
 |     S.Diag(Other->getLocation(), diag::note_conflicting_attribute); | 
 |     return; | 
 |   } | 
 |   if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL)) | 
 |     return; | 
 |  | 
 |   SmallVector<StringRef, 2> Strings; | 
 |   bool HasCommas = false, HasDefault = false; | 
 |  | 
 |   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
 |     StringRef CurStr; | 
 |     SourceLocation LiteralLoc; | 
 |     if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) || | 
 |         S.checkTargetClonesAttrString( | 
 |             LiteralLoc, CurStr, | 
 |             cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()), | 
 |             HasDefault, HasCommas, Strings)) | 
 |       return; | 
 |   } | 
 |  | 
 |   if (HasCommas && AL.getNumArgs() > 1) | 
 |     S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values); | 
 |  | 
 |   if (!HasDefault) { | 
 |     S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: We could probably figure out how to get this to work for lambdas | 
 |   // someday. | 
 |   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |     if (MD->getParent()->isLambda()) { | 
 |       S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support) | 
 |           << static_cast<unsigned>(MultiVersionKind::TargetClones) | 
 |           << /*Lambda*/ 9; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   cast<FunctionDecl>(D)->setIsMultiVersion(); | 
 |   TargetClonesAttr *NewAttr = ::new (S.Context) | 
 |       TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); | 
 |   D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *E = AL.getArgAsExpr(0); | 
 |   uint32_t VecWidth; | 
 |   if (!checkUInt32Argument(S, AL, E, VecWidth)) { | 
 |     AL.setInvalid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); | 
 |   if (Existing && Existing->getVectorWidth() != VecWidth) { | 
 |     S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); | 
 | } | 
 |  | 
 | static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *E = AL.getArgAsExpr(0); | 
 |   SourceLocation Loc = E->getExprLoc(); | 
 |   FunctionDecl *FD = nullptr; | 
 |   DeclarationNameInfo NI; | 
 |  | 
 |   // gcc only allows for simple identifiers. Since we support more than gcc, we | 
 |   // will warn the user. | 
 |   if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { | 
 |     if (DRE->hasQualifier()) | 
 |       S.Diag(Loc, diag::warn_cleanup_ext); | 
 |     FD = dyn_cast<FunctionDecl>(DRE->getDecl()); | 
 |     NI = DRE->getNameInfo(); | 
 |     if (!FD) { | 
 |       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 | 
 |         << NI.getName(); | 
 |       return; | 
 |     } | 
 |   } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { | 
 |     if (ULE->hasExplicitTemplateArgs()) | 
 |       S.Diag(Loc, diag::warn_cleanup_ext); | 
 |     FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); | 
 |     NI = ULE->getNameInfo(); | 
 |     if (!FD) { | 
 |       S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 | 
 |         << NI.getName(); | 
 |       if (ULE->getType() == S.Context.OverloadTy) | 
 |         S.NoteAllOverloadCandidates(ULE); | 
 |       return; | 
 |     } | 
 |   } else { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (FD->getNumParams() != 1) { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) | 
 |       << NI.getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // We're currently more strict than GCC about what function types we accept. | 
 |   // If this ever proves to be a problem it should be easy to fix. | 
 |   QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); | 
 |   QualType ParamTy = FD->getParamDecl(0)->getType(); | 
 |   if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), | 
 |                                    ParamTy, Ty) != Sema::Compatible) { | 
 |     S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) | 
 |       << NI.getName() << ParamTy << Ty; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); | 
 | } | 
 |  | 
 | static void handleEnumExtensibilityAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 0 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   EnumExtensibilityAttr::Kind ExtensibilityKind; | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), | 
 |                                                ExtensibilityKind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); | 
 | } | 
 |  | 
 | /// Handle __attribute__((format_arg((idx)))) attribute based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
 | static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   Expr *IdxExpr = AL.getArgAsExpr(0); | 
 |   ParamIdx Idx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) | 
 |     return; | 
 |  | 
 |   // Make sure the format string is really a string. | 
 |   QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); | 
 |  | 
 |   bool NotNSStringTy = !isNSStringType(Ty, S.Context); | 
 |   if (NotNSStringTy && | 
 |       !isCFStringType(Ty, S.Context) && | 
 |       (!Ty->isPointerType() || | 
 |        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { | 
 |     S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
 |         << "a string type" << IdxExpr->getSourceRange() | 
 |         << getFunctionOrMethodParamRange(D, 0); | 
 |     return; | 
 |   } | 
 |   Ty = getFunctionOrMethodResultType(D); | 
 |   // replace instancetype with the class type | 
 |   auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); | 
 |   if (Ty->getAs<TypedefType>() == Instancetype) | 
 |     if (auto *OMD = dyn_cast<ObjCMethodDecl>(D)) | 
 |       if (auto *Interface = OMD->getClassInterface()) | 
 |         Ty = S.Context.getObjCObjectPointerType( | 
 |             QualType(Interface->getTypeForDecl(), 0)); | 
 |   if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) && | 
 |       !isCFStringType(Ty, S.Context) && | 
 |       (!Ty->isPointerType() || | 
 |        !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { | 
 |     S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) | 
 |         << (NotNSStringTy ? "string type" : "NSString") | 
 |         << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); | 
 | } | 
 |  | 
 | enum FormatAttrKind { | 
 |   CFStringFormat, | 
 |   NSStringFormat, | 
 |   StrftimeFormat, | 
 |   SupportedFormat, | 
 |   IgnoredFormat, | 
 |   InvalidFormat | 
 | }; | 
 |  | 
 | /// getFormatAttrKind - Map from format attribute names to supported format | 
 | /// types. | 
 | static FormatAttrKind getFormatAttrKind(StringRef Format) { | 
 |   return llvm::StringSwitch<FormatAttrKind>(Format) | 
 |       // Check for formats that get handled specially. | 
 |       .Case("NSString", NSStringFormat) | 
 |       .Case("CFString", CFStringFormat) | 
 |       .Case("strftime", StrftimeFormat) | 
 |  | 
 |       // Otherwise, check for supported formats. | 
 |       .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) | 
 |       .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) | 
 |       .Case("kprintf", SupportedFormat)         // OpenBSD. | 
 |       .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. | 
 |       .Case("os_trace", SupportedFormat) | 
 |       .Case("os_log", SupportedFormat) | 
 |  | 
 |       .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) | 
 |       .Default(InvalidFormat); | 
 | } | 
 |  | 
 | /// Handle __attribute__((init_priority(priority))) attributes based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html | 
 | static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!S.getLangOpts().CPlusPlus) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (S.getCurFunctionOrMethodDecl()) { | 
 |     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); | 
 |     AL.setInvalid(); | 
 |     return; | 
 |   } | 
 |   QualType T = cast<VarDecl>(D)->getType(); | 
 |   if (S.Context.getAsArrayType(T)) | 
 |     T = S.Context.getBaseElementType(T); | 
 |   if (!T->getAs<RecordType>()) { | 
 |     S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); | 
 |     AL.setInvalid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = AL.getArgAsExpr(0); | 
 |   uint32_t prioritynum; | 
 |   if (!checkUInt32Argument(S, AL, E, prioritynum)) { | 
 |     AL.setInvalid(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Only perform the priority check if the attribute is outside of a system | 
 |   // header. Values <= 100 are reserved for the implementation, and libc++ | 
 |   // benefits from being able to specify values in that range. | 
 |   if ((prioritynum < 101 || prioritynum > 65535) && | 
 |       !S.getSourceManager().isInSystemHeader(AL.getLoc())) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) | 
 |         << E->getSourceRange() << AL << 101 << 65535; | 
 |     AL.setInvalid(); | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); | 
 | } | 
 |  | 
 | ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                 StringRef NewUserDiagnostic) { | 
 |   if (const auto *EA = D->getAttr<ErrorAttr>()) { | 
 |     std::string NewAttr = CI.getNormalizedFullName(); | 
 |     assert((NewAttr == "error" || NewAttr == "warning") && | 
 |            "unexpected normalized full name"); | 
 |     bool Match = (EA->isError() && NewAttr == "error") || | 
 |                  (EA->isWarning() && NewAttr == "warning"); | 
 |     if (!Match) { | 
 |       Diag(EA->getLocation(), diag::err_attributes_are_not_compatible) | 
 |           << CI << EA; | 
 |       Diag(CI.getLoc(), diag::note_conflicting_attribute); | 
 |       return nullptr; | 
 |     } | 
 |     if (EA->getUserDiagnostic() != NewUserDiagnostic) { | 
 |       Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA; | 
 |       Diag(EA->getLoc(), diag::note_previous_attribute); | 
 |     } | 
 |     D->dropAttr<ErrorAttr>(); | 
 |   } | 
 |   return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); | 
 | } | 
 |  | 
 | FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                   IdentifierInfo *Format, int FormatIdx, | 
 |                                   int FirstArg) { | 
 |   // Check whether we already have an equivalent format attribute. | 
 |   for (auto *F : D->specific_attrs<FormatAttr>()) { | 
 |     if (F->getType() == Format && | 
 |         F->getFormatIdx() == FormatIdx && | 
 |         F->getFirstArg() == FirstArg) { | 
 |       // If we don't have a valid location for this attribute, adopt the | 
 |       // location. | 
 |       if (F->getLocation().isInvalid()) | 
 |         F->setRange(CI.getRange()); | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); | 
 | } | 
 |  | 
 | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on | 
 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html | 
 | static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   // In C++ the implicit 'this' function parameter also counts, and they are | 
 |   // counted from one. | 
 |   bool HasImplicitThisParam = isInstanceMethod(D); | 
 |   unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; | 
 |  | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   StringRef Format = II->getName(); | 
 |  | 
 |   if (normalizeName(Format)) { | 
 |     // If we've modified the string name, we need a new identifier for it. | 
 |     II = &S.Context.Idents.get(Format); | 
 |   } | 
 |  | 
 |   // Check for supported formats. | 
 |   FormatAttrKind Kind = getFormatAttrKind(Format); | 
 |  | 
 |   if (Kind == IgnoredFormat) | 
 |     return; | 
 |  | 
 |   if (Kind == InvalidFormat) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
 |         << AL << II->getName(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // checks for the 2nd argument | 
 |   Expr *IdxExpr = AL.getArgAsExpr(1); | 
 |   uint32_t Idx; | 
 |   if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) | 
 |     return; | 
 |  | 
 |   if (Idx < 1 || Idx > NumArgs) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |         << AL << 2 << IdxExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Do we need to bounds check? | 
 |   unsigned ArgIdx = Idx - 1; | 
 |  | 
 |   if (HasImplicitThisParam) { | 
 |     if (ArgIdx == 0) { | 
 |       S.Diag(AL.getLoc(), | 
 |              diag::err_format_attribute_implicit_this_format_string) | 
 |         << IdxExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |     ArgIdx--; | 
 |   } | 
 |  | 
 |   // make sure the format string is really a string | 
 |   QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); | 
 |  | 
 |   if (Kind == CFStringFormat) { | 
 |     if (!isCFStringType(Ty, S.Context)) { | 
 |       S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
 |         << "a CFString" << IdxExpr->getSourceRange() | 
 |         << getFunctionOrMethodParamRange(D, ArgIdx); | 
 |       return; | 
 |     } | 
 |   } else if (Kind == NSStringFormat) { | 
 |     // FIXME: do we need to check if the type is NSString*?  What are the | 
 |     // semantics? | 
 |     if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) { | 
 |       S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
 |         << "an NSString" << IdxExpr->getSourceRange() | 
 |         << getFunctionOrMethodParamRange(D, ArgIdx); | 
 |       return; | 
 |     } | 
 |   } else if (!Ty->isPointerType() || | 
 |              !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) { | 
 |     S.Diag(AL.getLoc(), diag::err_format_attribute_not) | 
 |       << "a string type" << IdxExpr->getSourceRange() | 
 |       << getFunctionOrMethodParamRange(D, ArgIdx); | 
 |     return; | 
 |   } | 
 |  | 
 |   // check the 3rd argument | 
 |   Expr *FirstArgExpr = AL.getArgAsExpr(2); | 
 |   uint32_t FirstArg; | 
 |   if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) | 
 |     return; | 
 |  | 
 |   // check if the function is variadic if the 3rd argument non-zero | 
 |   if (FirstArg != 0) { | 
 |     if (isFunctionOrMethodVariadic(D)) { | 
 |       ++NumArgs; // +1 for ... | 
 |     } else { | 
 |       S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // strftime requires FirstArg to be 0 because it doesn't read from any | 
 |   // variable the input is just the current time + the format string. | 
 |   if (Kind == StrftimeFormat) { | 
 |     if (FirstArg != 0) { | 
 |       S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) | 
 |         << FirstArgExpr->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   // if 0 it disables parameter checking (to use with e.g. va_list) | 
 |   } else if (FirstArg != 0 && FirstArg != NumArgs) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |         << AL << 3 << FirstArgExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. | 
 | static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // The index that identifies the callback callee is mandatory. | 
 |   if (AL.getNumArgs() == 0) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) | 
 |         << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   bool HasImplicitThisParam = isInstanceMethod(D); | 
 |   int32_t NumArgs = getFunctionOrMethodNumParams(D); | 
 |  | 
 |   FunctionDecl *FD = D->getAsFunction(); | 
 |   assert(FD && "Expected a function declaration!"); | 
 |  | 
 |   llvm::StringMap<int> NameIdxMapping; | 
 |   NameIdxMapping["__"] = -1; | 
 |  | 
 |   NameIdxMapping["this"] = 0; | 
 |  | 
 |   int Idx = 1; | 
 |   for (const ParmVarDecl *PVD : FD->parameters()) | 
 |     NameIdxMapping[PVD->getName()] = Idx++; | 
 |  | 
 |   auto UnknownName = NameIdxMapping.end(); | 
 |  | 
 |   SmallVector<int, 8> EncodingIndices; | 
 |   for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { | 
 |     SourceRange SR; | 
 |     int32_t ArgIdx; | 
 |  | 
 |     if (AL.isArgIdent(I)) { | 
 |       IdentifierLoc *IdLoc = AL.getArgAsIdent(I); | 
 |       auto It = NameIdxMapping.find(IdLoc->Ident->getName()); | 
 |       if (It == UnknownName) { | 
 |         S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) | 
 |             << IdLoc->Ident << IdLoc->Loc; | 
 |         return; | 
 |       } | 
 |  | 
 |       SR = SourceRange(IdLoc->Loc); | 
 |       ArgIdx = It->second; | 
 |     } else if (AL.isArgExpr(I)) { | 
 |       Expr *IdxExpr = AL.getArgAsExpr(I); | 
 |  | 
 |       // If the expression is not parseable as an int32_t we have a problem. | 
 |       if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, | 
 |                                false)) { | 
 |         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |             << AL << (I + 1) << IdxExpr->getSourceRange(); | 
 |         return; | 
 |       } | 
 |  | 
 |       // Check oob, excluding the special values, 0 and -1. | 
 |       if (ArgIdx < -1 || ArgIdx > NumArgs) { | 
 |         S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |             << AL << (I + 1) << IdxExpr->getSourceRange(); | 
 |         return; | 
 |       } | 
 |  | 
 |       SR = IdxExpr->getSourceRange(); | 
 |     } else { | 
 |       llvm_unreachable("Unexpected ParsedAttr argument type!"); | 
 |     } | 
 |  | 
 |     if (ArgIdx == 0 && !HasImplicitThisParam) { | 
 |       S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) | 
 |           << (I + 1) << SR; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Adjust for the case we do not have an implicit "this" parameter. In this | 
 |     // case we decrease all positive values by 1 to get LLVM argument indices. | 
 |     if (!HasImplicitThisParam && ArgIdx > 0) | 
 |       ArgIdx -= 1; | 
 |  | 
 |     EncodingIndices.push_back(ArgIdx); | 
 |   } | 
 |  | 
 |   int CalleeIdx = EncodingIndices.front(); | 
 |   // Check if the callee index is proper, thus not "this" and not "unknown". | 
 |   // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" | 
 |   // is false and positive if "HasImplicitThisParam" is true. | 
 |   if (CalleeIdx < (int)HasImplicitThisParam) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) | 
 |         << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Get the callee type, note the index adjustment as the AST doesn't contain | 
 |   // the this type (which the callee cannot reference anyway!). | 
 |   const Type *CalleeType = | 
 |       getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) | 
 |           .getTypePtr(); | 
 |   if (!CalleeType || !CalleeType->isFunctionPointerType()) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) | 
 |         << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   const Type *CalleeFnType = | 
 |       CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); | 
 |  | 
 |   // TODO: Check the type of the callee arguments. | 
 |  | 
 |   const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType); | 
 |   if (!CalleeFnProtoType) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) | 
 |         << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |         << AL << (unsigned)(EncodingIndices.size() - 1); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) | 
 |         << AL << (unsigned)(EncodingIndices.size() - 1); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (CalleeFnProtoType->isVariadic()) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Do not allow multiple callback attributes. | 
 |   if (D->hasAttr<CallbackAttr>()) { | 
 |     S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CallbackAttr( | 
 |       S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); | 
 | } | 
 |  | 
 | static bool isFunctionLike(const Type &T) { | 
 |   // Check for explicit function types. | 
 |   // 'called_once' is only supported in Objective-C and it has | 
 |   // function pointers and block pointers. | 
 |   return T.isFunctionPointerType() || T.isBlockPointerType(); | 
 | } | 
 |  | 
 | /// Handle 'called_once' attribute. | 
 | static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // 'called_once' only applies to parameters representing functions. | 
 |   QualType T = cast<ParmVarDecl>(D)->getType(); | 
 |  | 
 |   if (!isFunctionLike(*T)) { | 
 |     S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Try to find the underlying union declaration. | 
 |   RecordDecl *RD = nullptr; | 
 |   const auto *TD = dyn_cast<TypedefNameDecl>(D); | 
 |   if (TD && TD->getUnderlyingType()->isUnionType()) | 
 |     RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); | 
 |   else | 
 |     RD = dyn_cast<RecordDecl>(D); | 
 |  | 
 |   if (!RD || !RD->isUnion()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL | 
 |                                                               << ExpectedUnion; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!RD->isCompleteDefinition()) { | 
 |     if (!RD->isBeingDefined()) | 
 |       S.Diag(AL.getLoc(), | 
 |              diag::warn_transparent_union_attribute_not_definition); | 
 |     return; | 
 |   } | 
 |  | 
 |   RecordDecl::field_iterator Field = RD->field_begin(), | 
 |                           FieldEnd = RD->field_end(); | 
 |   if (Field == FieldEnd) { | 
 |     S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); | 
 |     return; | 
 |   } | 
 |  | 
 |   FieldDecl *FirstField = *Field; | 
 |   QualType FirstType = FirstField->getType(); | 
 |   if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { | 
 |     S.Diag(FirstField->getLocation(), | 
 |            diag::warn_transparent_union_attribute_floating) | 
 |       << FirstType->isVectorType() << FirstType; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (FirstType->isIncompleteType()) | 
 |     return; | 
 |   uint64_t FirstSize = S.Context.getTypeSize(FirstType); | 
 |   uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); | 
 |   for (; Field != FieldEnd; ++Field) { | 
 |     QualType FieldType = Field->getType(); | 
 |     if (FieldType->isIncompleteType()) | 
 |       return; | 
 |     // FIXME: this isn't fully correct; we also need to test whether the | 
 |     // members of the union would all have the same calling convention as the | 
 |     // first member of the union. Checking just the size and alignment isn't | 
 |     // sufficient (consider structs passed on the stack instead of in registers | 
 |     // as an example). | 
 |     if (S.Context.getTypeSize(FieldType) != FirstSize || | 
 |         S.Context.getTypeAlign(FieldType) > FirstAlign) { | 
 |       // Warn if we drop the attribute. | 
 |       bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; | 
 |       unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType) | 
 |                                   : S.Context.getTypeAlign(FieldType); | 
 |       S.Diag(Field->getLocation(), | 
 |              diag::warn_transparent_union_attribute_field_size_align) | 
 |           << isSize << *Field << FieldBits; | 
 |       unsigned FirstBits = isSize ? FirstSize : FirstAlign; | 
 |       S.Diag(FirstField->getLocation(), | 
 |              diag::note_transparent_union_first_field_size_align) | 
 |           << isSize << FirstBits; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                              StringRef Str, MutableArrayRef<Expr *> Args) { | 
 |   auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI); | 
 |   llvm::SmallVector<PartialDiagnosticAt, 8> Notes; | 
 |   for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) { | 
 |     Expr *&E = Attr->args_begin()[Idx]; | 
 |     assert(E && "error are handled before"); | 
 |     if (E->isValueDependent() || E->isTypeDependent()) | 
 |       continue; | 
 |  | 
 |     if (E->getType()->isArrayType()) | 
 |       E = ImpCastExprToType(E, Context.getPointerType(E->getType()), | 
 |                             clang::CK_ArrayToPointerDecay) | 
 |               .get(); | 
 |     if (E->getType()->isFunctionType()) | 
 |       E = ImplicitCastExpr::Create(Context, | 
 |                                    Context.getPointerType(E->getType()), | 
 |                                    clang::CK_FunctionToPointerDecay, E, nullptr, | 
 |                                    VK_PRValue, FPOptionsOverride()); | 
 |     if (E->isLValue()) | 
 |       E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(), | 
 |                                    clang::CK_LValueToRValue, E, nullptr, | 
 |                                    VK_PRValue, FPOptionsOverride()); | 
 |  | 
 |     Expr::EvalResult Eval; | 
 |     Notes.clear(); | 
 |     Eval.Diag = &Notes; | 
 |  | 
 |     bool Result = | 
 |         E->EvaluateAsConstantExpr(Eval, Context); | 
 |  | 
 |     /// Result means the expression can be folded to a constant. | 
 |     /// Note.empty() means the expression is a valid constant expression in the | 
 |     /// current language mode. | 
 |     if (!Result || !Notes.empty()) { | 
 |       Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type) | 
 |           << CI << (Idx + 1) << AANT_ArgumentConstantExpr; | 
 |       for (auto &Note : Notes) | 
 |         Diag(Note.first, Note.second); | 
 |       return; | 
 |     } | 
 |     assert(Eval.Val.hasValue()); | 
 |     E = ConstantExpr::Create(Context, E, Eval.Val); | 
 |   } | 
 |   D->addAttr(Attr); | 
 | } | 
 |  | 
 | static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Make sure that there is a string literal as the annotation's first | 
 |   // argument. | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   llvm::SmallVector<Expr *, 4> Args; | 
 |   Args.reserve(AL.getNumArgs() - 1); | 
 |   for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { | 
 |     assert(!AL.isArgIdent(Idx)); | 
 |     Args.push_back(AL.getArgAsExpr(Idx)); | 
 |   } | 
 |  | 
 |   S.AddAnnotationAttr(D, AL, Str, Args); | 
 | } | 
 |  | 
 | static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); | 
 | } | 
 |  | 
 | void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { | 
 |   AlignValueAttr TmpAttr(Context, CI, E); | 
 |   SourceLocation AttrLoc = CI.getLoc(); | 
 |  | 
 |   QualType T; | 
 |   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
 |     T = TD->getUnderlyingType(); | 
 |   else if (const auto *VD = dyn_cast<ValueDecl>(D)) | 
 |     T = VD->getType(); | 
 |   else | 
 |     llvm_unreachable("Unknown decl type for align_value"); | 
 |  | 
 |   if (!T->isDependentType() && !T->isAnyPointerType() && | 
 |       !T->isReferenceType() && !T->isMemberPointerType()) { | 
 |     Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) | 
 |       << &TmpAttr << T << D->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!E->isValueDependent()) { | 
 |     llvm::APSInt Alignment; | 
 |     ExprResult ICE = VerifyIntegerConstantExpression( | 
 |         E, &Alignment, diag::err_align_value_attribute_argument_not_int); | 
 |     if (ICE.isInvalid()) | 
 |       return; | 
 |  | 
 |     if (!Alignment.isPowerOf2()) { | 
 |       Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |  | 
 |     D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Save dependent expressions in the AST to be instantiated. | 
 |   D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); | 
 | } | 
 |  | 
 | static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // check the attribute arguments. | 
 |   if (AL.getNumArgs() > 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (AL.getNumArgs() == 0) { | 
 |     D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *E = AL.getArgAsExpr(0); | 
 |   if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { | 
 |     S.Diag(AL.getEllipsisLoc(), | 
 |            diag::err_pack_expansion_without_parameter_packs); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) | 
 |     return; | 
 |  | 
 |   S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); | 
 | } | 
 |  | 
 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, | 
 |                           bool IsPackExpansion) { | 
 |   AlignedAttr TmpAttr(Context, CI, true, E); | 
 |   SourceLocation AttrLoc = CI.getLoc(); | 
 |  | 
 |   // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. | 
 |   if (TmpAttr.isAlignas()) { | 
 |     // C++11 [dcl.align]p1: | 
 |     //   An alignment-specifier may be applied to a variable or to a class | 
 |     //   data member, but it shall not be applied to a bit-field, a function | 
 |     //   parameter, the formal parameter of a catch clause, or a variable | 
 |     //   declared with the register storage class specifier. An | 
 |     //   alignment-specifier may also be applied to the declaration of a class | 
 |     //   or enumeration type. | 
 |     // C11 6.7.5/2: | 
 |     //   An alignment attribute shall not be specified in a declaration of | 
 |     //   a typedef, or a bit-field, or a function, or a parameter, or an | 
 |     //   object declared with the register storage-class specifier. | 
 |     int DiagKind = -1; | 
 |     if (isa<ParmVarDecl>(D)) { | 
 |       DiagKind = 0; | 
 |     } else if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |       if (VD->getStorageClass() == SC_Register) | 
 |         DiagKind = 1; | 
 |       if (VD->isExceptionVariable()) | 
 |         DiagKind = 2; | 
 |     } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { | 
 |       if (FD->isBitField()) | 
 |         DiagKind = 3; | 
 |     } else if (!isa<TagDecl>(D)) { | 
 |       Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr | 
 |         << (TmpAttr.isC11() ? ExpectedVariableOrField | 
 |                             : ExpectedVariableFieldOrTag); | 
 |       return; | 
 |     } | 
 |     if (DiagKind != -1) { | 
 |       Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) | 
 |         << &TmpAttr << DiagKind; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (E->isValueDependent()) { | 
 |     // We can't support a dependent alignment on a non-dependent type, | 
 |     // because we have no way to model that a type is "alignment-dependent" | 
 |     // but not dependent in any other way. | 
 |     if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { | 
 |       if (!TND->getUnderlyingType()->isDependentType()) { | 
 |         Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) | 
 |             << E->getSourceRange(); | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |     // Save dependent expressions in the AST to be instantiated. | 
 |     AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); | 
 |     AA->setPackExpansion(IsPackExpansion); | 
 |     D->addAttr(AA); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Cache the number on the AL object? | 
 |   llvm::APSInt Alignment; | 
 |   ExprResult ICE = VerifyIntegerConstantExpression( | 
 |       E, &Alignment, diag::err_aligned_attribute_argument_not_int); | 
 |   if (ICE.isInvalid()) | 
 |     return; | 
 |  | 
 |   uint64_t AlignVal = Alignment.getZExtValue(); | 
 |   // 16 byte ByVal alignment not due to a vector member is not honoured by XL | 
 |   // on AIX. Emit a warning here that users are generating binary incompatible | 
 |   // code to be safe. | 
 |   if (AlignVal >= 16 && isa<FieldDecl>(D) && | 
 |       Context.getTargetInfo().getTriple().isOSAIX()) | 
 |     Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange(); | 
 |  | 
 |   // C++11 [dcl.align]p2: | 
 |   //   -- if the constant expression evaluates to zero, the alignment | 
 |   //      specifier shall have no effect | 
 |   // C11 6.7.5p6: | 
 |   //   An alignment specification of zero has no effect. | 
 |   if (!(TmpAttr.isAlignas() && !Alignment)) { | 
 |     if (!llvm::isPowerOf2_64(AlignVal)) { | 
 |       Diag(AttrLoc, diag::err_alignment_not_power_of_two) | 
 |         << E->getSourceRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   uint64_t MaximumAlignment = Sema::MaximumAlignment; | 
 |   if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) | 
 |     MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192)); | 
 |   if (AlignVal > MaximumAlignment) { | 
 |     Diag(AttrLoc, diag::err_attribute_aligned_too_great) | 
 |         << MaximumAlignment << E->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   const auto *VD = dyn_cast<VarDecl>(D); | 
 |   if (VD && Context.getTargetInfo().isTLSSupported()) { | 
 |     unsigned MaxTLSAlign = | 
 |         Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) | 
 |             .getQuantity(); | 
 |     if (MaxTLSAlign && AlignVal > MaxTLSAlign && | 
 |         VD->getTLSKind() != VarDecl::TLS_None) { | 
 |       Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) | 
 |           << (unsigned)AlignVal << VD << MaxTLSAlign; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // On AIX, an aligned attribute can not decrease the alignment when applied | 
 |   // to a variable declaration with vector type. | 
 |   if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { | 
 |     const Type *Ty = VD->getType().getTypePtr(); | 
 |     if (Ty->isVectorType() && AlignVal < 16) { | 
 |       Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) | 
 |           << VD->getType() << 16; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); | 
 |   AA->setPackExpansion(IsPackExpansion); | 
 |   D->addAttr(AA); | 
 | } | 
 |  | 
 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                           TypeSourceInfo *TS, bool IsPackExpansion) { | 
 |   // FIXME: Cache the number on the AL object if non-dependent? | 
 |   // FIXME: Perform checking of type validity | 
 |   AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); | 
 |   AA->setPackExpansion(IsPackExpansion); | 
 |   D->addAttr(AA); | 
 | } | 
 |  | 
 | void Sema::CheckAlignasUnderalignment(Decl *D) { | 
 |   assert(D->hasAttrs() && "no attributes on decl"); | 
 |  | 
 |   QualType UnderlyingTy, DiagTy; | 
 |   if (const auto *VD = dyn_cast<ValueDecl>(D)) { | 
 |     UnderlyingTy = DiagTy = VD->getType(); | 
 |   } else { | 
 |     UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); | 
 |     if (const auto *ED = dyn_cast<EnumDecl>(D)) | 
 |       UnderlyingTy = ED->getIntegerType(); | 
 |   } | 
 |   if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) | 
 |     return; | 
 |  | 
 |   // C++11 [dcl.align]p5, C11 6.7.5/4: | 
 |   //   The combined effect of all alignment attributes in a declaration shall | 
 |   //   not specify an alignment that is less strict than the alignment that | 
 |   //   would otherwise be required for the entity being declared. | 
 |   AlignedAttr *AlignasAttr = nullptr; | 
 |   AlignedAttr *LastAlignedAttr = nullptr; | 
 |   unsigned Align = 0; | 
 |   for (auto *I : D->specific_attrs<AlignedAttr>()) { | 
 |     if (I->isAlignmentDependent()) | 
 |       return; | 
 |     if (I->isAlignas()) | 
 |       AlignasAttr = I; | 
 |     Align = std::max(Align, I->getAlignment(Context)); | 
 |     LastAlignedAttr = I; | 
 |   } | 
 |  | 
 |   if (Align && DiagTy->isSizelessType()) { | 
 |     Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) | 
 |         << LastAlignedAttr << DiagTy; | 
 |   } else if (AlignasAttr && Align) { | 
 |     CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); | 
 |     CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); | 
 |     if (NaturalAlign > RequestedAlign) | 
 |       Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) | 
 |         << DiagTy << (unsigned)NaturalAlign.getQuantity(); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::checkMSInheritanceAttrOnDefinition( | 
 |     CXXRecordDecl *RD, SourceRange Range, bool BestCase, | 
 |     MSInheritanceModel ExplicitModel) { | 
 |   assert(RD->hasDefinition() && "RD has no definition!"); | 
 |  | 
 |   // We may not have seen base specifiers or any virtual methods yet.  We will | 
 |   // have to wait until the record is defined to catch any mismatches. | 
 |   if (!RD->getDefinition()->isCompleteDefinition()) | 
 |     return false; | 
 |  | 
 |   // The unspecified model never matches what a definition could need. | 
 |   if (ExplicitModel == MSInheritanceModel::Unspecified) | 
 |     return false; | 
 |  | 
 |   if (BestCase) { | 
 |     if (RD->calculateInheritanceModel() == ExplicitModel) | 
 |       return false; | 
 |   } else { | 
 |     if (RD->calculateInheritanceModel() <= ExplicitModel) | 
 |       return false; | 
 |   } | 
 |  | 
 |   Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) | 
 |       << 0 /*definition*/; | 
 |   Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; | 
 |   return true; | 
 | } | 
 |  | 
 | /// parseModeAttrArg - Parses attribute mode string and returns parsed type | 
 | /// attribute. | 
 | static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, | 
 |                              bool &IntegerMode, bool &ComplexMode, | 
 |                              FloatModeKind &ExplicitType) { | 
 |   IntegerMode = true; | 
 |   ComplexMode = false; | 
 |   ExplicitType = FloatModeKind::NoFloat; | 
 |   switch (Str.size()) { | 
 |   case 2: | 
 |     switch (Str[0]) { | 
 |     case 'Q': | 
 |       DestWidth = 8; | 
 |       break; | 
 |     case 'H': | 
 |       DestWidth = 16; | 
 |       break; | 
 |     case 'S': | 
 |       DestWidth = 32; | 
 |       break; | 
 |     case 'D': | 
 |       DestWidth = 64; | 
 |       break; | 
 |     case 'X': | 
 |       DestWidth = 96; | 
 |       break; | 
 |     case 'K': // KFmode - IEEE quad precision (__float128) | 
 |       ExplicitType = FloatModeKind::Float128; | 
 |       DestWidth = Str[1] == 'I' ? 0 : 128; | 
 |       break; | 
 |     case 'T': | 
 |       ExplicitType = FloatModeKind::LongDouble; | 
 |       DestWidth = 128; | 
 |       break; | 
 |     case 'I': | 
 |       ExplicitType = FloatModeKind::Ibm128; | 
 |       DestWidth = Str[1] == 'I' ? 0 : 128; | 
 |       break; | 
 |     } | 
 |     if (Str[1] == 'F') { | 
 |       IntegerMode = false; | 
 |     } else if (Str[1] == 'C') { | 
 |       IntegerMode = false; | 
 |       ComplexMode = true; | 
 |     } else if (Str[1] != 'I') { | 
 |       DestWidth = 0; | 
 |     } | 
 |     break; | 
 |   case 4: | 
 |     // FIXME: glibc uses 'word' to define register_t; this is narrower than a | 
 |     // pointer on PIC16 and other embedded platforms. | 
 |     if (Str == "word") | 
 |       DestWidth = S.Context.getTargetInfo().getRegisterWidth(); | 
 |     else if (Str == "byte") | 
 |       DestWidth = S.Context.getTargetInfo().getCharWidth(); | 
 |     break; | 
 |   case 7: | 
 |     if (Str == "pointer") | 
 |       DestWidth = S.Context.getTargetInfo().getPointerWidth(0); | 
 |     break; | 
 |   case 11: | 
 |     if (Str == "unwind_word") | 
 |       DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | /// handleModeAttr - This attribute modifies the width of a decl with primitive | 
 | /// type. | 
 | /// | 
 | /// Despite what would be logical, the mode attribute is a decl attribute, not a | 
 | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be | 
 | /// HImode, not an intermediate pointer. | 
 | static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // This attribute isn't documented, but glibc uses it.  It changes | 
 |   // the width of an int or unsigned int to the specified size. | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; | 
 |  | 
 |   S.AddModeAttr(D, AL, Name); | 
 | } | 
 |  | 
 | void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                        IdentifierInfo *Name, bool InInstantiation) { | 
 |   StringRef Str = Name->getName(); | 
 |   normalizeName(Str); | 
 |   SourceLocation AttrLoc = CI.getLoc(); | 
 |  | 
 |   unsigned DestWidth = 0; | 
 |   bool IntegerMode = true; | 
 |   bool ComplexMode = false; | 
 |   FloatModeKind ExplicitType = FloatModeKind::NoFloat; | 
 |   llvm::APInt VectorSize(64, 0); | 
 |   if (Str.size() >= 4 && Str[0] == 'V') { | 
 |     // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). | 
 |     size_t StrSize = Str.size(); | 
 |     size_t VectorStringLength = 0; | 
 |     while ((VectorStringLength + 1) < StrSize && | 
 |            isdigit(Str[VectorStringLength + 1])) | 
 |       ++VectorStringLength; | 
 |     if (VectorStringLength && | 
 |         !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && | 
 |         VectorSize.isPowerOf2()) { | 
 |       parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, | 
 |                        IntegerMode, ComplexMode, ExplicitType); | 
 |       // Avoid duplicate warning from template instantiation. | 
 |       if (!InInstantiation) | 
 |         Diag(AttrLoc, diag::warn_vector_mode_deprecated); | 
 |     } else { | 
 |       VectorSize = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!VectorSize) | 
 |     parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, | 
 |                      ExplicitType); | 
 |  | 
 |   // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t | 
 |   // and friends, at least with glibc. | 
 |   // FIXME: Make sure floating-point mappings are accurate | 
 |   // FIXME: Support XF and TF types | 
 |   if (!DestWidth) { | 
 |     Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; | 
 |     return; | 
 |   } | 
 |  | 
 |   QualType OldTy; | 
 |   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
 |     OldTy = TD->getUnderlyingType(); | 
 |   else if (const auto *ED = dyn_cast<EnumDecl>(D)) { | 
 |     // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. | 
 |     // Try to get type from enum declaration, default to int. | 
 |     OldTy = ED->getIntegerType(); | 
 |     if (OldTy.isNull()) | 
 |       OldTy = Context.IntTy; | 
 |   } else | 
 |     OldTy = cast<ValueDecl>(D)->getType(); | 
 |  | 
 |   if (OldTy->isDependentType()) { | 
 |     D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Base type can also be a vector type (see PR17453). | 
 |   // Distinguish between base type and base element type. | 
 |   QualType OldElemTy = OldTy; | 
 |   if (const auto *VT = OldTy->getAs<VectorType>()) | 
 |     OldElemTy = VT->getElementType(); | 
 |  | 
 |   // GCC allows 'mode' attribute on enumeration types (even incomplete), except | 
 |   // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete | 
 |   // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. | 
 |   if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && | 
 |       VectorSize.getBoolValue()) { | 
 |     Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); | 
 |     return; | 
 |   } | 
 |   bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && | 
 |                                 !OldElemTy->isBitIntType()) || | 
 |                                OldElemTy->getAs<EnumType>(); | 
 |  | 
 |   if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && | 
 |       !IntegralOrAnyEnumType) | 
 |     Diag(AttrLoc, diag::err_mode_not_primitive); | 
 |   else if (IntegerMode) { | 
 |     if (!IntegralOrAnyEnumType) | 
 |       Diag(AttrLoc, diag::err_mode_wrong_type); | 
 |   } else if (ComplexMode) { | 
 |     if (!OldElemTy->isComplexType()) | 
 |       Diag(AttrLoc, diag::err_mode_wrong_type); | 
 |   } else { | 
 |     if (!OldElemTy->isFloatingType()) | 
 |       Diag(AttrLoc, diag::err_mode_wrong_type); | 
 |   } | 
 |  | 
 |   QualType NewElemTy; | 
 |  | 
 |   if (IntegerMode) | 
 |     NewElemTy = Context.getIntTypeForBitwidth(DestWidth, | 
 |                                               OldElemTy->isSignedIntegerType()); | 
 |   else | 
 |     NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); | 
 |  | 
 |   if (NewElemTy.isNull()) { | 
 |     Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (ComplexMode) { | 
 |     NewElemTy = Context.getComplexType(NewElemTy); | 
 |   } | 
 |  | 
 |   QualType NewTy = NewElemTy; | 
 |   if (VectorSize.getBoolValue()) { | 
 |     NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), | 
 |                                   VectorType::GenericVector); | 
 |   } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { | 
 |     // Complex machine mode does not support base vector types. | 
 |     if (ComplexMode) { | 
 |       Diag(AttrLoc, diag::err_complex_mode_vector_type); | 
 |       return; | 
 |     } | 
 |     unsigned NumElements = Context.getTypeSize(OldElemTy) * | 
 |                            OldVT->getNumElements() / | 
 |                            Context.getTypeSize(NewElemTy); | 
 |     NewTy = | 
 |         Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); | 
 |   } | 
 |  | 
 |   if (NewTy.isNull()) { | 
 |     Diag(AttrLoc, diag::err_mode_wrong_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Install the new type. | 
 |   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) | 
 |     TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); | 
 |   else if (auto *ED = dyn_cast<EnumDecl>(D)) | 
 |     ED->setIntegerType(NewTy); | 
 |   else | 
 |     cast<ValueDecl>(D)->setType(NewTy); | 
 |  | 
 |   D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); | 
 | } | 
 |  | 
 | static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, | 
 |                                               const AttributeCommonInfo &CI, | 
 |                                               const IdentifierInfo *Ident) { | 
 |   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { | 
 |     Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; | 
 |     Diag(Optnone->getLocation(), diag::note_conflicting_attribute); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (D->hasAttr<AlwaysInlineAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) AlwaysInlineAttr(Context, CI); | 
 | } | 
 |  | 
 | InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, | 
 |                                                     const ParsedAttr &AL) { | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     // Attribute applies to Var but not any subclass of it (like ParmVar, | 
 |     // ImplicitParm or VarTemplateSpecialization). | 
 |     if (VD->getKind() != Decl::Var) { | 
 |       Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |           << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass | 
 |                                             : ExpectedVariableOrFunction); | 
 |       return nullptr; | 
 |     } | 
 |     // Attribute does not apply to non-static local variables. | 
 |     if (VD->hasLocalStorage()) { | 
 |       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) InternalLinkageAttr(Context, AL); | 
 | } | 
 | InternalLinkageAttr * | 
 | Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     // Attribute applies to Var but not any subclass of it (like ParmVar, | 
 |     // ImplicitParm or VarTemplateSpecialization). | 
 |     if (VD->getKind() != Decl::Var) { | 
 |       Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |           << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass | 
 |                                              : ExpectedVariableOrFunction); | 
 |       return nullptr; | 
 |     } | 
 |     // Attribute does not apply to non-static local variables. | 
 |     if (VD->hasLocalStorage()) { | 
 |       Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) InternalLinkageAttr(Context, AL); | 
 | } | 
 |  | 
 | MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { | 
 |   if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { | 
 |     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; | 
 |     Diag(Optnone->getLocation(), diag::note_conflicting_attribute); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (D->hasAttr<MinSizeAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) MinSizeAttr(Context, CI); | 
 | } | 
 |  | 
 | SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, | 
 |                                         StringRef Name) { | 
 |   if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) { | 
 |     if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) { | 
 |       Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible) | 
 |           << PrevSNA << &SNA; | 
 |       Diag(SNA.getLoc(), diag::note_conflicting_attribute); | 
 |     } | 
 |  | 
 |     D->dropAttr<SwiftNameAttr>(); | 
 |   } | 
 |   return ::new (Context) SwiftNameAttr(Context, SNA, Name); | 
 | } | 
 |  | 
 | OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, | 
 |                                               const AttributeCommonInfo &CI) { | 
 |   if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { | 
 |     Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; | 
 |     Diag(CI.getLoc(), diag::note_conflicting_attribute); | 
 |     D->dropAttr<AlwaysInlineAttr>(); | 
 |   } | 
 |   if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { | 
 |     Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; | 
 |     Diag(CI.getLoc(), diag::note_conflicting_attribute); | 
 |     D->dropAttr<MinSizeAttr>(); | 
 |   } | 
 |  | 
 |   if (D->hasAttr<OptimizeNoneAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) OptimizeNoneAttr(Context, CI); | 
 | } | 
 |  | 
 | static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (AlwaysInlineAttr *Inline = | 
 |           S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) | 
 |     D->addAttr(Inline); | 
 | } | 
 |  | 
 | static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) | 
 |     D->addAttr(MinSize); | 
 | } | 
 |  | 
 | static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) | 
 |     D->addAttr(Optnone); | 
 | } | 
 |  | 
 | static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *VD = cast<VarDecl>(D); | 
 |   if (VD->hasLocalStorage()) { | 
 |     S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); | 
 |     return; | 
 |   } | 
 |   // constexpr variable may already get an implicit constant attr, which should | 
 |   // be replaced by the explicit constant attr. | 
 |   if (auto *A = D->getAttr<CUDAConstantAttr>()) { | 
 |     if (!A->isImplicit()) | 
 |       return; | 
 |     D->dropAttr<CUDAConstantAttr>(); | 
 |   } | 
 |   D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *VD = cast<VarDecl>(D); | 
 |   // extern __shared__ is only allowed on arrays with no length (e.g. | 
 |   // "int x[]"). | 
 |   if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && | 
 |       !isa<IncompleteArrayType>(VD->getType())) { | 
 |     S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; | 
 |     return; | 
 |   } | 
 |   if (S.getLangOpts().CUDA && VD->hasLocalStorage() && | 
 |       S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) | 
 |           << S.CurrentCUDATarget()) | 
 |     return; | 
 |   D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *FD = cast<FunctionDecl>(D); | 
 |   if (!FD->getReturnType()->isVoidType() && | 
 |       !FD->getReturnType()->getAs<AutoType>() && | 
 |       !FD->getReturnType()->isInstantiationDependentType()) { | 
 |     SourceRange RTRange = FD->getReturnTypeSourceRange(); | 
 |     S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) | 
 |         << FD->getType() | 
 |         << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") | 
 |                               : FixItHint()); | 
 |     return; | 
 |   } | 
 |   if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { | 
 |     if (Method->isInstance()) { | 
 |       S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) | 
 |           << Method; | 
 |       return; | 
 |     } | 
 |     S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; | 
 |   } | 
 |   // Only warn for "inline" when compiling for host, to cut down on noise. | 
 |   if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) | 
 |     S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; | 
 |  | 
 |   D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); | 
 |   // In host compilation the kernel is emitted as a stub function, which is | 
 |   // a helper function for launching the kernel. The instructions in the helper | 
 |   // function has nothing to do with the source code of the kernel. Do not emit | 
 |   // debug info for the stub function to avoid confusing the debugger. | 
 |   if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) | 
 |     D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->hasLocalStorage()) { | 
 |       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (auto *A = D->getAttr<CUDADeviceAttr>()) { | 
 |     if (!A->isImplicit()) | 
 |       return; | 
 |     D->dropAttr<CUDADeviceAttr>(); | 
 |   } | 
 |   D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     if (VD->hasLocalStorage()) { | 
 |       S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); | 
 |       return; | 
 |     } | 
 |   } | 
 |   if (!D->hasAttr<HIPManagedAttr>()) | 
 |     D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL)); | 
 |   if (!D->hasAttr<CUDADeviceAttr>()) | 
 |     D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *Fn = cast<FunctionDecl>(D); | 
 |   if (!Fn->isInlineSpecified()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) | 
 |     S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); | 
 |  | 
 |   D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   // Diagnostic is emitted elsewhere: here we store the (valid) AL | 
 |   // in the Decl node for syntactic reasoning, e.g., pretty-printing. | 
 |   CallingConv CC; | 
 |   if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) | 
 |     return; | 
 |  | 
 |   if (!isa<ObjCMethodDecl>(D)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << AL << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (AL.getKind()) { | 
 |   case ParsedAttr::AT_FastCall: | 
 |     D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_StdCall: | 
 |     D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_ThisCall: | 
 |     D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_CDecl: | 
 |     D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_Pascal: | 
 |     D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_SwiftCall: | 
 |     D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_SwiftAsyncCall: | 
 |     D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_VectorCall: | 
 |     D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_MSABI: | 
 |     D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_SysVABI: | 
 |     D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_RegCall: | 
 |     D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_Pcs: { | 
 |     PcsAttr::PCSType PCS; | 
 |     switch (CC) { | 
 |     case CC_AAPCS: | 
 |       PCS = PcsAttr::AAPCS; | 
 |       break; | 
 |     case CC_AAPCS_VFP: | 
 |       PCS = PcsAttr::AAPCS_VFP; | 
 |       break; | 
 |     default: | 
 |       llvm_unreachable("unexpected calling convention in pcs attribute"); | 
 |     } | 
 |  | 
 |     D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); | 
 |     return; | 
 |   } | 
 |   case ParsedAttr::AT_AArch64VectorPcs: | 
 |     D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_IntelOclBicc: | 
 |     D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_PreserveMost: | 
 |     D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); | 
 |     return; | 
 |   case ParsedAttr::AT_PreserveAll: | 
 |     D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); | 
 |     return; | 
 |   default: | 
 |     llvm_unreachable("unexpected attribute kind"); | 
 |   } | 
 | } | 
 |  | 
 | static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   std::vector<StringRef> DiagnosticIdentifiers; | 
 |   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
 |     StringRef RuleName; | 
 |  | 
 |     if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) | 
 |       return; | 
 |  | 
 |     // FIXME: Warn if the rule name is unknown. This is tricky because only | 
 |     // clang-tidy knows about available rules. | 
 |     DiagnosticIdentifiers.push_back(RuleName); | 
 |   } | 
 |   D->addAttr(::new (S.Context) | 
 |                  SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), | 
 |                               DiagnosticIdentifiers.size())); | 
 | } | 
 |  | 
 | static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   TypeSourceInfo *DerefTypeLoc = nullptr; | 
 |   QualType ParmType; | 
 |   if (AL.hasParsedType()) { | 
 |     ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); | 
 |  | 
 |     unsigned SelectIdx = ~0U; | 
 |     if (ParmType->isReferenceType()) | 
 |       SelectIdx = 0; | 
 |     else if (ParmType->isArrayType()) | 
 |       SelectIdx = 1; | 
 |  | 
 |     if (SelectIdx != ~0U) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) | 
 |           << SelectIdx << AL; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // To check if earlier decl attributes do not conflict the newly parsed ones | 
 |   // we always add (and check) the attribute to the canonical decl. We need | 
 |   // to repeat the check for attribute mutual exclusion because we're attaching | 
 |   // all of the attributes to the canonical declaration rather than the current | 
 |   // declaration. | 
 |   D = D->getCanonicalDecl(); | 
 |   if (AL.getKind() == ParsedAttr::AT_Owner) { | 
 |     if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) | 
 |       return; | 
 |     if (const auto *OAttr = D->getAttr<OwnerAttr>()) { | 
 |       const Type *ExistingDerefType = OAttr->getDerefTypeLoc() | 
 |                                           ? OAttr->getDerefType().getTypePtr() | 
 |                                           : nullptr; | 
 |       if (ExistingDerefType != ParmType.getTypePtrOrNull()) { | 
 |         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) | 
 |             << AL << OAttr; | 
 |         S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); | 
 |       } | 
 |       return; | 
 |     } | 
 |     for (Decl *Redecl : D->redecls()) { | 
 |       Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); | 
 |     } | 
 |   } else { | 
 |     if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) | 
 |       return; | 
 |     if (const auto *PAttr = D->getAttr<PointerAttr>()) { | 
 |       const Type *ExistingDerefType = PAttr->getDerefTypeLoc() | 
 |                                           ? PAttr->getDerefType().getTypePtr() | 
 |                                           : nullptr; | 
 |       if (ExistingDerefType != ParmType.getTypePtrOrNull()) { | 
 |         S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) | 
 |             << AL << PAttr; | 
 |         S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); | 
 |       } | 
 |       return; | 
 |     } | 
 |     for (Decl *Redecl : D->redecls()) { | 
 |       Redecl->addAttr(::new (S.Context) | 
 |                           PointerAttr(S.Context, AL, DerefTypeLoc)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, | 
 |                                 const FunctionDecl *FD) { | 
 |   if (Attrs.isInvalid()) | 
 |     return true; | 
 |  | 
 |   if (Attrs.hasProcessingCache()) { | 
 |     CC = (CallingConv) Attrs.getProcessingCache(); | 
 |     return false; | 
 |   } | 
 |  | 
 |   unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; | 
 |   if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) { | 
 |     Attrs.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // TODO: diagnose uses of these conventions on the wrong target. | 
 |   switch (Attrs.getKind()) { | 
 |   case ParsedAttr::AT_CDecl: | 
 |     CC = CC_C; | 
 |     break; | 
 |   case ParsedAttr::AT_FastCall: | 
 |     CC = CC_X86FastCall; | 
 |     break; | 
 |   case ParsedAttr::AT_StdCall: | 
 |     CC = CC_X86StdCall; | 
 |     break; | 
 |   case ParsedAttr::AT_ThisCall: | 
 |     CC = CC_X86ThisCall; | 
 |     break; | 
 |   case ParsedAttr::AT_Pascal: | 
 |     CC = CC_X86Pascal; | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftCall: | 
 |     CC = CC_Swift; | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftAsyncCall: | 
 |     CC = CC_SwiftAsync; | 
 |     break; | 
 |   case ParsedAttr::AT_VectorCall: | 
 |     CC = CC_X86VectorCall; | 
 |     break; | 
 |   case ParsedAttr::AT_AArch64VectorPcs: | 
 |     CC = CC_AArch64VectorCall; | 
 |     break; | 
 |   case ParsedAttr::AT_RegCall: | 
 |     CC = CC_X86RegCall; | 
 |     break; | 
 |   case ParsedAttr::AT_MSABI: | 
 |     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : | 
 |                                                              CC_Win64; | 
 |     break; | 
 |   case ParsedAttr::AT_SysVABI: | 
 |     CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : | 
 |                                                              CC_C; | 
 |     break; | 
 |   case ParsedAttr::AT_Pcs: { | 
 |     StringRef StrRef; | 
 |     if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { | 
 |       Attrs.setInvalid(); | 
 |       return true; | 
 |     } | 
 |     if (StrRef == "aapcs") { | 
 |       CC = CC_AAPCS; | 
 |       break; | 
 |     } else if (StrRef == "aapcs-vfp") { | 
 |       CC = CC_AAPCS_VFP; | 
 |       break; | 
 |     } | 
 |  | 
 |     Attrs.setInvalid(); | 
 |     Diag(Attrs.getLoc(), diag::err_invalid_pcs); | 
 |     return true; | 
 |   } | 
 |   case ParsedAttr::AT_IntelOclBicc: | 
 |     CC = CC_IntelOclBicc; | 
 |     break; | 
 |   case ParsedAttr::AT_PreserveMost: | 
 |     CC = CC_PreserveMost; | 
 |     break; | 
 |   case ParsedAttr::AT_PreserveAll: | 
 |     CC = CC_PreserveAll; | 
 |     break; | 
 |   default: llvm_unreachable("unexpected attribute kind"); | 
 |   } | 
 |  | 
 |   TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; | 
 |   const TargetInfo &TI = Context.getTargetInfo(); | 
 |   // CUDA functions may have host and/or device attributes which indicate | 
 |   // their targeted execution environment, therefore the calling convention | 
 |   // of functions in CUDA should be checked against the target deduced based | 
 |   // on their host/device attributes. | 
 |   if (LangOpts.CUDA) { | 
 |     auto *Aux = Context.getAuxTargetInfo(); | 
 |     auto CudaTarget = IdentifyCUDATarget(FD); | 
 |     bool CheckHost = false, CheckDevice = false; | 
 |     switch (CudaTarget) { | 
 |     case CFT_HostDevice: | 
 |       CheckHost = true; | 
 |       CheckDevice = true; | 
 |       break; | 
 |     case CFT_Host: | 
 |       CheckHost = true; | 
 |       break; | 
 |     case CFT_Device: | 
 |     case CFT_Global: | 
 |       CheckDevice = true; | 
 |       break; | 
 |     case CFT_InvalidTarget: | 
 |       llvm_unreachable("unexpected cuda target"); | 
 |     } | 
 |     auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; | 
 |     auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; | 
 |     if (CheckHost && HostTI) | 
 |       A = HostTI->checkCallingConvention(CC); | 
 |     if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) | 
 |       A = DeviceTI->checkCallingConvention(CC); | 
 |   } else { | 
 |     A = TI.checkCallingConvention(CC); | 
 |   } | 
 |  | 
 |   switch (A) { | 
 |   case TargetInfo::CCCR_OK: | 
 |     break; | 
 |  | 
 |   case TargetInfo::CCCR_Ignore: | 
 |     // Treat an ignored convention as if it was an explicit C calling convention | 
 |     // attribute. For example, __stdcall on Win x64 functions as __cdecl, so | 
 |     // that command line flags that change the default convention to | 
 |     // __vectorcall don't affect declarations marked __stdcall. | 
 |     CC = CC_C; | 
 |     break; | 
 |  | 
 |   case TargetInfo::CCCR_Error: | 
 |     Diag(Attrs.getLoc(), diag::error_cconv_unsupported) | 
 |         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; | 
 |     break; | 
 |  | 
 |   case TargetInfo::CCCR_Warning: { | 
 |     Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) | 
 |         << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; | 
 |  | 
 |     // This convention is not valid for the target. Use the default function or | 
 |     // method calling convention. | 
 |     bool IsCXXMethod = false, IsVariadic = false; | 
 |     if (FD) { | 
 |       IsCXXMethod = FD->isCXXInstanceMember(); | 
 |       IsVariadic = FD->isVariadic(); | 
 |     } | 
 |     CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   Attrs.setProcessingCache((unsigned) CC); | 
 |   return false; | 
 | } | 
 |  | 
 | /// Pointer-like types in the default address space. | 
 | static bool isValidSwiftContextType(QualType Ty) { | 
 |   if (!Ty->hasPointerRepresentation()) | 
 |     return Ty->isDependentType(); | 
 |   return Ty->getPointeeType().getAddressSpace() == LangAS::Default; | 
 | } | 
 |  | 
 | /// Pointers and references in the default address space. | 
 | static bool isValidSwiftIndirectResultType(QualType Ty) { | 
 |   if (const auto *PtrType = Ty->getAs<PointerType>()) { | 
 |     Ty = PtrType->getPointeeType(); | 
 |   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { | 
 |     Ty = RefType->getPointeeType(); | 
 |   } else { | 
 |     return Ty->isDependentType(); | 
 |   } | 
 |   return Ty.getAddressSpace() == LangAS::Default; | 
 | } | 
 |  | 
 | /// Pointers and references to pointers in the default address space. | 
 | static bool isValidSwiftErrorResultType(QualType Ty) { | 
 |   if (const auto *PtrType = Ty->getAs<PointerType>()) { | 
 |     Ty = PtrType->getPointeeType(); | 
 |   } else if (const auto *RefType = Ty->getAs<ReferenceType>()) { | 
 |     Ty = RefType->getPointeeType(); | 
 |   } else { | 
 |     return Ty->isDependentType(); | 
 |   } | 
 |   if (!Ty.getQualifiers().empty()) | 
 |     return false; | 
 |   return isValidSwiftContextType(Ty); | 
 | } | 
 |  | 
 | void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                ParameterABI abi) { | 
 |  | 
 |   QualType type = cast<ParmVarDecl>(D)->getType(); | 
 |  | 
 |   if (auto existingAttr = D->getAttr<ParameterABIAttr>()) { | 
 |     if (existingAttr->getABI() != abi) { | 
 |       Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) | 
 |           << getParameterABISpelling(abi) << existingAttr; | 
 |       Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   switch (abi) { | 
 |   case ParameterABI::Ordinary: | 
 |     llvm_unreachable("explicit attribute for ordinary parameter ABI?"); | 
 |  | 
 |   case ParameterABI::SwiftContext: | 
 |     if (!isValidSwiftContextType(type)) { | 
 |       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) | 
 |           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; | 
 |     } | 
 |     D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); | 
 |     return; | 
 |  | 
 |   case ParameterABI::SwiftAsyncContext: | 
 |     if (!isValidSwiftContextType(type)) { | 
 |       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) | 
 |           << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; | 
 |     } | 
 |     D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI)); | 
 |     return; | 
 |  | 
 |   case ParameterABI::SwiftErrorResult: | 
 |     if (!isValidSwiftErrorResultType(type)) { | 
 |       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) | 
 |           << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; | 
 |     } | 
 |     D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); | 
 |     return; | 
 |  | 
 |   case ParameterABI::SwiftIndirectResult: | 
 |     if (!isValidSwiftIndirectResultType(type)) { | 
 |       Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) | 
 |           << getParameterABISpelling(abi) << /*pointer*/ 0 << type; | 
 |     } | 
 |     D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); | 
 |     return; | 
 |   } | 
 |   llvm_unreachable("bad parameter ABI attribute"); | 
 | } | 
 |  | 
 | /// Checks a regparm attribute, returning true if it is ill-formed and | 
 | /// otherwise setting numParams to the appropriate value. | 
 | bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { | 
 |   if (AL.isInvalid()) | 
 |     return true; | 
 |  | 
 |   if (!AL.checkExactlyNumArgs(*this, 1)) { | 
 |     AL.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   uint32_t NP; | 
 |   Expr *NumParamsExpr = AL.getArgAsExpr(0); | 
 |   if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { | 
 |     AL.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Context.getTargetInfo().getRegParmMax() == 0) { | 
 |     Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) | 
 |       << NumParamsExpr->getSourceRange(); | 
 |     AL.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   numParams = NP; | 
 |   if (numParams > Context.getTargetInfo().getRegParmMax()) { | 
 |     Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) | 
 |       << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); | 
 |     AL.setInvalid(); | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Checks whether an argument of launch_bounds attribute is | 
 | // acceptable, performs implicit conversion to Rvalue, and returns | 
 | // non-nullptr Expr result on success. Otherwise, it returns nullptr | 
 | // and may output an error. | 
 | static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, | 
 |                                      const CUDALaunchBoundsAttr &AL, | 
 |                                      const unsigned Idx) { | 
 |   if (S.DiagnoseUnexpandedParameterPack(E)) | 
 |     return nullptr; | 
 |  | 
 |   // Accept template arguments for now as they depend on something else. | 
 |   // We'll get to check them when they eventually get instantiated. | 
 |   if (E->isValueDependent()) | 
 |     return E; | 
 |  | 
 |   Optional<llvm::APSInt> I = llvm::APSInt(64); | 
 |   if (!(I = E->getIntegerConstantExpr(S.Context))) { | 
 |     S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) | 
 |         << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); | 
 |     return nullptr; | 
 |   } | 
 |   // Make sure we can fit it in 32 bits. | 
 |   if (!I->isIntN(32)) { | 
 |     S.Diag(E->getExprLoc(), diag::err_ice_too_large) | 
 |         << toString(*I, 10, false) << 32 << /* Unsigned */ 1; | 
 |     return nullptr; | 
 |   } | 
 |   if (*I < 0) | 
 |     S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) | 
 |         << &AL << Idx << E->getSourceRange(); | 
 |  | 
 |   // We may need to perform implicit conversion of the argument. | 
 |   InitializedEntity Entity = InitializedEntity::InitializeParameter( | 
 |       S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); | 
 |   ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); | 
 |   assert(!ValArg.isInvalid() && | 
 |          "Unexpected PerformCopyInitialization() failure."); | 
 |  | 
 |   return ValArg.getAs<Expr>(); | 
 | } | 
 |  | 
 | void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                Expr *MaxThreads, Expr *MinBlocks) { | 
 |   CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks); | 
 |   MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); | 
 |   if (MaxThreads == nullptr) | 
 |     return; | 
 |  | 
 |   if (MinBlocks) { | 
 |     MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); | 
 |     if (MinBlocks == nullptr) | 
 |       return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (Context) | 
 |                  CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks)); | 
 | } | 
 |  | 
 | static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) | 
 |     return; | 
 |  | 
 |   S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), | 
 |                         AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr); | 
 | } | 
 |  | 
 | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, | 
 |                                           const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   ParamIdx ArgumentIdx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), | 
 |                                            ArgumentIdx)) | 
 |     return; | 
 |  | 
 |   ParamIdx TypeTagIdx; | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), | 
 |                                            TypeTagIdx)) | 
 |     return; | 
 |  | 
 |   bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; | 
 |   if (IsPointer) { | 
 |     // Ensure that buffer has a pointer type. | 
 |     unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); | 
 |     if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || | 
 |         !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( | 
 |       S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, | 
 |       IsPointer)); | 
 | } | 
 |  | 
 | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, | 
 |                                          const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!AL.checkExactlyNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   if (!isa<VarDecl>(D)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) | 
 |         << AL << ExpectedVariable; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; | 
 |   TypeSourceInfo *MatchingCTypeLoc = nullptr; | 
 |   S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); | 
 |   assert(MatchingCTypeLoc && "no type source info for attribute argument"); | 
 |  | 
 |   D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( | 
 |       S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), | 
 |       AL.getMustBeNull())); | 
 | } | 
 |  | 
 | static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   ParamIdx ArgCount; | 
 |  | 
 |   if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), | 
 |                                            ArgCount, | 
 |                                            true /* CanIndexImplicitThis */)) | 
 |     return; | 
 |  | 
 |   // ArgCount isn't a parameter index [0;n), it's a count [1;n] | 
 |   D->addAttr(::new (S.Context) | 
 |                  XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); | 
 | } | 
 |  | 
 | static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, | 
 |                                              const ParsedAttr &AL) { | 
 |   uint32_t Count = 0, Offset = 0; | 
 |   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true)) | 
 |     return; | 
 |   if (AL.getNumArgs() == 2) { | 
 |     Expr *Arg = AL.getArgAsExpr(1); | 
 |     if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true)) | 
 |       return; | 
 |     if (Count < Offset) { | 
 |       S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) | 
 |           << &AL << 0 << Count << Arg->getBeginLoc(); | 
 |       return; | 
 |     } | 
 |   } | 
 |   D->addAttr(::new (S.Context) | 
 |                  PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); | 
 | } | 
 |  | 
 | namespace { | 
 | struct IntrinToName { | 
 |   uint32_t Id; | 
 |   int32_t FullName; | 
 |   int32_t ShortName; | 
 | }; | 
 | } // unnamed namespace | 
 |  | 
 | static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, | 
 |                                  ArrayRef<IntrinToName> Map, | 
 |                                  const char *IntrinNames) { | 
 |   if (AliasName.startswith("__arm_")) | 
 |     AliasName = AliasName.substr(6); | 
 |   const IntrinToName *It = std::lower_bound( | 
 |       Map.begin(), Map.end(), BuiltinID, | 
 |       [](const IntrinToName &L, unsigned Id) { return L.Id < Id; }); | 
 |   if (It == Map.end() || It->Id != BuiltinID) | 
 |     return false; | 
 |   StringRef FullName(&IntrinNames[It->FullName]); | 
 |   if (AliasName == FullName) | 
 |     return true; | 
 |   if (It->ShortName == -1) | 
 |     return false; | 
 |   StringRef ShortName(&IntrinNames[It->ShortName]); | 
 |   return AliasName == ShortName; | 
 | } | 
 |  | 
 | static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { | 
 | #include "clang/Basic/arm_mve_builtin_aliases.inc" | 
 |   // The included file defines: | 
 |   // - ArrayRef<IntrinToName> Map | 
 |   // - const char IntrinNames[] | 
 |   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); | 
 | } | 
 |  | 
 | static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) { | 
 | #include "clang/Basic/arm_cde_builtin_aliases.inc" | 
 |   return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); | 
 | } | 
 |  | 
 | static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID, | 
 |                              StringRef AliasName) { | 
 |   if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) | 
 |     BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID); | 
 |   return BuiltinID >= AArch64::FirstSVEBuiltin && | 
 |          BuiltinID <= AArch64::LastSVEBuiltin; | 
 | } | 
 |  | 
 | static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; | 
 |   unsigned BuiltinID = Ident->getBuiltinID(); | 
 |   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName(); | 
 |  | 
 |   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); | 
 |   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) || | 
 |       (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) && | 
 |        !ArmCdeAliasValid(BuiltinID, AliasName))) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident)); | 
 | } | 
 |  | 
 | static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) { | 
 |   return BuiltinID >= RISCV::FirstRVVBuiltin && | 
 |          BuiltinID <= RISCV::LastRVVBuiltin; | 
 | } | 
 |  | 
 | static void handleBuiltinAliasAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; | 
 |   unsigned BuiltinID = Ident->getBuiltinID(); | 
 |   StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName(); | 
 |  | 
 |   bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); | 
 |   bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); | 
 |   bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); | 
 |   if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) || | 
 |       (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) && | 
 |        !ArmCdeAliasValid(BuiltinID, AliasName)) || | 
 |       (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) || | 
 |       (!IsAArch64 && !IsARM && !IsRISCV)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Checker-specific attribute handlers. | 
 | //===----------------------------------------------------------------------===// | 
 | static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { | 
 |   return QT->isDependentType() || QT->isObjCRetainableType(); | 
 | } | 
 |  | 
 | static bool isValidSubjectOfNSAttribute(QualType QT) { | 
 |   return QT->isDependentType() || QT->isObjCObjectPointerType() || | 
 |          QT->isObjCNSObjectType(); | 
 | } | 
 |  | 
 | static bool isValidSubjectOfCFAttribute(QualType QT) { | 
 |   return QT->isDependentType() || QT->isPointerType() || | 
 |          isValidSubjectOfNSAttribute(QT); | 
 | } | 
 |  | 
 | static bool isValidSubjectOfOSAttribute(QualType QT) { | 
 |   if (QT->isDependentType()) | 
 |     return true; | 
 |   QualType PT = QT->getPointeeType(); | 
 |   return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; | 
 | } | 
 |  | 
 | void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                             RetainOwnershipKind K, | 
 |                             bool IsTemplateInstantiation) { | 
 |   ValueDecl *VD = cast<ValueDecl>(D); | 
 |   switch (K) { | 
 |   case RetainOwnershipKind::OS: | 
 |     handleSimpleAttributeOrDiagnose<OSConsumedAttr>( | 
 |         *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), | 
 |         diag::warn_ns_attribute_wrong_parameter_type, | 
 |         /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1); | 
 |     return; | 
 |   case RetainOwnershipKind::NS: | 
 |     handleSimpleAttributeOrDiagnose<NSConsumedAttr>( | 
 |         *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), | 
 |  | 
 |         // These attributes are normally just advisory, but in ARC, ns_consumed | 
 |         // is significant.  Allow non-dependent code to contain inappropriate | 
 |         // attributes even in ARC, but require template instantiations to be | 
 |         // set up correctly. | 
 |         ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) | 
 |              ? diag::err_ns_attribute_wrong_parameter_type | 
 |              : diag::warn_ns_attribute_wrong_parameter_type), | 
 |         /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0); | 
 |     return; | 
 |   case RetainOwnershipKind::CF: | 
 |     handleSimpleAttributeOrDiagnose<CFConsumedAttr>( | 
 |         *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), | 
 |         diag::warn_ns_attribute_wrong_parameter_type, | 
 |         /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | static Sema::RetainOwnershipKind | 
 | parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { | 
 |   switch (AL.getKind()) { | 
 |   case ParsedAttr::AT_CFConsumed: | 
 |   case ParsedAttr::AT_CFReturnsRetained: | 
 |   case ParsedAttr::AT_CFReturnsNotRetained: | 
 |     return Sema::RetainOwnershipKind::CF; | 
 |   case ParsedAttr::AT_OSConsumesThis: | 
 |   case ParsedAttr::AT_OSConsumed: | 
 |   case ParsedAttr::AT_OSReturnsRetained: | 
 |   case ParsedAttr::AT_OSReturnsNotRetained: | 
 |   case ParsedAttr::AT_OSReturnsRetainedOnZero: | 
 |   case ParsedAttr::AT_OSReturnsRetainedOnNonZero: | 
 |     return Sema::RetainOwnershipKind::OS; | 
 |   case ParsedAttr::AT_NSConsumesSelf: | 
 |   case ParsedAttr::AT_NSConsumed: | 
 |   case ParsedAttr::AT_NSReturnsRetained: | 
 |   case ParsedAttr::AT_NSReturnsNotRetained: | 
 |   case ParsedAttr::AT_NSReturnsAutoreleased: | 
 |     return Sema::RetainOwnershipKind::NS; | 
 |   default: | 
 |     llvm_unreachable("Wrong argument supplied"); | 
 |   } | 
 | } | 
 |  | 
 | bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { | 
 |   if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) | 
 |     return false; | 
 |  | 
 |   Diag(Loc, diag::warn_ns_attribute_wrong_return_type) | 
 |       << "'ns_returns_retained'" << 0 << 0; | 
 |   return true; | 
 | } | 
 |  | 
 | /// \return whether the parameter is a pointer to OSObject pointer. | 
 | static bool isValidOSObjectOutParameter(const Decl *D) { | 
 |   const auto *PVD = dyn_cast<ParmVarDecl>(D); | 
 |   if (!PVD) | 
 |     return false; | 
 |   QualType QT = PVD->getType(); | 
 |   QualType PT = QT->getPointeeType(); | 
 |   return !PT.isNull() && isValidSubjectOfOSAttribute(PT); | 
 | } | 
 |  | 
 | static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   QualType ReturnType; | 
 |   Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); | 
 |  | 
 |   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { | 
 |     ReturnType = MD->getReturnType(); | 
 |   } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && | 
 |              (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { | 
 |     return; // ignore: was handled as a type attribute | 
 |   } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) { | 
 |     ReturnType = PD->getType(); | 
 |   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     ReturnType = FD->getReturnType(); | 
 |   } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) { | 
 |     // Attributes on parameters are used for out-parameters, | 
 |     // passed as pointers-to-pointers. | 
 |     unsigned DiagID = K == Sema::RetainOwnershipKind::CF | 
 |             ? /*pointer-to-CF-pointer*/2 | 
 |             : /*pointer-to-OSObject-pointer*/3; | 
 |     ReturnType = Param->getType()->getPointeeType(); | 
 |     if (ReturnType.isNull()) { | 
 |       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) | 
 |           << AL << DiagID << AL.getRange(); | 
 |       return; | 
 |     } | 
 |   } else if (AL.isUsedAsTypeAttr()) { | 
 |     return; | 
 |   } else { | 
 |     AttributeDeclKind ExpectedDeclKind; | 
 |     switch (AL.getKind()) { | 
 |     default: llvm_unreachable("invalid ownership attribute"); | 
 |     case ParsedAttr::AT_NSReturnsRetained: | 
 |     case ParsedAttr::AT_NSReturnsAutoreleased: | 
 |     case ParsedAttr::AT_NSReturnsNotRetained: | 
 |       ExpectedDeclKind = ExpectedFunctionOrMethod; | 
 |       break; | 
 |  | 
 |     case ParsedAttr::AT_OSReturnsRetained: | 
 |     case ParsedAttr::AT_OSReturnsNotRetained: | 
 |     case ParsedAttr::AT_CFReturnsRetained: | 
 |     case ParsedAttr::AT_CFReturnsNotRetained: | 
 |       ExpectedDeclKind = ExpectedFunctionMethodOrParameter; | 
 |       break; | 
 |     } | 
 |     S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << AL.getRange() << AL << ExpectedDeclKind; | 
 |     return; | 
 |   } | 
 |  | 
 |   bool TypeOK; | 
 |   bool Cf; | 
 |   unsigned ParmDiagID = 2; // Pointer-to-CF-pointer | 
 |   switch (AL.getKind()) { | 
 |   default: llvm_unreachable("invalid ownership attribute"); | 
 |   case ParsedAttr::AT_NSReturnsRetained: | 
 |     TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); | 
 |     Cf = false; | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_NSReturnsAutoreleased: | 
 |   case ParsedAttr::AT_NSReturnsNotRetained: | 
 |     TypeOK = isValidSubjectOfNSAttribute(ReturnType); | 
 |     Cf = false; | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_CFReturnsRetained: | 
 |   case ParsedAttr::AT_CFReturnsNotRetained: | 
 |     TypeOK = isValidSubjectOfCFAttribute(ReturnType); | 
 |     Cf = true; | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_OSReturnsRetained: | 
 |   case ParsedAttr::AT_OSReturnsNotRetained: | 
 |     TypeOK = isValidSubjectOfOSAttribute(ReturnType); | 
 |     Cf = true; | 
 |     ParmDiagID = 3; // Pointer-to-OSObject-pointer | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!TypeOK) { | 
 |     if (AL.isUsedAsTypeAttr()) | 
 |       return; | 
 |  | 
 |     if (isa<ParmVarDecl>(D)) { | 
 |       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) | 
 |           << AL << ParmDiagID << AL.getRange(); | 
 |     } else { | 
 |       // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. | 
 |       enum : unsigned { | 
 |         Function, | 
 |         Method, | 
 |         Property | 
 |       } SubjectKind = Function; | 
 |       if (isa<ObjCMethodDecl>(D)) | 
 |         SubjectKind = Method; | 
 |       else if (isa<ObjCPropertyDecl>(D)) | 
 |         SubjectKind = Property; | 
 |       S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) | 
 |           << AL << SubjectKind << Cf << AL.getRange(); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (AL.getKind()) { | 
 |     default: | 
 |       llvm_unreachable("invalid ownership attribute"); | 
 |     case ParsedAttr::AT_NSReturnsAutoreleased: | 
 |       handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_CFReturnsNotRetained: | 
 |       handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_NSReturnsNotRetained: | 
 |       handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_CFReturnsRetained: | 
 |       handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_NSReturnsRetained: | 
 |       handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_OSReturnsRetained: | 
 |       handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL); | 
 |       return; | 
 |     case ParsedAttr::AT_OSReturnsNotRetained: | 
 |       handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL); | 
 |       return; | 
 |   }; | 
 | } | 
 |  | 
 | static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, | 
 |                                               const ParsedAttr &Attrs) { | 
 |   const int EP_ObjCMethod = 1; | 
 |   const int EP_ObjCProperty = 2; | 
 |  | 
 |   SourceLocation loc = Attrs.getLoc(); | 
 |   QualType resultType; | 
 |   if (isa<ObjCMethodDecl>(D)) | 
 |     resultType = cast<ObjCMethodDecl>(D)->getReturnType(); | 
 |   else | 
 |     resultType = cast<ObjCPropertyDecl>(D)->getType(); | 
 |  | 
 |   if (!resultType->isReferenceType() && | 
 |       (!resultType->isPointerType() || resultType->isObjCRetainableType())) { | 
 |     S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) | 
 |         << SourceRange(loc) << Attrs | 
 |         << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty) | 
 |         << /*non-retainable pointer*/ 2; | 
 |  | 
 |     // Drop the attribute. | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); | 
 | } | 
 |  | 
 | static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &Attrs) { | 
 |   const auto *Method = cast<ObjCMethodDecl>(D); | 
 |  | 
 |   const DeclContext *DC = Method->getDeclContext(); | 
 |   if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) { | 
 |     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs | 
 |                                                                       << 0; | 
 |     S.Diag(PDecl->getLocation(), diag::note_protocol_decl); | 
 |     return; | 
 |   } | 
 |   if (Method->getMethodFamily() == OMF_dealloc) { | 
 |     S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs | 
 |                                                                       << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); | 
 | } | 
 |  | 
 | static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   auto *E = AL.getArgAsExpr(0); | 
 |   auto Loc = E ? E->getBeginLoc() : AL.getLoc(); | 
 |  | 
 |   auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0)); | 
 |   if (!DRE) { | 
 |     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); | 
 |   if (!VD) { | 
 |     S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!isNSStringType(VD->getType(), S.Context) && | 
 |       !isCFStringType(VD->getType(), S.Context)) { | 
 |     S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD)); | 
 | } | 
 |  | 
 | static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; | 
 |  | 
 |   if (!Parm) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Typedefs only allow objc_bridge(id) and have some additional checking. | 
 |   if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
 |     if (!Parm->Ident->isStr("id")) { | 
 |       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; | 
 |       return; | 
 |     } | 
 |  | 
 |     // Only allow 'cv void *'. | 
 |     QualType T = TD->getUnderlyingType(); | 
 |     if (!T->isVoidPointerType()) { | 
 |       S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); | 
 | } | 
 |  | 
 | static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; | 
 |  | 
 |   if (!Parm) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); | 
 | } | 
 |  | 
 | static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   IdentifierInfo *RelatedClass = | 
 |       AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; | 
 |   if (!RelatedClass) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; | 
 |     return; | 
 |   } | 
 |   IdentifierInfo *ClassMethod = | 
 |     AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; | 
 |   IdentifierInfo *InstanceMethod = | 
 |     AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; | 
 |   D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( | 
 |       S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); | 
 | } | 
 |  | 
 | static void handleObjCDesignatedInitializer(Sema &S, Decl *D, | 
 |                                             const ParsedAttr &AL) { | 
 |   DeclContext *Ctx = D->getDeclContext(); | 
 |  | 
 |   // This attribute can only be applied to methods in interfaces or class | 
 |   // extensions. | 
 |   if (!isa<ObjCInterfaceDecl>(Ctx) && | 
 |       !(isa<ObjCCategoryDecl>(Ctx) && | 
 |         cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) { | 
 |     S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); | 
 |     return; | 
 |   } | 
 |  | 
 |   ObjCInterfaceDecl *IFace; | 
 |   if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx)) | 
 |     IFace = CatDecl->getClassInterface(); | 
 |   else | 
 |     IFace = cast<ObjCInterfaceDecl>(Ctx); | 
 |  | 
 |   if (!IFace) | 
 |     return; | 
 |  | 
 |   IFace->setHasDesignatedInitializers(); | 
 |   D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef MetaDataName; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) | 
 |     return; | 
 |   D->addAttr(::new (S.Context) | 
 |                  ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); | 
 | } | 
 |  | 
 | // When a user wants to use objc_boxable with a union or struct | 
 | // but they don't have access to the declaration (legacy/third-party code) | 
 | // then they can 'enable' this feature with a typedef: | 
 | // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; | 
 | static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   bool notify = false; | 
 |  | 
 |   auto *RD = dyn_cast<RecordDecl>(D); | 
 |   if (RD && RD->getDefinition()) { | 
 |     RD = RD->getDefinition(); | 
 |     notify = true; | 
 |   } | 
 |  | 
 |   if (RD) { | 
 |     ObjCBoxableAttr *BoxableAttr = | 
 |         ::new (S.Context) ObjCBoxableAttr(S.Context, AL); | 
 |     RD->addAttr(BoxableAttr); | 
 |     if (notify) { | 
 |       // we need to notify ASTReader/ASTWriter about | 
 |       // modification of existing declaration | 
 |       if (ASTMutationListener *L = S.getASTMutationListener()) | 
 |         L->AddedAttributeToRecord(BoxableAttr, RD); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (hasDeclarator(D)) return; | 
 |  | 
 |   S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) | 
 |       << AL.getRange() << AL << ExpectedVariable; | 
 | } | 
 |  | 
 | static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, | 
 |                                           const ParsedAttr &AL) { | 
 |   const auto *VD = cast<ValueDecl>(D); | 
 |   QualType QT = VD->getType(); | 
 |  | 
 |   if (!QT->isDependentType() && | 
 |       !QT->isObjCLifetimeType()) { | 
 |     S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) | 
 |       << QT; | 
 |     return; | 
 |   } | 
 |  | 
 |   Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); | 
 |  | 
 |   // If we have no lifetime yet, check the lifetime we're presumably | 
 |   // going to infer. | 
 |   if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) | 
 |     Lifetime = QT->getObjCARCImplicitLifetime(); | 
 |  | 
 |   switch (Lifetime) { | 
 |   case Qualifiers::OCL_None: | 
 |     assert(QT->isDependentType() && | 
 |            "didn't infer lifetime for non-dependent type?"); | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_Weak:   // meaningful | 
 |   case Qualifiers::OCL_Strong: // meaningful | 
 |     break; | 
 |  | 
 |   case Qualifiers::OCL_ExplicitNone: | 
 |   case Qualifiers::OCL_Autoreleasing: | 
 |     S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) | 
 |         << (Lifetime == Qualifiers::OCL_Autoreleasing); | 
 |     break; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Make sure that there is a string literal as the annotation's single | 
 |   // argument. | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Make sure that there is a string literal as the annotation's single | 
 |   // argument. | 
 |   StringRef BT; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, BT)) | 
 |     return; | 
 |  | 
 |   // Warn about duplicate attributes if they have different arguments, but drop | 
 |   // any duplicate attributes regardless. | 
 |   if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) { | 
 |     if (Other->getSwiftType() != BT) | 
 |       S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT)); | 
 | } | 
 |  | 
 | static bool isErrorParameter(Sema &S, QualType QT) { | 
 |   const auto *PT = QT->getAs<PointerType>(); | 
 |   if (!PT) | 
 |     return false; | 
 |  | 
 |   QualType Pointee = PT->getPointeeType(); | 
 |  | 
 |   // Check for NSError**. | 
 |   if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>()) | 
 |     if (const auto *ID = OPT->getInterfaceDecl()) | 
 |       if (ID->getIdentifier() == S.getNSErrorIdent()) | 
 |         return true; | 
 |  | 
 |   // Check for CFError**. | 
 |   if (const auto *PT = Pointee->getAs<PointerType>()) | 
 |     if (const auto *RT = PT->getPointeeType()->getAs<RecordType>()) | 
 |       if (S.isCFError(RT->getDecl())) | 
 |         return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { | 
 |     for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) { | 
 |       if (isErrorParameter(S, getFunctionOrMethodParamType(D, I))) | 
 |         return true; | 
 |     } | 
 |  | 
 |     S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter) | 
 |         << AL << isa<ObjCMethodDecl>(D); | 
 |     return false; | 
 |   }; | 
 |  | 
 |   auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { | 
 |     // - C, ObjC, and block pointers are definitely okay. | 
 |     // - References are definitely not okay. | 
 |     // - nullptr_t is weird, but acceptable. | 
 |     QualType RT = getFunctionOrMethodResultType(D); | 
 |     if (RT->hasPointerRepresentation() && !RT->isReferenceType()) | 
 |       return true; | 
 |  | 
 |     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) | 
 |         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) | 
 |         << /*pointer*/ 1; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { | 
 |     QualType RT = getFunctionOrMethodResultType(D); | 
 |     if (RT->isIntegralType(S.Context)) | 
 |       return true; | 
 |  | 
 |     S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) | 
 |         << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D) | 
 |         << /*integral*/ 0; | 
 |     return false; | 
 |   }; | 
 |  | 
 |   if (D->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   IdentifierLoc *Loc = AL.getArgAsIdent(0); | 
 |   SwiftErrorAttr::ConventionKind Convention; | 
 |   if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(), | 
 |                                                   Convention)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
 |         << AL << Loc->Ident; | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (Convention) { | 
 |   case SwiftErrorAttr::None: | 
 |     // No additional validation required. | 
 |     break; | 
 |  | 
 |   case SwiftErrorAttr::NonNullError: | 
 |     if (!hasErrorParameter(S, D, AL)) | 
 |       return; | 
 |     break; | 
 |  | 
 |   case SwiftErrorAttr::NullResult: | 
 |     if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL)) | 
 |       return; | 
 |     break; | 
 |  | 
 |   case SwiftErrorAttr::NonZeroResult: | 
 |   case SwiftErrorAttr::ZeroResult: | 
 |     if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL)) | 
 |       return; | 
 |     break; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention)); | 
 | } | 
 |  | 
 | static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D, | 
 |                                       const SwiftAsyncErrorAttr *ErrorAttr, | 
 |                                       const SwiftAsyncAttr *AsyncAttr) { | 
 |   if (AsyncAttr->getKind() == SwiftAsyncAttr::None) { | 
 |     if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) { | 
 |       S.Diag(AsyncAttr->getLocation(), | 
 |              diag::err_swift_async_error_without_swift_async) | 
 |           << AsyncAttr << isa<ObjCMethodDecl>(D); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   const ParmVarDecl *HandlerParam = getFunctionOrMethodParam( | 
 |       D, AsyncAttr->getCompletionHandlerIndex().getASTIndex()); | 
 |   // handleSwiftAsyncAttr already verified the type is correct, so no need to | 
 |   // double-check it here. | 
 |   const auto *FuncTy = HandlerParam->getType() | 
 |                            ->castAs<BlockPointerType>() | 
 |                            ->getPointeeType() | 
 |                            ->getAs<FunctionProtoType>(); | 
 |   ArrayRef<QualType> BlockParams; | 
 |   if (FuncTy) | 
 |     BlockParams = FuncTy->getParamTypes(); | 
 |  | 
 |   switch (ErrorAttr->getConvention()) { | 
 |   case SwiftAsyncErrorAttr::ZeroArgument: | 
 |   case SwiftAsyncErrorAttr::NonZeroArgument: { | 
 |     uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx(); | 
 |     if (ParamIdx == 0 || ParamIdx > BlockParams.size()) { | 
 |       S.Diag(ErrorAttr->getLocation(), | 
 |              diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2; | 
 |       return; | 
 |     } | 
 |     QualType ErrorParam = BlockParams[ParamIdx - 1]; | 
 |     if (!ErrorParam->isIntegralType(S.Context)) { | 
 |       StringRef ConvStr = | 
 |           ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument | 
 |               ? "zero_argument" | 
 |               : "nonzero_argument"; | 
 |       S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral) | 
 |           << ErrorAttr << ConvStr << ParamIdx << ErrorParam; | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case SwiftAsyncErrorAttr::NonNullError: { | 
 |     bool AnyErrorParams = false; | 
 |     for (QualType Param : BlockParams) { | 
 |       // Check for NSError *. | 
 |       if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) { | 
 |         if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) { | 
 |           if (ID->getIdentifier() == S.getNSErrorIdent()) { | 
 |             AnyErrorParams = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |       // Check for CFError *. | 
 |       if (const auto *PtrTy = Param->getAs<PointerType>()) { | 
 |         if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) { | 
 |           if (S.isCFError(RT->getDecl())) { | 
 |             AnyErrorParams = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (!AnyErrorParams) { | 
 |       S.Diag(ErrorAttr->getLocation(), | 
 |              diag::err_swift_async_error_no_error_parameter) | 
 |           << ErrorAttr << isa<ObjCMethodDecl>(D); | 
 |       return; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case SwiftAsyncErrorAttr::None: | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   IdentifierLoc *IDLoc = AL.getArgAsIdent(0); | 
 |   SwiftAsyncErrorAttr::ConventionKind ConvKind; | 
 |   if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(), | 
 |                                                        ConvKind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
 |         << AL << IDLoc->Ident; | 
 |     return; | 
 |   } | 
 |  | 
 |   uint32_t ParamIdx = 0; | 
 |   switch (ConvKind) { | 
 |   case SwiftAsyncErrorAttr::ZeroArgument: | 
 |   case SwiftAsyncErrorAttr::NonZeroArgument: { | 
 |     if (!AL.checkExactlyNumArgs(S, 2)) | 
 |       return; | 
 |  | 
 |     Expr *IdxExpr = AL.getArgAsExpr(1); | 
 |     if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx)) | 
 |       return; | 
 |     break; | 
 |   } | 
 |   case SwiftAsyncErrorAttr::NonNullError: | 
 |   case SwiftAsyncErrorAttr::None: { | 
 |     if (!AL.checkExactlyNumArgs(S, 1)) | 
 |       return; | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   auto *ErrorAttr = | 
 |       ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx); | 
 |   D->addAttr(ErrorAttr); | 
 |  | 
 |   if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>()) | 
 |     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); | 
 | } | 
 |  | 
 | // For a function, this will validate a compound Swift name, e.g. | 
 | // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and | 
 | // the function will output the number of parameter names, and whether this is a | 
 | // single-arg initializer. | 
 | // | 
 | // For a type, enum constant, property, or variable declaration, this will | 
 | // validate either a simple identifier, or a qualified | 
 | // <code>context.identifier</code> name. | 
 | static bool | 
 | validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc, | 
 |                           StringRef Name, unsigned &SwiftParamCount, | 
 |                           bool &IsSingleParamInit) { | 
 |   SwiftParamCount = 0; | 
 |   IsSingleParamInit = false; | 
 |  | 
 |   // Check whether this will be mapped to a getter or setter of a property. | 
 |   bool IsGetter = false, IsSetter = false; | 
 |   if (Name.startswith("getter:")) { | 
 |     IsGetter = true; | 
 |     Name = Name.substr(7); | 
 |   } else if (Name.startswith("setter:")) { | 
 |     IsSetter = true; | 
 |     Name = Name.substr(7); | 
 |   } | 
 |  | 
 |   if (Name.back() != ')') { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool IsMember = false; | 
 |   StringRef ContextName, BaseName, Parameters; | 
 |  | 
 |   std::tie(BaseName, Parameters) = Name.split('('); | 
 |  | 
 |   // Split at the first '.', if it exists, which separates the context name | 
 |   // from the base name. | 
 |   std::tie(ContextName, BaseName) = BaseName.split('.'); | 
 |   if (BaseName.empty()) { | 
 |     BaseName = ContextName; | 
 |     ContextName = StringRef(); | 
 |   } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) | 
 |         << AL << /*context*/ 1; | 
 |     return false; | 
 |   } else { | 
 |     IsMember = true; | 
 |   } | 
 |  | 
 |   if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) | 
 |         << AL << /*basename*/ 0; | 
 |     return false; | 
 |   } | 
 |  | 
 |   bool IsSubscript = BaseName == "subscript"; | 
 |   // A subscript accessor must be a getter or setter. | 
 |   if (IsSubscript && !IsGetter && !IsSetter) { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) | 
 |         << AL << /* getter or setter */ 0; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (Parameters.empty()) { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   assert(Parameters.back() == ')' && "expected ')'"); | 
 |   Parameters = Parameters.drop_back(); // ')' | 
 |  | 
 |   if (Parameters.empty()) { | 
 |     // Setters and subscripts must have at least one parameter. | 
 |     if (IsSubscript) { | 
 |       S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) | 
 |           << AL << /* have at least one parameter */1; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (IsSetter) { | 
 |       S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL; | 
 |       return false; | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (Parameters.back() != ':') { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; | 
 |     return false; | 
 |   } | 
 |  | 
 |   StringRef CurrentParam; | 
 |   llvm::Optional<unsigned> SelfLocation; | 
 |   unsigned NewValueCount = 0; | 
 |   llvm::Optional<unsigned> NewValueLocation; | 
 |   do { | 
 |     std::tie(CurrentParam, Parameters) = Parameters.split(':'); | 
 |  | 
 |     if (!isValidAsciiIdentifier(CurrentParam)) { | 
 |       S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) | 
 |           << AL << /*parameter*/2; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (IsMember && CurrentParam == "self") { | 
 |       // "self" indicates the "self" argument for a member. | 
 |  | 
 |       // More than one "self"? | 
 |       if (SelfLocation) { | 
 |         S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL; | 
 |         return false; | 
 |       } | 
 |  | 
 |       // The "self" location is the current parameter. | 
 |       SelfLocation = SwiftParamCount; | 
 |     } else if (CurrentParam == "newValue") { | 
 |       // "newValue" indicates the "newValue" argument for a setter. | 
 |  | 
 |       // There should only be one 'newValue', but it's only significant for | 
 |       // subscript accessors, so don't error right away. | 
 |       ++NewValueCount; | 
 |  | 
 |       NewValueLocation = SwiftParamCount; | 
 |     } | 
 |  | 
 |     ++SwiftParamCount; | 
 |   } while (!Parameters.empty()); | 
 |  | 
 |   // Only instance subscripts are currently supported. | 
 |   if (IsSubscript && !SelfLocation) { | 
 |     S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) | 
 |         << AL << /*have a 'self:' parameter*/2; | 
 |     return false; | 
 |   } | 
 |  | 
 |   IsSingleParamInit = | 
 |         SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_"; | 
 |  | 
 |   // Check the number of parameters for a getter/setter. | 
 |   if (IsGetter || IsSetter) { | 
 |     // Setters have one parameter for the new value. | 
 |     unsigned NumExpectedParams = IsGetter ? 0 : 1; | 
 |     unsigned ParamDiag = | 
 |         IsGetter ? diag::warn_attr_swift_name_getter_parameters | 
 |                  : diag::warn_attr_swift_name_setter_parameters; | 
 |  | 
 |     // Instance methods have one parameter for "self". | 
 |     if (SelfLocation) | 
 |       ++NumExpectedParams; | 
 |  | 
 |     // Subscripts may have additional parameters beyond the expected params for | 
 |     // the index. | 
 |     if (IsSubscript) { | 
 |       if (SwiftParamCount < NumExpectedParams) { | 
 |         S.Diag(Loc, ParamDiag) << AL; | 
 |         return false; | 
 |       } | 
 |  | 
 |       // A subscript setter must explicitly label its newValue parameter to | 
 |       // distinguish it from index parameters. | 
 |       if (IsSetter) { | 
 |         if (!NewValueLocation) { | 
 |           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue) | 
 |               << AL; | 
 |           return false; | 
 |         } | 
 |         if (NewValueCount > 1) { | 
 |           S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues) | 
 |               << AL; | 
 |           return false; | 
 |         } | 
 |       } else { | 
 |         // Subscript getters should have no 'newValue:' parameter. | 
 |         if (NewValueLocation) { | 
 |           S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue) | 
 |               << AL; | 
 |           return false; | 
 |         } | 
 |       } | 
 |     } else { | 
 |       // Property accessors must have exactly the number of expected params. | 
 |       if (SwiftParamCount != NumExpectedParams) { | 
 |         S.Diag(Loc, ParamDiag) << AL; | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, | 
 |                              const ParsedAttr &AL, bool IsAsync) { | 
 |   if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { | 
 |     ArrayRef<ParmVarDecl*> Params; | 
 |     unsigned ParamCount; | 
 |  | 
 |     if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) { | 
 |       ParamCount = Method->getSelector().getNumArgs(); | 
 |       Params = Method->parameters().slice(0, ParamCount); | 
 |     } else { | 
 |       const auto *F = cast<FunctionDecl>(D); | 
 |  | 
 |       ParamCount = F->getNumParams(); | 
 |       Params = F->parameters(); | 
 |  | 
 |       if (!F->hasWrittenPrototype()) { | 
 |         Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL | 
 |             << ExpectedFunctionWithProtoType; | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     // The async name drops the last callback parameter. | 
 |     if (IsAsync) { | 
 |       if (ParamCount == 0) { | 
 |         Diag(Loc, diag::warn_attr_swift_name_decl_missing_params) | 
 |             << AL << isa<ObjCMethodDecl>(D); | 
 |         return false; | 
 |       } | 
 |       ParamCount -= 1; | 
 |     } | 
 |  | 
 |     unsigned SwiftParamCount; | 
 |     bool IsSingleParamInit; | 
 |     if (!validateSwiftFunctionName(*this, AL, Loc, Name, | 
 |                                    SwiftParamCount, IsSingleParamInit)) | 
 |       return false; | 
 |  | 
 |     bool ParamCountValid; | 
 |     if (SwiftParamCount == ParamCount) { | 
 |       ParamCountValid = true; | 
 |     } else if (SwiftParamCount > ParamCount) { | 
 |       ParamCountValid = IsSingleParamInit && ParamCount == 0; | 
 |     } else { | 
 |       // We have fewer Swift parameters than Objective-C parameters, but that | 
 |       // might be because we've transformed some of them. Check for potential | 
 |       // "out" parameters and err on the side of not warning. | 
 |       unsigned MaybeOutParamCount = | 
 |           llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool { | 
 |             QualType ParamTy = Param->getType(); | 
 |             if (ParamTy->isReferenceType() || ParamTy->isPointerType()) | 
 |               return !ParamTy->getPointeeType().isConstQualified(); | 
 |             return false; | 
 |           }); | 
 |  | 
 |       ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount; | 
 |     } | 
 |  | 
 |     if (!ParamCountValid) { | 
 |       Diag(Loc, diag::warn_attr_swift_name_num_params) | 
 |           << (SwiftParamCount > ParamCount) << AL << ParamCount | 
 |           << SwiftParamCount; | 
 |       return false; | 
 |     } | 
 |   } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) || | 
 |               isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) || | 
 |               isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) || | 
 |               isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) && | 
 |              !IsAsync) { | 
 |     StringRef ContextName, BaseName; | 
 |  | 
 |     std::tie(ContextName, BaseName) = Name.split('.'); | 
 |     if (BaseName.empty()) { | 
 |       BaseName = ContextName; | 
 |       ContextName = StringRef(); | 
 |     } else if (!isValidAsciiIdentifier(ContextName)) { | 
 |       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL | 
 |           << /*context*/1; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (!isValidAsciiIdentifier(BaseName)) { | 
 |       Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL | 
 |           << /*basename*/0; | 
 |       return false; | 
 |     } | 
 |   } else { | 
 |     Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL; | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Name; | 
 |   SourceLocation Loc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) | 
 |     return; | 
 |  | 
 |   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name)); | 
 | } | 
 |  | 
 | static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Name; | 
 |   SourceLocation Loc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) | 
 |     return; | 
 |  | 
 |   if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name)); | 
 | } | 
 |  | 
 | static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Make sure that there is an identifier as the annotation's single argument. | 
 |   if (!AL.checkExactlyNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   SwiftNewTypeAttr::NewtypeKind Kind; | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!isa<TypedefNameDecl>(D)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) | 
 |         << AL << "typedefs"; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind)); | 
 | } | 
 |  | 
 | static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) | 
 |         << AL << 1 << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   SwiftAsyncAttr::Kind Kind; | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) { | 
 |     S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   ParamIdx Idx; | 
 |   if (Kind == SwiftAsyncAttr::None) { | 
 |     // If this is 'none', then there shouldn't be any additional arguments. | 
 |     if (!AL.checkExactlyNumArgs(S, 1)) | 
 |       return; | 
 |   } else { | 
 |     // Non-none swift_async requires a completion handler index argument. | 
 |     if (!AL.checkExactlyNumArgs(S, 2)) | 
 |       return; | 
 |  | 
 |     Expr *HandlerIdx = AL.getArgAsExpr(1); | 
 |     if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx)) | 
 |       return; | 
 |  | 
 |     const ParmVarDecl *CompletionBlock = | 
 |         getFunctionOrMethodParam(D, Idx.getASTIndex()); | 
 |     QualType CompletionBlockType = CompletionBlock->getType(); | 
 |     if (!CompletionBlockType->isBlockPointerType()) { | 
 |       S.Diag(CompletionBlock->getLocation(), | 
 |              diag::err_swift_async_bad_block_type) | 
 |           << CompletionBlock->getType(); | 
 |       return; | 
 |     } | 
 |     QualType BlockTy = | 
 |         CompletionBlockType->castAs<BlockPointerType>()->getPointeeType(); | 
 |     if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) { | 
 |       S.Diag(CompletionBlock->getLocation(), | 
 |              diag::err_swift_async_bad_block_type) | 
 |           << CompletionBlock->getType(); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   auto *AsyncAttr = | 
 |       ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx); | 
 |   D->addAttr(AsyncAttr); | 
 |  | 
 |   if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>()) | 
 |     checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Microsoft specific attribute handlers. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                               StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { | 
 |   if (const auto *UA = D->getAttr<UuidAttr>()) { | 
 |     if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) | 
 |       return nullptr; | 
 |     if (!UA->getGuid().empty()) { | 
 |       Diag(UA->getLocation(), diag::err_mismatched_uuid); | 
 |       Diag(CI.getLoc(), diag::note_previous_uuid); | 
 |       D->dropAttr<UuidAttr>(); | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); | 
 | } | 
 |  | 
 | static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!S.LangOpts.CPlusPlus) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |         << AL << AttributeLangSupport::C; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef OrigStrRef; | 
 |   SourceLocation LiteralLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or | 
 |   // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. | 
 |   StringRef StrRef = OrigStrRef; | 
 |   if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') | 
 |     StrRef = StrRef.drop_front().drop_back(); | 
 |  | 
 |   // Validate GUID length. | 
 |   if (StrRef.size() != 36) { | 
 |     S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |     return; | 
 |   } | 
 |  | 
 |   for (unsigned i = 0; i < 36; ++i) { | 
 |     if (i == 8 || i == 13 || i == 18 || i == 23) { | 
 |       if (StrRef[i] != '-') { | 
 |         S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |         return; | 
 |       } | 
 |     } else if (!isHexDigit(StrRef[i])) { | 
 |       S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Convert to our parsed format and canonicalize. | 
 |   MSGuidDecl::Parts Parsed; | 
 |   StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); | 
 |   StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); | 
 |   StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); | 
 |   for (unsigned i = 0; i != 8; ++i) | 
 |     StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) | 
 |         .getAsInteger(16, Parsed.Part4And5[i]); | 
 |   MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); | 
 |  | 
 |   // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's | 
 |   // the only thing in the [] list, the [] too), and add an insertion of | 
 |   // __declspec(uuid(...)).  But sadly, neither the SourceLocs of the commas | 
 |   // separating attributes nor of the [ and the ] are in the AST. | 
 |   // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" | 
 |   // on cfe-dev. | 
 |   if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. | 
 |     S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); | 
 |  | 
 |   UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); | 
 |   if (UA) | 
 |     D->addAttr(UA); | 
 | } | 
 |  | 
 | static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!S.LangOpts.CPlusPlus) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) | 
 |         << AL << AttributeLangSupport::C; | 
 |     return; | 
 |   } | 
 |   MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( | 
 |       D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); | 
 |   if (IA) { | 
 |     D->addAttr(IA); | 
 |     S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); | 
 |   } | 
 | } | 
 |  | 
 | static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   const auto *VD = cast<VarDecl>(D); | 
 |   if (!S.Context.getTargetInfo().isTLSSupported()) { | 
 |     S.Diag(AL.getLoc(), diag::err_thread_unsupported); | 
 |     return; | 
 |   } | 
 |   if (VD->getTSCSpec() != TSCS_unspecified) { | 
 |     S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); | 
 |     return; | 
 |   } | 
 |   if (VD->hasLocalStorage()) { | 
 |     S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<StringRef, 4> Tags; | 
 |   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
 |     StringRef Tag; | 
 |     if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) | 
 |       return; | 
 |     Tags.push_back(Tag); | 
 |   } | 
 |  | 
 |   if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { | 
 |     if (!NS->isInline()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; | 
 |       return; | 
 |     } | 
 |     if (NS->isAnonymousNamespace()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; | 
 |       return; | 
 |     } | 
 |     if (AL.getNumArgs() == 0) | 
 |       Tags.push_back(NS->getName()); | 
 |   } else if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   // Store tags sorted and without duplicates. | 
 |   llvm::sort(Tags); | 
 |   Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); | 
 | } | 
 |  | 
 | static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Check the attribute arguments. | 
 |   if (AL.getNumArgs() > 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |  | 
 |   if (AL.getNumArgs() == 0) | 
 |     Str = ""; | 
 |   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |  | 
 |   ARMInterruptAttr::InterruptType Kind; | 
 |   if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str | 
 |                                                                  << ArgLoc; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); | 
 | } | 
 |  | 
 | static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // MSP430 'interrupt' attribute is applied to | 
 |   // a function with no parameters and void return type. | 
 |   if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |         << "'interrupt'" << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |         << /*MSP430*/ 1 << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |         << /*MSP430*/ 1 << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // The attribute takes one integer argument. | 
 |   if (!AL.checkExactlyNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   if (!AL.isArgExpr(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIntegerConstant; | 
 |     return; | 
 |   } | 
 |  | 
 |   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); | 
 |   Optional<llvm::APSInt> NumParams = llvm::APSInt(32); | 
 |   if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIntegerConstant | 
 |         << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |   // The argument should be in range 0..63. | 
 |   unsigned Num = NumParams->getLimitedValue(255); | 
 |   if (Num > 63) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |         << AL << (int)NumParams->getSExtValue() | 
 |         << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); | 
 |   D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Only one optional argument permitted. | 
 |   if (AL.getNumArgs() > 1) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |  | 
 |   if (AL.getNumArgs() == 0) | 
 |     Str = ""; | 
 |   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |  | 
 |   // Semantic checks for a function with the 'interrupt' attribute for MIPS: | 
 |   // a) Must be a function. | 
 |   // b) Must have no parameters. | 
 |   // c) Must have the 'void' return type. | 
 |   // d) Cannot have the 'mips16' attribute, as that instruction set | 
 |   //    lacks the 'eret' instruction. | 
 |   // e) The attribute itself must either have no argument or one of the | 
 |   //    valid interrupt types, see [MipsInterruptDocs]. | 
 |  | 
 |   if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |         << "'interrupt'" << ExpectedFunctionOrMethod; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |         << /*MIPS*/ 0 << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |         << /*MIPS*/ 0 << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   // We still have to do this manually because the Interrupt attributes are | 
 |   // a bit special due to sharing their spellings across targets. | 
 |   if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL)) | 
 |     return; | 
 |  | 
 |   MipsInterruptAttr::InterruptType Kind; | 
 |   if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) | 
 |         << AL << "'" + std::string(Str) + "'"; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); | 
 | } | 
 |  | 
 | static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkExactlyNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   if (!AL.isArgExpr(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIntegerConstant; | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: Check for decl - it should be void ()(void). | 
 |  | 
 |   Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); | 
 |   auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context); | 
 |   if (!MaybeNumParams) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIntegerConstant | 
 |         << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned Num = MaybeNumParams->getLimitedValue(255); | 
 |   if ((Num & 1) || Num > 30) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |         << AL << (int)MaybeNumParams->getSExtValue() | 
 |         << NumParamsExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num)); | 
 |   D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Semantic checks for a function with the 'interrupt' attribute. | 
 |   // a) Must be a function. | 
 |   // b) Must have the 'void' return type. | 
 |   // c) Must take 1 or 2 arguments. | 
 |   // d) The 1st argument must be a pointer. | 
 |   // e) The 2nd argument (if any) must be an unsigned integer. | 
 |   if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || | 
 |       CXXMethodDecl::isStaticOverloadedOperator( | 
 |           cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << AL << ExpectedFunctionWithProtoType; | 
 |     return; | 
 |   } | 
 |   // Interrupt handler must have void return type. | 
 |   if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
 |     S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), | 
 |            diag::err_anyx86_interrupt_attribute) | 
 |         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
 |                 ? 0 | 
 |                 : 1) | 
 |         << 0; | 
 |     return; | 
 |   } | 
 |   // Interrupt handler must have 1 or 2 parameters. | 
 |   unsigned NumParams = getFunctionOrMethodNumParams(D); | 
 |   if (NumParams < 1 || NumParams > 2) { | 
 |     S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) | 
 |         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
 |                 ? 0 | 
 |                 : 1) | 
 |         << 1; | 
 |     return; | 
 |   } | 
 |   // The first argument must be a pointer. | 
 |   if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { | 
 |     S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), | 
 |            diag::err_anyx86_interrupt_attribute) | 
 |         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
 |                 ? 0 | 
 |                 : 1) | 
 |         << 2; | 
 |     return; | 
 |   } | 
 |   // The second argument, if present, must be an unsigned integer. | 
 |   unsigned TypeSize = | 
 |       S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 | 
 |           ? 64 | 
 |           : 32; | 
 |   if (NumParams == 2 && | 
 |       (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || | 
 |        S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { | 
 |     S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), | 
 |            diag::err_anyx86_interrupt_attribute) | 
 |         << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 | 
 |                 ? 0 | 
 |                 : 1) | 
 |         << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); | 
 |     return; | 
 |   } | 
 |   D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); | 
 |   D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |         << "'interrupt'" << ExpectedFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!AL.checkExactlyNumArgs(S, 0)) | 
 |     return; | 
 |  | 
 |   handleSimpleAttribute<AVRInterruptAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |         << "'signal'" << ExpectedFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!AL.checkExactlyNumArgs(S, 0)) | 
 |     return; | 
 |  | 
 |   handleSimpleAttribute<AVRSignalAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { | 
 |   // Add preserve_access_index attribute to all fields and inner records. | 
 |   for (auto D : RD->decls()) { | 
 |     if (D->hasAttr<BPFPreserveAccessIndexAttr>()) | 
 |       continue; | 
 |  | 
 |     D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); | 
 |     if (auto *Rec = dyn_cast<RecordDecl>(D)) | 
 |       handleBPFPreserveAIRecord(S, Rec); | 
 |   } | 
 | } | 
 |  | 
 | static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, | 
 |     const ParsedAttr &AL) { | 
 |   auto *Rec = cast<RecordDecl>(D); | 
 |   handleBPFPreserveAIRecord(S, Rec); | 
 |   Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { | 
 |   for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { | 
 |     if (I->getBTFDeclTag() == Tag) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Str; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |   if (hasBTFDeclTagAttr(D, Str)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { | 
 |   if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag())) | 
 |     return nullptr; | 
 |   return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); | 
 | } | 
 |  | 
 | static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!isFunctionOrMethod(D)) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |         << "'export_name'" << ExpectedFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   auto *FD = cast<FunctionDecl>(D); | 
 |   if (FD->isThisDeclarationADefinition()) { | 
 |     S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); | 
 |   D->addAttr(UsedAttr::CreateImplicit(S.Context)); | 
 | } | 
 |  | 
 | WebAssemblyImportModuleAttr * | 
 | Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) { | 
 |   auto *FD = cast<FunctionDecl>(D); | 
 |  | 
 |   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) { | 
 |     if (ExistingAttr->getImportModule() == AL.getImportModule()) | 
 |       return nullptr; | 
 |     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0 | 
 |       << ExistingAttr->getImportModule() << AL.getImportModule(); | 
 |     Diag(AL.getLoc(), diag::note_previous_attribute); | 
 |     return nullptr; | 
 |   } | 
 |   if (FD->hasBody()) { | 
 |     Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; | 
 |     return nullptr; | 
 |   } | 
 |   return ::new (Context) WebAssemblyImportModuleAttr(Context, AL, | 
 |                                                      AL.getImportModule()); | 
 | } | 
 |  | 
 | WebAssemblyImportNameAttr * | 
 | Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) { | 
 |   auto *FD = cast<FunctionDecl>(D); | 
 |  | 
 |   if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) { | 
 |     if (ExistingAttr->getImportName() == AL.getImportName()) | 
 |       return nullptr; | 
 |     Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1 | 
 |       << ExistingAttr->getImportName() << AL.getImportName(); | 
 |     Diag(AL.getLoc(), diag::note_previous_attribute); | 
 |     return nullptr; | 
 |   } | 
 |   if (FD->hasBody()) { | 
 |     Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; | 
 |     return nullptr; | 
 |   } | 
 |   return ::new (Context) WebAssemblyImportNameAttr(Context, AL, | 
 |                                                    AL.getImportName()); | 
 | } | 
 |  | 
 | static void | 
 | handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   auto *FD = cast<FunctionDecl>(D); | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |   if (FD->hasBody()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   FD->addAttr(::new (S.Context) | 
 |                   WebAssemblyImportModuleAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void | 
 | handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   auto *FD = cast<FunctionDecl>(D); | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |   if (FD->hasBody()) { | 
 |     S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); | 
 | } | 
 |  | 
 | static void handleRISCVInterruptAttr(Sema &S, Decl *D, | 
 |                                      const ParsedAttr &AL) { | 
 |   // Warn about repeated attributes. | 
 |   if (const auto *A = D->getAttr<RISCVInterruptAttr>()) { | 
 |     S.Diag(AL.getRange().getBegin(), | 
 |       diag::warn_riscv_repeated_interrupt_attribute); | 
 |     S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Check the attribute argument. Argument is optional. | 
 |   if (!AL.checkAtMostNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   StringRef Str; | 
 |   SourceLocation ArgLoc; | 
 |  | 
 |   // 'machine'is the default interrupt mode. | 
 |   if (AL.getNumArgs() == 0) | 
 |     Str = "machine"; | 
 |   else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) | 
 |     return; | 
 |  | 
 |   // Semantic checks for a function with the 'interrupt' attribute: | 
 |   // - Must be a function. | 
 |   // - Must have no parameters. | 
 |   // - Must have the 'void' return type. | 
 |   // - The attribute itself must either have no argument or one of the | 
 |   //   valid interrupt types, see [RISCVInterruptDocs]. | 
 |  | 
 |   if (D->getFunctionType() == nullptr) { | 
 |     S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) | 
 |       << "'interrupt'" << ExpectedFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |       << /*RISC-V*/ 2 << 0; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!getFunctionOrMethodResultType(D)->isVoidType()) { | 
 |     S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) | 
 |       << /*RISC-V*/ 2 << 1; | 
 |     return; | 
 |   } | 
 |  | 
 |   RISCVInterruptAttr::InterruptType Kind; | 
 |   if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str | 
 |                                                                  << ArgLoc; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); | 
 | } | 
 |  | 
 | static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Dispatch the interrupt attribute based on the current target. | 
 |   switch (S.Context.getTargetInfo().getTriple().getArch()) { | 
 |   case llvm::Triple::msp430: | 
 |     handleMSP430InterruptAttr(S, D, AL); | 
 |     break; | 
 |   case llvm::Triple::mipsel: | 
 |   case llvm::Triple::mips: | 
 |     handleMipsInterruptAttr(S, D, AL); | 
 |     break; | 
 |   case llvm::Triple::m68k: | 
 |     handleM68kInterruptAttr(S, D, AL); | 
 |     break; | 
 |   case llvm::Triple::x86: | 
 |   case llvm::Triple::x86_64: | 
 |     handleAnyX86InterruptAttr(S, D, AL); | 
 |     break; | 
 |   case llvm::Triple::avr: | 
 |     handleAVRInterruptAttr(S, D, AL); | 
 |     break; | 
 |   case llvm::Triple::riscv32: | 
 |   case llvm::Triple::riscv64: | 
 |     handleRISCVInterruptAttr(S, D, AL); | 
 |     break; | 
 |   default: | 
 |     handleARMInterruptAttr(S, D, AL); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | static bool | 
 | checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, | 
 |                                       const AMDGPUFlatWorkGroupSizeAttr &Attr) { | 
 |   // Accept template arguments for now as they depend on something else. | 
 |   // We'll get to check them when they eventually get instantiated. | 
 |   if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) | 
 |     return false; | 
 |  | 
 |   uint32_t Min = 0; | 
 |   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) | 
 |     return true; | 
 |  | 
 |   uint32_t Max = 0; | 
 |   if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) | 
 |     return true; | 
 |  | 
 |   if (Min == 0 && Max != 0) { | 
 |     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) | 
 |         << &Attr << 0; | 
 |     return true; | 
 |   } | 
 |   if (Min > Max) { | 
 |     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) | 
 |         << &Attr << 1; | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, | 
 |                                           const AttributeCommonInfo &CI, | 
 |                                           Expr *MinExpr, Expr *MaxExpr) { | 
 |   AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); | 
 |  | 
 |   if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (Context) | 
 |                  AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr)); | 
 | } | 
 |  | 
 | static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, | 
 |                                               const ParsedAttr &AL) { | 
 |   Expr *MinExpr = AL.getArgAsExpr(0); | 
 |   Expr *MaxExpr = AL.getArgAsExpr(1); | 
 |  | 
 |   S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr); | 
 | } | 
 |  | 
 | static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, | 
 |                                            Expr *MaxExpr, | 
 |                                            const AMDGPUWavesPerEUAttr &Attr) { | 
 |   if (S.DiagnoseUnexpandedParameterPack(MinExpr) || | 
 |       (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr))) | 
 |     return true; | 
 |  | 
 |   // Accept template arguments for now as they depend on something else. | 
 |   // We'll get to check them when they eventually get instantiated. | 
 |   if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) | 
 |     return false; | 
 |  | 
 |   uint32_t Min = 0; | 
 |   if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) | 
 |     return true; | 
 |  | 
 |   uint32_t Max = 0; | 
 |   if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) | 
 |     return true; | 
 |  | 
 |   if (Min == 0 && Max != 0) { | 
 |     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) | 
 |         << &Attr << 0; | 
 |     return true; | 
 |   } | 
 |   if (Max != 0 && Min > Max) { | 
 |     S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) | 
 |         << &Attr << 1; | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                                    Expr *MinExpr, Expr *MaxExpr) { | 
 |   AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); | 
 |  | 
 |   if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (Context) | 
 |                  AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr)); | 
 | } | 
 |  | 
 | static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) | 
 |     return; | 
 |  | 
 |   Expr *MinExpr = AL.getArgAsExpr(0); | 
 |   Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr; | 
 |  | 
 |   S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr); | 
 | } | 
 |  | 
 | static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t NumSGPR = 0; | 
 |   Expr *NumSGPRExpr = AL.getArgAsExpr(0); | 
 |   if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); | 
 | } | 
 |  | 
 | static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t NumVGPR = 0; | 
 |   Expr *NumVGPRExpr = AL.getArgAsExpr(0); | 
 |   if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); | 
 | } | 
 |  | 
 | static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, | 
 |                                               const ParsedAttr &AL) { | 
 |   // If we try to apply it to a function pointer, don't warn, but don't | 
 |   // do anything, either. It doesn't matter anyway, because there's nothing | 
 |   // special about calling a force_align_arg_pointer function. | 
 |   const auto *VD = dyn_cast<ValueDecl>(D); | 
 |   if (VD && VD->getType()->isFunctionPointerType()) | 
 |     return; | 
 |   // Also don't warn on function pointer typedefs. | 
 |   const auto *TD = dyn_cast<TypedefNameDecl>(D); | 
 |   if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || | 
 |     TD->getUnderlyingType()->isFunctionType())) | 
 |     return; | 
 |   // Attribute can only be applied to function types. | 
 |   if (!isa<FunctionDecl>(D)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) | 
 |         << AL << ExpectedFunction; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   uint32_t Version; | 
 |   Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); | 
 |   if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) | 
 |     return; | 
 |  | 
 |   // TODO: Investigate what happens with the next major version of MSVC. | 
 |   if (Version != LangOptions::MSVC2015 / 100) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) | 
 |         << AL << Version << VersionExpr->getSourceRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // The attribute expects a "major" version number like 19, but new versions of | 
 |   // MSVC have moved to updating the "minor", or less significant numbers, so we | 
 |   // have to multiply by 100 now. | 
 |   Version *= 100; | 
 |  | 
 |   D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); | 
 | } | 
 |  | 
 | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, | 
 |                                         const AttributeCommonInfo &CI) { | 
 |   if (D->hasAttr<DLLExportAttr>()) { | 
 |     Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (D->hasAttr<DLLImportAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) DLLImportAttr(Context, CI); | 
 | } | 
 |  | 
 | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, | 
 |                                         const AttributeCommonInfo &CI) { | 
 |   if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { | 
 |     Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; | 
 |     D->dropAttr<DLLImportAttr>(); | 
 |   } | 
 |  | 
 |   if (D->hasAttr<DLLExportAttr>()) | 
 |     return nullptr; | 
 |  | 
 |   return ::new (Context) DLLExportAttr(Context, CI); | 
 | } | 
 |  | 
 | static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { | 
 |   if (isa<ClassTemplatePartialSpecializationDecl>(D) && | 
 |       (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { | 
 |     S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && | 
 |         !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { | 
 |       // MinGW doesn't allow dllimport on inline functions. | 
 |       S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) | 
 |           << A; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { | 
 |     if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && | 
 |         MD->getParent()->isLambda()) { | 
 |       S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport | 
 |                       ? (Attr *)S.mergeDLLExportAttr(D, A) | 
 |                       : (Attr *)S.mergeDLLImportAttr(D, A); | 
 |   if (NewAttr) | 
 |     D->addAttr(NewAttr); | 
 | } | 
 |  | 
 | MSInheritanceAttr * | 
 | Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, | 
 |                              bool BestCase, | 
 |                              MSInheritanceModel Model) { | 
 |   if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { | 
 |     if (IA->getInheritanceModel() == Model) | 
 |       return nullptr; | 
 |     Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) | 
 |         << 1 /*previous declaration*/; | 
 |     Diag(CI.getLoc(), diag::note_previous_ms_inheritance); | 
 |     D->dropAttr<MSInheritanceAttr>(); | 
 |   } | 
 |  | 
 |   auto *RD = cast<CXXRecordDecl>(D); | 
 |   if (RD->hasDefinition()) { | 
 |     if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, | 
 |                                            Model)) { | 
 |       return nullptr; | 
 |     } | 
 |   } else { | 
 |     if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { | 
 |       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) | 
 |           << 1 /*partial specialization*/; | 
 |       return nullptr; | 
 |     } | 
 |     if (RD->getDescribedClassTemplate()) { | 
 |       Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) | 
 |           << 0 /*primary template*/; | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 |  | 
 |   return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); | 
 | } | 
 |  | 
 | static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // The capability attributes take a single string parameter for the name of | 
 |   // the capability they represent. The lockable attribute does not take any | 
 |   // parameters. However, semantically, both attributes represent the same | 
 |   // concept, and so they use the same semantic attribute. Eventually, the | 
 |   // lockable attribute will be removed. | 
 |   // | 
 |   // For backward compatibility, any capability which has no specified string | 
 |   // literal will be considered a "mutex." | 
 |   StringRef N("mutex"); | 
 |   SourceLocation LiteralLoc; | 
 |   if (AL.getKind() == ParsedAttr::AT_Capability && | 
 |       !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); | 
 | } | 
 |  | 
 | static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) | 
 |                  AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); | 
 | } | 
 |  | 
 | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   SmallVector<Expr*, 1> Args; | 
 |   if (!checkLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), | 
 |                                                      Args.size())); | 
 | } | 
 |  | 
 | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, | 
 |                                            const ParsedAttr &AL) { | 
 |   SmallVector<Expr*, 2> Args; | 
 |   if (!checkTryLockFunAttrCommon(S, D, AL, Args)) | 
 |     return; | 
 |  | 
 |   D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( | 
 |       S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); | 
 | } | 
 |  | 
 | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, | 
 |                                         const ParsedAttr &AL) { | 
 |   // Check that all arguments are lockable objects. | 
 |   SmallVector<Expr *, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); | 
 |  | 
 |   D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), | 
 |                                                      Args.size())); | 
 | } | 
 |  | 
 | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, | 
 |                                          const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   // check that all arguments are lockable objects | 
 |   SmallVector<Expr*, 1> Args; | 
 |   checkAttrArgsAreCapabilityObjs(S, D, AL, Args); | 
 |   if (Args.empty()) | 
 |     return; | 
 |  | 
 |   RequiresCapabilityAttr *RCA = ::new (S.Context) | 
 |       RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); | 
 |  | 
 |   D->addAttr(RCA); | 
 | } | 
 |  | 
 | static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { | 
 |     if (NSD->isAnonymousNamespace()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); | 
 |       // Do not want to attach the attribute to the namespace because that will | 
 |       // cause confusing diagnostic reports for uses of declarations within the | 
 |       // namespace. | 
 |       return; | 
 |     } | 
 |   } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl, | 
 |                  UnresolvedUsingValueDecl>(D)) { | 
 |     S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) | 
 |         << AL; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Handle the cases where the attribute has a text message. | 
 |   StringRef Str, Replacement; | 
 |   if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && | 
 |       !S.checkStringLiteralArgumentAttr(AL, 0, Str)) | 
 |     return; | 
 |  | 
 |   // Support a single optional message only for Declspec and [[]] spellings. | 
 |   if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) | 
 |     AL.checkAtMostNumArgs(S, 1); | 
 |   else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && | 
 |            !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) | 
 |     return; | 
 |  | 
 |   if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) | 
 |     S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; | 
 |  | 
 |   D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); | 
 | } | 
 |  | 
 | static bool isGlobalVar(const Decl *D) { | 
 |   if (const auto *S = dyn_cast<VarDecl>(D)) | 
 |     return S->hasGlobalStorage(); | 
 |   return false; | 
 | } | 
 |  | 
 | static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (!AL.checkAtLeastNumArgs(S, 1)) | 
 |     return; | 
 |  | 
 |   std::vector<StringRef> Sanitizers; | 
 |  | 
 |   for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { | 
 |     StringRef SanitizerName; | 
 |     SourceLocation LiteralLoc; | 
 |  | 
 |     if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) | 
 |       return; | 
 |  | 
 |     if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == | 
 |             SanitizerMask() && | 
 |         SanitizerName != "coverage") | 
 |       S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; | 
 |     else if (isGlobalVar(D) && SanitizerName != "address") | 
 |       S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |           << AL << ExpectedFunctionOrMethod; | 
 |     Sanitizers.push_back(SanitizerName); | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), | 
 |                                               Sanitizers.size())); | 
 | } | 
 |  | 
 | static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, | 
 |                                          const ParsedAttr &AL) { | 
 |   StringRef AttrName = AL.getAttrName()->getName(); | 
 |   normalizeName(AttrName); | 
 |   StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) | 
 |                                 .Case("no_address_safety_analysis", "address") | 
 |                                 .Case("no_sanitize_address", "address") | 
 |                                 .Case("no_sanitize_thread", "thread") | 
 |                                 .Case("no_sanitize_memory", "memory"); | 
 |   if (isGlobalVar(D) && SanitizerName != "address") | 
 |     S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |         << AL << ExpectedFunction; | 
 |  | 
 |   // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a | 
 |   // NoSanitizeAttr object; but we need to calculate the correct spelling list | 
 |   // index rather than incorrectly assume the index for NoSanitizeSpecificAttr | 
 |   // has the same spellings as the index for NoSanitizeAttr. We don't have a | 
 |   // general way to "translate" between the two, so this hack attempts to work | 
 |   // around the issue with hard-coded indices. This is critical for calling | 
 |   // getSpelling() or prettyPrint() on the resulting semantic attribute object | 
 |   // without failing assertions. | 
 |   unsigned TranslatedSpellingIndex = 0; | 
 |   if (AL.isStandardAttributeSyntax()) | 
 |     TranslatedSpellingIndex = 1; | 
 |  | 
 |   AttributeCommonInfo Info = AL; | 
 |   Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); | 
 |   D->addAttr(::new (S.Context) | 
 |                  NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); | 
 | } | 
 |  | 
 | static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) | 
 |     D->addAttr(Internal); | 
 | } | 
 |  | 
 | static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (S.LangOpts.getOpenCLCompatibleVersion() < 200) | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) | 
 |         << AL << "2.0" << 1; | 
 |   else | 
 |     S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) | 
 |         << AL << S.LangOpts.getOpenCLVersionString(); | 
 | } | 
 |  | 
 | static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (D->isInvalidDecl()) | 
 |     return; | 
 |  | 
 |   // Check if there is only one access qualifier. | 
 |   if (D->hasAttr<OpenCLAccessAttr>()) { | 
 |     if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() == | 
 |         AL.getSemanticSpelling()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) | 
 |           << AL.getAttrName()->getName() << AL.getRange(); | 
 |     } else { | 
 |       S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) | 
 |           << D->getSourceRange(); | 
 |       D->setInvalidDecl(true); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that | 
 |   // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel | 
 |   // cannot read from and write to the same pipe object. Using the read_write | 
 |   // (or __read_write) qualifier with the pipe qualifier is a compilation error. | 
 |   // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the | 
 |   // __opencl_c_read_write_images feature, image objects specified as arguments | 
 |   // to a kernel can additionally be declared to be read-write. | 
 |   // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0. | 
 |   // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0. | 
 |   if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) { | 
 |     const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); | 
 |     if (AL.getAttrName()->getName().contains("read_write")) { | 
 |       bool ReadWriteImagesUnsupported = | 
 |           (S.getLangOpts().getOpenCLCompatibleVersion() < 200) || | 
 |           (S.getLangOpts().getOpenCLCompatibleVersion() == 300 && | 
 |            !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images", | 
 |                                              S.getLangOpts())); | 
 |       if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) { | 
 |         S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) | 
 |             << AL << PDecl->getType() << DeclTy->isImageType(); | 
 |         D->setInvalidDecl(true); | 
 |         return; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // The 'sycl_kernel' attribute applies only to function templates. | 
 |   const auto *FD = cast<FunctionDecl>(D); | 
 |   const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); | 
 |   assert(FT && "Function template is expected"); | 
 |  | 
 |   // Function template must have at least two template parameters. | 
 |   const TemplateParameterList *TL = FT->getTemplateParameters(); | 
 |   if (TL->size() < 2) { | 
 |     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Template parameters must be typenames. | 
 |   for (unsigned I = 0; I < 2; ++I) { | 
 |     const NamedDecl *TParam = TL->getParam(I); | 
 |     if (isa<NonTypeTemplateParmDecl>(TParam)) { | 
 |       S.Diag(FT->getLocation(), | 
 |              diag::warn_sycl_kernel_invalid_template_param_type); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Function must have at least one argument. | 
 |   if (getFunctionOrMethodNumParams(D) != 1) { | 
 |     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Function must return void. | 
 |   QualType RetTy = getFunctionOrMethodResultType(D); | 
 |   if (!RetTy->isVoidType()) { | 
 |     S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); | 
 |     return; | 
 |   } | 
 |  | 
 |   handleSimpleAttribute<SYCLKernelAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { | 
 |   if (!cast<VarDecl>(D)->hasGlobalStorage()) { | 
 |     S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) | 
 |         << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) | 
 |     handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A); | 
 |   else | 
 |     handleSimpleAttribute<NoDestroyAttr>(S, D, A); | 
 | } | 
 |  | 
 | static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && | 
 |          "uninitialized is only valid on automatic duration variables"); | 
 |   D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); | 
 | } | 
 |  | 
 | static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, | 
 |                                         bool DiagnoseFailure) { | 
 |   QualType Ty = VD->getType(); | 
 |   if (!Ty->isObjCRetainableType()) { | 
 |     if (DiagnoseFailure) { | 
 |       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) | 
 |           << 0; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); | 
 |  | 
 |   // Sema::inferObjCARCLifetime must run after processing decl attributes | 
 |   // (because __block lowers to an attribute), so if the lifetime hasn't been | 
 |   // explicitly specified, infer it locally now. | 
 |   if (LifetimeQual == Qualifiers::OCL_None) | 
 |     LifetimeQual = Ty->getObjCARCImplicitLifetime(); | 
 |  | 
 |   // The attributes only really makes sense for __strong variables; ignore any | 
 |   // attempts to annotate a parameter with any other lifetime qualifier. | 
 |   if (LifetimeQual != Qualifiers::OCL_Strong) { | 
 |     if (DiagnoseFailure) { | 
 |       S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) | 
 |           << 1; | 
 |     } | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Tampering with the type of a VarDecl here is a bit of a hack, but we need | 
 |   // to ensure that the variable is 'const' so that we can error on | 
 |   // modification, which can otherwise over-release. | 
 |   VD->setType(Ty.withConst()); | 
 |   VD->setARCPseudoStrong(true); | 
 |   return true; | 
 | } | 
 |  | 
 | static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, | 
 |                                              const ParsedAttr &AL) { | 
 |   if (auto *VD = dyn_cast<VarDecl>(D)) { | 
 |     assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically"); | 
 |     if (!VD->hasLocalStorage()) { | 
 |       S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) | 
 |           << 0; | 
 |       return; | 
 |     } | 
 |  | 
 |     if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) | 
 |       return; | 
 |  | 
 |     handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If D is a function-like declaration (method, block, or function), then we | 
 |   // make every parameter psuedo-strong. | 
 |   unsigned NumParams = | 
 |       hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0; | 
 |   for (unsigned I = 0; I != NumParams; ++I) { | 
 |     auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I)); | 
 |     QualType Ty = PVD->getType(); | 
 |  | 
 |     // If a user wrote a parameter with __strong explicitly, then assume they | 
 |     // want "real" strong semantics for that parameter. This works because if | 
 |     // the parameter was written with __strong, then the strong qualifier will | 
 |     // be non-local. | 
 |     if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == | 
 |         Qualifiers::OCL_Strong) | 
 |       continue; | 
 |  | 
 |     tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); | 
 |   } | 
 |   handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Check that the return type is a `typedef int kern_return_t` or a typedef | 
 |   // around it, because otherwise MIG convention checks make no sense. | 
 |   // BlockDecl doesn't store a return type, so it's annoying to check, | 
 |   // so let's skip it for now. | 
 |   if (!isa<BlockDecl>(D)) { | 
 |     QualType T = getFunctionOrMethodResultType(D); | 
 |     bool IsKernReturnT = false; | 
 |     while (const auto *TT = T->getAs<TypedefType>()) { | 
 |       IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); | 
 |       T = TT->desugar(); | 
 |     } | 
 |     if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { | 
 |       S.Diag(D->getBeginLoc(), | 
 |              diag::warn_mig_server_routine_does_not_return_kern_return_t); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // Warn if the return type is not a pointer or reference type. | 
 |   if (auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |     QualType RetTy = FD->getReturnType(); | 
 |     if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { | 
 |       S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) | 
 |           << AL.getRange() << RetTy; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); | 
 | } | 
 |  | 
 | static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   if (AL.isUsedAsTypeAttr()) | 
 |     return; | 
 |   // Warn if the parameter is definitely not an output parameter. | 
 |   if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { | 
 |     if (PVD->getType()->isIntegerType()) { | 
 |       S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) | 
 |           << AL.getRange(); | 
 |       return; | 
 |     } | 
 |   } | 
 |   StringRef Argument; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) | 
 |     return; | 
 |   D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); | 
 | } | 
 |  | 
 | template<typename Attr> | 
 | static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Argument; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) | 
 |     return; | 
 |   D->addAttr(Attr::Create(S.Context, Argument, AL)); | 
 | } | 
 |  | 
 | static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   // The guard attribute takes a single identifier argument. | 
 |  | 
 |   if (!AL.isArgIdent(0)) { | 
 |     S.Diag(AL.getLoc(), diag::err_attribute_argument_type) | 
 |         << AL << AANT_ArgumentIdentifier; | 
 |     return; | 
 |   } | 
 |  | 
 |   CFGuardAttr::GuardArg Arg; | 
 |   IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; | 
 |   if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { | 
 |     S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); | 
 | } | 
 |  | 
 |  | 
 | template <typename AttrTy> | 
 | static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { | 
 |   auto Attrs = D->specific_attrs<AttrTy>(); | 
 |   auto I = llvm::find_if(Attrs, | 
 |                          [Name](const AttrTy *A) { | 
 |                            return A->getTCBName() == Name; | 
 |                          }); | 
 |   return I == Attrs.end() ? nullptr : *I; | 
 | } | 
 |  | 
 | template <typename AttrTy, typename ConflictingAttrTy> | 
 | static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { | 
 |   StringRef Argument; | 
 |   if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) | 
 |     return; | 
 |  | 
 |   // A function cannot be have both regular and leaf membership in the same TCB. | 
 |   if (const ConflictingAttrTy *ConflictingAttr = | 
 |       findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) { | 
 |     // We could attach a note to the other attribute but in this case | 
 |     // there's no need given how the two are very close to each other. | 
 |     S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes) | 
 |       << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() | 
 |       << Argument; | 
 |  | 
 |     // Error recovery: drop the non-leaf attribute so that to suppress | 
 |     // all future warnings caused by erroneous attributes. The leaf attribute | 
 |     // needs to be kept because it can only suppresses warnings, not cause them. | 
 |     D->dropAttr<EnforceTCBAttr>(); | 
 |     return; | 
 |   } | 
 |  | 
 |   D->addAttr(AttrTy::Create(S.Context, Argument, AL)); | 
 | } | 
 |  | 
 | template <typename AttrTy, typename ConflictingAttrTy> | 
 | static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { | 
 |   // Check if the new redeclaration has different leaf-ness in the same TCB. | 
 |   StringRef TCBName = AL.getTCBName(); | 
 |   if (const ConflictingAttrTy *ConflictingAttr = | 
 |       findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) { | 
 |     S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) | 
 |       << ConflictingAttr->getAttrName()->getName() | 
 |       << AL.getAttrName()->getName() << TCBName; | 
 |  | 
 |     // Add a note so that the user could easily find the conflicting attribute. | 
 |     S.Diag(AL.getLoc(), diag::note_conflicting_attribute); | 
 |  | 
 |     // More error recovery. | 
 |     D->dropAttr<EnforceTCBAttr>(); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   ASTContext &Context = S.getASTContext(); | 
 |   return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); | 
 | } | 
 |  | 
 | EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { | 
 |   return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>( | 
 |       *this, D, AL); | 
 | } | 
 |  | 
 | EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( | 
 |     Decl *D, const EnforceTCBLeafAttr &AL) { | 
 |   return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>( | 
 |       *this, D, AL); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Top Level Sema Entry Points | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if | 
 | /// the attribute applies to decls.  If the attribute is a type attribute, just | 
 | /// silently ignore it if a GNU attribute. | 
 | static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, | 
 |                                  const ParsedAttr &AL, | 
 |                                  bool IncludeCXX11Attributes) { | 
 |   if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) | 
 |     return; | 
 |  | 
 |   // Ignore C++11 attributes on declarator chunks: they appertain to the type | 
 |   // instead. | 
 |   if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) | 
 |     return; | 
 |  | 
 |   // Unknown attributes are automatically warned on. Target-specific attributes | 
 |   // which do not apply to the current target architecture are treated as | 
 |   // though they were unknown attributes. | 
 |   if (AL.getKind() == ParsedAttr::UnknownAttribute || | 
 |       !AL.existsInTarget(S.Context.getTargetInfo())) { | 
 |     S.Diag(AL.getLoc(), | 
 |            AL.isDeclspecAttribute() | 
 |                ? (unsigned)diag::warn_unhandled_ms_attribute_ignored | 
 |                : (unsigned)diag::warn_unknown_attribute_ignored) | 
 |         << AL << AL.getRange(); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (S.checkCommonAttributeFeatures(D, AL)) | 
 |     return; | 
 |  | 
 |   switch (AL.getKind()) { | 
 |   default: | 
 |     if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) | 
 |       break; | 
 |     if (!AL.isStmtAttr()) { | 
 |       // Type attributes are handled elsewhere; silently move on. | 
 |       assert(AL.isTypeAttr() && "Non-type attribute not handled"); | 
 |       break; | 
 |     } | 
 |     // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a | 
 |     // statement attribute is not written on a declaration, but this code is | 
 |     // needed for attributes in Attr.td that do not list any subjects. | 
 |     S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) | 
 |         << AL << D->getLocation(); | 
 |     break; | 
 |   case ParsedAttr::AT_Interrupt: | 
 |     handleInterruptAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_X86ForceAlignArgPointer: | 
 |     handleX86ForceAlignArgPointerAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_DLLExport: | 
 |   case ParsedAttr::AT_DLLImport: | 
 |     handleDLLAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: | 
 |     handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AMDGPUWavesPerEU: | 
 |     handleAMDGPUWavesPerEUAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AMDGPUNumSGPR: | 
 |     handleAMDGPUNumSGPRAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AMDGPUNumVGPR: | 
 |     handleAMDGPUNumVGPRAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AVRSignal: | 
 |     handleAVRSignalAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_BPFPreserveAccessIndex: | 
 |     handleBPFPreserveAccessIndexAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_BTFDeclTag: | 
 |     handleBTFDeclTagAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WebAssemblyExportName: | 
 |     handleWebAssemblyExportNameAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WebAssemblyImportModule: | 
 |     handleWebAssemblyImportModuleAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WebAssemblyImportName: | 
 |     handleWebAssemblyImportNameAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_IBOutlet: | 
 |     handleIBOutlet(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_IBOutletCollection: | 
 |     handleIBOutletCollection(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_IFunc: | 
 |     handleIFuncAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Alias: | 
 |     handleAliasAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Aligned: | 
 |     handleAlignedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AlignValue: | 
 |     handleAlignValueAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AllocSize: | 
 |     handleAllocSizeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AlwaysInline: | 
 |     handleAlwaysInlineAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AnalyzerNoReturn: | 
 |     handleAnalyzerNoReturnAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TLSModel: | 
 |     handleTLSModelAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Annotate: | 
 |     handleAnnotateAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Availability: | 
 |     handleAvailabilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CarriesDependency: | 
 |     handleDependencyAttr(S, scope, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CPUDispatch: | 
 |   case ParsedAttr::AT_CPUSpecific: | 
 |     handleCPUSpecificAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Common: | 
 |     handleCommonAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CUDAConstant: | 
 |     handleConstantAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_PassObjectSize: | 
 |     handlePassObjectSizeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Constructor: | 
 |       handleConstructorAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Deprecated: | 
 |     handleDeprecatedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Destructor: | 
 |       handleDestructorAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_EnableIf: | 
 |     handleEnableIfAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Error: | 
 |     handleErrorAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_DiagnoseIf: | 
 |     handleDiagnoseIfAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_DiagnoseAsBuiltin: | 
 |     handleDiagnoseAsBuiltinAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoBuiltin: | 
 |     handleNoBuiltinAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ExtVectorType: | 
 |     handleExtVectorTypeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ExternalSourceSymbol: | 
 |     handleExternalSourceSymbolAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_MinSize: | 
 |     handleMinSizeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_OptimizeNone: | 
 |     handleOptimizeNoneAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_EnumExtensibility: | 
 |     handleEnumExtensibilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SYCLKernel: | 
 |     handleSYCLKernelAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SYCLSpecialClass: | 
 |     handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Format: | 
 |     handleFormatAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_FormatArg: | 
 |     handleFormatArgAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Callback: | 
 |     handleCallbackAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CalledOnce: | 
 |     handleCalledOnceAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CUDAGlobal: | 
 |     handleGlobalAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CUDADevice: | 
 |     handleDeviceAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_HIPManaged: | 
 |     handleManagedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_GNUInline: | 
 |     handleGNUInlineAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CUDALaunchBounds: | 
 |     handleLaunchBoundsAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Restrict: | 
 |     handleRestrictAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Mode: | 
 |     handleModeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NonNull: | 
 |     if (auto *PVD = dyn_cast<ParmVarDecl>(D)) | 
 |       handleNonNullAttrParameter(S, PVD, AL); | 
 |     else | 
 |       handleNonNullAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ReturnsNonNull: | 
 |     handleReturnsNonNullAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoEscape: | 
 |     handleNoEscapeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AssumeAligned: | 
 |     handleAssumeAlignedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AllocAlign: | 
 |     handleAllocAlignAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Ownership: | 
 |     handleOwnershipAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Naked: | 
 |     handleNakedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoReturn: | 
 |     handleNoReturnAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AnyX86NoCfCheck: | 
 |     handleNoCfCheckAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoThrow: | 
 |     if (!AL.isUsedAsTypeAttr()) | 
 |       handleSimpleAttribute<NoThrowAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CUDAShared: | 
 |     handleSharedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_VecReturn: | 
 |     handleVecReturnAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCOwnership: | 
 |     handleObjCOwnershipAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCPreciseLifetime: | 
 |     handleObjCPreciseLifetimeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCReturnsInnerPointer: | 
 |     handleObjCReturnsInnerPointerAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCRequiresSuper: | 
 |     handleObjCRequiresSuperAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCBridge: | 
 |     handleObjCBridgeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCBridgeMutable: | 
 |     handleObjCBridgeMutableAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCBridgeRelated: | 
 |     handleObjCBridgeRelatedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCDesignatedInitializer: | 
 |     handleObjCDesignatedInitializer(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCRuntimeName: | 
 |     handleObjCRuntimeName(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCBoxable: | 
 |     handleObjCBoxable(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NSErrorDomain: | 
 |     handleNSErrorDomain(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CFConsumed: | 
 |   case ParsedAttr::AT_NSConsumed: | 
 |   case ParsedAttr::AT_OSConsumed: | 
 |     S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL), | 
 |                        /*IsTemplateInstantiation=*/false); | 
 |     break; | 
 |   case ParsedAttr::AT_OSReturnsRetainedOnZero: | 
 |     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( | 
 |         S, D, AL, isValidOSObjectOutParameter(D), | 
 |         diag::warn_ns_attribute_wrong_parameter_type, | 
 |         /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); | 
 |     break; | 
 |   case ParsedAttr::AT_OSReturnsRetainedOnNonZero: | 
 |     handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( | 
 |         S, D, AL, isValidOSObjectOutParameter(D), | 
 |         diag::warn_ns_attribute_wrong_parameter_type, | 
 |         /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); | 
 |     break; | 
 |   case ParsedAttr::AT_NSReturnsAutoreleased: | 
 |   case ParsedAttr::AT_NSReturnsNotRetained: | 
 |   case ParsedAttr::AT_NSReturnsRetained: | 
 |   case ParsedAttr::AT_CFReturnsNotRetained: | 
 |   case ParsedAttr::AT_CFReturnsRetained: | 
 |   case ParsedAttr::AT_OSReturnsNotRetained: | 
 |   case ParsedAttr::AT_OSReturnsRetained: | 
 |     handleXReturnsXRetainedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WorkGroupSizeHint: | 
 |     handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ReqdWorkGroupSize: | 
 |     handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: | 
 |     handleSubGroupSize(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_VecTypeHint: | 
 |     handleVecTypeHint(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_InitPriority: | 
 |       handleInitPriorityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Packed: | 
 |     handlePackedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_PreferredName: | 
 |     handlePreferredName(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Section: | 
 |     handleSectionAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CodeSeg: | 
 |     handleCodeSegAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Target: | 
 |     handleTargetAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TargetClones: | 
 |     handleTargetClonesAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_MinVectorWidth: | 
 |     handleMinVectorWidthAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Unavailable: | 
 |     handleAttrWithMessage<UnavailableAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Assumption: | 
 |     handleAssumumptionAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCDirect: | 
 |     handleObjCDirectAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCDirectMembers: | 
 |     handleObjCDirectMembersAttr(S, D, AL); | 
 |     handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCExplicitProtocolImpl: | 
 |     handleObjCSuppresProtocolAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Unused: | 
 |     handleUnusedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Visibility: | 
 |     handleVisibilityAttr(S, D, AL, false); | 
 |     break; | 
 |   case ParsedAttr::AT_TypeVisibility: | 
 |     handleVisibilityAttr(S, D, AL, true); | 
 |     break; | 
 |   case ParsedAttr::AT_WarnUnusedResult: | 
 |     handleWarnUnusedResult(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WeakRef: | 
 |     handleWeakRefAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_WeakImport: | 
 |     handleWeakImportAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TransparentUnion: | 
 |     handleTransparentUnionAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCMethodFamily: | 
 |     handleObjCMethodFamilyAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCNSObject: | 
 |     handleObjCNSObject(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ObjCIndependentClass: | 
 |     handleObjCIndependentClass(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Blocks: | 
 |     handleBlocksAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Sentinel: | 
 |     handleSentinelAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Cleanup: | 
 |     handleCleanupAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoDebug: | 
 |     handleNoDebugAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CmseNSEntry: | 
 |     handleCmseNSEntryAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_StdCall: | 
 |   case ParsedAttr::AT_CDecl: | 
 |   case ParsedAttr::AT_FastCall: | 
 |   case ParsedAttr::AT_ThisCall: | 
 |   case ParsedAttr::AT_Pascal: | 
 |   case ParsedAttr::AT_RegCall: | 
 |   case ParsedAttr::AT_SwiftCall: | 
 |   case ParsedAttr::AT_SwiftAsyncCall: | 
 |   case ParsedAttr::AT_VectorCall: | 
 |   case ParsedAttr::AT_MSABI: | 
 |   case ParsedAttr::AT_SysVABI: | 
 |   case ParsedAttr::AT_Pcs: | 
 |   case ParsedAttr::AT_IntelOclBicc: | 
 |   case ParsedAttr::AT_PreserveMost: | 
 |   case ParsedAttr::AT_PreserveAll: | 
 |   case ParsedAttr::AT_AArch64VectorPcs: | 
 |     handleCallConvAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Suppress: | 
 |     handleSuppressAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Owner: | 
 |   case ParsedAttr::AT_Pointer: | 
 |     handleLifetimeCategoryAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_OpenCLAccess: | 
 |     handleOpenCLAccessAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_OpenCLNoSVM: | 
 |     handleOpenCLNoSVMAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftContext: | 
 |     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftAsyncContext: | 
 |     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftErrorResult: | 
 |     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftIndirectResult: | 
 |     S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); | 
 |     break; | 
 |   case ParsedAttr::AT_InternalLinkage: | 
 |     handleInternalLinkageAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Microsoft attributes: | 
 |   case ParsedAttr::AT_LayoutVersion: | 
 |     handleLayoutVersion(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Uuid: | 
 |     handleUuidAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_MSInheritance: | 
 |     handleMSInheritanceAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_Thread: | 
 |     handleDeclspecThreadAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_AbiTag: | 
 |     handleAbiTagAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CFGuard: | 
 |     handleCFGuardAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Thread safety attributes: | 
 |   case ParsedAttr::AT_AssertExclusiveLock: | 
 |     handleAssertExclusiveLockAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AssertSharedLock: | 
 |     handleAssertSharedLockAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_PtGuardedVar: | 
 |     handlePtGuardedVarAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoSanitize: | 
 |     handleNoSanitizeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_NoSanitizeSpecific: | 
 |     handleNoSanitizeSpecificAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_GuardedBy: | 
 |     handleGuardedByAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_PtGuardedBy: | 
 |     handlePtGuardedByAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ExclusiveTrylockFunction: | 
 |     handleExclusiveTrylockFunctionAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_LockReturned: | 
 |     handleLockReturnedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_LocksExcluded: | 
 |     handleLocksExcludedAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SharedTrylockFunction: | 
 |     handleSharedTrylockFunctionAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AcquiredBefore: | 
 |     handleAcquiredBeforeAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AcquiredAfter: | 
 |     handleAcquiredAfterAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Capability analysis attributes. | 
 |   case ParsedAttr::AT_Capability: | 
 |   case ParsedAttr::AT_Lockable: | 
 |     handleCapabilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_RequiresCapability: | 
 |     handleRequiresCapabilityAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_AssertCapability: | 
 |     handleAssertCapabilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_AcquireCapability: | 
 |     handleAcquireCapabilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ReleaseCapability: | 
 |     handleReleaseCapabilityAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TryAcquireCapability: | 
 |     handleTryAcquireCapabilityAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Consumed analysis attributes. | 
 |   case ParsedAttr::AT_Consumable: | 
 |     handleConsumableAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_CallableWhen: | 
 |     handleCallableWhenAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ParamTypestate: | 
 |     handleParamTypestateAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_ReturnTypestate: | 
 |     handleReturnTypestateAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SetTypestate: | 
 |     handleSetTypestateAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TestTypestate: | 
 |     handleTestTypestateAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Type safety attributes. | 
 |   case ParsedAttr::AT_ArgumentWithTypeTag: | 
 |     handleArgumentWithTypeTagAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_TypeTagForDatatype: | 
 |     handleTypeTagForDatatypeAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   // Swift attributes. | 
 |   case ParsedAttr::AT_SwiftAsyncName: | 
 |     handleSwiftAsyncName(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftAttr: | 
 |     handleSwiftAttrAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftBridge: | 
 |     handleSwiftBridge(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftError: | 
 |     handleSwiftError(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftName: | 
 |     handleSwiftName(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftNewType: | 
 |     handleSwiftNewType(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftAsync: | 
 |     handleSwiftAsyncAttr(S, D, AL); | 
 |     break; | 
 |   case ParsedAttr::AT_SwiftAsyncError: | 
 |     handleSwiftAsyncError(S, D, AL); | 
 |     break; | 
 |  | 
 |   // XRay attributes. | 
 |   case ParsedAttr::AT_XRayLogArgs: | 
 |     handleXRayLogArgsAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_PatchableFunctionEntry: | 
 |     handlePatchableFunctionEntryAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_AlwaysDestroy: | 
 |   case ParsedAttr::AT_NoDestroy: | 
 |     handleDestroyAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_Uninitialized: | 
 |     handleUninitializedAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_ObjCExternallyRetained: | 
 |     handleObjCExternallyRetainedAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_MIGServerRoutine: | 
 |     handleMIGServerRoutineAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_MSAllocator: | 
 |     handleMSAllocatorAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_ArmBuiltinAlias: | 
 |     handleArmBuiltinAliasAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_AcquireHandle: | 
 |     handleAcquireHandleAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_ReleaseHandle: | 
 |     handleHandleAttr<ReleaseHandleAttr>(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_UseHandle: | 
 |     handleHandleAttr<UseHandleAttr>(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_EnforceTCB: | 
 |     handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_EnforceTCBLeaf: | 
 |     handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_BuiltinAlias: | 
 |     handleBuiltinAliasAttr(S, D, AL); | 
 |     break; | 
 |  | 
 |   case ParsedAttr::AT_UsingIfExists: | 
 |     handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | /// ProcessDeclAttributeList - Apply all the decl attributes in the specified | 
 | /// attribute list to the specified decl, ignoring any type attributes. | 
 | void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, | 
 |                                     const ParsedAttributesView &AttrList, | 
 |                                     bool IncludeCXX11Attributes) { | 
 |   if (AttrList.empty()) | 
 |     return; | 
 |  | 
 |   for (const ParsedAttr &AL : AttrList) | 
 |     ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); | 
 |  | 
 |   // FIXME: We should be able to handle these cases in TableGen. | 
 |   // GCC accepts | 
 |   // static int a9 __attribute__((weakref)); | 
 |   // but that looks really pointless. We reject it. | 
 |   if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { | 
 |     Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) | 
 |         << cast<NamedDecl>(D); | 
 |     D->dropAttr<WeakRefAttr>(); | 
 |     return; | 
 |   } | 
 |  | 
 |   // FIXME: We should be able to handle this in TableGen as well. It would be | 
 |   // good to have a way to specify "these attributes must appear as a group", | 
 |   // for these. Additionally, it would be good to have a way to specify "these | 
 |   // attribute must never appear as a group" for attributes like cold and hot. | 
 |   if (!D->hasAttr<OpenCLKernelAttr>()) { | 
 |     // These attributes cannot be applied to a non-kernel function. | 
 |     if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { | 
 |       // FIXME: This emits a different error message than | 
 |       // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { | 
 |       Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; | 
 |       D->setInvalidDecl(); | 
 |     } else if (!D->hasAttr<CUDAGlobalAttr>()) { | 
 |       if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { | 
 |         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |             << A << ExpectedKernelFunction; | 
 |         D->setInvalidDecl(); | 
 |       } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { | 
 |         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |             << A << ExpectedKernelFunction; | 
 |         D->setInvalidDecl(); | 
 |       } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { | 
 |         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |             << A << ExpectedKernelFunction; | 
 |         D->setInvalidDecl(); | 
 |       } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { | 
 |         Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) | 
 |             << A << ExpectedKernelFunction; | 
 |         D->setInvalidDecl(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Do this check after processing D's attributes because the attribute | 
 |   // objc_method_family can change whether the given method is in the init | 
 |   // family, and it can be applied after objc_designated_initializer. This is a | 
 |   // bit of a hack, but we need it to be compatible with versions of clang that | 
 |   // processed the attribute list in the wrong order. | 
 |   if (D->hasAttr<ObjCDesignatedInitializerAttr>() && | 
 |       cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { | 
 |     Diag(D->getLocation(), diag::err_designated_init_attr_non_init); | 
 |     D->dropAttr<ObjCDesignatedInitializerAttr>(); | 
 |   } | 
 | } | 
 |  | 
 | // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr | 
 | // attribute. | 
 | void Sema::ProcessDeclAttributeDelayed(Decl *D, | 
 |                                        const ParsedAttributesView &AttrList) { | 
 |   for (const ParsedAttr &AL : AttrList) | 
 |     if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { | 
 |       handleTransparentUnionAttr(*this, D, AL); | 
 |       break; | 
 |     } | 
 |  | 
 |   // For BPFPreserveAccessIndexAttr, we want to populate the attributes | 
 |   // to fields and inner records as well. | 
 |   if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) | 
 |     handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D)); | 
 | } | 
 |  | 
 | // Annotation attributes are the only attributes allowed after an access | 
 | // specifier. | 
 | bool Sema::ProcessAccessDeclAttributeList( | 
 |     AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { | 
 |   for (const ParsedAttr &AL : AttrList) { | 
 |     if (AL.getKind() == ParsedAttr::AT_Annotate) { | 
 |       ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); | 
 |     } else { | 
 |       Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// checkUnusedDeclAttributes - Check a list of attributes to see if it | 
 | /// contains any decl attributes that we should warn about. | 
 | static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { | 
 |   for (const ParsedAttr &AL : A) { | 
 |     // Only warn if the attribute is an unignored, non-type attribute. | 
 |     if (AL.isUsedAsTypeAttr() || AL.isInvalid()) | 
 |       continue; | 
 |     if (AL.getKind() == ParsedAttr::IgnoredAttribute) | 
 |       continue; | 
 |  | 
 |     if (AL.getKind() == ParsedAttr::UnknownAttribute) { | 
 |       S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) | 
 |           << AL << AL.getRange(); | 
 |     } else { | 
 |       S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL | 
 |                                                             << AL.getRange(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// checkUnusedDeclAttributes - Given a declarator which is not being | 
 | /// used to build a declaration, complain about any decl attributes | 
 | /// which might be lying around on it. | 
 | void Sema::checkUnusedDeclAttributes(Declarator &D) { | 
 |   ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); | 
 |   ::checkUnusedDeclAttributes(*this, D.getAttributes()); | 
 |   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) | 
 |     ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); | 
 | } | 
 |  | 
 | /// DeclClonePragmaWeak - clone existing decl (maybe definition), | 
 | /// \#pragma weak needs a non-definition decl and source may not have one. | 
 | NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, | 
 |                                       SourceLocation Loc) { | 
 |   assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); | 
 |   NamedDecl *NewD = nullptr; | 
 |   if (auto *FD = dyn_cast<FunctionDecl>(ND)) { | 
 |     FunctionDecl *NewFD; | 
 |     // FIXME: Missing call to CheckFunctionDeclaration(). | 
 |     // FIXME: Mangling? | 
 |     // FIXME: Is the qualifier info correct? | 
 |     // FIXME: Is the DeclContext correct? | 
 |     NewFD = FunctionDecl::Create( | 
 |         FD->getASTContext(), FD->getDeclContext(), Loc, Loc, | 
 |         DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, | 
 |         getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/, | 
 |         FD->hasPrototype(), ConstexprSpecKind::Unspecified, | 
 |         FD->getTrailingRequiresClause()); | 
 |     NewD = NewFD; | 
 |  | 
 |     if (FD->getQualifier()) | 
 |       NewFD->setQualifierInfo(FD->getQualifierLoc()); | 
 |  | 
 |     // Fake up parameter variables; they are declared as if this were | 
 |     // a typedef. | 
 |     QualType FDTy = FD->getType(); | 
 |     if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { | 
 |       SmallVector<ParmVarDecl*, 16> Params; | 
 |       for (const auto &AI : FT->param_types()) { | 
 |         ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); | 
 |         Param->setScopeInfo(0, Params.size()); | 
 |         Params.push_back(Param); | 
 |       } | 
 |       NewFD->setParams(Params); | 
 |     } | 
 |   } else if (auto *VD = dyn_cast<VarDecl>(ND)) { | 
 |     NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), | 
 |                            VD->getInnerLocStart(), VD->getLocation(), II, | 
 |                            VD->getType(), VD->getTypeSourceInfo(), | 
 |                            VD->getStorageClass()); | 
 |     if (VD->getQualifier()) | 
 |       cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); | 
 |   } | 
 |   return NewD; | 
 | } | 
 |  | 
 | /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak | 
 | /// applied to it, possibly with an alias. | 
 | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { | 
 |   if (W.getUsed()) return; // only do this once | 
 |   W.setUsed(true); | 
 |   if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) | 
 |     IdentifierInfo *NDId = ND->getIdentifier(); | 
 |     NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); | 
 |     NewD->addAttr( | 
 |         AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); | 
 |     NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), | 
 |                                            AttributeCommonInfo::AS_Pragma)); | 
 |     WeakTopLevelDecl.push_back(NewD); | 
 |     // FIXME: "hideous" code from Sema::LazilyCreateBuiltin | 
 |     // to insert Decl at TU scope, sorry. | 
 |     DeclContext *SavedContext = CurContext; | 
 |     CurContext = Context.getTranslationUnitDecl(); | 
 |     NewD->setDeclContext(CurContext); | 
 |     NewD->setLexicalDeclContext(CurContext); | 
 |     PushOnScopeChains(NewD, S); | 
 |     CurContext = SavedContext; | 
 |   } else { // just add weak to existing | 
 |     ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), | 
 |                                          AttributeCommonInfo::AS_Pragma)); | 
 |   } | 
 | } | 
 |  | 
 | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { | 
 |   // It's valid to "forward-declare" #pragma weak, in which case we | 
 |   // have to do this. | 
 |   LoadExternalWeakUndeclaredIdentifiers(); | 
 |   if (!WeakUndeclaredIdentifiers.empty()) { | 
 |     NamedDecl *ND = nullptr; | 
 |     if (auto *VD = dyn_cast<VarDecl>(D)) | 
 |       if (VD->isExternC()) | 
 |         ND = VD; | 
 |     if (auto *FD = dyn_cast<FunctionDecl>(D)) | 
 |       if (FD->isExternC()) | 
 |         ND = FD; | 
 |     if (ND) { | 
 |       if (IdentifierInfo *Id = ND->getIdentifier()) { | 
 |         auto I = WeakUndeclaredIdentifiers.find(Id); | 
 |         if (I != WeakUndeclaredIdentifiers.end()) { | 
 |           WeakInfo W = I->second; | 
 |           DeclApplyPragmaWeak(S, ND, W); | 
 |           WeakUndeclaredIdentifiers[Id] = W; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in | 
 | /// it, apply them to D.  This is a bit tricky because PD can have attributes | 
 | /// specified in many different places, and we need to find and apply them all. | 
 | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { | 
 |   // Apply decl attributes from the DeclSpec if present. | 
 |   if (!PD.getDeclSpec().getAttributes().empty()) | 
 |     ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); | 
 |  | 
 |   // Walk the declarator structure, applying decl attributes that were in a type | 
 |   // position to the decl itself.  This handles cases like: | 
 |   //   int *__attr__(x)** D; | 
 |   // when X is a decl attribute. | 
 |   for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) | 
 |     ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), | 
 |                              /*IncludeCXX11Attributes=*/false); | 
 |  | 
 |   // Finally, apply any attributes on the decl itself. | 
 |   ProcessDeclAttributeList(S, D, PD.getAttributes()); | 
 |  | 
 |   // Apply additional attributes specified by '#pragma clang attribute'. | 
 |   AddPragmaAttributes(S, D); | 
 | } | 
 |  | 
 | /// Is the given declaration allowed to use a forbidden type? | 
 | /// If so, it'll still be annotated with an attribute that makes it | 
 | /// illegal to actually use. | 
 | static bool isForbiddenTypeAllowed(Sema &S, Decl *D, | 
 |                                    const DelayedDiagnostic &diag, | 
 |                                    UnavailableAttr::ImplicitReason &reason) { | 
 |   // Private ivars are always okay.  Unfortunately, people don't | 
 |   // always properly make their ivars private, even in system headers. | 
 |   // Plus we need to make fields okay, too. | 
 |   if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && | 
 |       !isa<FunctionDecl>(D)) | 
 |     return false; | 
 |  | 
 |   // Silently accept unsupported uses of __weak in both user and system | 
 |   // declarations when it's been disabled, for ease of integration with | 
 |   // -fno-objc-arc files.  We do have to take some care against attempts | 
 |   // to define such things;  for now, we've only done that for ivars | 
 |   // and properties. | 
 |   if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
 |     if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || | 
 |         diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { | 
 |       reason = UnavailableAttr::IR_ForbiddenWeak; | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   // Allow all sorts of things in system headers. | 
 |   if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { | 
 |     // Currently, all the failures dealt with this way are due to ARC | 
 |     // restrictions. | 
 |     reason = UnavailableAttr::IR_ARCForbiddenType; | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Handle a delayed forbidden-type diagnostic. | 
 | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, | 
 |                                        Decl *D) { | 
 |   auto Reason = UnavailableAttr::IR_None; | 
 |   if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { | 
 |     assert(Reason && "didn't set reason?"); | 
 |     D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); | 
 |     return; | 
 |   } | 
 |   if (S.getLangOpts().ObjCAutoRefCount) | 
 |     if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
 |       // FIXME: we may want to suppress diagnostics for all | 
 |       // kind of forbidden type messages on unavailable functions. | 
 |       if (FD->hasAttr<UnavailableAttr>() && | 
 |           DD.getForbiddenTypeDiagnostic() == | 
 |               diag::err_arc_array_param_no_ownership) { | 
 |         DD.Triggered = true; | 
 |         return; | 
 |       } | 
 |     } | 
 |  | 
 |   S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) | 
 |       << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); | 
 |   DD.Triggered = true; | 
 | } | 
 |  | 
 |  | 
 | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { | 
 |   assert(DelayedDiagnostics.getCurrentPool()); | 
 |   DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); | 
 |   DelayedDiagnostics.popWithoutEmitting(state); | 
 |  | 
 |   // When delaying diagnostics to run in the context of a parsed | 
 |   // declaration, we only want to actually emit anything if parsing | 
 |   // succeeds. | 
 |   if (!decl) return; | 
 |  | 
 |   // We emit all the active diagnostics in this pool or any of its | 
 |   // parents.  In general, we'll get one pool for the decl spec | 
 |   // and a child pool for each declarator; in a decl group like: | 
 |   //   deprecated_typedef foo, *bar, baz(); | 
 |   // only the declarator pops will be passed decls.  This is correct; | 
 |   // we really do need to consider delayed diagnostics from the decl spec | 
 |   // for each of the different declarations. | 
 |   const DelayedDiagnosticPool *pool = &poppedPool; | 
 |   do { | 
 |     bool AnyAccessFailures = false; | 
 |     for (DelayedDiagnosticPool::pool_iterator | 
 |            i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { | 
 |       // This const_cast is a bit lame.  Really, Triggered should be mutable. | 
 |       DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); | 
 |       if (diag.Triggered) | 
 |         continue; | 
 |  | 
 |       switch (diag.Kind) { | 
 |       case DelayedDiagnostic::Availability: | 
 |         // Don't bother giving deprecation/unavailable diagnostics if | 
 |         // the decl is invalid. | 
 |         if (!decl->isInvalidDecl()) | 
 |           handleDelayedAvailabilityCheck(diag, decl); | 
 |         break; | 
 |  | 
 |       case DelayedDiagnostic::Access: | 
 |         // Only produce one access control diagnostic for a structured binding | 
 |         // declaration: we don't need to tell the user that all the fields are | 
 |         // inaccessible one at a time. | 
 |         if (AnyAccessFailures && isa<DecompositionDecl>(decl)) | 
 |           continue; | 
 |         HandleDelayedAccessCheck(diag, decl); | 
 |         if (diag.Triggered) | 
 |           AnyAccessFailures = true; | 
 |         break; | 
 |  | 
 |       case DelayedDiagnostic::ForbiddenType: | 
 |         handleDelayedForbiddenType(*this, diag, decl); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } while ((pool = pool->getParent())); | 
 | } | 
 |  | 
 | /// Given a set of delayed diagnostics, re-emit them as if they had | 
 | /// been delayed in the current context instead of in the given pool. | 
 | /// Essentially, this just moves them to the current pool. | 
 | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { | 
 |   DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); | 
 |   assert(curPool && "re-emitting in undelayed context not supported"); | 
 |   curPool->steal(pool); | 
 | } |