| //===- StandardToLLVM.cpp - Standard to LLVM dialect conversion -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a pass to convert MLIR standard and builtin dialects |
| // into the LLVM IR dialect. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "../PassDetail.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/MLIRContext.h" |
| #include "mlir/IR/Module.h" |
| #include "mlir/IR/PatternMatch.h" |
| #include "mlir/IR/TypeUtilities.h" |
| #include "mlir/Support/LogicalResult.h" |
| #include "mlir/Support/MathExtras.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| #include "mlir/Transforms/Passes.h" |
| #include "mlir/Transforms/Utils.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include <functional> |
| |
| using namespace mlir; |
| |
| #define PASS_NAME "convert-std-to-llvm" |
| |
| // Extract an LLVM IR type from the LLVM IR dialect type. |
| static LLVM::LLVMType unwrap(Type type) { |
| if (!type) |
| return nullptr; |
| auto *mlirContext = type.getContext(); |
| auto wrappedLLVMType = type.dyn_cast<LLVM::LLVMType>(); |
| if (!wrappedLLVMType) |
| emitError(UnknownLoc::get(mlirContext), |
| "conversion resulted in a non-LLVM type"); |
| return wrappedLLVMType; |
| } |
| |
| /// Callback to convert function argument types. It converts a MemRef function |
| /// argument to a list of non-aggregate types containing descriptor |
| /// information, and an UnrankedmemRef function argument to a list containing |
| /// the rank and a pointer to a descriptor struct. |
| LogicalResult mlir::structFuncArgTypeConverter(LLVMTypeConverter &converter, |
| Type type, |
| SmallVectorImpl<Type> &result) { |
| if (auto memref = type.dyn_cast<MemRefType>()) { |
| auto converted = converter.convertMemRefSignature(memref); |
| if (converted.empty()) |
| return failure(); |
| result.append(converted.begin(), converted.end()); |
| return success(); |
| } |
| if (type.isa<UnrankedMemRefType>()) { |
| auto converted = converter.convertUnrankedMemRefSignature(); |
| if (converted.empty()) |
| return failure(); |
| result.append(converted.begin(), converted.end()); |
| return success(); |
| } |
| auto converted = converter.convertType(type); |
| if (!converted) |
| return failure(); |
| result.push_back(converted); |
| return success(); |
| } |
| |
| /// Convert a MemRef type to a bare pointer to the MemRef element type. |
| static Type convertMemRefTypeToBarePtr(LLVMTypeConverter &converter, |
| MemRefType type) { |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| if (failed(getStridesAndOffset(type, strides, offset))) |
| return {}; |
| |
| LLVM::LLVMType elementType = |
| unwrap(converter.convertType(type.getElementType())); |
| if (!elementType) |
| return {}; |
| return elementType.getPointerTo(type.getMemorySpace()); |
| } |
| |
| /// Callback to convert function argument types. It converts MemRef function |
| /// arguments to bare pointers to the MemRef element type. |
| LogicalResult mlir::barePtrFuncArgTypeConverter(LLVMTypeConverter &converter, |
| Type type, |
| SmallVectorImpl<Type> &result) { |
| // TODO: Add support for unranked memref. |
| if (auto memrefTy = type.dyn_cast<MemRefType>()) { |
| auto llvmTy = convertMemRefTypeToBarePtr(converter, memrefTy); |
| if (!llvmTy) |
| return failure(); |
| |
| result.push_back(llvmTy); |
| return success(); |
| } |
| |
| auto llvmTy = converter.convertType(type); |
| if (!llvmTy) |
| return failure(); |
| |
| result.push_back(llvmTy); |
| return success(); |
| } |
| |
| /// Create an LLVMTypeConverter using default LowerToLLVMOptions. |
| LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx) |
| : LLVMTypeConverter(ctx, LowerToLLVMOptions::getDefaultOptions()) {} |
| |
| /// Create an LLVMTypeConverter using custom LowerToLLVMOptions. |
| LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx, |
| const LowerToLLVMOptions &options) |
| : llvmDialect(ctx->getRegisteredDialect<LLVM::LLVMDialect>()), |
| options(options) { |
| assert(llvmDialect && "LLVM IR dialect is not registered"); |
| module = &llvmDialect->getLLVMModule(); |
| if (options.indexBitwidth == kDeriveIndexBitwidthFromDataLayout) |
| this->options.indexBitwidth = |
| module->getDataLayout().getPointerSizeInBits(); |
| |
| // Register conversions for the standard types. |
| addConversion([&](ComplexType type) { return convertComplexType(type); }); |
| addConversion([&](FloatType type) { return convertFloatType(type); }); |
| addConversion([&](FunctionType type) { return convertFunctionType(type); }); |
| addConversion([&](IndexType type) { return convertIndexType(type); }); |
| addConversion([&](IntegerType type) { return convertIntegerType(type); }); |
| addConversion([&](MemRefType type) { return convertMemRefType(type); }); |
| addConversion( |
| [&](UnrankedMemRefType type) { return convertUnrankedMemRefType(type); }); |
| addConversion([&](VectorType type) { return convertVectorType(type); }); |
| |
| // LLVMType is legal, so add a pass-through conversion. |
| addConversion([](LLVM::LLVMType type) { return type; }); |
| |
| // Materialization for memrefs creates descriptor structs from individual |
| // values constituting them, when descriptors are used, i.e. more than one |
| // value represents a memref. |
| addMaterialization([&](PatternRewriter &rewriter, |
| UnrankedMemRefType resultType, ValueRange inputs, |
| Location loc) -> Optional<Value> { |
| if (inputs.size() == 1) |
| return llvm::None; |
| return UnrankedMemRefDescriptor::pack(rewriter, loc, *this, resultType, |
| inputs); |
| }); |
| addMaterialization([&](PatternRewriter &rewriter, MemRefType resultType, |
| ValueRange inputs, Location loc) -> Optional<Value> { |
| if (inputs.size() == 1) |
| return llvm::None; |
| return MemRefDescriptor::pack(rewriter, loc, *this, resultType, inputs); |
| }); |
| } |
| |
| /// Returns the MLIR context. |
| MLIRContext &LLVMTypeConverter::getContext() { |
| return *getDialect()->getContext(); |
| } |
| |
| /// Get the LLVM context. |
| llvm::LLVMContext &LLVMTypeConverter::getLLVMContext() { |
| return module->getContext(); |
| } |
| |
| LLVM::LLVMType LLVMTypeConverter::getIndexType() { |
| return LLVM::LLVMType::getIntNTy(llvmDialect, getIndexTypeBitwidth()); |
| } |
| |
| unsigned LLVMTypeConverter::getPointerBitwidth(unsigned addressSpace) { |
| return module->getDataLayout().getPointerSizeInBits(addressSpace); |
| } |
| |
| Type LLVMTypeConverter::convertIndexType(IndexType type) { |
| return getIndexType(); |
| } |
| |
| Type LLVMTypeConverter::convertIntegerType(IntegerType type) { |
| return LLVM::LLVMType::getIntNTy(llvmDialect, type.getWidth()); |
| } |
| |
| Type LLVMTypeConverter::convertFloatType(FloatType type) { |
| switch (type.getKind()) { |
| case mlir::StandardTypes::F32: |
| return LLVM::LLVMType::getFloatTy(llvmDialect); |
| case mlir::StandardTypes::F64: |
| return LLVM::LLVMType::getDoubleTy(llvmDialect); |
| case mlir::StandardTypes::F16: |
| return LLVM::LLVMType::getHalfTy(llvmDialect); |
| case mlir::StandardTypes::BF16: { |
| return LLVM::LLVMType::getBFloatTy(llvmDialect); |
| } |
| default: |
| llvm_unreachable("non-float type in convertFloatType"); |
| } |
| } |
| |
| // Convert a `ComplexType` to an LLVM type. The result is a complex number |
| // struct with entries for the |
| // 1. real part and for the |
| // 2. imaginary part. |
| static constexpr unsigned kRealPosInComplexNumberStruct = 0; |
| static constexpr unsigned kImaginaryPosInComplexNumberStruct = 1; |
| Type LLVMTypeConverter::convertComplexType(ComplexType type) { |
| auto elementType = convertType(type.getElementType()).cast<LLVM::LLVMType>(); |
| return LLVM::LLVMType::getStructTy(llvmDialect, {elementType, elementType}); |
| } |
| |
| // Except for signatures, MLIR function types are converted into LLVM |
| // pointer-to-function types. |
| Type LLVMTypeConverter::convertFunctionType(FunctionType type) { |
| SignatureConversion conversion(type.getNumInputs()); |
| LLVM::LLVMType converted = |
| convertFunctionSignature(type, /*isVariadic=*/false, conversion); |
| return converted.getPointerTo(); |
| } |
| |
| /// In signatures, MemRef descriptors are expanded into lists of non-aggregate |
| /// values. |
| SmallVector<Type, 5> |
| LLVMTypeConverter::convertMemRefSignature(MemRefType type) { |
| SmallVector<Type, 5> results; |
| assert(isStrided(type) && |
| "Non-strided layout maps must have been normalized away"); |
| |
| LLVM::LLVMType elementType = unwrap(convertType(type.getElementType())); |
| if (!elementType) |
| return {}; |
| auto indexTy = getIndexType(); |
| |
| results.insert(results.begin(), 2, |
| elementType.getPointerTo(type.getMemorySpace())); |
| results.push_back(indexTy); |
| auto rank = type.getRank(); |
| results.insert(results.end(), 2 * rank, indexTy); |
| return results; |
| } |
| |
| /// In signatures, unranked MemRef descriptors are expanded into a pair "rank, |
| /// pointer to descriptor". |
| SmallVector<Type, 2> LLVMTypeConverter::convertUnrankedMemRefSignature() { |
| return {getIndexType(), LLVM::LLVMType::getInt8PtrTy(llvmDialect)}; |
| } |
| |
| // Function types are converted to LLVM Function types by recursively converting |
| // argument and result types. If MLIR Function has zero results, the LLVM |
| // Function has one VoidType result. If MLIR Function has more than one result, |
| // they are into an LLVM StructType in their order of appearance. |
| LLVM::LLVMType LLVMTypeConverter::convertFunctionSignature( |
| FunctionType type, bool isVariadic, |
| LLVMTypeConverter::SignatureConversion &result) { |
| // Select the argument converter depending on the calling convetion. |
| auto funcArgConverter = options.useBarePtrCallConv |
| ? barePtrFuncArgTypeConverter |
| : structFuncArgTypeConverter; |
| // Convert argument types one by one and check for errors. |
| for (auto &en : llvm::enumerate(type.getInputs())) { |
| Type type = en.value(); |
| SmallVector<Type, 8> converted; |
| if (failed(funcArgConverter(*this, type, converted))) |
| return {}; |
| result.addInputs(en.index(), converted); |
| } |
| |
| SmallVector<LLVM::LLVMType, 8> argTypes; |
| argTypes.reserve(llvm::size(result.getConvertedTypes())); |
| for (Type type : result.getConvertedTypes()) |
| argTypes.push_back(unwrap(type)); |
| |
| // If function does not return anything, create the void result type, |
| // if it returns on element, convert it, otherwise pack the result types into |
| // a struct. |
| LLVM::LLVMType resultType = |
| type.getNumResults() == 0 |
| ? LLVM::LLVMType::getVoidTy(llvmDialect) |
| : unwrap(packFunctionResults(type.getResults())); |
| if (!resultType) |
| return {}; |
| return LLVM::LLVMType::getFunctionTy(resultType, argTypes, isVariadic); |
| } |
| |
| /// Converts the function type to a C-compatible format, in particular using |
| /// pointers to memref descriptors for arguments. |
| LLVM::LLVMType |
| LLVMTypeConverter::convertFunctionTypeCWrapper(FunctionType type) { |
| SmallVector<LLVM::LLVMType, 4> inputs; |
| |
| for (Type t : type.getInputs()) { |
| auto converted = convertType(t).dyn_cast_or_null<LLVM::LLVMType>(); |
| if (!converted) |
| return {}; |
| if (t.isa<MemRefType, UnrankedMemRefType>()) |
| converted = converted.getPointerTo(); |
| inputs.push_back(converted); |
| } |
| |
| LLVM::LLVMType resultType = |
| type.getNumResults() == 0 |
| ? LLVM::LLVMType::getVoidTy(llvmDialect) |
| : unwrap(packFunctionResults(type.getResults())); |
| if (!resultType) |
| return {}; |
| |
| return LLVM::LLVMType::getFunctionTy(resultType, inputs, false); |
| } |
| |
| // Convert a MemRef to an LLVM type. The result is a MemRef descriptor which |
| // contains: |
| // 1. the pointer to the data buffer, followed by |
| // 2. a lowered `index`-type integer containing the distance between the |
| // beginning of the buffer and the first element to be accessed through the |
| // view, followed by |
| // 3. an array containing as many `index`-type integers as the rank of the |
| // MemRef: the array represents the size, in number of elements, of the memref |
| // along the given dimension. For constant MemRef dimensions, the |
| // corresponding size entry is a constant whose runtime value must match the |
| // static value, followed by |
| // 4. a second array containing as many `index`-type integers as the rank of |
| // the MemRef: the second array represents the "stride" (in tensor abstraction |
| // sense), i.e. the number of consecutive elements of the underlying buffer. |
| // TODO: add assertions for the static cases. |
| // |
| // template <typename Elem, size_t Rank> |
| // struct { |
| // Elem *allocatedPtr; |
| // Elem *alignedPtr; |
| // int64_t offset; |
| // int64_t sizes[Rank]; // omitted when rank == 0 |
| // int64_t strides[Rank]; // omitted when rank == 0 |
| // }; |
| static constexpr unsigned kAllocatedPtrPosInMemRefDescriptor = 0; |
| static constexpr unsigned kAlignedPtrPosInMemRefDescriptor = 1; |
| static constexpr unsigned kOffsetPosInMemRefDescriptor = 2; |
| static constexpr unsigned kSizePosInMemRefDescriptor = 3; |
| static constexpr unsigned kStridePosInMemRefDescriptor = 4; |
| Type LLVMTypeConverter::convertMemRefType(MemRefType type) { |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| bool strideSuccess = succeeded(getStridesAndOffset(type, strides, offset)); |
| assert(strideSuccess && |
| "Non-strided layout maps must have been normalized away"); |
| (void)strideSuccess; |
| LLVM::LLVMType elementType = unwrap(convertType(type.getElementType())); |
| if (!elementType) |
| return {}; |
| auto ptrTy = elementType.getPointerTo(type.getMemorySpace()); |
| auto indexTy = getIndexType(); |
| auto rank = type.getRank(); |
| if (rank > 0) { |
| auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, type.getRank()); |
| return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy, arrayTy, arrayTy); |
| } |
| return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy); |
| } |
| |
| // Converts UnrankedMemRefType to LLVMType. The result is a descriptor which |
| // contains: |
| // 1. int64_t rank, the dynamic rank of this MemRef |
| // 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be |
| // stack allocated (alloca) copy of a MemRef descriptor that got casted to |
| // be unranked. |
| |
| static constexpr unsigned kRankInUnrankedMemRefDescriptor = 0; |
| static constexpr unsigned kPtrInUnrankedMemRefDescriptor = 1; |
| |
| Type LLVMTypeConverter::convertUnrankedMemRefType(UnrankedMemRefType type) { |
| auto rankTy = LLVM::LLVMType::getInt64Ty(llvmDialect); |
| auto ptrTy = LLVM::LLVMType::getInt8PtrTy(llvmDialect); |
| return LLVM::LLVMType::getStructTy(rankTy, ptrTy); |
| } |
| |
| // Convert an n-D vector type to an LLVM vector type via (n-1)-D array type when |
| // n > 1. |
| // For example, `vector<4 x f32>` converts to `!llvm.type<"<4 x float>">` and |
| // `vector<4 x 8 x 16 f32>` converts to `!llvm<"[4 x [8 x <16 x float>]]">`. |
| Type LLVMTypeConverter::convertVectorType(VectorType type) { |
| auto elementType = unwrap(convertType(type.getElementType())); |
| if (!elementType) |
| return {}; |
| auto vectorType = |
| LLVM::LLVMType::getVectorTy(elementType, type.getShape().back()); |
| auto shape = type.getShape(); |
| for (int i = shape.size() - 2; i >= 0; --i) |
| vectorType = LLVM::LLVMType::getArrayTy(vectorType, shape[i]); |
| return vectorType; |
| } |
| |
| ConvertToLLVMPattern::ConvertToLLVMPattern(StringRef rootOpName, |
| MLIRContext *context, |
| LLVMTypeConverter &typeConverter, |
| const LowerToLLVMOptions &options, |
| PatternBenefit benefit) |
| : ConversionPattern(rootOpName, benefit, typeConverter, context), |
| typeConverter(typeConverter), options(options) {} |
| |
| /*============================================================================*/ |
| /* StructBuilder implementation */ |
| /*============================================================================*/ |
| |
| StructBuilder::StructBuilder(Value v) : value(v) { |
| assert(value != nullptr && "value cannot be null"); |
| structType = value.getType().dyn_cast<LLVM::LLVMType>(); |
| assert(structType && "expected llvm type"); |
| } |
| |
| Value StructBuilder::extractPtr(OpBuilder &builder, Location loc, |
| unsigned pos) { |
| Type type = structType.cast<LLVM::LLVMType>().getStructElementType(pos); |
| return builder.create<LLVM::ExtractValueOp>(loc, type, value, |
| builder.getI64ArrayAttr(pos)); |
| } |
| |
| void StructBuilder::setPtr(OpBuilder &builder, Location loc, unsigned pos, |
| Value ptr) { |
| value = builder.create<LLVM::InsertValueOp>(loc, structType, value, ptr, |
| builder.getI64ArrayAttr(pos)); |
| } |
| |
| /*============================================================================*/ |
| /* ComplexStructBuilder implementation */ |
| /*============================================================================*/ |
| |
| ComplexStructBuilder ComplexStructBuilder::undef(OpBuilder &builder, |
| Location loc, Type type) { |
| Value val = builder.create<LLVM::UndefOp>(loc, type.cast<LLVM::LLVMType>()); |
| return ComplexStructBuilder(val); |
| } |
| |
| void ComplexStructBuilder::setReal(OpBuilder &builder, Location loc, |
| Value real) { |
| setPtr(builder, loc, kRealPosInComplexNumberStruct, real); |
| } |
| |
| Value ComplexStructBuilder::real(OpBuilder &builder, Location loc) { |
| return extractPtr(builder, loc, kRealPosInComplexNumberStruct); |
| } |
| |
| void ComplexStructBuilder::setImaginary(OpBuilder &builder, Location loc, |
| Value imaginary) { |
| setPtr(builder, loc, kImaginaryPosInComplexNumberStruct, imaginary); |
| } |
| |
| Value ComplexStructBuilder::imaginary(OpBuilder &builder, Location loc) { |
| return extractPtr(builder, loc, kImaginaryPosInComplexNumberStruct); |
| } |
| |
| /*============================================================================*/ |
| /* MemRefDescriptor implementation */ |
| /*============================================================================*/ |
| |
| /// Construct a helper for the given descriptor value. |
| MemRefDescriptor::MemRefDescriptor(Value descriptor) |
| : StructBuilder(descriptor) { |
| assert(value != nullptr && "value cannot be null"); |
| indexType = value.getType().cast<LLVM::LLVMType>().getStructElementType( |
| kOffsetPosInMemRefDescriptor); |
| } |
| |
| /// Builds IR creating an `undef` value of the descriptor type. |
| MemRefDescriptor MemRefDescriptor::undef(OpBuilder &builder, Location loc, |
| Type descriptorType) { |
| |
| Value descriptor = |
| builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>()); |
| return MemRefDescriptor(descriptor); |
| } |
| |
| /// Builds IR creating a MemRef descriptor that represents `type` and |
| /// populates it with static shape and stride information extracted from the |
| /// type. |
| MemRefDescriptor |
| MemRefDescriptor::fromStaticShape(OpBuilder &builder, Location loc, |
| LLVMTypeConverter &typeConverter, |
| MemRefType type, Value memory) { |
| assert(type.hasStaticShape() && "unexpected dynamic shape"); |
| |
| // Extract all strides and offsets and verify they are static. |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto result = getStridesAndOffset(type, strides, offset); |
| (void)result; |
| assert(succeeded(result) && "unexpected failure in stride computation"); |
| assert(offset != MemRefType::getDynamicStrideOrOffset() && |
| "expected static offset"); |
| assert(!llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) && |
| "expected static strides"); |
| |
| auto convertedType = typeConverter.convertType(type); |
| assert(convertedType && "unexpected failure in memref type conversion"); |
| |
| auto descr = MemRefDescriptor::undef(builder, loc, convertedType); |
| descr.setAllocatedPtr(builder, loc, memory); |
| descr.setAlignedPtr(builder, loc, memory); |
| descr.setConstantOffset(builder, loc, offset); |
| |
| // Fill in sizes and strides |
| for (unsigned i = 0, e = type.getRank(); i != e; ++i) { |
| descr.setConstantSize(builder, loc, i, type.getDimSize(i)); |
| descr.setConstantStride(builder, loc, i, strides[i]); |
| } |
| return descr; |
| } |
| |
| /// Builds IR extracting the allocated pointer from the descriptor. |
| Value MemRefDescriptor::allocatedPtr(OpBuilder &builder, Location loc) { |
| return extractPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor); |
| } |
| |
| /// Builds IR inserting the allocated pointer into the descriptor. |
| void MemRefDescriptor::setAllocatedPtr(OpBuilder &builder, Location loc, |
| Value ptr) { |
| setPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor, ptr); |
| } |
| |
| /// Builds IR extracting the aligned pointer from the descriptor. |
| Value MemRefDescriptor::alignedPtr(OpBuilder &builder, Location loc) { |
| return extractPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor); |
| } |
| |
| /// Builds IR inserting the aligned pointer into the descriptor. |
| void MemRefDescriptor::setAlignedPtr(OpBuilder &builder, Location loc, |
| Value ptr) { |
| setPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor, ptr); |
| } |
| |
| // Creates a constant Op producing a value of `resultType` from an index-typed |
| // integer attribute. |
| static Value createIndexAttrConstant(OpBuilder &builder, Location loc, |
| Type resultType, int64_t value) { |
| return builder.create<LLVM::ConstantOp>( |
| loc, resultType, builder.getIntegerAttr(builder.getIndexType(), value)); |
| } |
| |
| /// Builds IR extracting the offset from the descriptor. |
| Value MemRefDescriptor::offset(OpBuilder &builder, Location loc) { |
| return builder.create<LLVM::ExtractValueOp>( |
| loc, indexType, value, |
| builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor)); |
| } |
| |
| /// Builds IR inserting the offset into the descriptor. |
| void MemRefDescriptor::setOffset(OpBuilder &builder, Location loc, |
| Value offset) { |
| value = builder.create<LLVM::InsertValueOp>( |
| loc, structType, value, offset, |
| builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor)); |
| } |
| |
| /// Builds IR inserting the offset into the descriptor. |
| void MemRefDescriptor::setConstantOffset(OpBuilder &builder, Location loc, |
| uint64_t offset) { |
| setOffset(builder, loc, |
| createIndexAttrConstant(builder, loc, indexType, offset)); |
| } |
| |
| /// Builds IR extracting the pos-th size from the descriptor. |
| Value MemRefDescriptor::size(OpBuilder &builder, Location loc, unsigned pos) { |
| return builder.create<LLVM::ExtractValueOp>( |
| loc, indexType, value, |
| builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos})); |
| } |
| |
| Value MemRefDescriptor::size(OpBuilder &builder, Location loc, Value pos, |
| int64_t rank) { |
| auto indexTy = indexType.cast<LLVM::LLVMType>(); |
| auto indexPtrTy = indexTy.getPointerTo(); |
| auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, rank); |
| auto arrayPtrTy = arrayTy.getPointerTo(); |
| |
| // Copy size values to stack-allocated memory. |
| auto zero = createIndexAttrConstant(builder, loc, indexType, 0); |
| auto one = createIndexAttrConstant(builder, loc, indexType, 1); |
| auto sizes = builder.create<LLVM::ExtractValueOp>( |
| loc, arrayTy, value, |
| builder.getI64ArrayAttr({kSizePosInMemRefDescriptor})); |
| auto sizesPtr = |
| builder.create<LLVM::AllocaOp>(loc, arrayPtrTy, one, /*alignment=*/0); |
| builder.create<LLVM::StoreOp>(loc, sizes, sizesPtr); |
| |
| // Load an return size value of interest. |
| auto resultPtr = builder.create<LLVM::GEPOp>(loc, indexPtrTy, sizesPtr, |
| ValueRange({zero, pos})); |
| return builder.create<LLVM::LoadOp>(loc, resultPtr); |
| } |
| |
| /// Builds IR inserting the pos-th size into the descriptor |
| void MemRefDescriptor::setSize(OpBuilder &builder, Location loc, unsigned pos, |
| Value size) { |
| value = builder.create<LLVM::InsertValueOp>( |
| loc, structType, value, size, |
| builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos})); |
| } |
| |
| void MemRefDescriptor::setConstantSize(OpBuilder &builder, Location loc, |
| unsigned pos, uint64_t size) { |
| setSize(builder, loc, pos, |
| createIndexAttrConstant(builder, loc, indexType, size)); |
| } |
| |
| /// Builds IR extracting the pos-th stride from the descriptor. |
| Value MemRefDescriptor::stride(OpBuilder &builder, Location loc, unsigned pos) { |
| return builder.create<LLVM::ExtractValueOp>( |
| loc, indexType, value, |
| builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos})); |
| } |
| |
| /// Builds IR inserting the pos-th stride into the descriptor |
| void MemRefDescriptor::setStride(OpBuilder &builder, Location loc, unsigned pos, |
| Value stride) { |
| value = builder.create<LLVM::InsertValueOp>( |
| loc, structType, value, stride, |
| builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos})); |
| } |
| |
| void MemRefDescriptor::setConstantStride(OpBuilder &builder, Location loc, |
| unsigned pos, uint64_t stride) { |
| setStride(builder, loc, pos, |
| createIndexAttrConstant(builder, loc, indexType, stride)); |
| } |
| |
| LLVM::LLVMType MemRefDescriptor::getElementType() { |
| return value.getType().cast<LLVM::LLVMType>().getStructElementType( |
| kAlignedPtrPosInMemRefDescriptor); |
| } |
| |
| /// Creates a MemRef descriptor structure from a list of individual values |
| /// composing that descriptor, in the following order: |
| /// - allocated pointer; |
| /// - aligned pointer; |
| /// - offset; |
| /// - <rank> sizes; |
| /// - <rank> shapes; |
| /// where <rank> is the MemRef rank as provided in `type`. |
| Value MemRefDescriptor::pack(OpBuilder &builder, Location loc, |
| LLVMTypeConverter &converter, MemRefType type, |
| ValueRange values) { |
| Type llvmType = converter.convertType(type); |
| auto d = MemRefDescriptor::undef(builder, loc, llvmType); |
| |
| d.setAllocatedPtr(builder, loc, values[kAllocatedPtrPosInMemRefDescriptor]); |
| d.setAlignedPtr(builder, loc, values[kAlignedPtrPosInMemRefDescriptor]); |
| d.setOffset(builder, loc, values[kOffsetPosInMemRefDescriptor]); |
| |
| int64_t rank = type.getRank(); |
| for (unsigned i = 0; i < rank; ++i) { |
| d.setSize(builder, loc, i, values[kSizePosInMemRefDescriptor + i]); |
| d.setStride(builder, loc, i, values[kSizePosInMemRefDescriptor + rank + i]); |
| } |
| |
| return d; |
| } |
| |
| /// Builds IR extracting individual elements of a MemRef descriptor structure |
| /// and returning them as `results` list. |
| void MemRefDescriptor::unpack(OpBuilder &builder, Location loc, Value packed, |
| MemRefType type, |
| SmallVectorImpl<Value> &results) { |
| int64_t rank = type.getRank(); |
| results.reserve(results.size() + getNumUnpackedValues(type)); |
| |
| MemRefDescriptor d(packed); |
| results.push_back(d.allocatedPtr(builder, loc)); |
| results.push_back(d.alignedPtr(builder, loc)); |
| results.push_back(d.offset(builder, loc)); |
| for (int64_t i = 0; i < rank; ++i) |
| results.push_back(d.size(builder, loc, i)); |
| for (int64_t i = 0; i < rank; ++i) |
| results.push_back(d.stride(builder, loc, i)); |
| } |
| |
| /// Returns the number of non-aggregate values that would be produced by |
| /// `unpack`. |
| unsigned MemRefDescriptor::getNumUnpackedValues(MemRefType type) { |
| // Two pointers, offset, <rank> sizes, <rank> shapes. |
| return 3 + 2 * type.getRank(); |
| } |
| |
| /*============================================================================*/ |
| /* MemRefDescriptorView implementation. */ |
| /*============================================================================*/ |
| |
| MemRefDescriptorView::MemRefDescriptorView(ValueRange range) |
| : rank((range.size() - kSizePosInMemRefDescriptor) / 2), elements(range) {} |
| |
| Value MemRefDescriptorView::allocatedPtr() { |
| return elements[kAllocatedPtrPosInMemRefDescriptor]; |
| } |
| |
| Value MemRefDescriptorView::alignedPtr() { |
| return elements[kAlignedPtrPosInMemRefDescriptor]; |
| } |
| |
| Value MemRefDescriptorView::offset() { |
| return elements[kOffsetPosInMemRefDescriptor]; |
| } |
| |
| Value MemRefDescriptorView::size(unsigned pos) { |
| return elements[kSizePosInMemRefDescriptor + pos]; |
| } |
| |
| Value MemRefDescriptorView::stride(unsigned pos) { |
| return elements[kSizePosInMemRefDescriptor + rank + pos]; |
| } |
| |
| /*============================================================================*/ |
| /* UnrankedMemRefDescriptor implementation */ |
| /*============================================================================*/ |
| |
| /// Construct a helper for the given descriptor value. |
| UnrankedMemRefDescriptor::UnrankedMemRefDescriptor(Value descriptor) |
| : StructBuilder(descriptor) {} |
| |
| /// Builds IR creating an `undef` value of the descriptor type. |
| UnrankedMemRefDescriptor UnrankedMemRefDescriptor::undef(OpBuilder &builder, |
| Location loc, |
| Type descriptorType) { |
| Value descriptor = |
| builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>()); |
| return UnrankedMemRefDescriptor(descriptor); |
| } |
| Value UnrankedMemRefDescriptor::rank(OpBuilder &builder, Location loc) { |
| return extractPtr(builder, loc, kRankInUnrankedMemRefDescriptor); |
| } |
| void UnrankedMemRefDescriptor::setRank(OpBuilder &builder, Location loc, |
| Value v) { |
| setPtr(builder, loc, kRankInUnrankedMemRefDescriptor, v); |
| } |
| Value UnrankedMemRefDescriptor::memRefDescPtr(OpBuilder &builder, |
| Location loc) { |
| return extractPtr(builder, loc, kPtrInUnrankedMemRefDescriptor); |
| } |
| void UnrankedMemRefDescriptor::setMemRefDescPtr(OpBuilder &builder, |
| Location loc, Value v) { |
| setPtr(builder, loc, kPtrInUnrankedMemRefDescriptor, v); |
| } |
| |
| /// Builds IR populating an unranked MemRef descriptor structure from a list |
| /// of individual constituent values in the following order: |
| /// - rank of the memref; |
| /// - pointer to the memref descriptor. |
| Value UnrankedMemRefDescriptor::pack(OpBuilder &builder, Location loc, |
| LLVMTypeConverter &converter, |
| UnrankedMemRefType type, |
| ValueRange values) { |
| Type llvmType = converter.convertType(type); |
| auto d = UnrankedMemRefDescriptor::undef(builder, loc, llvmType); |
| |
| d.setRank(builder, loc, values[kRankInUnrankedMemRefDescriptor]); |
| d.setMemRefDescPtr(builder, loc, values[kPtrInUnrankedMemRefDescriptor]); |
| return d; |
| } |
| |
| /// Builds IR extracting individual elements that compose an unranked memref |
| /// descriptor and returns them as `results` list. |
| void UnrankedMemRefDescriptor::unpack(OpBuilder &builder, Location loc, |
| Value packed, |
| SmallVectorImpl<Value> &results) { |
| UnrankedMemRefDescriptor d(packed); |
| results.reserve(results.size() + 2); |
| results.push_back(d.rank(builder, loc)); |
| results.push_back(d.memRefDescPtr(builder, loc)); |
| } |
| |
| void UnrankedMemRefDescriptor::computeSizes( |
| OpBuilder &builder, Location loc, LLVMTypeConverter &typeConverter, |
| ArrayRef<UnrankedMemRefDescriptor> values, SmallVectorImpl<Value> &sizes) { |
| if (values.empty()) |
| return; |
| |
| // Cache the index type. |
| LLVM::LLVMType indexType = typeConverter.getIndexType(); |
| |
| // Initialize shared constants. |
| Value one = createIndexAttrConstant(builder, loc, indexType, 1); |
| Value two = createIndexAttrConstant(builder, loc, indexType, 2); |
| Value pointerSize = createIndexAttrConstant( |
| builder, loc, indexType, ceilDiv(typeConverter.getPointerBitwidth(), 8)); |
| Value indexSize = |
| createIndexAttrConstant(builder, loc, indexType, |
| ceilDiv(typeConverter.getIndexTypeBitwidth(), 8)); |
| |
| sizes.reserve(sizes.size() + values.size()); |
| for (UnrankedMemRefDescriptor desc : values) { |
| // Emit IR computing the memory necessary to store the descriptor. This |
| // assumes the descriptor to be |
| // { type*, type*, index, index[rank], index[rank] } |
| // and densely packed, so the total size is |
| // 2 * sizeof(pointer) + (1 + 2 * rank) * sizeof(index). |
| // TODO: consider including the actual size (including eventual padding due |
| // to data layout) into the unranked descriptor. |
| Value doublePointerSize = |
| builder.create<LLVM::MulOp>(loc, indexType, two, pointerSize); |
| |
| // (1 + 2 * rank) * sizeof(index) |
| Value rank = desc.rank(builder, loc); |
| Value doubleRank = builder.create<LLVM::MulOp>(loc, indexType, two, rank); |
| Value doubleRankIncremented = |
| builder.create<LLVM::AddOp>(loc, indexType, doubleRank, one); |
| Value rankIndexSize = builder.create<LLVM::MulOp>( |
| loc, indexType, doubleRankIncremented, indexSize); |
| |
| // Total allocation size. |
| Value allocationSize = builder.create<LLVM::AddOp>( |
| loc, indexType, doublePointerSize, rankIndexSize); |
| sizes.push_back(allocationSize); |
| } |
| } |
| |
| LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const { |
| return *typeConverter.getDialect(); |
| } |
| |
| llvm::LLVMContext &ConvertToLLVMPattern::getContext() const { |
| return typeConverter.getLLVMContext(); |
| } |
| |
| llvm::Module &ConvertToLLVMPattern::getModule() const { |
| return getDialect().getLLVMModule(); |
| } |
| |
| LLVM::LLVMType ConvertToLLVMPattern::getIndexType() const { |
| return typeConverter.getIndexType(); |
| } |
| |
| LLVM::LLVMType ConvertToLLVMPattern::getVoidType() const { |
| return LLVM::LLVMType::getVoidTy(&getDialect()); |
| } |
| |
| LLVM::LLVMType ConvertToLLVMPattern::getVoidPtrType() const { |
| return LLVM::LLVMType::getInt8PtrTy(&getDialect()); |
| } |
| |
| Value ConvertToLLVMPattern::createIndexConstant( |
| ConversionPatternRewriter &builder, Location loc, uint64_t value) const { |
| return createIndexAttrConstant(builder, loc, getIndexType(), value); |
| } |
| |
| Value ConvertToLLVMPattern::linearizeSubscripts( |
| ConversionPatternRewriter &builder, Location loc, ArrayRef<Value> indices, |
| ArrayRef<Value> allocSizes) const { |
| assert(indices.size() == allocSizes.size() && |
| "mismatching number of indices and allocation sizes"); |
| assert(!indices.empty() && "cannot linearize a 0-dimensional access"); |
| |
| Value linearized = indices.front(); |
| for (int i = 1, nSizes = allocSizes.size(); i < nSizes; ++i) { |
| linearized = builder.create<LLVM::MulOp>( |
| loc, this->getIndexType(), ArrayRef<Value>{linearized, allocSizes[i]}); |
| linearized = builder.create<LLVM::AddOp>( |
| loc, this->getIndexType(), ArrayRef<Value>{linearized, indices[i]}); |
| } |
| return linearized; |
| } |
| |
| Value ConvertToLLVMPattern::getStridedElementPtr( |
| Location loc, Type elementTypePtr, Value descriptor, ValueRange indices, |
| ArrayRef<int64_t> strides, int64_t offset, |
| ConversionPatternRewriter &rewriter) const { |
| MemRefDescriptor memRefDescriptor(descriptor); |
| |
| Value base = memRefDescriptor.alignedPtr(rewriter, loc); |
| Value offsetValue = offset == MemRefType::getDynamicStrideOrOffset() |
| ? memRefDescriptor.offset(rewriter, loc) |
| : this->createIndexConstant(rewriter, loc, offset); |
| |
| for (int i = 0, e = indices.size(); i < e; ++i) { |
| Value stride = strides[i] == MemRefType::getDynamicStrideOrOffset() |
| ? memRefDescriptor.stride(rewriter, loc, i) |
| : this->createIndexConstant(rewriter, loc, strides[i]); |
| Value additionalOffset = |
| rewriter.create<LLVM::MulOp>(loc, indices[i], stride); |
| offsetValue = |
| rewriter.create<LLVM::AddOp>(loc, offsetValue, additionalOffset); |
| } |
| return rewriter.create<LLVM::GEPOp>(loc, elementTypePtr, base, offsetValue); |
| } |
| |
| Value ConvertToLLVMPattern::getDataPtr(Location loc, MemRefType type, |
| Value memRefDesc, ValueRange indices, |
| ConversionPatternRewriter &rewriter, |
| llvm::Module &module) const { |
| LLVM::LLVMType ptrType = MemRefDescriptor(memRefDesc).getElementType(); |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(type, strides, offset); |
| assert(succeeded(successStrides) && "unexpected non-strided memref"); |
| (void)successStrides; |
| return getStridedElementPtr(loc, ptrType, memRefDesc, indices, strides, |
| offset, rewriter); |
| } |
| |
| /// Only retain those attributes that are not constructed by |
| /// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument |
| /// attributes. |
| static void filterFuncAttributes(ArrayRef<NamedAttribute> attrs, |
| bool filterArgAttrs, |
| SmallVectorImpl<NamedAttribute> &result) { |
| for (const auto &attr : attrs) { |
| if (attr.first == SymbolTable::getSymbolAttrName() || |
| attr.first == impl::getTypeAttrName() || attr.first == "std.varargs" || |
| (filterArgAttrs && impl::isArgAttrName(attr.first.strref()))) |
| continue; |
| result.push_back(attr); |
| } |
| } |
| |
| /// Creates an auxiliary function with pointer-to-memref-descriptor-struct |
| /// arguments instead of unpacked arguments. This function can be called from C |
| /// by passing a pointer to a C struct corresponding to a memref descriptor. |
| /// Internally, the auxiliary function unpacks the descriptor into individual |
| /// components and forwards them to `newFuncOp`. |
| static void wrapForExternalCallers(OpBuilder &rewriter, Location loc, |
| LLVMTypeConverter &typeConverter, |
| FuncOp funcOp, LLVM::LLVMFuncOp newFuncOp) { |
| auto type = funcOp.getType(); |
| SmallVector<NamedAttribute, 4> attributes; |
| filterFuncAttributes(funcOp.getAttrs(), /*filterArgAttrs=*/false, attributes); |
| auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>( |
| loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), |
| typeConverter.convertFunctionTypeCWrapper(type), LLVM::Linkage::External, |
| attributes); |
| |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock()); |
| |
| SmallVector<Value, 8> args; |
| for (auto &en : llvm::enumerate(type.getInputs())) { |
| Value arg = wrapperFuncOp.getArgument(en.index()); |
| if (auto memrefType = en.value().dyn_cast<MemRefType>()) { |
| Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg); |
| MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args); |
| continue; |
| } |
| if (en.value().isa<UnrankedMemRefType>()) { |
| Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg); |
| UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args); |
| continue; |
| } |
| |
| args.push_back(wrapperFuncOp.getArgument(en.index())); |
| } |
| auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args); |
| rewriter.create<LLVM::ReturnOp>(loc, call.getResults()); |
| } |
| |
| /// Creates an auxiliary function with pointer-to-memref-descriptor-struct |
| /// arguments instead of unpacked arguments. Creates a body for the (external) |
| /// `newFuncOp` that allocates a memref descriptor on stack, packs the |
| /// individual arguments into this descriptor and passes a pointer to it into |
| /// the auxiliary function. This auxiliary external function is now compatible |
| /// with functions defined in C using pointers to C structs corresponding to a |
| /// memref descriptor. |
| static void wrapExternalFunction(OpBuilder &builder, Location loc, |
| LLVMTypeConverter &typeConverter, |
| FuncOp funcOp, LLVM::LLVMFuncOp newFuncOp) { |
| OpBuilder::InsertionGuard guard(builder); |
| |
| LLVM::LLVMType wrapperType = |
| typeConverter.convertFunctionTypeCWrapper(funcOp.getType()); |
| // This conversion can only fail if it could not convert one of the argument |
| // types. But since it has been applies to a non-wrapper function before, it |
| // should have failed earlier and not reach this point at all. |
| assert(wrapperType && "unexpected type conversion failure"); |
| |
| SmallVector<NamedAttribute, 4> attributes; |
| filterFuncAttributes(funcOp.getAttrs(), /*filterArgAttrs=*/false, attributes); |
| |
| // Create the auxiliary function. |
| auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>( |
| loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), |
| wrapperType, LLVM::Linkage::External, attributes); |
| |
| builder.setInsertionPointToStart(newFuncOp.addEntryBlock()); |
| |
| // Get a ValueRange containing arguments. |
| FunctionType type = funcOp.getType(); |
| SmallVector<Value, 8> args; |
| args.reserve(type.getNumInputs()); |
| ValueRange wrapperArgsRange(newFuncOp.getArguments()); |
| |
| // Iterate over the inputs of the original function and pack values into |
| // memref descriptors if the original type is a memref. |
| for (auto &en : llvm::enumerate(type.getInputs())) { |
| Value arg; |
| int numToDrop = 1; |
| auto memRefType = en.value().dyn_cast<MemRefType>(); |
| auto unrankedMemRefType = en.value().dyn_cast<UnrankedMemRefType>(); |
| if (memRefType || unrankedMemRefType) { |
| numToDrop = memRefType |
| ? MemRefDescriptor::getNumUnpackedValues(memRefType) |
| : UnrankedMemRefDescriptor::getNumUnpackedValues(); |
| Value packed = |
| memRefType |
| ? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType, |
| wrapperArgsRange.take_front(numToDrop)) |
| : UnrankedMemRefDescriptor::pack( |
| builder, loc, typeConverter, unrankedMemRefType, |
| wrapperArgsRange.take_front(numToDrop)); |
| |
| auto ptrTy = packed.getType().cast<LLVM::LLVMType>().getPointerTo(); |
| Value one = builder.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(builder.getIndexType()), |
| builder.getIntegerAttr(builder.getIndexType(), 1)); |
| Value allocated = |
| builder.create<LLVM::AllocaOp>(loc, ptrTy, one, /*alignment=*/0); |
| builder.create<LLVM::StoreOp>(loc, packed, allocated); |
| arg = allocated; |
| } else { |
| arg = wrapperArgsRange[0]; |
| } |
| |
| args.push_back(arg); |
| wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop); |
| } |
| assert(wrapperArgsRange.empty() && "did not map some of the arguments"); |
| |
| auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args); |
| builder.create<LLVM::ReturnOp>(loc, call.getResults()); |
| } |
| |
| namespace { |
| |
| struct FuncOpConversionBase : public ConvertOpToLLVMPattern<FuncOp> { |
| protected: |
| using ConvertOpToLLVMPattern<FuncOp>::ConvertOpToLLVMPattern; |
| using UnsignedTypePair = std::pair<unsigned, Type>; |
| |
| // Gather the positions and types of memref-typed arguments in a given |
| // FunctionType. |
| void getMemRefArgIndicesAndTypes( |
| FunctionType type, SmallVectorImpl<UnsignedTypePair> &argsInfo) const { |
| argsInfo.reserve(type.getNumInputs()); |
| for (auto en : llvm::enumerate(type.getInputs())) { |
| if (en.value().isa<MemRefType, UnrankedMemRefType>()) |
| argsInfo.push_back({en.index(), en.value()}); |
| } |
| } |
| |
| // Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided |
| // to this legalization pattern. |
| LLVM::LLVMFuncOp |
| convertFuncOpToLLVMFuncOp(FuncOp funcOp, |
| ConversionPatternRewriter &rewriter) const { |
| // Convert the original function arguments. They are converted using the |
| // LLVMTypeConverter provided to this legalization pattern. |
| auto varargsAttr = funcOp.getAttrOfType<BoolAttr>("std.varargs"); |
| TypeConverter::SignatureConversion result(funcOp.getNumArguments()); |
| auto llvmType = typeConverter.convertFunctionSignature( |
| funcOp.getType(), varargsAttr && varargsAttr.getValue(), result); |
| |
| // Propagate argument attributes to all converted arguments obtained after |
| // converting a given original argument. |
| SmallVector<NamedAttribute, 4> attributes; |
| filterFuncAttributes(funcOp.getAttrs(), /*filterArgAttrs=*/true, |
| attributes); |
| for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) { |
| auto attr = impl::getArgAttrDict(funcOp, i); |
| if (!attr) |
| continue; |
| |
| auto mapping = result.getInputMapping(i); |
| assert(mapping.hasValue() && "unexpected deletion of function argument"); |
| |
| SmallString<8> name; |
| for (size_t j = 0; j < mapping->size; ++j) { |
| impl::getArgAttrName(mapping->inputNo + j, name); |
| attributes.push_back(rewriter.getNamedAttr(name, attr)); |
| } |
| } |
| |
| // Create an LLVM function, use external linkage by default until MLIR |
| // functions have linkage. |
| auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>( |
| funcOp.getLoc(), funcOp.getName(), llvmType, LLVM::Linkage::External, |
| attributes); |
| rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), |
| newFuncOp.end()); |
| if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter, |
| &result))) |
| return nullptr; |
| |
| return newFuncOp; |
| } |
| }; |
| |
| /// FuncOp legalization pattern that converts MemRef arguments to pointers to |
| /// MemRef descriptors (LLVM struct data types) containing all the MemRef type |
| /// information. |
| static constexpr StringRef kEmitIfaceAttrName = "llvm.emit_c_interface"; |
| struct FuncOpConversion : public FuncOpConversionBase { |
| FuncOpConversion(LLVMTypeConverter &converter, |
| const LowerToLLVMOptions &options) |
| : FuncOpConversionBase(converter, options) {} |
| using ConvertOpToLLVMPattern<FuncOp>::options; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto funcOp = cast<FuncOp>(op); |
| |
| auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); |
| if (!newFuncOp) |
| return failure(); |
| |
| if (options.emitCWrappers || |
| funcOp.getAttrOfType<UnitAttr>(kEmitIfaceAttrName)) { |
| if (newFuncOp.isExternal()) |
| wrapExternalFunction(rewriter, op->getLoc(), typeConverter, funcOp, |
| newFuncOp); |
| else |
| wrapForExternalCallers(rewriter, op->getLoc(), typeConverter, funcOp, |
| newFuncOp); |
| } |
| |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| }; |
| |
| /// FuncOp legalization pattern that converts MemRef arguments to bare pointers |
| /// to the MemRef element type. This will impact the calling convention and ABI. |
| struct BarePtrFuncOpConversion : public FuncOpConversionBase { |
| using FuncOpConversionBase::FuncOpConversionBase; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto funcOp = cast<FuncOp>(op); |
| |
| // Store the positions and type of memref-typed arguments so that we can |
| // promote them to MemRef descriptor structs at the beginning of the |
| // function. |
| SmallVector<UnsignedTypePair, 4> promotedArgsInfo; |
| getMemRefArgIndicesAndTypes(funcOp.getType(), promotedArgsInfo); |
| |
| auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); |
| if (!newFuncOp) |
| return failure(); |
| if (newFuncOp.getBody().empty()) { |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| |
| // Promote bare pointers from MemRef arguments to a MemRef descriptor struct |
| // at the beginning of the function so that all the MemRefs in the function |
| // have a uniform representation. |
| Block *firstBlock = &newFuncOp.getBody().front(); |
| rewriter.setInsertionPoint(firstBlock, firstBlock->begin()); |
| auto funcLoc = funcOp.getLoc(); |
| for (const auto &argInfo : promotedArgsInfo) { |
| // TODO: Add support for unranked MemRefs. |
| if (auto memrefType = argInfo.second.dyn_cast<MemRefType>()) { |
| // Replace argument with a placeholder (undef), promote argument to a |
| // MemRef descriptor and replace placeholder with the last instruction |
| // of the MemRef descriptor. The placeholder is needed to avoid |
| // replacing argument uses in the MemRef descriptor instructions. |
| BlockArgument arg = firstBlock->getArgument(argInfo.first); |
| Value placeHolder = |
| rewriter.create<LLVM::UndefOp>(funcLoc, arg.getType()); |
| rewriter.replaceUsesOfBlockArgument(arg, placeHolder); |
| auto desc = MemRefDescriptor::fromStaticShape( |
| rewriter, funcLoc, typeConverter, memrefType, arg); |
| rewriter.replaceOp(placeHolder.getDefiningOp(), {desc}); |
| } |
| } |
| |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| }; |
| |
| //////////////// Support for Lowering operations on n-D vectors //////////////// |
| // Helper struct to "unroll" operations on n-D vectors in terms of operations on |
| // 1-D LLVM vectors. |
| struct NDVectorTypeInfo { |
| // LLVM array struct which encodes n-D vectors. |
| LLVM::LLVMType llvmArrayTy; |
| // LLVM vector type which encodes the inner 1-D vector type. |
| LLVM::LLVMType llvmVectorTy; |
| // Multiplicity of llvmArrayTy to llvmVectorTy. |
| SmallVector<int64_t, 4> arraySizes; |
| }; |
| } // namespace |
| |
| // For >1-D vector types, extracts the necessary information to iterate over all |
| // 1-D subvectors in the underlying llrepresentation of the n-D vector |
| // Iterates on the llvm array type until we hit a non-array type (which is |
| // asserted to be an llvm vector type). |
| static NDVectorTypeInfo extractNDVectorTypeInfo(VectorType vectorType, |
| LLVMTypeConverter &converter) { |
| assert(vectorType.getRank() > 1 && "expected >1D vector type"); |
| NDVectorTypeInfo info; |
| info.llvmArrayTy = |
| converter.convertType(vectorType).dyn_cast<LLVM::LLVMType>(); |
| if (!info.llvmArrayTy) |
| return info; |
| info.arraySizes.reserve(vectorType.getRank() - 1); |
| auto llvmTy = info.llvmArrayTy; |
| while (llvmTy.isArrayTy()) { |
| info.arraySizes.push_back(llvmTy.getArrayNumElements()); |
| llvmTy = llvmTy.getArrayElementType(); |
| } |
| if (!llvmTy.isVectorTy()) |
| return info; |
| info.llvmVectorTy = llvmTy; |
| return info; |
| } |
| |
| // Express `linearIndex` in terms of coordinates of `basis`. |
| // Returns the empty vector when linearIndex is out of the range [0, P] where |
| // P is the product of all the basis coordinates. |
| // |
| // Prerequisites: |
| // Basis is an array of nonnegative integers (signed type inherited from |
| // vector shape type). |
| static SmallVector<int64_t, 4> getCoordinates(ArrayRef<int64_t> basis, |
| unsigned linearIndex) { |
| SmallVector<int64_t, 4> res; |
| res.reserve(basis.size()); |
| for (unsigned basisElement : llvm::reverse(basis)) { |
| res.push_back(linearIndex % basisElement); |
| linearIndex = linearIndex / basisElement; |
| } |
| if (linearIndex > 0) |
| return {}; |
| std::reverse(res.begin(), res.end()); |
| return res; |
| } |
| |
| // Iterate of linear index, convert to coords space and insert splatted 1-D |
| // vector in each position. |
| template <typename Lambda> |
| void nDVectorIterate(const NDVectorTypeInfo &info, OpBuilder &builder, |
| Lambda fun) { |
| unsigned ub = 1; |
| for (auto s : info.arraySizes) |
| ub *= s; |
| for (unsigned linearIndex = 0; linearIndex < ub; ++linearIndex) { |
| auto coords = getCoordinates(info.arraySizes, linearIndex); |
| // Linear index is out of bounds, we are done. |
| if (coords.empty()) |
| break; |
| assert(coords.size() == info.arraySizes.size()); |
| auto position = builder.getI64ArrayAttr(coords); |
| fun(position); |
| } |
| } |
| ////////////// End Support for Lowering operations on n-D vectors ////////////// |
| |
| /// Replaces the given operation "op" with a new operation of type "targetOp" |
| /// and given operands. |
| LogicalResult LLVM::detail::oneToOneRewrite( |
| Operation *op, StringRef targetOp, ValueRange operands, |
| LLVMTypeConverter &typeConverter, ConversionPatternRewriter &rewriter) { |
| unsigned numResults = op->getNumResults(); |
| |
| Type packedType; |
| if (numResults != 0) { |
| packedType = typeConverter.packFunctionResults(op->getResultTypes()); |
| if (!packedType) |
| return failure(); |
| } |
| |
| // Create the operation through state since we don't know its C++ type. |
| OperationState state(op->getLoc(), targetOp); |
| state.addTypes(packedType); |
| state.addOperands(operands); |
| state.addAttributes(op->getAttrs()); |
| Operation *newOp = rewriter.createOperation(state); |
| |
| // If the operation produced 0 or 1 result, return them immediately. |
| if (numResults == 0) |
| return rewriter.eraseOp(op), success(); |
| if (numResults == 1) |
| return rewriter.replaceOp(op, newOp->getResult(0)), success(); |
| |
| // Otherwise, it had been converted to an operation producing a structure. |
| // Extract individual results from the structure and return them as list. |
| SmallVector<Value, 4> results; |
| results.reserve(numResults); |
| for (unsigned i = 0; i < numResults; ++i) { |
| auto type = typeConverter.convertType(op->getResult(i).getType()); |
| results.push_back(rewriter.create<LLVM::ExtractValueOp>( |
| op->getLoc(), type, newOp->getResult(0), rewriter.getI64ArrayAttr(i))); |
| } |
| rewriter.replaceOp(op, results); |
| return success(); |
| } |
| |
| static LogicalResult handleMultidimensionalVectors( |
| Operation *op, ValueRange operands, LLVMTypeConverter &typeConverter, |
| std::function<Value(LLVM::LLVMType, ValueRange)> createOperand, |
| ConversionPatternRewriter &rewriter) { |
| auto vectorType = op->getResult(0).getType().dyn_cast<VectorType>(); |
| if (!vectorType) |
| return failure(); |
| auto vectorTypeInfo = extractNDVectorTypeInfo(vectorType, typeConverter); |
| auto llvmVectorTy = vectorTypeInfo.llvmVectorTy; |
| auto llvmArrayTy = operands[0].getType().cast<LLVM::LLVMType>(); |
| if (!llvmVectorTy || llvmArrayTy != vectorTypeInfo.llvmArrayTy) |
| return failure(); |
| |
| auto loc = op->getLoc(); |
| Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy); |
| nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) { |
| // For this unrolled `position` corresponding to the `linearIndex`^th |
| // element, extract operand vectors |
| SmallVector<Value, 4> extractedOperands; |
| for (auto operand : operands) |
| extractedOperands.push_back(rewriter.create<LLVM::ExtractValueOp>( |
| loc, llvmVectorTy, operand, position)); |
| Value newVal = createOperand(llvmVectorTy, extractedOperands); |
| desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc, newVal, |
| position); |
| }); |
| rewriter.replaceOp(op, desc); |
| return success(); |
| } |
| |
| LogicalResult LLVM::detail::vectorOneToOneRewrite( |
| Operation *op, StringRef targetOp, ValueRange operands, |
| LLVMTypeConverter &typeConverter, ConversionPatternRewriter &rewriter) { |
| assert(!operands.empty()); |
| |
| // Cannot convert ops if their operands are not of LLVM type. |
| if (!llvm::all_of(operands.getTypes(), |
| [](Type t) { return t.isa<LLVM::LLVMType>(); })) |
| return failure(); |
| |
| auto llvmArrayTy = operands[0].getType().cast<LLVM::LLVMType>(); |
| if (!llvmArrayTy.isArrayTy()) |
| return oneToOneRewrite(op, targetOp, operands, typeConverter, rewriter); |
| |
| auto callback = [op, targetOp, &rewriter](LLVM::LLVMType llvmVectorTy, |
| ValueRange operands) { |
| OperationState state(op->getLoc(), targetOp); |
| state.addTypes(llvmVectorTy); |
| state.addOperands(operands); |
| state.addAttributes(op->getAttrs()); |
| return rewriter.createOperation(state)->getResult(0); |
| }; |
| |
| return handleMultidimensionalVectors(op, operands, typeConverter, callback, |
| rewriter); |
| } |
| |
| namespace { |
| // Straightforward lowerings. |
| using AbsFOpLowering = VectorConvertToLLVMPattern<AbsFOp, LLVM::FAbsOp>; |
| using AddFOpLowering = VectorConvertToLLVMPattern<AddFOp, LLVM::FAddOp>; |
| using AddIOpLowering = VectorConvertToLLVMPattern<AddIOp, LLVM::AddOp>; |
| using AndOpLowering = VectorConvertToLLVMPattern<AndOp, LLVM::AndOp>; |
| using CeilFOpLowering = VectorConvertToLLVMPattern<CeilFOp, LLVM::FCeilOp>; |
| using CopySignOpLowering = |
| VectorConvertToLLVMPattern<CopySignOp, LLVM::CopySignOp>; |
| using CosOpLowering = VectorConvertToLLVMPattern<CosOp, LLVM::CosOp>; |
| using DivFOpLowering = VectorConvertToLLVMPattern<DivFOp, LLVM::FDivOp>; |
| using ExpOpLowering = VectorConvertToLLVMPattern<ExpOp, LLVM::ExpOp>; |
| using Exp2OpLowering = VectorConvertToLLVMPattern<Exp2Op, LLVM::Exp2Op>; |
| using Log10OpLowering = VectorConvertToLLVMPattern<Log10Op, LLVM::Log10Op>; |
| using Log2OpLowering = VectorConvertToLLVMPattern<Log2Op, LLVM::Log2Op>; |
| using LogOpLowering = VectorConvertToLLVMPattern<LogOp, LLVM::LogOp>; |
| using MulFOpLowering = VectorConvertToLLVMPattern<MulFOp, LLVM::FMulOp>; |
| using MulIOpLowering = VectorConvertToLLVMPattern<MulIOp, LLVM::MulOp>; |
| using NegFOpLowering = VectorConvertToLLVMPattern<NegFOp, LLVM::FNegOp>; |
| using OrOpLowering = VectorConvertToLLVMPattern<OrOp, LLVM::OrOp>; |
| using RemFOpLowering = VectorConvertToLLVMPattern<RemFOp, LLVM::FRemOp>; |
| using SelectOpLowering = OneToOneConvertToLLVMPattern<SelectOp, LLVM::SelectOp>; |
| using ShiftLeftOpLowering = |
| OneToOneConvertToLLVMPattern<ShiftLeftOp, LLVM::ShlOp>; |
| using SignedDivIOpLowering = |
| VectorConvertToLLVMPattern<SignedDivIOp, LLVM::SDivOp>; |
| using SignedRemIOpLowering = |
| VectorConvertToLLVMPattern<SignedRemIOp, LLVM::SRemOp>; |
| using SignedShiftRightOpLowering = |
| OneToOneConvertToLLVMPattern<SignedShiftRightOp, LLVM::AShrOp>; |
| using SinOpLowering = VectorConvertToLLVMPattern<SinOp, LLVM::SinOp>; |
| using SqrtOpLowering = VectorConvertToLLVMPattern<SqrtOp, LLVM::SqrtOp>; |
| using SubFOpLowering = VectorConvertToLLVMPattern<SubFOp, LLVM::FSubOp>; |
| using SubIOpLowering = VectorConvertToLLVMPattern<SubIOp, LLVM::SubOp>; |
| using UnsignedDivIOpLowering = |
| VectorConvertToLLVMPattern<UnsignedDivIOp, LLVM::UDivOp>; |
| using UnsignedRemIOpLowering = |
| VectorConvertToLLVMPattern<UnsignedRemIOp, LLVM::URemOp>; |
| using UnsignedShiftRightOpLowering = |
| OneToOneConvertToLLVMPattern<UnsignedShiftRightOp, LLVM::LShrOp>; |
| using XOrOpLowering = VectorConvertToLLVMPattern<XOrOp, LLVM::XOrOp>; |
| |
| // Lowerings for operations on complex numbers. |
| |
| struct CreateComplexOpLowering |
| : public ConvertOpToLLVMPattern<CreateComplexOp> { |
| using ConvertOpToLLVMPattern<CreateComplexOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto complexOp = cast<CreateComplexOp>(op); |
| CreateComplexOp::Adaptor transformed(operands); |
| |
| // Pack real and imaginary part in a complex number struct. |
| auto loc = op->getLoc(); |
| auto structType = typeConverter.convertType(complexOp.getType()); |
| auto complexStruct = ComplexStructBuilder::undef(rewriter, loc, structType); |
| complexStruct.setReal(rewriter, loc, transformed.real()); |
| complexStruct.setImaginary(rewriter, loc, transformed.imaginary()); |
| |
| rewriter.replaceOp(op, {complexStruct}); |
| return success(); |
| } |
| }; |
| |
| struct ReOpLowering : public ConvertOpToLLVMPattern<ReOp> { |
| using ConvertOpToLLVMPattern<ReOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| ReOp::Adaptor transformed(operands); |
| |
| // Extract real part from the complex number struct. |
| ComplexStructBuilder complexStruct(transformed.complex()); |
| Value real = complexStruct.real(rewriter, op->getLoc()); |
| rewriter.replaceOp(op, real); |
| |
| return success(); |
| } |
| }; |
| |
| struct ImOpLowering : public ConvertOpToLLVMPattern<ImOp> { |
| using ConvertOpToLLVMPattern<ImOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| ImOp::Adaptor transformed(operands); |
| |
| // Extract imaginary part from the complex number struct. |
| ComplexStructBuilder complexStruct(transformed.complex()); |
| Value imaginary = complexStruct.imaginary(rewriter, op->getLoc()); |
| rewriter.replaceOp(op, imaginary); |
| |
| return success(); |
| } |
| }; |
| |
| struct BinaryComplexOperands { |
| std::complex<Value> lhs, rhs; |
| }; |
| |
| template <typename OpTy> |
| BinaryComplexOperands |
| unpackBinaryComplexOperands(OpTy op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) { |
| auto bop = cast<OpTy>(op); |
| auto loc = bop.getLoc(); |
| typename OpTy::Adaptor transformed(operands); |
| |
| // Extract real and imaginary values from operands. |
| BinaryComplexOperands unpacked; |
| ComplexStructBuilder lhs(transformed.lhs()); |
| unpacked.lhs.real(lhs.real(rewriter, loc)); |
| unpacked.lhs.imag(lhs.imaginary(rewriter, loc)); |
| ComplexStructBuilder rhs(transformed.rhs()); |
| unpacked.rhs.real(rhs.real(rewriter, loc)); |
| unpacked.rhs.imag(rhs.imaginary(rewriter, loc)); |
| |
| return unpacked; |
| } |
| |
| struct AddCFOpLowering : public ConvertOpToLLVMPattern<AddCFOp> { |
| using ConvertOpToLLVMPattern<AddCFOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *operation, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto op = cast<AddCFOp>(operation); |
| auto loc = op.getLoc(); |
| BinaryComplexOperands arg = |
| unpackBinaryComplexOperands<AddCFOp>(op, operands, rewriter); |
| |
| // Initialize complex number struct for result. |
| auto structType = this->typeConverter.convertType(op.getType()); |
| auto result = ComplexStructBuilder::undef(rewriter, loc, structType); |
| |
| // Emit IR to add complex numbers. |
| Value real = |
| rewriter.create<LLVM::FAddOp>(loc, arg.lhs.real(), arg.rhs.real()); |
| Value imag = |
| rewriter.create<LLVM::FAddOp>(loc, arg.lhs.imag(), arg.rhs.imag()); |
| result.setReal(rewriter, loc, real); |
| result.setImaginary(rewriter, loc, imag); |
| |
| rewriter.replaceOp(op, {result}); |
| return success(); |
| } |
| }; |
| |
| struct SubCFOpLowering : public ConvertOpToLLVMPattern<SubCFOp> { |
| using ConvertOpToLLVMPattern<SubCFOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *operation, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto op = cast<SubCFOp>(operation); |
| auto loc = op.getLoc(); |
| BinaryComplexOperands arg = |
| unpackBinaryComplexOperands<SubCFOp>(op, operands, rewriter); |
| |
| // Initialize complex number struct for result. |
| auto structType = this->typeConverter.convertType(op.getType()); |
| auto result = ComplexStructBuilder::undef(rewriter, loc, structType); |
| |
| // Emit IR to substract complex numbers. |
| Value real = |
| rewriter.create<LLVM::FSubOp>(loc, arg.lhs.real(), arg.rhs.real()); |
| Value imag = |
| rewriter.create<LLVM::FSubOp>(loc, arg.lhs.imag(), arg.rhs.imag()); |
| result.setReal(rewriter, loc, real); |
| result.setImaginary(rewriter, loc, imag); |
| |
| rewriter.replaceOp(op, {result}); |
| return success(); |
| } |
| }; |
| |
| struct ConstantOpLowering : public ConvertOpToLLVMPattern<ConstantOp> { |
| using ConvertOpToLLVMPattern<ConstantOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *operation, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto op = cast<ConstantOp>(operation); |
| // If constant refers to a function, convert it to "addressof". |
| if (auto symbolRef = op.getValue().dyn_cast<FlatSymbolRefAttr>()) { |
| auto type = typeConverter.convertType(op.getResult().getType()) |
| .dyn_cast_or_null<LLVM::LLVMType>(); |
| if (!type) |
| return rewriter.notifyMatchFailure(op, "failed to convert result type"); |
| |
| MutableDictionaryAttr attrs(op.getAttrs()); |
| attrs.remove(rewriter.getIdentifier("value")); |
| rewriter.replaceOpWithNewOp<LLVM::AddressOfOp>( |
| op, type.cast<LLVM::LLVMType>(), symbolRef.getValue(), |
| attrs.getAttrs()); |
| return success(); |
| } |
| |
| // Calling into other scopes (non-flat reference) is not supported in LLVM. |
| if (op.getValue().isa<SymbolRefAttr>()) |
| return rewriter.notifyMatchFailure( |
| op, "referring to a symbol outside of the current module"); |
| |
| return LLVM::detail::oneToOneRewrite(op, |
| LLVM::ConstantOp::getOperationName(), |
| operands, typeConverter, rewriter); |
| } |
| }; |
| |
| // Check if the MemRefType `type` is supported by the lowering. We currently |
| // only support memrefs with identity maps. |
| static bool isSupportedMemRefType(MemRefType type) { |
| return type.getAffineMaps().empty() || |
| llvm::all_of(type.getAffineMaps(), |
| [](AffineMap map) { return map.isIdentity(); }); |
| } |
| |
| /// Lowering for AllocOp and AllocaOp. |
| template <typename AllocLikeOp> |
| struct AllocLikeOpLowering : public ConvertOpToLLVMPattern<AllocLikeOp> { |
| using ConvertOpToLLVMPattern<AllocLikeOp>::createIndexConstant; |
| using ConvertOpToLLVMPattern<AllocLikeOp>::getIndexType; |
| using ConvertOpToLLVMPattern<AllocLikeOp>::typeConverter; |
| using ConvertOpToLLVMPattern<AllocLikeOp>::getVoidPtrType; |
| using ConvertOpToLLVMPattern<AllocLikeOp>::options; |
| |
| explicit AllocLikeOpLowering(LLVMTypeConverter &converter, |
| const LowerToLLVMOptions &options) |
| : ConvertOpToLLVMPattern<AllocLikeOp>(converter, options) {} |
| |
| LogicalResult match(Operation *op) const override { |
| MemRefType memRefType = cast<AllocLikeOp>(op).getType(); |
| if (isSupportedMemRefType(memRefType)) |
| return success(); |
| |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(memRefType, strides, offset); |
| if (failed(successStrides)) |
| return failure(); |
| |
| // Dynamic strides are ok if they can be deduced from dynamic sizes (which |
| // is guaranteed when succeeded(successStrides)). Dynamic offset however can |
| // never be alloc'ed. |
| if (offset == MemRefType::getDynamicStrideOrOffset()) |
| return failure(); |
| |
| return success(); |
| } |
| |
| // Returns bump = (alignment - (input % alignment))% alignment, which is the |
| // increment necessary to align `input` to `alignment` boundary. |
| // TODO: this can be made more efficient by just using a single addition |
| // and two bit shifts: (ptr + align - 1)/align, align is always power of 2. |
| Value createBumpToAlign(Location loc, OpBuilder b, Value input, |
| Value alignment) const { |
| Value modAlign = b.create<LLVM::URemOp>(loc, input, alignment); |
| Value diff = b.create<LLVM::SubOp>(loc, alignment, modAlign); |
| Value shift = b.create<LLVM::URemOp>(loc, diff, alignment); |
| return shift; |
| } |
| |
| /// Creates and populates the memref descriptor struct given all its fields. |
| /// This method also performs any post allocation alignment needed for heap |
| /// allocations when `accessAlignment` is non null. This is used with |
| /// allocators that do not support alignment. |
| MemRefDescriptor createMemRefDescriptor( |
| Location loc, ConversionPatternRewriter &rewriter, MemRefType memRefType, |
| Value allocatedTypePtr, Value allocatedBytePtr, Value accessAlignment, |
| uint64_t offset, ArrayRef<int64_t> strides, ArrayRef<Value> sizes) const { |
| auto elementPtrType = getElementPtrType(memRefType); |
| auto structType = typeConverter.convertType(memRefType); |
| auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType); |
| |
| // Field 1: Allocated pointer, used for malloc/free. |
| memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedTypePtr); |
| |
| // Field 2: Actual aligned pointer to payload. |
| Value alignedBytePtr = allocatedTypePtr; |
| if (accessAlignment) { |
| // offset = (align - (ptr % align))% align |
| Value intVal = rewriter.create<LLVM::PtrToIntOp>( |
| loc, this->getIndexType(), allocatedBytePtr); |
| Value offset = createBumpToAlign(loc, rewriter, intVal, accessAlignment); |
| Value aligned = rewriter.create<LLVM::GEPOp>( |
| loc, allocatedBytePtr.getType(), allocatedBytePtr, offset); |
| alignedBytePtr = rewriter.create<LLVM::BitcastOp>( |
| loc, elementPtrType, ArrayRef<Value>(aligned)); |
| } |
| memRefDescriptor.setAlignedPtr(rewriter, loc, alignedBytePtr); |
| |
| // Field 3: Offset in aligned pointer. |
| memRefDescriptor.setOffset(rewriter, loc, |
| createIndexConstant(rewriter, loc, offset)); |
| |
| if (memRefType.getRank() == 0) |
| // No size/stride descriptor in memref, return the descriptor value. |
| return memRefDescriptor; |
| |
| // Fields 4 and 5: sizes and strides of the strided MemRef. |
| // Store all sizes in the descriptor. Only dynamic sizes are passed in as |
| // operands to AllocOp. |
| Value runningStride = nullptr; |
| // Iterate strides in reverse order, compute runningStride and strideValues. |
| auto nStrides = strides.size(); |
| SmallVector<Value, 4> strideValues(nStrides, nullptr); |
| for (unsigned i = 0; i < nStrides; ++i) { |
| int64_t index = nStrides - 1 - i; |
| if (strides[index] == MemRefType::getDynamicStrideOrOffset()) |
| // Identity layout map is enforced in the match function, so we compute: |
| // `runningStride *= sizes[index + 1]` |
| runningStride = runningStride |
| ? rewriter.create<LLVM::MulOp>(loc, runningStride, |
| sizes[index + 1]) |
| : createIndexConstant(rewriter, loc, 1); |
| else |
| runningStride = createIndexConstant(rewriter, loc, strides[index]); |
| strideValues[index] = runningStride; |
| } |
| // Fill size and stride descriptors in memref. |
| for (auto indexedSize : llvm::enumerate(sizes)) { |
| int64_t index = indexedSize.index(); |
| memRefDescriptor.setSize(rewriter, loc, index, indexedSize.value()); |
| memRefDescriptor.setStride(rewriter, loc, index, strideValues[index]); |
| } |
| return memRefDescriptor; |
| } |
| |
| /// Determines sizes to be used in the memref descriptor. |
| void getSizes(Location loc, MemRefType memRefType, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter, |
| SmallVectorImpl<Value> &sizes, Value &cumulativeSize, |
| Value &one) const { |
| sizes.reserve(memRefType.getRank()); |
| unsigned i = 0; |
| for (int64_t s : memRefType.getShape()) |
| sizes.push_back(s == -1 ? operands[i++] |
| : createIndexConstant(rewriter, loc, s)); |
| if (sizes.empty()) |
| sizes.push_back(createIndexConstant(rewriter, loc, 1)); |
| |
| // Compute the total number of memref elements. |
| cumulativeSize = sizes.front(); |
| for (unsigned i = 1, e = sizes.size(); i < e; ++i) |
| cumulativeSize = rewriter.create<LLVM::MulOp>( |
| loc, getIndexType(), ArrayRef<Value>{cumulativeSize, sizes[i]}); |
| |
| // Compute the size of an individual element. This emits the MLIR equivalent |
| // of the following sizeof(...) implementation in LLVM IR: |
| // %0 = getelementptr %elementType* null, %indexType 1 |
| // %1 = ptrtoint %elementType* %0 to %indexType |
| // which is a common pattern of getting the size of a type in bytes. |
| auto elementType = memRefType.getElementType(); |
| auto convertedPtrType = typeConverter.convertType(elementType) |
| .template cast<LLVM::LLVMType>() |
| .getPointerTo(); |
| auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType); |
| one = createIndexConstant(rewriter, loc, 1); |
| auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType, |
| ArrayRef<Value>{nullPtr, one}); |
| auto elementSize = |
| rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep); |
| cumulativeSize = rewriter.create<LLVM::MulOp>( |
| loc, getIndexType(), ArrayRef<Value>{cumulativeSize, elementSize}); |
| } |
| |
| /// Returns the type of a pointer to an element of the memref. |
| Type getElementPtrType(MemRefType memRefType) const { |
| auto elementType = memRefType.getElementType(); |
| auto structElementType = typeConverter.convertType(elementType); |
| return structElementType.template cast<LLVM::LLVMType>().getPointerTo( |
| memRefType.getMemorySpace()); |
| } |
| |
| /// Returns the memref's element size in bytes. |
| // TODO: there are other places where this is used. Expose publicly? |
| static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) { |
| auto elementType = memRefType.getElementType(); |
| |
| unsigned sizeInBits; |
| if (elementType.isIntOrFloat()) { |
| sizeInBits = elementType.getIntOrFloatBitWidth(); |
| } else { |
| auto vectorType = elementType.cast<VectorType>(); |
| sizeInBits = |
| vectorType.getElementTypeBitWidth() * vectorType.getNumElements(); |
| } |
| return llvm::divideCeil(sizeInBits, 8); |
| } |
| |
| /// Returns the alignment to be used for the allocation call itself. |
| /// aligned_alloc requires the allocation size to be a power of two, and the |
| /// allocation size to be a multiple of alignment, |
| Optional<int64_t> getAllocationAlignment(AllocOp allocOp) const { |
| // No alignment can be used for the 'malloc' call itself. |
| if (!options.useAlignedAlloc) |
| return None; |
| |
| if (allocOp.alignment()) |
| return allocOp.alignment().getValue().getSExtValue(); |
| |
| // Whenever we don't have alignment set, we will use an alignment |
| // consistent with the element type; since the allocation size has to be a |
| // power of two, we will bump to the next power of two if it already isn't. |
| auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType()); |
| return std::max(kMinAlignedAllocAlignment, |
| llvm::PowerOf2Ceil(eltSizeBytes)); |
| } |
| |
| /// Returns true if the memref size in bytes is known to be a multiple of |
| /// factor. |
| static bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor) { |
| uint64_t sizeDivisor = getMemRefEltSizeInBytes(type); |
| for (unsigned i = 0, e = type.getRank(); i < e; i++) { |
| if (type.isDynamic(type.getDimSize(i))) |
| continue; |
| sizeDivisor = sizeDivisor * type.getDimSize(i); |
| } |
| return sizeDivisor % factor == 0; |
| } |
| |
| /// Allocates the underlying buffer using the right call. `allocatedBytePtr` |
| /// is set to null for stack allocations. `accessAlignment` is set if |
| /// alignment is needed post allocation (for eg. in conjunction with malloc). |
| Value allocateBuffer(Location loc, Value cumulativeSize, Operation *op, |
| MemRefType memRefType, Value one, Value &accessAlignment, |
| Value &allocatedBytePtr, |
| ConversionPatternRewriter &rewriter) const { |
| auto elementPtrType = getElementPtrType(memRefType); |
| |
| // With alloca, one gets a pointer to the element type right away. |
| // For stack allocations. |
| if (auto allocaOp = dyn_cast<AllocaOp>(op)) { |
| allocatedBytePtr = nullptr; |
| accessAlignment = nullptr; |
| return rewriter.create<LLVM::AllocaOp>( |
| loc, elementPtrType, cumulativeSize, |
| allocaOp.alignment() ? allocaOp.alignment().getValue().getSExtValue() |
| : 0); |
| } |
| |
| // Heap allocations. |
| AllocOp allocOp = cast<AllocOp>(op); |
| |
| Optional<int64_t> allocationAlignment = getAllocationAlignment(allocOp); |
| // Whether to use std lib function aligned_alloc that supports alignment. |
| bool useAlignedAlloc = allocationAlignment.hasValue(); |
| |
| // Insert the malloc/aligned_alloc declaration if it is not already present. |
| auto allocFuncName = useAlignedAlloc ? "aligned_alloc" : "malloc"; |
| auto module = allocOp.getParentOfType<ModuleOp>(); |
| auto allocFunc = module.lookupSymbol<LLVM::LLVMFuncOp>(allocFuncName); |
| if (!allocFunc) { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointToStart( |
| op->getParentOfType<ModuleOp>().getBody()); |
| SmallVector<LLVM::LLVMType, 2> callArgTypes = {getIndexType()}; |
| // aligned_alloc(size_t alignment, size_t size) |
| if (useAlignedAlloc) |
| callArgTypes.push_back(getIndexType()); |
| allocFunc = rewriter.create<LLVM::LLVMFuncOp>( |
| rewriter.getUnknownLoc(), allocFuncName, |
| LLVM::LLVMType::getFunctionTy(getVoidPtrType(), callArgTypes, |
| /*isVarArg=*/false)); |
| } |
| |
| // Allocate the underlying buffer and store a pointer to it in the MemRef |
| // descriptor. |
| SmallVector<Value, 2> callArgs; |
| if (useAlignedAlloc) { |
| // Use aligned_alloc. |
| assert(allocationAlignment && "allocation alignment should be present"); |
| auto alignedAllocAlignmentValue = rewriter.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(rewriter.getIntegerType(64)), |
| rewriter.getI64IntegerAttr(allocationAlignment.getValue())); |
| // aligned_alloc requires size to be a multiple of alignment; we will pad |
| // the size to the next multiple if necessary. |
| if (!isMemRefSizeMultipleOf(memRefType, allocationAlignment.getValue())) { |
| Value bump = createBumpToAlign(loc, rewriter, cumulativeSize, |
| alignedAllocAlignmentValue); |
| cumulativeSize = |
| rewriter.create<LLVM::AddOp>(loc, cumulativeSize, bump); |
| } |
| callArgs = {alignedAllocAlignmentValue, cumulativeSize}; |
| } else { |
| // Adjust the allocation size to consider alignment. |
| if (allocOp.alignment()) { |
| accessAlignment = createIndexConstant( |
| rewriter, loc, allocOp.alignment().getValue().getSExtValue()); |
| cumulativeSize = rewriter.create<LLVM::SubOp>( |
| loc, |
| rewriter.create<LLVM::AddOp>(loc, cumulativeSize, accessAlignment), |
| one); |
| } |
| callArgs.push_back(cumulativeSize); |
| } |
| auto allocFuncSymbol = rewriter.getSymbolRefAttr(allocFunc); |
| allocatedBytePtr = rewriter |
| .create<LLVM::CallOp>(loc, getVoidPtrType(), |
| allocFuncSymbol, callArgs) |
| .getResult(0); |
| // For heap allocations, the allocated pointer is a cast of the byte pointer |
| // to the type pointer. |
| return rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, |
| allocatedBytePtr); |
| } |
| |
| // An `alloc` is converted into a definition of a memref descriptor value and |
| // a call to `malloc` to allocate the underlying data buffer. The memref |
| // descriptor is of the LLVM structure type where: |
| // 1. the first element is a pointer to the allocated (typed) data buffer, |
| // 2. the second element is a pointer to the (typed) payload, aligned to the |
| // specified alignment, |
| // 3. the remaining elements serve to store all the sizes and strides of the |
| // memref using LLVM-converted `index` type. |
| // |
| // Alignment is performed by allocating `alignment - 1` more bytes than |
| // requested and shifting the aligned pointer relative to the allocated |
| // memory. If alignment is unspecified, the two pointers are equal. |
| |
| // An `alloca` is converted into a definition of a memref descriptor value and |
| // an llvm.alloca to allocate the underlying data buffer. |
| void rewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| MemRefType memRefType = cast<AllocLikeOp>(op).getType(); |
| auto loc = op->getLoc(); |
| |
| // Get actual sizes of the memref as values: static sizes are constant |
| // values and dynamic sizes are passed to 'alloc' as operands. In case of |
| // zero-dimensional memref, assume a scalar (size 1). |
| SmallVector<Value, 4> sizes; |
| Value cumulativeSize, one; |
| getSizes(loc, memRefType, operands, rewriter, sizes, cumulativeSize, one); |
| |
| // Allocate the underlying buffer. |
| // Value holding the alignment that has to be performed post allocation |
| // (in conjunction with allocators that do not support alignment, eg. |
| // malloc); nullptr if no such adjustment needs to be performed. |
| Value accessAlignment; |
| // Byte pointer to the allocated buffer. |
| Value allocatedBytePtr; |
| Value allocatedTypePtr = |
| allocateBuffer(loc, cumulativeSize, op, memRefType, one, |
| accessAlignment, allocatedBytePtr, rewriter); |
| |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(memRefType, strides, offset); |
| (void)successStrides; |
| assert(succeeded(successStrides) && "unexpected non-strided memref"); |
| assert(offset != MemRefType::getDynamicStrideOrOffset() && |
| "unexpected dynamic offset"); |
| |
| // 0-D memref corner case: they have size 1. |
| assert( |
| ((memRefType.getRank() == 0 && strides.empty() && sizes.size() == 1) || |
| (strides.size() == sizes.size())) && |
| "unexpected number of strides"); |
| |
| // Create the MemRef descriptor. |
| auto memRefDescriptor = createMemRefDescriptor( |
| loc, rewriter, memRefType, allocatedTypePtr, allocatedBytePtr, |
| accessAlignment, offset, strides, sizes); |
| |
| // Return the final value of the descriptor. |
| rewriter.replaceOp(op, {memRefDescriptor}); |
| } |
| |
| protected: |
| /// The minimum alignment to use with aligned_alloc (has to be a power of 2). |
| uint64_t kMinAlignedAllocAlignment = 16UL; |
| }; |
| |
| struct AllocOpLowering : public AllocLikeOpLowering<AllocOp> { |
| explicit AllocOpLowering(LLVMTypeConverter &converter, |
| const LowerToLLVMOptions &options) |
| : AllocLikeOpLowering<AllocOp>(converter, options) {} |
| }; |
| |
| using AllocaOpLowering = AllocLikeOpLowering<AllocaOp>; |
| |
| /// Copies the shaped descriptor part to (if `toDynamic` is set) or from |
| /// (otherwise) the dynamically allocated memory for any operands that were |
| /// unranked descriptors originally. |
| static LogicalResult copyUnrankedDescriptors(OpBuilder &builder, Location loc, |
| LLVMTypeConverter &typeConverter, |
| TypeRange origTypes, |
| SmallVectorImpl<Value> &operands, |
| bool toDynamic) { |
| assert(origTypes.size() == operands.size() && |
| "expected as may original types as operands"); |
| |
| // Find operands of unranked memref type and store them. |
| SmallVector<UnrankedMemRefDescriptor, 4> unrankedMemrefs; |
| for (unsigned i = 0, e = operands.size(); i < e; ++i) |
| if (origTypes[i].isa<UnrankedMemRefType>()) |
| unrankedMemrefs.emplace_back(operands[i]); |
| |
| if (unrankedMemrefs.empty()) |
| return success(); |
| |
| // Compute allocation sizes. |
| SmallVector<Value, 4> sizes; |
| UnrankedMemRefDescriptor::computeSizes(builder, loc, typeConverter, |
| unrankedMemrefs, sizes); |
| |
| // Get frequently used types. |
| auto voidType = LLVM::LLVMType::getVoidTy(typeConverter.getDialect()); |
| auto voidPtrType = LLVM::LLVMType::getInt8PtrTy(typeConverter.getDialect()); |
| auto i1Type = LLVM::LLVMType::getInt1Ty(typeConverter.getDialect()); |
| LLVM::LLVMType indexType = typeConverter.getIndexType(); |
| |
| // Find the malloc and free, or declare them if necessary. |
| auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>(); |
| auto mallocFunc = module.lookupSymbol<LLVM::LLVMFuncOp>("malloc"); |
| if (!mallocFunc && toDynamic) { |
| OpBuilder::InsertionGuard guard(builder); |
| builder.setInsertionPointToStart(module.getBody()); |
| mallocFunc = builder.create<LLVM::LLVMFuncOp>( |
| builder.getUnknownLoc(), "malloc", |
| LLVM::LLVMType::getFunctionTy( |
| voidPtrType, llvm::makeArrayRef(indexType), /*isVarArg=*/false)); |
| } |
| auto freeFunc = module.lookupSymbol<LLVM::LLVMFuncOp>("free"); |
| if (!freeFunc && !toDynamic) { |
| OpBuilder::InsertionGuard guard(builder); |
| builder.setInsertionPointToStart(module.getBody()); |
| freeFunc = builder.create<LLVM::LLVMFuncOp>( |
| builder.getUnknownLoc(), "free", |
| LLVM::LLVMType::getFunctionTy(voidType, llvm::makeArrayRef(voidPtrType), |
| /*isVarArg=*/false)); |
| } |
| |
| // Initialize shared constants. |
| Value zero = |
| builder.create<LLVM::ConstantOp>(loc, i1Type, builder.getBoolAttr(false)); |
| |
| unsigned unrankedMemrefPos = 0; |
| for (unsigned i = 0, e = operands.size(); i < e; ++i) { |
| Type type = origTypes[i]; |
| if (!type.isa<UnrankedMemRefType>()) |
| continue; |
| Value allocationSize = sizes[unrankedMemrefPos++]; |
| UnrankedMemRefDescriptor desc(operands[i]); |
| |
| // Allocate memory, copy, and free the source if necessary. |
| Value memory = |
| toDynamic |
| ? builder.create<LLVM::CallOp>(loc, mallocFunc, allocationSize) |
| .getResult(0) |
| : builder.create<LLVM::AllocaOp>(loc, voidPtrType, allocationSize, |
| /*alignment=*/0); |
| |
| Value source = desc.memRefDescPtr(builder, loc); |
| builder.create<LLVM::MemcpyOp>(loc, memory, source, allocationSize, zero); |
| if (!toDynamic) |
| builder.create<LLVM::CallOp>(loc, freeFunc, source); |
| |
| // Create a new descriptor. The same descriptor can be returned multiple |
| // times, attempting to modify its pointer can lead to memory leaks |
| // (allocated twice and overwritten) or double frees (the caller does not |
| // know if the descriptor points to the same memory). |
| Type descriptorType = typeConverter.convertType(type); |
| if (!descriptorType) |
| return failure(); |
| auto updatedDesc = |
| UnrankedMemRefDescriptor::undef(builder, loc, descriptorType); |
| Value rank = desc.rank(builder, loc); |
| updatedDesc.setRank(builder, loc, rank); |
| updatedDesc.setMemRefDescPtr(builder, loc, memory); |
| |
| operands[i] = updatedDesc; |
| } |
| |
| return success(); |
| } |
| |
| // A CallOp automatically promotes MemRefType to a sequence of alloca/store and |
| // passes the pointer to the MemRef across function boundaries. |
| template <typename CallOpType> |
| struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> { |
| using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern; |
| using Super = CallOpInterfaceLowering<CallOpType>; |
| using Base = ConvertOpToLLVMPattern<CallOpType>; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| typename CallOpType::Adaptor transformed(operands); |
| auto callOp = cast<CallOpType>(op); |
| |
| // Pack the result types into a struct. |
| Type packedResult; |
| unsigned numResults = callOp.getNumResults(); |
| auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes()); |
| |
| if (numResults != 0) { |
| if (!(packedResult = |
| this->typeConverter.packFunctionResults(resultTypes))) |
| return failure(); |
| } |
| |
| auto promoted = this->typeConverter.promoteMemRefDescriptors( |
| op->getLoc(), /*opOperands=*/op->getOperands(), operands, rewriter); |
| auto newOp = rewriter.create<LLVM::CallOp>(op->getLoc(), packedResult, |
| promoted, op->getAttrs()); |
| |
| SmallVector<Value, 4> results; |
| if (numResults < 2) { |
| // If < 2 results, packing did not do anything and we can just return. |
| results.append(newOp.result_begin(), newOp.result_end()); |
| } else { |
| // Otherwise, it had been converted to an operation producing a structure. |
| // Extract individual results from the structure and return them as list. |
| results.reserve(numResults); |
| for (unsigned i = 0; i < numResults; ++i) { |
| auto type = this->typeConverter.convertType(op->getResult(i).getType()); |
| results.push_back(rewriter.create<LLVM::ExtractValueOp>( |
| op->getLoc(), type, newOp.getOperation()->getResult(0), |
| rewriter.getI64ArrayAttr(i))); |
| } |
| } |
| if (failed(copyUnrankedDescriptors( |
| rewriter, op->getLoc(), this->typeConverter, op->getResultTypes(), |
| results, /*toDynamic=*/false))) |
| return failure(); |
| rewriter.replaceOp(op, results); |
| |
| return success(); |
| } |
| }; |
| |
| struct CallOpLowering : public CallOpInterfaceLowering<CallOp> { |
| using Super::Super; |
| }; |
| |
| struct CallIndirectOpLowering : public CallOpInterfaceLowering<CallIndirectOp> { |
| using Super::Super; |
| }; |
| |
| // A `dealloc` is converted into a call to `free` on the underlying data buffer. |
| // The memref descriptor being an SSA value, there is no need to clean it up |
| // in any way. |
| struct DeallocOpLowering : public ConvertOpToLLVMPattern<DeallocOp> { |
| using ConvertOpToLLVMPattern<DeallocOp>::ConvertOpToLLVMPattern; |
| |
| explicit DeallocOpLowering(LLVMTypeConverter &converter, |
| const LowerToLLVMOptions &options) |
| : ConvertOpToLLVMPattern<DeallocOp>(converter, options) {} |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| assert(operands.size() == 1 && "dealloc takes one operand"); |
| DeallocOp::Adaptor transformed(operands); |
| |
| // Insert the `free` declaration if it is not already present. |
| auto freeFunc = |
| op->getParentOfType<ModuleOp>().lookupSymbol<LLVM::LLVMFuncOp>("free"); |
| if (!freeFunc) { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointToStart( |
| op->getParentOfType<ModuleOp>().getBody()); |
| freeFunc = rewriter.create<LLVM::LLVMFuncOp>( |
| rewriter.getUnknownLoc(), "free", |
| LLVM::LLVMType::getFunctionTy(getVoidType(), getVoidPtrType(), |
| /*isVarArg=*/false)); |
| } |
| |
| MemRefDescriptor memref(transformed.memref()); |
| Value casted = rewriter.create<LLVM::BitcastOp>( |
| op->getLoc(), getVoidPtrType(), |
| memref.allocatedPtr(rewriter, op->getLoc())); |
| rewriter.replaceOpWithNewOp<LLVM::CallOp>( |
| op, ArrayRef<Type>(), rewriter.getSymbolRefAttr(freeFunc), casted); |
| return success(); |
| } |
| }; |
| |
| // A `rsqrt` is converted into `1 / sqrt`. |
| struct RsqrtOpLowering : public ConvertOpToLLVMPattern<RsqrtOp> { |
| using ConvertOpToLLVMPattern<RsqrtOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| RsqrtOp::Adaptor transformed(operands); |
| auto operandType = |
| transformed.operand().getType().dyn_cast<LLVM::LLVMType>(); |
| |
| if (!operandType) |
| return failure(); |
| |
| auto loc = op->getLoc(); |
| auto resultType = *op->result_type_begin(); |
| auto floatType = getElementTypeOrSelf(resultType).cast<FloatType>(); |
| auto floatOne = rewriter.getFloatAttr(floatType, 1.0); |
| |
| if (!operandType.isArrayTy()) { |
| LLVM::ConstantOp one; |
| if (operandType.isVectorTy()) { |
| one = rewriter.create<LLVM::ConstantOp>( |
| loc, operandType, |
| SplatElementsAttr::get(resultType.cast<ShapedType>(), floatOne)); |
| } else { |
| one = rewriter.create<LLVM::ConstantOp>(loc, operandType, floatOne); |
| } |
| auto sqrt = rewriter.create<LLVM::SqrtOp>(loc, transformed.operand()); |
| rewriter.replaceOpWithNewOp<LLVM::FDivOp>(op, operandType, one, sqrt); |
| return success(); |
| } |
| |
| auto vectorType = resultType.dyn_cast<VectorType>(); |
| if (!vectorType) |
| return failure(); |
| |
| return handleMultidimensionalVectors( |
| op, operands, typeConverter, |
| [&](LLVM::LLVMType llvmVectorTy, ValueRange operands) { |
| auto splatAttr = SplatElementsAttr::get( |
| mlir::VectorType::get( |
| {cast<llvm::FixedVectorType>(llvmVectorTy.getUnderlyingType()) |
| ->getNumElements()}, |
| floatType), |
| floatOne); |
| auto one = |
| rewriter.create<LLVM::ConstantOp>(loc, llvmVectorTy, splatAttr); |
| auto sqrt = |
| rewriter.create<LLVM::SqrtOp>(loc, llvmVectorTy, operands[0]); |
| return rewriter.create<LLVM::FDivOp>(loc, llvmVectorTy, one, sqrt); |
| }, |
| rewriter); |
| } |
| }; |
| |
| struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<MemRefCastOp> { |
| using ConvertOpToLLVMPattern<MemRefCastOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult match(Operation *op) const override { |
| auto memRefCastOp = cast<MemRefCastOp>(op); |
| Type srcType = memRefCastOp.getOperand().getType(); |
| Type dstType = memRefCastOp.getType(); |
| |
| // MemRefCastOp reduce to bitcast in the ranked MemRef case and can be used |
| // for type erasure. For now they must preserve underlying element type and |
| // require source and result type to have the same rank. Therefore, perform |
| // a sanity check that the underlying structs are the same. Once op |
| // semantics are relaxed we can revisit. |
| if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) |
| return success(typeConverter.convertType(srcType) == |
| typeConverter.convertType(dstType)); |
| |
| // At least one of the operands is unranked type |
| assert(srcType.isa<UnrankedMemRefType>() || |
| dstType.isa<UnrankedMemRefType>()); |
| |
| // Unranked to unranked cast is disallowed |
| return !(srcType.isa<UnrankedMemRefType>() && |
| dstType.isa<UnrankedMemRefType>()) |
| ? success() |
| : failure(); |
| } |
| |
| void rewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto memRefCastOp = cast<MemRefCastOp>(op); |
| MemRefCastOp::Adaptor transformed(operands); |
| |
| auto srcType = memRefCastOp.getOperand().getType(); |
| auto dstType = memRefCastOp.getType(); |
| auto targetStructType = typeConverter.convertType(memRefCastOp.getType()); |
| auto loc = op->getLoc(); |
| |
| // MemRefCastOp reduce to bitcast in the ranked MemRef case. |
| if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) { |
| rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(op, targetStructType, |
| transformed.source()); |
| } else if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { |
| // Casting ranked to unranked memref type |
| // Set the rank in the destination from the memref type |
| // Allocate space on the stack and copy the src memref descriptor |
| // Set the ptr in the destination to the stack space |
| auto srcMemRefType = srcType.cast<MemRefType>(); |
| int64_t rank = srcMemRefType.getRank(); |
| // ptr = AllocaOp sizeof(MemRefDescriptor) |
| auto ptr = typeConverter.promoteOneMemRefDescriptor( |
| loc, transformed.source(), rewriter); |
| // voidptr = BitCastOp srcType* to void* |
| auto voidPtr = |
| rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) |
| .getResult(); |
| // rank = ConstantOp srcRank |
| auto rankVal = rewriter.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(rewriter.getIntegerType(64)), |
| rewriter.getI64IntegerAttr(rank)); |
| // undef = UndefOp |
| UnrankedMemRefDescriptor memRefDesc = |
| UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); |
| // d1 = InsertValueOp undef, rank, 0 |
| memRefDesc.setRank(rewriter, loc, rankVal); |
| // d2 = InsertValueOp d1, voidptr, 1 |
| memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); |
| rewriter.replaceOp(op, (Value)memRefDesc); |
| |
| } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { |
| // Casting from unranked type to ranked. |
| // The operation is assumed to be doing a correct cast. If the destination |
| // type mismatches the unranked the type, it is undefined behavior. |
| UnrankedMemRefDescriptor memRefDesc(transformed.source()); |
| // ptr = ExtractValueOp src, 1 |
| auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); |
| // castPtr = BitCastOp i8* to structTy* |
| auto castPtr = |
| rewriter |
| .create<LLVM::BitcastOp>( |
| loc, targetStructType.cast<LLVM::LLVMType>().getPointerTo(), |
| ptr) |
| .getResult(); |
| // struct = LoadOp castPtr |
| auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); |
| rewriter.replaceOp(op, loadOp.getResult()); |
| } else { |
| llvm_unreachable("Unsupported unranked memref to unranked memref cast"); |
| } |
| } |
| }; |
| |
| struct DialectCastOpLowering |
| : public ConvertOpToLLVMPattern<LLVM::DialectCastOp> { |
| using ConvertOpToLLVMPattern<LLVM::DialectCastOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto castOp = cast<LLVM::DialectCastOp>(op); |
| LLVM::DialectCastOp::Adaptor transformed(operands); |
| if (transformed.in().getType() != |
| typeConverter.convertType(castOp.getType())) { |
| return failure(); |
| } |
| rewriter.replaceOp(op, transformed.in()); |
| return success(); |
| } |
| }; |
| |
| // A `dim` is converted to a constant for static sizes and to an access to the |
| // size stored in the memref descriptor for dynamic sizes. |
| struct DimOpLowering : public ConvertOpToLLVMPattern<DimOp> { |
| using ConvertOpToLLVMPattern<DimOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto dimOp = cast<DimOp>(op); |
| auto loc = op->getLoc(); |
| DimOp::Adaptor transformed(operands); |
| |
| // Take advantage if index is constant. |
| MemRefType memRefType = dimOp.memrefOrTensor().getType().cast<MemRefType>(); |
| if (Optional<int64_t> index = dimOp.getConstantIndex()) { |
| int64_t i = index.getValue(); |
| if (memRefType.isDynamicDim(i)) { |
| // Extract dynamic size from the memref descriptor. |
| MemRefDescriptor descriptor(transformed.memrefOrTensor()); |
| rewriter.replaceOp(op, {descriptor.size(rewriter, loc, i)}); |
| } else { |
| // Use constant for static size. |
| int64_t dimSize = memRefType.getDimSize(i); |
| rewriter.replaceOp(op, createIndexConstant(rewriter, loc, dimSize)); |
| } |
| return success(); |
| } |
| |
| Value index = dimOp.index(); |
| int64_t rank = memRefType.getRank(); |
| MemRefDescriptor memrefDescriptor(transformed.memrefOrTensor()); |
| rewriter.replaceOp(op, {memrefDescriptor.size(rewriter, loc, index, rank)}); |
| return success(); |
| } |
| }; |
| |
| // Common base for load and store operations on MemRefs. Restricts the match |
| // to supported MemRef types. Provides functionality to emit code accessing a |
| // specific element of the underlying data buffer. |
| template <typename Derived> |
| struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { |
| using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; |
| using Base = LoadStoreOpLowering<Derived>; |
| |
| LogicalResult match(Operation *op) const override { |
| MemRefType type = cast<Derived>(op).getMemRefType(); |
| return isSupportedMemRefType(type) ? success() : failure(); |
| } |
| }; |
| |
| // Load operation is lowered to obtaining a pointer to the indexed element |
| // and loading it. |
| struct LoadOpLowering : public LoadStoreOpLowering<LoadOp> { |
| using Base::Base; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loadOp = cast<LoadOp>(op); |
| LoadOp::Adaptor transformed(operands); |
| auto type = loadOp.getMemRefType(); |
| |
| Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(), |
| transformed.indices(), rewriter, getModule()); |
| rewriter.replaceOpWithNewOp<LLVM::LoadOp>(op, dataPtr); |
| return success(); |
| } |
| }; |
| |
| // Store operation is lowered to obtaining a pointer to the indexed element, |
| // and storing the given value to it. |
| struct StoreOpLowering : public LoadStoreOpLowering<StoreOp> { |
| using Base::Base; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto type = cast<StoreOp>(op).getMemRefType(); |
| StoreOp::Adaptor transformed(operands); |
| |
| Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(), |
| transformed.indices(), rewriter, getModule()); |
| rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(), |
| dataPtr); |
| return success(); |
| } |
| }; |
| |
| // The prefetch operation is lowered in a way similar to the load operation |
| // except that the llvm.prefetch operation is used for replacement. |
| struct PrefetchOpLowering : public LoadStoreOpLowering<PrefetchOp> { |
| using Base::Base; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto prefetchOp = cast<PrefetchOp>(op); |
| PrefetchOp::Adaptor transformed(operands); |
| auto type = prefetchOp.getMemRefType(); |
| |
| Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(), |
| transformed.indices(), rewriter, getModule()); |
| |
| // Replace with llvm.prefetch. |
| auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32)); |
| auto isWrite = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmI32Type, |
| rewriter.getI32IntegerAttr(prefetchOp.isWrite())); |
| auto localityHint = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmI32Type, |
| rewriter.getI32IntegerAttr(prefetchOp.localityHint().getZExtValue())); |
| auto isData = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), llvmI32Type, |
| rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); |
| |
| rewriter.replaceOpWithNewOp<LLVM::Prefetch>(op, dataPtr, isWrite, |
| localityHint, isData); |
| return success(); |
| } |
| }; |
| |
| // The lowering of index_cast becomes an integer conversion since index becomes |
| // an integer. If the bit width of the source and target integer types is the |
| // same, just erase the cast. If the target type is wider, sign-extend the |
| // value, otherwise truncate it. |
| struct IndexCastOpLowering : public ConvertOpToLLVMPattern<IndexCastOp> { |
| using ConvertOpToLLVMPattern<IndexCastOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| IndexCastOpAdaptor transformed(operands); |
| auto indexCastOp = cast<IndexCastOp>(op); |
| |
| auto targetType = |
| this->typeConverter.convertType(indexCastOp.getResult().getType()) |
| .cast<LLVM::LLVMType>(); |
| auto sourceType = transformed.in().getType().cast<LLVM::LLVMType>(); |
| unsigned targetBits = targetType.getUnderlyingType()->getIntegerBitWidth(); |
| unsigned sourceBits = sourceType.getUnderlyingType()->getIntegerBitWidth(); |
| |
| if (targetBits == sourceBits) |
| rewriter.replaceOp(op, transformed.in()); |
| else if (targetBits < sourceBits) |
| rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType, |
| transformed.in()); |
| else |
| rewriter.replaceOpWithNewOp<LLVM::SExtOp>(op, targetType, |
| transformed.in()); |
| return success(); |
| } |
| }; |
| |
| // Convert std.cmp predicate into the LLVM dialect CmpPredicate. The two |
| // enums share the numerical values so just cast. |
| template <typename LLVMPredType, typename StdPredType> |
| static LLVMPredType convertCmpPredicate(StdPredType pred) { |
| return static_cast<LLVMPredType>(pred); |
| } |
| |
| struct CmpIOpLowering : public ConvertOpToLLVMPattern<CmpIOp> { |
| using ConvertOpToLLVMPattern<CmpIOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto cmpiOp = cast<CmpIOp>(op); |
| CmpIOpAdaptor transformed(operands); |
| |
| rewriter.replaceOpWithNewOp<LLVM::ICmpOp>( |
| op, typeConverter.convertType(cmpiOp.getResult().getType()), |
| rewriter.getI64IntegerAttr(static_cast<int64_t>( |
| convertCmpPredicate<LLVM::ICmpPredicate>(cmpiOp.getPredicate()))), |
| transformed.lhs(), transformed.rhs()); |
| |
| return success(); |
| } |
| }; |
| |
| struct CmpFOpLowering : public ConvertOpToLLVMPattern<CmpFOp> { |
| using ConvertOpToLLVMPattern<CmpFOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto cmpfOp = cast<CmpFOp>(op); |
| CmpFOpAdaptor transformed(operands); |
| |
| rewriter.replaceOpWithNewOp<LLVM::FCmpOp>( |
| op, typeConverter.convertType(cmpfOp.getResult().getType()), |
| rewriter.getI64IntegerAttr(static_cast<int64_t>( |
| convertCmpPredicate<LLVM::FCmpPredicate>(cmpfOp.getPredicate()))), |
| transformed.lhs(), transformed.rhs()); |
| |
| return success(); |
| } |
| }; |
| |
| struct SIToFPLowering |
| : public OneToOneConvertToLLVMPattern<SIToFPOp, LLVM::SIToFPOp> { |
| using Super::Super; |
| }; |
| |
| struct FPExtLowering |
| : public OneToOneConvertToLLVMPattern<FPExtOp, LLVM::FPExtOp> { |
| using Super::Super; |
| }; |
| |
| struct FPToSILowering |
| : public OneToOneConvertToLLVMPattern<FPToSIOp, LLVM::FPToSIOp> { |
| using Super::Super; |
| }; |
| |
| struct FPTruncLowering |
| : public OneToOneConvertToLLVMPattern<FPTruncOp, LLVM::FPTruncOp> { |
| using Super::Super; |
| }; |
| |
| struct SignExtendIOpLowering |
| : public OneToOneConvertToLLVMPattern<SignExtendIOp, LLVM::SExtOp> { |
| using Super::Super; |
| }; |
| |
| struct TruncateIOpLowering |
| : public OneToOneConvertToLLVMPattern<TruncateIOp, LLVM::TruncOp> { |
| using Super::Super; |
| }; |
| |
| struct ZeroExtendIOpLowering |
| : public OneToOneConvertToLLVMPattern<ZeroExtendIOp, LLVM::ZExtOp> { |
| using Super::Super; |
| }; |
| |
| // Base class for LLVM IR lowering terminator operations with successors. |
| template <typename SourceOp, typename TargetOp> |
| struct OneToOneLLVMTerminatorLowering |
| : public ConvertOpToLLVMPattern<SourceOp> { |
| using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern; |
| using Super = OneToOneLLVMTerminatorLowering<SourceOp, TargetOp>; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| rewriter.replaceOpWithNewOp<TargetOp>(op, operands, op->getSuccessors(), |
| op->getAttrs()); |
| return success(); |
| } |
| }; |
| |
| // Special lowering pattern for `ReturnOps`. Unlike all other operations, |
| // `ReturnOp` interacts with the function signature and must have as many |
| // operands as the function has return values. Because in LLVM IR, functions |
| // can only return 0 or 1 value, we pack multiple values into a structure type. |
| // Emit `UndefOp` followed by `InsertValueOp`s to create such structure if |
| // necessary before returning it |
| struct ReturnOpLowering : public ConvertOpToLLVMPattern<ReturnOp> { |
| using ConvertOpToLLVMPattern<ReturnOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| unsigned numArguments = op->getNumOperands(); |
| auto updatedOperands = llvm::to_vector<4>(operands); |
| copyUnrankedDescriptors(rewriter, op->getLoc(), typeConverter, |
| op->getOperands().getTypes(), updatedOperands, |
| /*toDynamic=*/true); |
| |
| // If ReturnOp has 0 or 1 operand, create it and return immediately. |
| if (numArguments == 0) { |
| rewriter.replaceOpWithNewOp<LLVM::ReturnOp>( |
| op, ArrayRef<Type>(), ArrayRef<Value>(), op->getAttrs()); |
| return success(); |
| } |
| if (numArguments == 1) { |
| rewriter.replaceOpWithNewOp<LLVM::ReturnOp>( |
| op, ArrayRef<Type>(), updatedOperands, op->getAttrs()); |
| return success(); |
| } |
| |
| // Otherwise, we need to pack the arguments into an LLVM struct type before |
| // returning. |
| auto packedType = typeConverter.packFunctionResults( |
| llvm::to_vector<4>(op->getOperandTypes())); |
| |
| Value packed = rewriter.create<LLVM::UndefOp>(op->getLoc(), packedType); |
| for (unsigned i = 0; i < numArguments; ++i) { |
| packed = rewriter.create<LLVM::InsertValueOp>( |
| op->getLoc(), packedType, packed, updatedOperands[i], |
| rewriter.getI64ArrayAttr(i)); |
| } |
| rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, ArrayRef<Type>(), packed, |
| op->getAttrs()); |
| return success(); |
| } |
| }; |
| |
| // FIXME: this should be tablegen'ed as well. |
| struct BranchOpLowering |
| : public OneToOneLLVMTerminatorLowering<BranchOp, LLVM::BrOp> { |
| using Super::Super; |
| }; |
| struct CondBranchOpLowering |
| : public OneToOneLLVMTerminatorLowering<CondBranchOp, LLVM::CondBrOp> { |
| using Super::Super; |
| }; |
| |
| // The Splat operation is lowered to an insertelement + a shufflevector |
| // operation. Splat to only 1-d vector result types are lowered. |
| struct SplatOpLowering : public ConvertOpToLLVMPattern<SplatOp> { |
| using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto splatOp = cast<SplatOp>(op); |
| VectorType resultType = splatOp.getType().dyn_cast<VectorType>(); |
| if (!resultType || resultType.getRank() != 1) |
| return failure(); |
| |
| // First insert it into an undef vector so we can shuffle it. |
| auto vectorType = typeConverter.convertType(splatOp.getType()); |
| Value undef = rewriter.create<LLVM::UndefOp>(op->getLoc(), vectorType); |
| auto zero = rewriter.create<LLVM::ConstantOp>( |
| op->getLoc(), typeConverter.convertType(rewriter.getIntegerType(32)), |
| rewriter.getZeroAttr(rewriter.getIntegerType(32))); |
| |
| auto v = rewriter.create<LLVM::InsertElementOp>( |
| op->getLoc(), vectorType, undef, splatOp.getOperand(), zero); |
| |
| int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0); |
| SmallVector<int32_t, 4> zeroValues(width, 0); |
| |
| // Shuffle the value across the desired number of elements. |
| ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues); |
| rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, v, undef, zeroAttrs); |
| return success(); |
| } |
| }; |
| |
| // The Splat operation is lowered to an insertelement + a shufflevector |
| // operation. Splat to only 2+-d vector result types are lowered by the |
| // SplatNdOpLowering, the 1-d case is handled by SplatOpLowering. |
| struct SplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> { |
| using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto splatOp = cast<SplatOp>(op); |
| SplatOp::Adaptor adaptor(operands); |
| VectorType resultType = splatOp.getType().dyn_cast<VectorType>(); |
| if (!resultType || resultType.getRank() == 1) |
| return failure(); |
| |
| // First insert it into an undef vector so we can shuffle it. |
| auto loc = op->getLoc(); |
| auto vectorTypeInfo = extractNDVectorTypeInfo(resultType, typeConverter); |
| auto llvmArrayTy = vectorTypeInfo.llvmArrayTy; |
| auto llvmVectorTy = vectorTypeInfo.llvmVectorTy; |
| if (!llvmArrayTy || !llvmVectorTy) |
| return failure(); |
| |
| // Construct returned value. |
| Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy); |
| |
| // Construct a 1-D vector with the splatted value that we insert in all the |
| // places within the returned descriptor. |
| Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvmVectorTy); |
| auto zero = rewriter.create<LLVM::ConstantOp>( |
| loc, typeConverter.convertType(rewriter.getIntegerType(32)), |
| rewriter.getZeroAttr(rewriter.getIntegerType(32))); |
| Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvmVectorTy, vdesc, |
| adaptor.input(), zero); |
| |
| // Shuffle the value across the desired number of elements. |
| int64_t width = resultType.getDimSize(resultType.getRank() - 1); |
| SmallVector<int32_t, 4> zeroValues(width, 0); |
| ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues); |
| v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroAttrs); |
| |
| // Iterate of linear index, convert to coords space and insert splatted 1-D |
| // vector in each position. |
| nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) { |
| desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc, v, |
| position); |
| }); |
| rewriter.replaceOp(op, desc); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern that transforms a subview op into: |
| /// 1. An `llvm.mlir.undef` operation to create a memref descriptor |
| /// 2. Updates to the descriptor to introduce the data ptr, offset, size |
| /// and stride. |
| /// The subview op is replaced by the descriptor. |
| struct SubViewOpLowering : public ConvertOpToLLVMPattern<SubViewOp> { |
| using ConvertOpToLLVMPattern<SubViewOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto subViewOp = cast<SubViewOp>(op); |
| |
| auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); |
| auto sourceElementTy = |
| typeConverter.convertType(sourceMemRefType.getElementType()) |
| .dyn_cast_or_null<LLVM::LLVMType>(); |
| |
| auto viewMemRefType = subViewOp.getType(); |
| auto targetElementTy = |
| typeConverter.convertType(viewMemRefType.getElementType()) |
| .dyn_cast<LLVM::LLVMType>(); |
| auto targetDescTy = typeConverter.convertType(viewMemRefType) |
| .dyn_cast_or_null<LLVM::LLVMType>(); |
| if (!sourceElementTy || !targetDescTy) |
| return failure(); |
| |
| // Extract the offset and strides from the type. |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); |
| if (failed(successStrides)) |
| return failure(); |
| |
| // Create the descriptor. |
| if (!operands.front().getType().isa<LLVM::LLVMType>()) |
| return failure(); |
| MemRefDescriptor sourceMemRef(operands.front()); |
| auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); |
| |
| // Copy the buffer pointer from the old descriptor to the new one. |
| Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); |
| Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( |
| loc, targetElementTy.getPointerTo(viewMemRefType.getMemorySpace()), |
| extracted); |
| targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); |
| |
| // Copy the buffer pointer from the old descriptor to the new one. |
| extracted = sourceMemRef.alignedPtr(rewriter, loc); |
| bitcastPtr = rewriter.create<LLVM::BitcastOp>( |
| loc, targetElementTy.getPointerTo(viewMemRefType.getMemorySpace()), |
| extracted); |
| targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); |
| |
| // Extract strides needed to compute offset. |
| SmallVector<Value, 4> strideValues; |
| strideValues.reserve(viewMemRefType.getRank()); |
| for (int i = 0, e = viewMemRefType.getRank(); i < e; ++i) |
| strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); |
| |
| // Offset. |
| auto llvmIndexType = typeConverter.convertType(rewriter.getIndexType()); |
| if (!ShapedType::isDynamicStrideOrOffset(offset)) { |
| targetMemRef.setConstantOffset(rewriter, loc, offset); |
| } else { |
| Value baseOffset = sourceMemRef.offset(rewriter, loc); |
| for (unsigned i = 0, e = viewMemRefType.getRank(); i < e; ++i) { |
| Value offset = |
| subViewOp.isDynamicOffset(i) |
| ? operands[subViewOp.getIndexOfDynamicOffset(i)] |
| : rewriter.create<LLVM::ConstantOp>( |
| loc, llvmIndexType, |
| rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); |
| Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); |
| baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); |
| } |
| targetMemRef.setOffset(rewriter, loc, baseOffset); |
| } |
| |
| // Update sizes and strides. |
| for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { |
| Value size = |
| subViewOp.isDynamicSize(i) |
| ? operands[subViewOp.getIndexOfDynamicSize(i)] |
| : rewriter.create<LLVM::ConstantOp>( |
| loc, llvmIndexType, |
| rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); |
| targetMemRef.setSize(rewriter, loc, i, size); |
| Value stride; |
| if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { |
| stride = rewriter.create<LLVM::ConstantOp>( |
| loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); |
| } else { |
| stride = |
| subViewOp.isDynamicStride(i) |
| ? operands[subViewOp.getIndexOfDynamicStride(i)] |
| : rewriter.create<LLVM::ConstantOp>( |
| loc, llvmIndexType, |
| rewriter.getI64IntegerAttr(subViewOp.getStaticStride(i))); |
| stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); |
| } |
| targetMemRef.setStride(rewriter, loc, i, stride); |
| } |
| |
| rewriter.replaceOp(op, {targetMemRef}); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern that transforms an op into: |
| /// 1. An `llvm.mlir.undef` operation to create a memref descriptor |
| /// 2. Updates to the descriptor to introduce the data ptr, offset, size |
| /// and stride. |
| /// The view op is replaced by the descriptor. |
| struct ViewOpLowering : public ConvertOpToLLVMPattern<ViewOp> { |
| using ConvertOpToLLVMPattern<ViewOp>::ConvertOpToLLVMPattern; |
| |
| // Build and return the value for the idx^th shape dimension, either by |
| // returning the constant shape dimension or counting the proper dynamic size. |
| Value getSize(ConversionPatternRewriter &rewriter, Location loc, |
| ArrayRef<int64_t> shape, ValueRange dynamicSizes, |
| unsigned idx) const { |
| assert(idx < shape.size()); |
| if (!ShapedType::isDynamic(shape[idx])) |
| return createIndexConstant(rewriter, loc, shape[idx]); |
| // Count the number of dynamic dims in range [0, idx] |
| unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { |
| return ShapedType::isDynamic(v); |
| }); |
| return dynamicSizes[nDynamic]; |
| } |
| |
| // Build and return the idx^th stride, either by returning the constant stride |
| // or by computing the dynamic stride from the current `runningStride` and |
| // `nextSize`. The caller should keep a running stride and update it with the |
| // result returned by this function. |
| Value getStride(ConversionPatternRewriter &rewriter, Location loc, |
| ArrayRef<int64_t> strides, Value nextSize, |
| Value runningStride, unsigned idx) const { |
| assert(idx < strides.size()); |
| if (strides[idx] != MemRefType::getDynamicStrideOrOffset()) |
| return createIndexConstant(rewriter, loc, strides[idx]); |
| if (nextSize) |
| return runningStride |
| ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) |
| : nextSize; |
| assert(!runningStride); |
| return createIndexConstant(rewriter, loc, 1); |
| } |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto loc = op->getLoc(); |
| auto viewOp = cast<ViewOp>(op); |
| ViewOpAdaptor adaptor(operands); |
| |
| auto viewMemRefType = viewOp.getType(); |
| auto targetElementTy = |
| typeConverter.convertType(viewMemRefType.getElementType()) |
| .dyn_cast<LLVM::LLVMType>(); |
| auto targetDescTy = |
| typeConverter.convertType(viewMemRefType).dyn_cast<LLVM::LLVMType>(); |
| if (!targetDescTy) |
| return op->emitWarning("Target descriptor type not converted to LLVM"), |
| failure(); |
| |
| int64_t offset; |
| SmallVector<int64_t, 4> strides; |
| auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); |
| if (failed(successStrides)) |
| return op->emitWarning("cannot cast to non-strided shape"), failure(); |
| assert(offset == 0 && "expected offset to be 0"); |
| |
| // Create the descriptor. |
| MemRefDescriptor sourceMemRef(adaptor.source()); |
| auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); |
| |
| // Field 1: Copy the allocated pointer, used for malloc/free. |
| Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); |
| Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( |
| loc, targetElementTy.getPointerTo(), allocatedPtr); |
| targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); |
| |
| // Field 2: Copy the actual aligned pointer to payload. |
| Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); |
| alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), |
| alignedPtr, adaptor.byte_shift()); |
| bitcastPtr = rewriter.create<LLVM::BitcastOp>( |
| loc, targetElementTy.getPointerTo(), alignedPtr); |
| targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); |
| |
| // Field 3: The offset in the resulting type must be 0. This is because of |
| // the type change: an offset on srcType* may not be expressible as an |
| // offset on dstType*. |
| targetMemRef.setOffset(rewriter, loc, |
| createIndexConstant(rewriter, loc, offset)); |
| |
| // Early exit for 0-D corner case. |
| if (viewMemRefType.getRank() == 0) |
| return rewriter.replaceOp(op, {targetMemRef}), success(); |
| |
| // Fields 4 and 5: Update sizes and strides. |
| if (strides.back() != 1) |
| return op->emitWarning("cannot cast to non-contiguous shape"), failure(); |
| Value stride = nullptr, nextSize = nullptr; |
| for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { |
| // Update size. |
| Value size = |
| getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); |
| targetMemRef.setSize(rewriter, loc, i, size); |
| // Update stride. |
| stride = getStride(rewriter, loc, strides, nextSize, stride, i); |
| targetMemRef.setStride(rewriter, loc, i, stride); |
| nextSize = size; |
| } |
| |
| rewriter.replaceOp(op, {targetMemRef}); |
| return success(); |
| } |
| }; |
| |
| struct AssumeAlignmentOpLowering |
| : public ConvertOpToLLVMPattern<AssumeAlignmentOp> { |
| using ConvertOpToLLVMPattern<AssumeAlignmentOp>::ConvertOpToLLVMPattern; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| AssumeAlignmentOp::Adaptor transformed(operands); |
| Value memref = transformed.memref(); |
| unsigned alignment = cast<AssumeAlignmentOp>(op).alignment().getZExtValue(); |
| |
| MemRefDescriptor memRefDescriptor(memref); |
| Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); |
| |
| // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that |
| // the asserted memref.alignedPtr isn't used anywhere else, as the real |
| // users like load/store/views always re-extract memref.alignedPtr as they |
| // get lowered. |
| // |
| // This relies on LLVM's CSE optimization (potentially after SROA), since |
| // after CSE all memref.alignedPtr instances get de-duplicated into the same |
| // pointer SSA value. |
| Value zero = |
| createIndexAttrConstant(rewriter, op->getLoc(), getIndexType(), 0); |
| Value mask = createIndexAttrConstant(rewriter, op->getLoc(), getIndexType(), |
| alignment - 1); |
| Value ptrValue = |
| rewriter.create<LLVM::PtrToIntOp>(op->getLoc(), getIndexType(), ptr); |
| rewriter.create<LLVM::AssumeOp>( |
| op->getLoc(), |
| rewriter.create<LLVM::ICmpOp>( |
| op->getLoc(), LLVM::ICmpPredicate::eq, |
| rewriter.create<LLVM::AndOp>(op->getLoc(), ptrValue, mask), zero)); |
| |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| }; |
| |
| } // namespace |
| |
| /// Try to match the kind of a std.atomic_rmw to determine whether to use a |
| /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg. |
| static Optional<LLVM::AtomicBinOp> matchSimpleAtomicOp(AtomicRMWOp atomicOp) { |
| switch (atomicOp.kind()) { |
| case AtomicRMWKind::addf: |
| return LLVM::AtomicBinOp::fadd; |
| case AtomicRMWKind::addi: |
| return LLVM::AtomicBinOp::add; |
| case AtomicRMWKind::assign: |
| return LLVM::AtomicBinOp::xchg; |
| case AtomicRMWKind::maxs: |
| return LLVM::AtomicBinOp::max; |
| case AtomicRMWKind::maxu: |
| return LLVM::AtomicBinOp::umax; |
| case AtomicRMWKind::mins: |
| return LLVM::AtomicBinOp::min; |
| case AtomicRMWKind::minu: |
| return LLVM::AtomicBinOp::umin; |
| default: |
| return llvm::None; |
| } |
| llvm_unreachable("Invalid AtomicRMWKind"); |
| } |
| |
| namespace { |
| |
| struct AtomicRMWOpLowering : public LoadStoreOpLowering<AtomicRMWOp> { |
| using Base::Base; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto atomicOp = cast<AtomicRMWOp>(op); |
| auto maybeKind = matchSimpleAtomicOp(atomicOp); |
| if (!maybeKind) |
| return failure(); |
| AtomicRMWOp::Adaptor adaptor(operands); |
| auto resultType = adaptor.value().getType(); |
| auto memRefType = atomicOp.getMemRefType(); |
| auto dataPtr = getDataPtr(op->getLoc(), memRefType, adaptor.memref(), |
| adaptor.indices(), rewriter, getModule()); |
| rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>( |
| op, resultType, *maybeKind, dataPtr, adaptor.value(), |
| LLVM::AtomicOrdering::acq_rel); |
| return success(); |
| } |
| }; |
| |
| /// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be |
| /// retried until it succeeds in atomically storing a new value into memory. |
| /// |
| /// +---------------------------------+ |
| /// | <code before the AtomicRMWOp> | |
| /// | <compute initial %loaded> | |
| /// | br loop(%loaded) | |
| /// +---------------------------------+ |
| /// | |
| /// -------| | |
| /// | v v |
| /// | +--------------------------------+ |
| /// | | loop(%loaded): | |
| /// | | <body contents> | |
| /// | | %pair = cmpxchg | |
| /// | | %ok = %pair[0] | |
| /// | | %new = %pair[1] | |
| /// | | cond_br %ok, end, loop(%new) | |
| /// | +--------------------------------+ |
| /// | | | |
| /// |----------- | |
| /// v |
| /// +--------------------------------+ |
| /// | end: | |
| /// | <code after the AtomicRMWOp> | |
| /// +--------------------------------+ |
| /// |
| struct GenericAtomicRMWOpLowering |
| : public LoadStoreOpLowering<GenericAtomicRMWOp> { |
| using Base::Base; |
| |
| LogicalResult |
| matchAndRewrite(Operation *op, ArrayRef<Value> operands, |
| ConversionPatternRewriter &rewriter) const override { |
| auto atomicOp = cast<GenericAtomicRMWOp>(op); |
| |
| auto loc = op->getLoc(); |
| GenericAtomicRMWOp::Adaptor adaptor(operands); |
| LLVM::LLVMType valueType = |
| typeConverter.convertType(atomicOp.getResult().getType()) |
| .cast<LLVM::LLVMType>(); |
| |
| // Split the block into initial, loop, and ending parts. |
| auto *initBlock = rewriter.getInsertionBlock(); |
| auto *loopBlock = |
| rewriter.createBlock(initBlock->getParent(), |
| std::next(Region::iterator(initBlock)), valueType); |
| auto *endBlock = rewriter.createBlock( |
| loopBlock->getParent(), std::next(Region::iterator(loopBlock))); |
| |
| // Operations range to be moved to `endBlock`. |
| auto opsToMoveStart = atomicOp.getOperation()->getIterator(); |
| auto opsToMoveEnd = initBlock->back().getIterator(); |
| |
| // Compute the loaded value and branch to the loop block. |
| rewriter.setInsertionPointToEnd(initBlock); |
| auto memRefType = atomicOp.memref().getType().cast<MemRefType>(); |
| auto dataPtr = getDataPtr(loc, memRefType, adaptor.memref(), |
| adaptor.indices(), rewriter, getModule()); |
| Value init = rewriter.create<LLVM::LoadOp>(loc, dataPtr); |
| rewriter.create<LLVM::BrOp>(loc, init, loopBlock); |
| |
| // Prepare the body of the loop block. |
| rewriter.setInsertionPointToStart(loopBlock); |
| |
| // Clone the GenericAtomicRMWOp region and extract the result. |
| auto loopArgument = loopBlock->getArgument(0); |
| BlockAndValueMapping mapping; |
| mapping.map(atomicOp.getCurrentValue(), loopArgument); |
| Block &entryBlock = atomicOp.body().front(); |
| for (auto &nestedOp : entryBlock.without_terminator()) { |
| Operation *clone = rewriter.clone(nestedOp, mapping); |
| mapping.map(nestedOp.getResults(), clone->getResults()); |
| } |
| Value result = mapping.lookup(entryBlock.getTerminator()->getOperand(0)); |
| |
| // Prepare the epilog of the loop block. |
| // Append the cmpxchg op to the end of the loop block. |
| auto successOrdering = LLVM::AtomicOrdering::acq_rel; |
| auto failureOrdering = LLVM::AtomicOrdering::monotonic; |
| auto boolType = LLVM::LLVMType::getInt1Ty(&getDialect()); |
| auto pairType = LLVM::LLVMType::getStructTy(valueType, boolType); |
| auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>( |
| loc, pairType, dataPtr, loopArgument, result, successOrdering, |
| failureOrdering); |
| // Extract the %new_loaded and %ok values from the pair. |
| Value newLoaded = rewriter.create<LLVM::ExtractValueOp>( |
| loc, valueType, cmpxchg, rewriter.getI64ArrayAttr({0})); |
| Value ok = rewriter.create<LLVM::ExtractValueOp>( |
| loc, boolType, cmpxchg, rewriter.getI64ArrayAttr({1})); |
| |
| // Conditionally branch to the end or back to the loop depending on %ok. |
| rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(), |
| loopBlock, newLoaded); |
| |
| rewriter.setInsertionPointToEnd(endBlock); |
| MoveOpsRange(atomicOp.getResult(), newLoaded, std::next(opsToMoveStart), |
| std::next(opsToMoveEnd), rewriter); |
| |
| // The 'result' of the atomic_rmw op is the newly loaded value. |
| rewriter.replaceOp(op, {newLoaded}); |
| |
| return success(); |
| } |
| |
| private: |
| // Clones a segment of ops [start, end) and erases the original. |
| void MoveOpsRange(ValueRange oldResult, ValueRange newResult, |
| Block::iterator start, Block::iterator end, |
| ConversionPatternRewriter &rewriter) const { |
| BlockAndValueMapping mapping; |
| mapping.map(oldResult, newResult); |
| SmallVector<Operation *, 2> opsToErase; |
| for (auto it = start; it != end; ++it) { |
| rewriter.clone(*it, mapping); |
| opsToErase.push_back(&*it); |
| } |
| for (auto *it : opsToErase) |
| rewriter.eraseOp(it); |
| } |
| }; |
| |
| } // namespace |
| |
| /// Collect a set of patterns to convert from the Standard dialect to LLVM. |
| void mlir::populateStdToLLVMNonMemoryConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns, |
| const LowerToLLVMOptions &options) { |
| // FIXME: this should be tablegen'ed |
| // clang-format off |
| patterns.insert< |
| AbsFOpLowering, |
| AddCFOpLowering, |
| AddFOpLowering, |
| AddIOpLowering, |
| AllocaOpLowering, |
| AndOpLowering, |
| AtomicRMWOpLowering, |
| BranchOpLowering, |
| CallIndirectOpLowering, |
| CallOpLowering, |
| CeilFOpLowering, |
| CmpFOpLowering, |
| CmpIOpLowering, |
| CondBranchOpLowering, |
| CopySignOpLowering, |
| CosOpLowering, |
| ConstantOpLowering, |
| CreateComplexOpLowering, |
| DialectCastOpLowering, |
| DivFOpLowering, |
| ExpOpLowering, |
| Exp2OpLowering, |
| GenericAtomicRMWOpLowering, |
| LogOpLowering, |
| Log10OpLowering, |
| Log2OpLowering, |
| FPExtLowering, |
| FPToSILowering, |
| FPTruncLowering, |
| ImOpLowering, |
| IndexCastOpLowering, |
| MulFOpLowering, |
| MulIOpLowering, |
| NegFOpLowering, |
| OrOpLowering, |
| PrefetchOpLowering, |
| ReOpLowering, |
| RemFOpLowering, |
| ReturnOpLowering, |
| RsqrtOpLowering, |
| SIToFPLowering, |
| SelectOpLowering, |
| ShiftLeftOpLowering, |
| SignExtendIOpLowering, |
| SignedDivIOpLowering, |
| SignedRemIOpLowering, |
| SignedShiftRightOpLowering, |
| SinOpLowering, |
| SplatOpLowering, |
| SplatNdOpLowering, |
| SqrtOpLowering, |
| SubCFOpLowering, |
| SubFOpLowering, |
| SubIOpLowering, |
| TruncateIOpLowering, |
| UnsignedDivIOpLowering, |
| UnsignedRemIOpLowering, |
| UnsignedShiftRightOpLowering, |
| XOrOpLowering, |
| ZeroExtendIOpLowering>(converter, options); |
| // clang-format on |
| } |
| |
| void mlir::populateStdToLLVMMemoryConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns, |
| const LowerToLLVMOptions &options) { |
| // clang-format off |
| patterns.insert< |
| AssumeAlignmentOpLowering, |
| DeallocOpLowering, |
| DimOpLowering, |
| LoadOpLowering, |
| MemRefCastOpLowering, |
| StoreOpLowering, |
| SubViewOpLowering, |
| ViewOpLowering, |
| AllocOpLowering>(converter, options); |
| // clang-format on |
| } |
| |
| void mlir::populateStdToLLVMFuncOpConversionPattern( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns, |
| const LowerToLLVMOptions &options) { |
| if (options.useBarePtrCallConv) |
| patterns.insert<BarePtrFuncOpConversion>(converter, options); |
| else |
| patterns.insert<FuncOpConversion>(converter, options); |
| } |
| |
| void mlir::populateStdToLLVMConversionPatterns( |
| LLVMTypeConverter &converter, OwningRewritePatternList &patterns, |
| const LowerToLLVMOptions &options) { |
| populateStdToLLVMFuncOpConversionPattern(converter, patterns, options); |
| populateStdToLLVMNonMemoryConversionPatterns(converter, patterns, options); |
| populateStdToLLVMMemoryConversionPatterns(converter, patterns, options); |
| } |
| |
| // Create an LLVM IR structure type if there is more than one result. |
| Type LLVMTypeConverter::packFunctionResults(ArrayRef<Type> types) { |
| assert(!types.empty() && "expected non-empty list of type"); |
| |
| if (types.size() == 1) |
| return convertType(types.front()); |
| |
| SmallVector<LLVM::LLVMType, 8> resultTypes; |
| resultTypes.reserve(types.size()); |
| for (auto t : types) { |
| auto converted = convertType(t).dyn_cast<LLVM::LLVMType>(); |
| if (!converted) |
| return {}; |
| resultTypes.push_back(converted); |
| } |
| |
| return LLVM::LLVMType::getStructTy(llvmDialect, resultTypes); |
| } |
| |
| Value LLVMTypeConverter::promoteOneMemRefDescriptor(Location loc, Value operand, |
| OpBuilder &builder) { |
| auto *context = builder.getContext(); |
| auto int64Ty = LLVM::LLVMType::getInt64Ty(getDialect()); |
| auto indexType = IndexType::get(context); |
| // Alloca with proper alignment. We do not expect optimizations of this |
| // alloca op and so we omit allocating at the entry block. |
| auto ptrType = operand.getType().cast<LLVM::LLVMType>().getPointerTo(); |
| Value one = builder.create<LLVM::ConstantOp>(loc, int64Ty, |
| IntegerAttr::get(indexType, 1)); |
| Value allocated = |
| builder.create<LLVM::AllocaOp>(loc, ptrType, one, /*alignment=*/0); |
| // Store into the alloca'ed descriptor. |
| builder.create<LLVM::StoreOp>(loc, operand, allocated); |
| return allocated; |
| } |
| |
| SmallVector<Value, 4> |
| LLVMTypeConverter::promoteMemRefDescriptors(Location loc, ValueRange opOperands, |
| ValueRange operands, |
| OpBuilder &builder) { |
| SmallVector<Value, 4> promotedOperands; |
| promotedOperands.reserve(operands.size()); |
| for (auto it : llvm::zip(opOperands, operands)) { |
| auto operand = std::get<0>(it); |
| auto llvmOperand = std::get<1>(it); |
| |
| if (operand.getType().isa<UnrankedMemRefType>()) { |
| UnrankedMemRefDescriptor::unpack(builder, loc, llvmOperand, |
| promotedOperands); |
| continue; |
| } |
| if (auto memrefType = operand.getType().dyn_cast<MemRefType>()) { |
| MemRefDescriptor::unpack(builder, loc, llvmOperand, |
| operand.getType().cast<MemRefType>(), |
| promotedOperands); |
| continue; |
| } |
| |
| promotedOperands.push_back(operand); |
| } |
| return promotedOperands; |
| } |
| |
| namespace { |
| /// A pass converting MLIR operations into the LLVM IR dialect. |
| struct LLVMLoweringPass : public ConvertStandardToLLVMBase<LLVMLoweringPass> { |
| LLVMLoweringPass() = default; |
| LLVMLoweringPass(bool useBarePtrCallConv, bool emitCWrappers, |
| unsigned indexBitwidth, bool useAlignedAlloc) { |
| this->useBarePtrCallConv = useBarePtrCallConv; |
| this->emitCWrappers = emitCWrappers; |
| this->indexBitwidth = indexBitwidth; |
| this->useAlignedAlloc = useAlignedAlloc; |
| } |
| |
| /// Run the dialect converter on the module. |
| void runOnOperation() override { |
| if (useBarePtrCallConv && emitCWrappers) { |
| getOperation().emitError() |
| << "incompatible conversion options: bare-pointer calling convention " |
| "and C wrapper emission"; |
| signalPassFailure(); |
| return; |
| } |
| |
| ModuleOp m = getOperation(); |
| |
| LowerToLLVMOptions options = {useBarePtrCallConv, emitCWrappers, |
| indexBitwidth, useAlignedAlloc}; |
| LLVMTypeConverter typeConverter(&getContext(), options); |
| |
| OwningRewritePatternList patterns; |
| populateStdToLLVMConversionPatterns(typeConverter, patterns, options); |
| |
| LLVMConversionTarget target(getContext()); |
| if (failed(applyPartialConversion(m, target, patterns))) |
| signalPassFailure(); |
| } |
| }; |
| } // end namespace |
| |
| mlir::LLVMConversionTarget::LLVMConversionTarget(MLIRContext &ctx) |
| : ConversionTarget(ctx) { |
| this->addLegalDialect<LLVM::LLVMDialect>(); |
| this->addIllegalOp<LLVM::DialectCastOp>(); |
| this->addIllegalOp<TanhOp>(); |
| } |
| |
| std::unique_ptr<OperationPass<ModuleOp>> |
| mlir::createLowerToLLVMPass(const LowerToLLVMOptions &options) { |
| return std::make_unique<LLVMLoweringPass>( |
| options.useBarePtrCallConv, options.emitCWrappers, options.indexBitwidth, |
| options.useAlignedAlloc); |
| } |