| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This tablegen backend emits a target specifier matcher for converting parsed | 
 | // assembly operands in the MCInst structures. It also emits a matcher for | 
 | // custom operand parsing. | 
 | // | 
 | // Converting assembly operands into MCInst structures | 
 | // --------------------------------------------------- | 
 | // | 
 | // The input to the target specific matcher is a list of literal tokens and | 
 | // operands. The target specific parser should generally eliminate any syntax | 
 | // which is not relevant for matching; for example, comma tokens should have | 
 | // already been consumed and eliminated by the parser. Most instructions will | 
 | // end up with a single literal token (the instruction name) and some number of | 
 | // operands. | 
 | // | 
 | // Some example inputs, for X86: | 
 | //   'addl' (immediate ...) (register ...) | 
 | //   'add' (immediate ...) (memory ...) | 
 | //   'call' '*' %epc | 
 | // | 
 | // The assembly matcher is responsible for converting this input into a precise | 
 | // machine instruction (i.e., an instruction with a well defined encoding). This | 
 | // mapping has several properties which complicate matching: | 
 | // | 
 | //  - It may be ambiguous; many architectures can legally encode particular | 
 | //    variants of an instruction in different ways (for example, using a smaller | 
 | //    encoding for small immediates). Such ambiguities should never be | 
 | //    arbitrarily resolved by the assembler, the assembler is always responsible | 
 | //    for choosing the "best" available instruction. | 
 | // | 
 | //  - It may depend on the subtarget or the assembler context. Instructions | 
 | //    which are invalid for the current mode, but otherwise unambiguous (e.g., | 
 | //    an SSE instruction in a file being assembled for i486) should be accepted | 
 | //    and rejected by the assembler front end. However, if the proper encoding | 
 | //    for an instruction is dependent on the assembler context then the matcher | 
 | //    is responsible for selecting the correct machine instruction for the | 
 | //    current mode. | 
 | // | 
 | // The core matching algorithm attempts to exploit the regularity in most | 
 | // instruction sets to quickly determine the set of possibly matching | 
 | // instructions, and the simplify the generated code. Additionally, this helps | 
 | // to ensure that the ambiguities are intentionally resolved by the user. | 
 | // | 
 | // The matching is divided into two distinct phases: | 
 | // | 
 | //   1. Classification: Each operand is mapped to the unique set which (a) | 
 | //      contains it, and (b) is the largest such subset for which a single | 
 | //      instruction could match all members. | 
 | // | 
 | //      For register classes, we can generate these subgroups automatically. For | 
 | //      arbitrary operands, we expect the user to define the classes and their | 
 | //      relations to one another (for example, 8-bit signed immediates as a | 
 | //      subset of 32-bit immediates). | 
 | // | 
 | //      By partitioning the operands in this way, we guarantee that for any | 
 | //      tuple of classes, any single instruction must match either all or none | 
 | //      of the sets of operands which could classify to that tuple. | 
 | // | 
 | //      In addition, the subset relation amongst classes induces a partial order | 
 | //      on such tuples, which we use to resolve ambiguities. | 
 | // | 
 | //   2. The input can now be treated as a tuple of classes (static tokens are | 
 | //      simple singleton sets). Each such tuple should generally map to a single | 
 | //      instruction (we currently ignore cases where this isn't true, whee!!!), | 
 | //      which we can emit a simple matcher for. | 
 | // | 
 | // Custom Operand Parsing | 
 | // ---------------------- | 
 | // | 
 | //  Some targets need a custom way to parse operands, some specific instructions | 
 | //  can contain arguments that can represent processor flags and other kinds of | 
 | //  identifiers that need to be mapped to specific values in the final encoded | 
 | //  instructions. The target specific custom operand parsing works in the | 
 | //  following way: | 
 | // | 
 | //   1. A operand match table is built, each entry contains a mnemonic, an | 
 | //      operand class, a mask for all operand positions for that same | 
 | //      class/mnemonic and target features to be checked while trying to match. | 
 | // | 
 | //   2. The operand matcher will try every possible entry with the same | 
 | //      mnemonic and will check if the target feature for this mnemonic also | 
 | //      matches. After that, if the operand to be matched has its index | 
 | //      present in the mask, a successful match occurs. Otherwise, fallback | 
 | //      to the regular operand parsing. | 
 | // | 
 | //   3. For a match success, each operand class that has a 'ParserMethod' | 
 | //      becomes part of a switch from where the custom method is called. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenTarget.h" | 
 | #include "SubtargetFeatureInfo.h" | 
 | #include "Types.h" | 
 | #include "llvm/ADT/CachedHashString.h" | 
 | #include "llvm/ADT/PointerUnion.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/Config/llvm-config.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/TableGen/Error.h" | 
 | #include "llvm/TableGen/Record.h" | 
 | #include "llvm/TableGen/StringMatcher.h" | 
 | #include "llvm/TableGen/StringToOffsetTable.h" | 
 | #include "llvm/TableGen/TableGenBackend.h" | 
 | #include <cassert> | 
 | #include <cctype> | 
 | #include <forward_list> | 
 | #include <map> | 
 | #include <set> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "asm-matcher-emitter" | 
 |  | 
 | cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); | 
 |  | 
 | static cl::opt<std::string> | 
 |     MatchPrefix("match-prefix", cl::init(""), | 
 |                 cl::desc("Only match instructions with the given prefix"), | 
 |                 cl::cat(AsmMatcherEmitterCat)); | 
 |  | 
 | namespace { | 
 | class AsmMatcherInfo; | 
 |  | 
 | // Register sets are used as keys in some second-order sets TableGen creates | 
 | // when generating its data structures. This means that the order of two | 
 | // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and | 
 | // can even affect compiler output (at least seen in diagnostics produced when | 
 | // all matches fail). So we use a type that sorts them consistently. | 
 | typedef std::set<Record*, LessRecordByID> RegisterSet; | 
 |  | 
 | class AsmMatcherEmitter { | 
 |   RecordKeeper &Records; | 
 | public: | 
 |   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} | 
 |  | 
 |   void run(raw_ostream &o); | 
 | }; | 
 |  | 
 | /// ClassInfo - Helper class for storing the information about a particular | 
 | /// class of operands which can be matched. | 
 | struct ClassInfo { | 
 |   enum ClassInfoKind { | 
 |     /// Invalid kind, for use as a sentinel value. | 
 |     Invalid = 0, | 
 |  | 
 |     /// The class for a particular token. | 
 |     Token, | 
 |  | 
 |     /// The (first) register class, subsequent register classes are | 
 |     /// RegisterClass0+1, and so on. | 
 |     RegisterClass0, | 
 |  | 
 |     /// The (first) user defined class, subsequent user defined classes are | 
 |     /// UserClass0+1, and so on. | 
 |     UserClass0 = 1<<16 | 
 |   }; | 
 |  | 
 |   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + | 
 |   /// N) for the Nth user defined class. | 
 |   unsigned Kind; | 
 |  | 
 |   /// SuperClasses - The super classes of this class. Note that for simplicities | 
 |   /// sake user operands only record their immediate super class, while register | 
 |   /// operands include all superclasses. | 
 |   std::vector<ClassInfo*> SuperClasses; | 
 |  | 
 |   /// Name - The full class name, suitable for use in an enum. | 
 |   std::string Name; | 
 |  | 
 |   /// ClassName - The unadorned generic name for this class (e.g., Token). | 
 |   std::string ClassName; | 
 |  | 
 |   /// ValueName - The name of the value this class represents; for a token this | 
 |   /// is the literal token string, for an operand it is the TableGen class (or | 
 |   /// empty if this is a derived class). | 
 |   std::string ValueName; | 
 |  | 
 |   /// PredicateMethod - The name of the operand method to test whether the | 
 |   /// operand matches this class; this is not valid for Token or register kinds. | 
 |   std::string PredicateMethod; | 
 |  | 
 |   /// RenderMethod - The name of the operand method to add this operand to an | 
 |   /// MCInst; this is not valid for Token or register kinds. | 
 |   std::string RenderMethod; | 
 |  | 
 |   /// ParserMethod - The name of the operand method to do a target specific | 
 |   /// parsing on the operand. | 
 |   std::string ParserMethod; | 
 |  | 
 |   /// For register classes: the records for all the registers in this class. | 
 |   RegisterSet Registers; | 
 |  | 
 |   /// For custom match classes: the diagnostic kind for when the predicate fails. | 
 |   std::string DiagnosticType; | 
 |  | 
 |   /// For custom match classes: the diagnostic string for when the predicate fails. | 
 |   std::string DiagnosticString; | 
 |  | 
 |   /// Is this operand optional and not always required. | 
 |   bool IsOptional; | 
 |  | 
 |   /// DefaultMethod - The name of the method that returns the default operand | 
 |   /// for optional operand | 
 |   std::string DefaultMethod; | 
 |  | 
 | public: | 
 |   /// isRegisterClass() - Check if this is a register class. | 
 |   bool isRegisterClass() const { | 
 |     return Kind >= RegisterClass0 && Kind < UserClass0; | 
 |   } | 
 |  | 
 |   /// isUserClass() - Check if this is a user defined class. | 
 |   bool isUserClass() const { | 
 |     return Kind >= UserClass0; | 
 |   } | 
 |  | 
 |   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes | 
 |   /// are related if they are in the same class hierarchy. | 
 |   bool isRelatedTo(const ClassInfo &RHS) const { | 
 |     // Tokens are only related to tokens. | 
 |     if (Kind == Token || RHS.Kind == Token) | 
 |       return Kind == Token && RHS.Kind == Token; | 
 |  | 
 |     // Registers classes are only related to registers classes, and only if | 
 |     // their intersection is non-empty. | 
 |     if (isRegisterClass() || RHS.isRegisterClass()) { | 
 |       if (!isRegisterClass() || !RHS.isRegisterClass()) | 
 |         return false; | 
 |  | 
 |       RegisterSet Tmp; | 
 |       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); | 
 |       std::set_intersection(Registers.begin(), Registers.end(), | 
 |                             RHS.Registers.begin(), RHS.Registers.end(), | 
 |                             II, LessRecordByID()); | 
 |  | 
 |       return !Tmp.empty(); | 
 |     } | 
 |  | 
 |     // Otherwise we have two users operands; they are related if they are in the | 
 |     // same class hierarchy. | 
 |     // | 
 |     // FIXME: This is an oversimplification, they should only be related if they | 
 |     // intersect, however we don't have that information. | 
 |     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); | 
 |     const ClassInfo *Root = this; | 
 |     while (!Root->SuperClasses.empty()) | 
 |       Root = Root->SuperClasses.front(); | 
 |  | 
 |     const ClassInfo *RHSRoot = &RHS; | 
 |     while (!RHSRoot->SuperClasses.empty()) | 
 |       RHSRoot = RHSRoot->SuperClasses.front(); | 
 |  | 
 |     return Root == RHSRoot; | 
 |   } | 
 |  | 
 |   /// isSubsetOf - Test whether this class is a subset of \p RHS. | 
 |   bool isSubsetOf(const ClassInfo &RHS) const { | 
 |     // This is a subset of RHS if it is the same class... | 
 |     if (this == &RHS) | 
 |       return true; | 
 |  | 
 |     // ... or if any of its super classes are a subset of RHS. | 
 |     SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), | 
 |                                                 SuperClasses.end()); | 
 |     SmallPtrSet<const ClassInfo *, 16> Visited; | 
 |     while (!Worklist.empty()) { | 
 |       auto *CI = Worklist.pop_back_val(); | 
 |       if (CI == &RHS) | 
 |         return true; | 
 |       for (auto *Super : CI->SuperClasses) | 
 |         if (Visited.insert(Super).second) | 
 |           Worklist.push_back(Super); | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   int getTreeDepth() const { | 
 |     int Depth = 0; | 
 |     const ClassInfo *Root = this; | 
 |     while (!Root->SuperClasses.empty()) { | 
 |       Depth++; | 
 |       Root = Root->SuperClasses.front(); | 
 |     } | 
 |     return Depth; | 
 |   } | 
 |  | 
 |   const ClassInfo *findRoot() const { | 
 |     const ClassInfo *Root = this; | 
 |     while (!Root->SuperClasses.empty()) | 
 |       Root = Root->SuperClasses.front(); | 
 |     return Root; | 
 |   } | 
 |  | 
 |   /// Compare two classes. This does not produce a total ordering, but does | 
 |   /// guarantee that subclasses are sorted before their parents, and that the | 
 |   /// ordering is transitive. | 
 |   bool operator<(const ClassInfo &RHS) const { | 
 |     if (this == &RHS) | 
 |       return false; | 
 |  | 
 |     // First, enforce the ordering between the three different types of class. | 
 |     // Tokens sort before registers, which sort before user classes. | 
 |     if (Kind == Token) { | 
 |       if (RHS.Kind != Token) | 
 |         return true; | 
 |       assert(RHS.Kind == Token); | 
 |     } else if (isRegisterClass()) { | 
 |       if (RHS.Kind == Token) | 
 |         return false; | 
 |       else if (RHS.isUserClass()) | 
 |         return true; | 
 |       assert(RHS.isRegisterClass()); | 
 |     } else if (isUserClass()) { | 
 |       if (!RHS.isUserClass()) | 
 |         return false; | 
 |       assert(RHS.isUserClass()); | 
 |     } else { | 
 |       llvm_unreachable("Unknown ClassInfoKind"); | 
 |     } | 
 |  | 
 |     if (Kind == Token || isUserClass()) { | 
 |       // Related tokens and user classes get sorted by depth in the inheritence | 
 |       // tree (so that subclasses are before their parents). | 
 |       if (isRelatedTo(RHS)) { | 
 |         if (getTreeDepth() > RHS.getTreeDepth()) | 
 |           return true; | 
 |         if (getTreeDepth() < RHS.getTreeDepth()) | 
 |           return false; | 
 |       } else { | 
 |         // Unrelated tokens and user classes are ordered by the name of their | 
 |         // root nodes, so that there is a consistent ordering between | 
 |         // unconnected trees. | 
 |         return findRoot()->ValueName < RHS.findRoot()->ValueName; | 
 |       } | 
 |     } else if (isRegisterClass()) { | 
 |       // For register sets, sort by number of registers. This guarantees that | 
 |       // a set will always sort before all of it's strict supersets. | 
 |       if (Registers.size() != RHS.Registers.size()) | 
 |         return Registers.size() < RHS.Registers.size(); | 
 |     } else { | 
 |       llvm_unreachable("Unknown ClassInfoKind"); | 
 |     } | 
 |  | 
 |     // FIXME: We should be able to just return false here, as we only need a | 
 |     // partial order (we use stable sorts, so this is deterministic) and the | 
 |     // name of a class shouldn't be significant. However, some of the backends | 
 |     // accidentally rely on this behaviour, so it will have to stay like this | 
 |     // until they are fixed. | 
 |     return ValueName < RHS.ValueName; | 
 |   } | 
 | }; | 
 |  | 
 | class AsmVariantInfo { | 
 | public: | 
 |   StringRef RegisterPrefix; | 
 |   StringRef TokenizingCharacters; | 
 |   StringRef SeparatorCharacters; | 
 |   StringRef BreakCharacters; | 
 |   StringRef Name; | 
 |   int AsmVariantNo; | 
 | }; | 
 |  | 
 | /// MatchableInfo - Helper class for storing the necessary information for an | 
 | /// instruction or alias which is capable of being matched. | 
 | struct MatchableInfo { | 
 |   struct AsmOperand { | 
 |     /// Token - This is the token that the operand came from. | 
 |     StringRef Token; | 
 |  | 
 |     /// The unique class instance this operand should match. | 
 |     ClassInfo *Class; | 
 |  | 
 |     /// The operand name this is, if anything. | 
 |     StringRef SrcOpName; | 
 |  | 
 |     /// The operand name this is, before renaming for tied operands. | 
 |     StringRef OrigSrcOpName; | 
 |  | 
 |     /// The suboperand index within SrcOpName, or -1 for the entire operand. | 
 |     int SubOpIdx; | 
 |  | 
 |     /// Whether the token is "isolated", i.e., it is preceded and followed | 
 |     /// by separators. | 
 |     bool IsIsolatedToken; | 
 |  | 
 |     /// Register record if this token is singleton register. | 
 |     Record *SingletonReg; | 
 |  | 
 |     explicit AsmOperand(bool IsIsolatedToken, StringRef T) | 
 |         : Token(T), Class(nullptr), SubOpIdx(-1), | 
 |           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} | 
 |   }; | 
 |  | 
 |   /// ResOperand - This represents a single operand in the result instruction | 
 |   /// generated by the match.  In cases (like addressing modes) where a single | 
 |   /// assembler operand expands to multiple MCOperands, this represents the | 
 |   /// single assembler operand, not the MCOperand. | 
 |   struct ResOperand { | 
 |     enum { | 
 |       /// RenderAsmOperand - This represents an operand result that is | 
 |       /// generated by calling the render method on the assembly operand.  The | 
 |       /// corresponding AsmOperand is specified by AsmOperandNum. | 
 |       RenderAsmOperand, | 
 |  | 
 |       /// TiedOperand - This represents a result operand that is a duplicate of | 
 |       /// a previous result operand. | 
 |       TiedOperand, | 
 |  | 
 |       /// ImmOperand - This represents an immediate value that is dumped into | 
 |       /// the operand. | 
 |       ImmOperand, | 
 |  | 
 |       /// RegOperand - This represents a fixed register that is dumped in. | 
 |       RegOperand | 
 |     } Kind; | 
 |  | 
 |     /// Tuple containing the index of the (earlier) result operand that should | 
 |     /// be copied from, as well as the indices of the corresponding (parsed) | 
 |     /// operands in the asm string. | 
 |     struct TiedOperandsTuple { | 
 |       unsigned ResOpnd; | 
 |       unsigned SrcOpnd1Idx; | 
 |       unsigned SrcOpnd2Idx; | 
 |     }; | 
 |  | 
 |     union { | 
 |       /// This is the operand # in the AsmOperands list that this should be | 
 |       /// copied from. | 
 |       unsigned AsmOperandNum; | 
 |  | 
 |       /// Description of tied operands. | 
 |       TiedOperandsTuple TiedOperands; | 
 |  | 
 |       /// ImmVal - This is the immediate value added to the instruction. | 
 |       int64_t ImmVal; | 
 |  | 
 |       /// Register - This is the register record. | 
 |       Record *Register; | 
 |     }; | 
 |  | 
 |     /// MINumOperands - The number of MCInst operands populated by this | 
 |     /// operand. | 
 |     unsigned MINumOperands; | 
 |  | 
 |     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { | 
 |       ResOperand X; | 
 |       X.Kind = RenderAsmOperand; | 
 |       X.AsmOperandNum = AsmOpNum; | 
 |       X.MINumOperands = NumOperands; | 
 |       return X; | 
 |     } | 
 |  | 
 |     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, | 
 |                                 unsigned SrcOperand2) { | 
 |       ResOperand X; | 
 |       X.Kind = TiedOperand; | 
 |       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; | 
 |       X.MINumOperands = 1; | 
 |       return X; | 
 |     } | 
 |  | 
 |     static ResOperand getImmOp(int64_t Val) { | 
 |       ResOperand X; | 
 |       X.Kind = ImmOperand; | 
 |       X.ImmVal = Val; | 
 |       X.MINumOperands = 1; | 
 |       return X; | 
 |     } | 
 |  | 
 |     static ResOperand getRegOp(Record *Reg) { | 
 |       ResOperand X; | 
 |       X.Kind = RegOperand; | 
 |       X.Register = Reg; | 
 |       X.MINumOperands = 1; | 
 |       return X; | 
 |     } | 
 |   }; | 
 |  | 
 |   /// AsmVariantID - Target's assembly syntax variant no. | 
 |   int AsmVariantID; | 
 |  | 
 |   /// AsmString - The assembly string for this instruction (with variants | 
 |   /// removed), e.g. "movsx $src, $dst". | 
 |   std::string AsmString; | 
 |  | 
 |   /// TheDef - This is the definition of the instruction or InstAlias that this | 
 |   /// matchable came from. | 
 |   Record *const TheDef; | 
 |  | 
 |   /// DefRec - This is the definition that it came from. | 
 |   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; | 
 |  | 
 |   const CodeGenInstruction *getResultInst() const { | 
 |     if (DefRec.is<const CodeGenInstruction*>()) | 
 |       return DefRec.get<const CodeGenInstruction*>(); | 
 |     return DefRec.get<const CodeGenInstAlias*>()->ResultInst; | 
 |   } | 
 |  | 
 |   /// ResOperands - This is the operand list that should be built for the result | 
 |   /// MCInst. | 
 |   SmallVector<ResOperand, 8> ResOperands; | 
 |  | 
 |   /// Mnemonic - This is the first token of the matched instruction, its | 
 |   /// mnemonic. | 
 |   StringRef Mnemonic; | 
 |  | 
 |   /// AsmOperands - The textual operands that this instruction matches, | 
 |   /// annotated with a class and where in the OperandList they were defined. | 
 |   /// This directly corresponds to the tokenized AsmString after the mnemonic is | 
 |   /// removed. | 
 |   SmallVector<AsmOperand, 8> AsmOperands; | 
 |  | 
 |   /// Predicates - The required subtarget features to match this instruction. | 
 |   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; | 
 |  | 
 |   /// ConversionFnKind - The enum value which is passed to the generated | 
 |   /// convertToMCInst to convert parsed operands into an MCInst for this | 
 |   /// function. | 
 |   std::string ConversionFnKind; | 
 |  | 
 |   /// If this instruction is deprecated in some form. | 
 |   bool HasDeprecation; | 
 |  | 
 |   /// If this is an alias, this is use to determine whether or not to using | 
 |   /// the conversion function defined by the instruction's AsmMatchConverter | 
 |   /// or to use the function generated by the alias. | 
 |   bool UseInstAsmMatchConverter; | 
 |  | 
 |   MatchableInfo(const CodeGenInstruction &CGI) | 
 |     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), | 
 |       UseInstAsmMatchConverter(true) { | 
 |   } | 
 |  | 
 |   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) | 
 |     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), | 
 |       DefRec(Alias.release()), | 
 |       UseInstAsmMatchConverter( | 
 |         TheDef->getValueAsBit("UseInstAsmMatchConverter")) { | 
 |   } | 
 |  | 
 |   // Could remove this and the dtor if PointerUnion supported unique_ptr | 
 |   // elements with a dynamic failure/assertion (like the one below) in the case | 
 |   // where it was copied while being in an owning state. | 
 |   MatchableInfo(const MatchableInfo &RHS) | 
 |       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), | 
 |         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), | 
 |         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), | 
 |         RequiredFeatures(RHS.RequiredFeatures), | 
 |         ConversionFnKind(RHS.ConversionFnKind), | 
 |         HasDeprecation(RHS.HasDeprecation), | 
 |         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { | 
 |     assert(!DefRec.is<const CodeGenInstAlias *>()); | 
 |   } | 
 |  | 
 |   ~MatchableInfo() { | 
 |     delete DefRec.dyn_cast<const CodeGenInstAlias*>(); | 
 |   } | 
 |  | 
 |   // Two-operand aliases clone from the main matchable, but mark the second | 
 |   // operand as a tied operand of the first for purposes of the assembler. | 
 |   void formTwoOperandAlias(StringRef Constraint); | 
 |  | 
 |   void initialize(const AsmMatcherInfo &Info, | 
 |                   SmallPtrSetImpl<Record*> &SingletonRegisters, | 
 |                   AsmVariantInfo const &Variant, | 
 |                   bool HasMnemonicFirst); | 
 |  | 
 |   /// validate - Return true if this matchable is a valid thing to match against | 
 |   /// and perform a bunch of validity checking. | 
 |   bool validate(StringRef CommentDelimiter, bool IsAlias) const; | 
 |  | 
 |   /// findAsmOperand - Find the AsmOperand with the specified name and | 
 |   /// suboperand index. | 
 |   int findAsmOperand(StringRef N, int SubOpIdx) const { | 
 |     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { | 
 |       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; | 
 |     }); | 
 |     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
 |   } | 
 |  | 
 |   /// findAsmOperandNamed - Find the first AsmOperand with the specified name. | 
 |   /// This does not check the suboperand index. | 
 |   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { | 
 |     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), | 
 |                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); | 
 |     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
 |   } | 
 |  | 
 |   int findAsmOperandOriginallyNamed(StringRef N) const { | 
 |     auto I = | 
 |         find_if(AsmOperands, | 
 |                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); | 
 |     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; | 
 |   } | 
 |  | 
 |   void buildInstructionResultOperands(); | 
 |   void buildAliasResultOperands(bool AliasConstraintsAreChecked); | 
 |  | 
 |   /// operator< - Compare two matchables. | 
 |   bool operator<(const MatchableInfo &RHS) const { | 
 |     // The primary comparator is the instruction mnemonic. | 
 |     if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) | 
 |       return Cmp == -1; | 
 |  | 
 |     if (AsmOperands.size() != RHS.AsmOperands.size()) | 
 |       return AsmOperands.size() < RHS.AsmOperands.size(); | 
 |  | 
 |     // Compare lexicographically by operand. The matcher validates that other | 
 |     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). | 
 |     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
 |       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) | 
 |         return true; | 
 |       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Give matches that require more features higher precedence. This is useful | 
 |     // because we cannot define AssemblerPredicates with the negation of | 
 |     // processor features. For example, ARM v6 "nop" may be either a HINT or | 
 |     // MOV. With v6, we want to match HINT. The assembler has no way to | 
 |     // predicate MOV under "NoV6", but HINT will always match first because it | 
 |     // requires V6 while MOV does not. | 
 |     if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) | 
 |       return RequiredFeatures.size() > RHS.RequiredFeatures.size(); | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   /// couldMatchAmbiguouslyWith - Check whether this matchable could | 
 |   /// ambiguously match the same set of operands as \p RHS (without being a | 
 |   /// strictly superior match). | 
 |   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { | 
 |     // The primary comparator is the instruction mnemonic. | 
 |     if (Mnemonic != RHS.Mnemonic) | 
 |       return false; | 
 |  | 
 |     // Different variants can't conflict. | 
 |     if (AsmVariantID != RHS.AsmVariantID) | 
 |       return false; | 
 |  | 
 |     // The number of operands is unambiguous. | 
 |     if (AsmOperands.size() != RHS.AsmOperands.size()) | 
 |       return false; | 
 |  | 
 |     // Otherwise, make sure the ordering of the two instructions is unambiguous | 
 |     // by checking that either (a) a token or operand kind discriminates them, | 
 |     // or (b) the ordering among equivalent kinds is consistent. | 
 |  | 
 |     // Tokens and operand kinds are unambiguous (assuming a correct target | 
 |     // specific parser). | 
 |     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) | 
 |       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || | 
 |           AsmOperands[i].Class->Kind == ClassInfo::Token) | 
 |         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || | 
 |             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
 |           return false; | 
 |  | 
 |     // Otherwise, this operand could commute if all operands are equivalent, or | 
 |     // there is a pair of operands that compare less than and a pair that | 
 |     // compare greater than. | 
 |     bool HasLT = false, HasGT = false; | 
 |     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
 |       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) | 
 |         HasLT = true; | 
 |       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) | 
 |         HasGT = true; | 
 |     } | 
 |  | 
 |     return HasLT == HasGT; | 
 |   } | 
 |  | 
 |   void dump() const; | 
 |  | 
 | private: | 
 |   void tokenizeAsmString(AsmMatcherInfo const &Info, | 
 |                          AsmVariantInfo const &Variant); | 
 |   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); | 
 | }; | 
 |  | 
 | struct OperandMatchEntry { | 
 |   unsigned OperandMask; | 
 |   const MatchableInfo* MI; | 
 |   ClassInfo *CI; | 
 |  | 
 |   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, | 
 |                                   unsigned opMask) { | 
 |     OperandMatchEntry X; | 
 |     X.OperandMask = opMask; | 
 |     X.CI = ci; | 
 |     X.MI = mi; | 
 |     return X; | 
 |   } | 
 | }; | 
 |  | 
 | class AsmMatcherInfo { | 
 | public: | 
 |   /// Tracked Records | 
 |   RecordKeeper &Records; | 
 |  | 
 |   /// The tablegen AsmParser record. | 
 |   Record *AsmParser; | 
 |  | 
 |   /// Target - The target information. | 
 |   CodeGenTarget &Target; | 
 |  | 
 |   /// The classes which are needed for matching. | 
 |   std::forward_list<ClassInfo> Classes; | 
 |  | 
 |   /// The information on the matchables to match. | 
 |   std::vector<std::unique_ptr<MatchableInfo>> Matchables; | 
 |  | 
 |   /// Info for custom matching operands by user defined methods. | 
 |   std::vector<OperandMatchEntry> OperandMatchInfo; | 
 |  | 
 |   /// Map of Register records to their class information. | 
 |   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; | 
 |   RegisterClassesTy RegisterClasses; | 
 |  | 
 |   /// Map of Predicate records to their subtarget information. | 
 |   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; | 
 |  | 
 |   /// Map of AsmOperandClass records to their class information. | 
 |   std::map<Record*, ClassInfo*> AsmOperandClasses; | 
 |  | 
 |   /// Map of RegisterClass records to their class information. | 
 |   std::map<Record*, ClassInfo*> RegisterClassClasses; | 
 |  | 
 | private: | 
 |   /// Map of token to class information which has already been constructed. | 
 |   std::map<std::string, ClassInfo*> TokenClasses; | 
 |  | 
 | private: | 
 |   /// getTokenClass - Lookup or create the class for the given token. | 
 |   ClassInfo *getTokenClass(StringRef Token); | 
 |  | 
 |   /// getOperandClass - Lookup or create the class for the given operand. | 
 |   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, | 
 |                              int SubOpIdx); | 
 |   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); | 
 |  | 
 |   /// buildRegisterClasses - Build the ClassInfo* instances for register | 
 |   /// classes. | 
 |   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); | 
 |  | 
 |   /// buildOperandClasses - Build the ClassInfo* instances for user defined | 
 |   /// operand classes. | 
 |   void buildOperandClasses(); | 
 |  | 
 |   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, | 
 |                                         unsigned AsmOpIdx); | 
 |   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, | 
 |                                   MatchableInfo::AsmOperand &Op); | 
 |  | 
 | public: | 
 |   AsmMatcherInfo(Record *AsmParser, | 
 |                  CodeGenTarget &Target, | 
 |                  RecordKeeper &Records); | 
 |  | 
 |   /// Construct the various tables used during matching. | 
 |   void buildInfo(); | 
 |  | 
 |   /// buildOperandMatchInfo - Build the necessary information to handle user | 
 |   /// defined operand parsing methods. | 
 |   void buildOperandMatchInfo(); | 
 |  | 
 |   /// getSubtargetFeature - Lookup or create the subtarget feature info for the | 
 |   /// given operand. | 
 |   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { | 
 |     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); | 
 |     const auto &I = SubtargetFeatures.find(Def); | 
 |     return I == SubtargetFeatures.end() ? nullptr : &I->second; | 
 |   } | 
 |  | 
 |   RecordKeeper &getRecords() const { | 
 |     return Records; | 
 |   } | 
 |  | 
 |   bool hasOptionalOperands() const { | 
 |     return find_if(Classes, [](const ClassInfo &Class) { | 
 |              return Class.IsOptional; | 
 |            }) != Classes.end(); | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | LLVM_DUMP_METHOD void MatchableInfo::dump() const { | 
 |   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; | 
 |  | 
 |   errs() << "  variant: " << AsmVariantID << "\n"; | 
 |  | 
 |   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { | 
 |     const AsmOperand &Op = AsmOperands[i]; | 
 |     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - "; | 
 |     errs() << '\"' << Op.Token << "\"\n"; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | static std::pair<StringRef, StringRef> | 
 | parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { | 
 |   // Split via the '='. | 
 |   std::pair<StringRef, StringRef> Ops = S.split('='); | 
 |   if (Ops.second == "") | 
 |     PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); | 
 |   // Trim whitespace and the leading '$' on the operand names. | 
 |   size_t start = Ops.first.find_first_of('$'); | 
 |   if (start == std::string::npos) | 
 |     PrintFatalError(Loc, "expected '$' prefix on asm operand name"); | 
 |   Ops.first = Ops.first.slice(start + 1, std::string::npos); | 
 |   size_t end = Ops.first.find_last_of(" \t"); | 
 |   Ops.first = Ops.first.slice(0, end); | 
 |   // Now the second operand. | 
 |   start = Ops.second.find_first_of('$'); | 
 |   if (start == std::string::npos) | 
 |     PrintFatalError(Loc, "expected '$' prefix on asm operand name"); | 
 |   Ops.second = Ops.second.slice(start + 1, std::string::npos); | 
 |   end = Ops.second.find_last_of(" \t"); | 
 |   Ops.first = Ops.first.slice(0, end); | 
 |   return Ops; | 
 | } | 
 |  | 
 | void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { | 
 |   // Figure out which operands are aliased and mark them as tied. | 
 |   std::pair<StringRef, StringRef> Ops = | 
 |     parseTwoOperandConstraint(Constraint, TheDef->getLoc()); | 
 |  | 
 |   // Find the AsmOperands that refer to the operands we're aliasing. | 
 |   int SrcAsmOperand = findAsmOperandNamed(Ops.first); | 
 |   int DstAsmOperand = findAsmOperandNamed(Ops.second); | 
 |   if (SrcAsmOperand == -1) | 
 |     PrintFatalError(TheDef->getLoc(), | 
 |                     "unknown source two-operand alias operand '" + Ops.first + | 
 |                     "'."); | 
 |   if (DstAsmOperand == -1) | 
 |     PrintFatalError(TheDef->getLoc(), | 
 |                     "unknown destination two-operand alias operand '" + | 
 |                     Ops.second + "'."); | 
 |  | 
 |   // Find the ResOperand that refers to the operand we're aliasing away | 
 |   // and update it to refer to the combined operand instead. | 
 |   for (ResOperand &Op : ResOperands) { | 
 |     if (Op.Kind == ResOperand::RenderAsmOperand && | 
 |         Op.AsmOperandNum == (unsigned)SrcAsmOperand) { | 
 |       Op.AsmOperandNum = DstAsmOperand; | 
 |       break; | 
 |     } | 
 |   } | 
 |   // Remove the AsmOperand for the alias operand. | 
 |   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); | 
 |   // Adjust the ResOperand references to any AsmOperands that followed | 
 |   // the one we just deleted. | 
 |   for (ResOperand &Op : ResOperands) { | 
 |     switch(Op.Kind) { | 
 |     default: | 
 |       // Nothing to do for operands that don't reference AsmOperands. | 
 |       break; | 
 |     case ResOperand::RenderAsmOperand: | 
 |       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) | 
 |         --Op.AsmOperandNum; | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// extractSingletonRegisterForAsmOperand - Extract singleton register, | 
 | /// if present, from specified token. | 
 | static void | 
 | extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, | 
 |                                       const AsmMatcherInfo &Info, | 
 |                                       StringRef RegisterPrefix) { | 
 |   StringRef Tok = Op.Token; | 
 |  | 
 |   // If this token is not an isolated token, i.e., it isn't separated from | 
 |   // other tokens (e.g. with whitespace), don't interpret it as a register name. | 
 |   if (!Op.IsIsolatedToken) | 
 |     return; | 
 |  | 
 |   if (RegisterPrefix.empty()) { | 
 |     std::string LoweredTok = Tok.lower(); | 
 |     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) | 
 |       Op.SingletonReg = Reg->TheDef; | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!Tok.startswith(RegisterPrefix)) | 
 |     return; | 
 |  | 
 |   StringRef RegName = Tok.substr(RegisterPrefix.size()); | 
 |   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) | 
 |     Op.SingletonReg = Reg->TheDef; | 
 |  | 
 |   // If there is no register prefix (i.e. "%" in "%eax"), then this may | 
 |   // be some random non-register token, just ignore it. | 
 | } | 
 |  | 
 | void MatchableInfo::initialize(const AsmMatcherInfo &Info, | 
 |                                SmallPtrSetImpl<Record*> &SingletonRegisters, | 
 |                                AsmVariantInfo const &Variant, | 
 |                                bool HasMnemonicFirst) { | 
 |   AsmVariantID = Variant.AsmVariantNo; | 
 |   AsmString = | 
 |     CodeGenInstruction::FlattenAsmStringVariants(AsmString, | 
 |                                                  Variant.AsmVariantNo); | 
 |  | 
 |   tokenizeAsmString(Info, Variant); | 
 |  | 
 |   // The first token of the instruction is the mnemonic, which must be a | 
 |   // simple string, not a $foo variable or a singleton register. | 
 |   if (AsmOperands.empty()) | 
 |     PrintFatalError(TheDef->getLoc(), | 
 |                   "Instruction '" + TheDef->getName() + "' has no tokens"); | 
 |  | 
 |   assert(!AsmOperands[0].Token.empty()); | 
 |   if (HasMnemonicFirst) { | 
 |     Mnemonic = AsmOperands[0].Token; | 
 |     if (Mnemonic[0] == '$') | 
 |       PrintFatalError(TheDef->getLoc(), | 
 |                       "Invalid instruction mnemonic '" + Mnemonic + "'!"); | 
 |  | 
 |     // Remove the first operand, it is tracked in the mnemonic field. | 
 |     AsmOperands.erase(AsmOperands.begin()); | 
 |   } else if (AsmOperands[0].Token[0] != '$') | 
 |     Mnemonic = AsmOperands[0].Token; | 
 |  | 
 |   // Compute the require features. | 
 |   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) | 
 |     if (const SubtargetFeatureInfo *Feature = | 
 |             Info.getSubtargetFeature(Predicate)) | 
 |       RequiredFeatures.push_back(Feature); | 
 |  | 
 |   // Collect singleton registers, if used. | 
 |   for (MatchableInfo::AsmOperand &Op : AsmOperands) { | 
 |     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); | 
 |     if (Record *Reg = Op.SingletonReg) | 
 |       SingletonRegisters.insert(Reg); | 
 |   } | 
 |  | 
 |   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); | 
 |   if (!DepMask) | 
 |     DepMask = TheDef->getValue("ComplexDeprecationPredicate"); | 
 |  | 
 |   HasDeprecation = | 
 |       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; | 
 | } | 
 |  | 
 | /// Append an AsmOperand for the given substring of AsmString. | 
 | void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { | 
 |   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); | 
 | } | 
 |  | 
 | /// tokenizeAsmString - Tokenize a simplified assembly string. | 
 | void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, | 
 |                                       AsmVariantInfo const &Variant) { | 
 |   StringRef String = AsmString; | 
 |   size_t Prev = 0; | 
 |   bool InTok = false; | 
 |   bool IsIsolatedToken = true; | 
 |   for (size_t i = 0, e = String.size(); i != e; ++i) { | 
 |     char Char = String[i]; | 
 |     if (Variant.BreakCharacters.find(Char) != std::string::npos) { | 
 |       if (InTok) { | 
 |         addAsmOperand(String.slice(Prev, i), false); | 
 |         Prev = i; | 
 |         IsIsolatedToken = false; | 
 |       } | 
 |       InTok = true; | 
 |       continue; | 
 |     } | 
 |     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { | 
 |       if (InTok) { | 
 |         addAsmOperand(String.slice(Prev, i), IsIsolatedToken); | 
 |         InTok = false; | 
 |         IsIsolatedToken = false; | 
 |       } | 
 |       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); | 
 |       Prev = i + 1; | 
 |       IsIsolatedToken = true; | 
 |       continue; | 
 |     } | 
 |     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { | 
 |       if (InTok) { | 
 |         addAsmOperand(String.slice(Prev, i), IsIsolatedToken); | 
 |         InTok = false; | 
 |       } | 
 |       Prev = i + 1; | 
 |       IsIsolatedToken = true; | 
 |       continue; | 
 |     } | 
 |  | 
 |     switch (Char) { | 
 |     case '\\': | 
 |       if (InTok) { | 
 |         addAsmOperand(String.slice(Prev, i), false); | 
 |         InTok = false; | 
 |         IsIsolatedToken = false; | 
 |       } | 
 |       ++i; | 
 |       assert(i != String.size() && "Invalid quoted character"); | 
 |       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); | 
 |       Prev = i + 1; | 
 |       IsIsolatedToken = false; | 
 |       break; | 
 |  | 
 |     case '$': { | 
 |       if (InTok) { | 
 |         addAsmOperand(String.slice(Prev, i), false); | 
 |         InTok = false; | 
 |         IsIsolatedToken = false; | 
 |       } | 
 |  | 
 |       // If this isn't "${", start new identifier looking like "$xxx" | 
 |       if (i + 1 == String.size() || String[i + 1] != '{') { | 
 |         Prev = i; | 
 |         break; | 
 |       } | 
 |  | 
 |       size_t EndPos = String.find('}', i); | 
 |       assert(EndPos != StringRef::npos && | 
 |              "Missing brace in operand reference!"); | 
 |       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); | 
 |       Prev = EndPos + 1; | 
 |       i = EndPos; | 
 |       IsIsolatedToken = false; | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       InTok = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (InTok && Prev != String.size()) | 
 |     addAsmOperand(String.substr(Prev), IsIsolatedToken); | 
 | } | 
 |  | 
 | bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { | 
 |   // Reject matchables with no .s string. | 
 |   if (AsmString.empty()) | 
 |     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); | 
 |  | 
 |   // Reject any matchables with a newline in them, they should be marked | 
 |   // isCodeGenOnly if they are pseudo instructions. | 
 |   if (AsmString.find('\n') != std::string::npos) | 
 |     PrintFatalError(TheDef->getLoc(), | 
 |                   "multiline instruction is not valid for the asmparser, " | 
 |                   "mark it isCodeGenOnly"); | 
 |  | 
 |   // Remove comments from the asm string.  We know that the asmstring only | 
 |   // has one line. | 
 |   if (!CommentDelimiter.empty() && | 
 |       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) | 
 |     PrintFatalError(TheDef->getLoc(), | 
 |                   "asmstring for instruction has comment character in it, " | 
 |                   "mark it isCodeGenOnly"); | 
 |  | 
 |   // Reject matchables with operand modifiers, these aren't something we can | 
 |   // handle, the target should be refactored to use operands instead of | 
 |   // modifiers. | 
 |   // | 
 |   // Also, check for instructions which reference the operand multiple times, | 
 |   // if they don't define a custom AsmMatcher: this implies a constraint that | 
 |   // the built-in matching code would not honor. | 
 |   std::set<std::string> OperandNames; | 
 |   for (const AsmOperand &Op : AsmOperands) { | 
 |     StringRef Tok = Op.Token; | 
 |     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) | 
 |       PrintFatalError(TheDef->getLoc(), | 
 |                       "matchable with operand modifier '" + Tok + | 
 |                       "' not supported by asm matcher.  Mark isCodeGenOnly!"); | 
 |     // Verify that any operand is only mentioned once. | 
 |     // We reject aliases and ignore instructions for now. | 
 |     if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && | 
 |         Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { | 
 |       LLVM_DEBUG({ | 
 |         errs() << "warning: '" << TheDef->getName() << "': " | 
 |                << "ignoring instruction with tied operand '" | 
 |                << Tok << "'\n"; | 
 |       }); | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static std::string getEnumNameForToken(StringRef Str) { | 
 |   std::string Res; | 
 |  | 
 |   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { | 
 |     switch (*it) { | 
 |     case '*': Res += "_STAR_"; break; | 
 |     case '%': Res += "_PCT_"; break; | 
 |     case ':': Res += "_COLON_"; break; | 
 |     case '!': Res += "_EXCLAIM_"; break; | 
 |     case '.': Res += "_DOT_"; break; | 
 |     case '<': Res += "_LT_"; break; | 
 |     case '>': Res += "_GT_"; break; | 
 |     case '-': Res += "_MINUS_"; break; | 
 |     case '#': Res += "_HASH_"; break; | 
 |     default: | 
 |       if ((*it >= 'A' && *it <= 'Z') || | 
 |           (*it >= 'a' && *it <= 'z') || | 
 |           (*it >= '0' && *it <= '9')) | 
 |         Res += *it; | 
 |       else | 
 |         Res += "_" + utostr((unsigned) *it) + "_"; | 
 |     } | 
 |   } | 
 |  | 
 |   return Res; | 
 | } | 
 |  | 
 | ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { | 
 |   ClassInfo *&Entry = TokenClasses[std::string(Token)]; | 
 |  | 
 |   if (!Entry) { | 
 |     Classes.emplace_front(); | 
 |     Entry = &Classes.front(); | 
 |     Entry->Kind = ClassInfo::Token; | 
 |     Entry->ClassName = "Token"; | 
 |     Entry->Name = "MCK_" + getEnumNameForToken(Token); | 
 |     Entry->ValueName = std::string(Token); | 
 |     Entry->PredicateMethod = "<invalid>"; | 
 |     Entry->RenderMethod = "<invalid>"; | 
 |     Entry->ParserMethod = ""; | 
 |     Entry->DiagnosticType = ""; | 
 |     Entry->IsOptional = false; | 
 |     Entry->DefaultMethod = "<invalid>"; | 
 |   } | 
 |  | 
 |   return Entry; | 
 | } | 
 |  | 
 | ClassInfo * | 
 | AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, | 
 |                                 int SubOpIdx) { | 
 |   Record *Rec = OI.Rec; | 
 |   if (SubOpIdx != -1) | 
 |     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); | 
 |   return getOperandClass(Rec, SubOpIdx); | 
 | } | 
 |  | 
 | ClassInfo * | 
 | AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { | 
 |   if (Rec->isSubClassOf("RegisterOperand")) { | 
 |     // RegisterOperand may have an associated ParserMatchClass. If it does, | 
 |     // use it, else just fall back to the underlying register class. | 
 |     const RecordVal *R = Rec->getValue("ParserMatchClass"); | 
 |     if (!R || !R->getValue()) | 
 |       PrintFatalError(Rec->getLoc(), | 
 |                       "Record `" + Rec->getName() + | 
 |                           "' does not have a ParserMatchClass!\n"); | 
 |  | 
 |     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { | 
 |       Record *MatchClass = DI->getDef(); | 
 |       if (ClassInfo *CI = AsmOperandClasses[MatchClass]) | 
 |         return CI; | 
 |     } | 
 |  | 
 |     // No custom match class. Just use the register class. | 
 |     Record *ClassRec = Rec->getValueAsDef("RegClass"); | 
 |     if (!ClassRec) | 
 |       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + | 
 |                     "' has no associated register class!\n"); | 
 |     if (ClassInfo *CI = RegisterClassClasses[ClassRec]) | 
 |       return CI; | 
 |     PrintFatalError(Rec->getLoc(), "register class has no class info!"); | 
 |   } | 
 |  | 
 |   if (Rec->isSubClassOf("RegisterClass")) { | 
 |     if (ClassInfo *CI = RegisterClassClasses[Rec]) | 
 |       return CI; | 
 |     PrintFatalError(Rec->getLoc(), "register class has no class info!"); | 
 |   } | 
 |  | 
 |   if (!Rec->isSubClassOf("Operand")) | 
 |     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + | 
 |                   "' does not derive from class Operand!\n"); | 
 |   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); | 
 |   if (ClassInfo *CI = AsmOperandClasses[MatchClass]) | 
 |     return CI; | 
 |  | 
 |   PrintFatalError(Rec->getLoc(), "operand has no match class!"); | 
 | } | 
 |  | 
 | struct LessRegisterSet { | 
 |   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { | 
 |     // std::set<T> defines its own compariso "operator<", but it | 
 |     // performs a lexicographical comparison by T's innate comparison | 
 |     // for some reason. We don't want non-deterministic pointer | 
 |     // comparisons so use this instead. | 
 |     return std::lexicographical_compare(LHS.begin(), LHS.end(), | 
 |                                         RHS.begin(), RHS.end(), | 
 |                                         LessRecordByID()); | 
 |   } | 
 | }; | 
 |  | 
 | void AsmMatcherInfo:: | 
 | buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { | 
 |   const auto &Registers = Target.getRegBank().getRegisters(); | 
 |   auto &RegClassList = Target.getRegBank().getRegClasses(); | 
 |  | 
 |   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; | 
 |  | 
 |   // The register sets used for matching. | 
 |   RegisterSetSet RegisterSets; | 
 |  | 
 |   // Gather the defined sets. | 
 |   for (const CodeGenRegisterClass &RC : RegClassList) | 
 |     RegisterSets.insert( | 
 |         RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); | 
 |  | 
 |   // Add any required singleton sets. | 
 |   for (Record *Rec : SingletonRegisters) { | 
 |     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); | 
 |   } | 
 |  | 
 |   // Introduce derived sets where necessary (when a register does not determine | 
 |   // a unique register set class), and build the mapping of registers to the set | 
 |   // they should classify to. | 
 |   std::map<Record*, RegisterSet> RegisterMap; | 
 |   for (const CodeGenRegister &CGR : Registers) { | 
 |     // Compute the intersection of all sets containing this register. | 
 |     RegisterSet ContainingSet; | 
 |  | 
 |     for (const RegisterSet &RS : RegisterSets) { | 
 |       if (!RS.count(CGR.TheDef)) | 
 |         continue; | 
 |  | 
 |       if (ContainingSet.empty()) { | 
 |         ContainingSet = RS; | 
 |         continue; | 
 |       } | 
 |  | 
 |       RegisterSet Tmp; | 
 |       std::swap(Tmp, ContainingSet); | 
 |       std::insert_iterator<RegisterSet> II(ContainingSet, | 
 |                                            ContainingSet.begin()); | 
 |       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, | 
 |                             LessRecordByID()); | 
 |     } | 
 |  | 
 |     if (!ContainingSet.empty()) { | 
 |       RegisterSets.insert(ContainingSet); | 
 |       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Construct the register classes. | 
 |   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; | 
 |   unsigned Index = 0; | 
 |   for (const RegisterSet &RS : RegisterSets) { | 
 |     Classes.emplace_front(); | 
 |     ClassInfo *CI = &Classes.front(); | 
 |     CI->Kind = ClassInfo::RegisterClass0 + Index; | 
 |     CI->ClassName = "Reg" + utostr(Index); | 
 |     CI->Name = "MCK_Reg" + utostr(Index); | 
 |     CI->ValueName = ""; | 
 |     CI->PredicateMethod = ""; // unused | 
 |     CI->RenderMethod = "addRegOperands"; | 
 |     CI->Registers = RS; | 
 |     // FIXME: diagnostic type. | 
 |     CI->DiagnosticType = ""; | 
 |     CI->IsOptional = false; | 
 |     CI->DefaultMethod = ""; // unused | 
 |     RegisterSetClasses.insert(std::make_pair(RS, CI)); | 
 |     ++Index; | 
 |   } | 
 |  | 
 |   // Find the superclasses; we could compute only the subgroup lattice edges, | 
 |   // but there isn't really a point. | 
 |   for (const RegisterSet &RS : RegisterSets) { | 
 |     ClassInfo *CI = RegisterSetClasses[RS]; | 
 |     for (const RegisterSet &RS2 : RegisterSets) | 
 |       if (RS != RS2 && | 
 |           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), | 
 |                         LessRecordByID())) | 
 |         CI->SuperClasses.push_back(RegisterSetClasses[RS2]); | 
 |   } | 
 |  | 
 |   // Name the register classes which correspond to a user defined RegisterClass. | 
 |   for (const CodeGenRegisterClass &RC : RegClassList) { | 
 |     // Def will be NULL for non-user defined register classes. | 
 |     Record *Def = RC.getDef(); | 
 |     if (!Def) | 
 |       continue; | 
 |     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), | 
 |                                                    RC.getOrder().end())]; | 
 |     if (CI->ValueName.empty()) { | 
 |       CI->ClassName = RC.getName(); | 
 |       CI->Name = "MCK_" + RC.getName(); | 
 |       CI->ValueName = RC.getName(); | 
 |     } else | 
 |       CI->ValueName = CI->ValueName + "," + RC.getName(); | 
 |  | 
 |     Init *DiagnosticType = Def->getValueInit("DiagnosticType"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) | 
 |       CI->DiagnosticType = std::string(SI->getValue()); | 
 |  | 
 |     Init *DiagnosticString = Def->getValueInit("DiagnosticString"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) | 
 |       CI->DiagnosticString = std::string(SI->getValue()); | 
 |  | 
 |     // If we have a diagnostic string but the diagnostic type is not specified | 
 |     // explicitly, create an anonymous diagnostic type. | 
 |     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) | 
 |       CI->DiagnosticType = RC.getName(); | 
 |  | 
 |     RegisterClassClasses.insert(std::make_pair(Def, CI)); | 
 |   } | 
 |  | 
 |   // Populate the map for individual registers. | 
 |   for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), | 
 |          ie = RegisterMap.end(); it != ie; ++it) | 
 |     RegisterClasses[it->first] = RegisterSetClasses[it->second]; | 
 |  | 
 |   // Name the register classes which correspond to singleton registers. | 
 |   for (Record *Rec : SingletonRegisters) { | 
 |     ClassInfo *CI = RegisterClasses[Rec]; | 
 |     assert(CI && "Missing singleton register class info!"); | 
 |  | 
 |     if (CI->ValueName.empty()) { | 
 |       CI->ClassName = std::string(Rec->getName()); | 
 |       CI->Name = "MCK_" + Rec->getName().str(); | 
 |       CI->ValueName = std::string(Rec->getName()); | 
 |     } else | 
 |       CI->ValueName = CI->ValueName + "," + Rec->getName().str(); | 
 |   } | 
 | } | 
 |  | 
 | void AsmMatcherInfo::buildOperandClasses() { | 
 |   std::vector<Record*> AsmOperands = | 
 |     Records.getAllDerivedDefinitions("AsmOperandClass"); | 
 |  | 
 |   // Pre-populate AsmOperandClasses map. | 
 |   for (Record *Rec : AsmOperands) { | 
 |     Classes.emplace_front(); | 
 |     AsmOperandClasses[Rec] = &Classes.front(); | 
 |   } | 
 |  | 
 |   unsigned Index = 0; | 
 |   for (Record *Rec : AsmOperands) { | 
 |     ClassInfo *CI = AsmOperandClasses[Rec]; | 
 |     CI->Kind = ClassInfo::UserClass0 + Index; | 
 |  | 
 |     ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); | 
 |     for (Init *I : Supers->getValues()) { | 
 |       DefInit *DI = dyn_cast<DefInit>(I); | 
 |       if (!DI) { | 
 |         PrintError(Rec->getLoc(), "Invalid super class reference!"); | 
 |         continue; | 
 |       } | 
 |  | 
 |       ClassInfo *SC = AsmOperandClasses[DI->getDef()]; | 
 |       if (!SC) | 
 |         PrintError(Rec->getLoc(), "Invalid super class reference!"); | 
 |       else | 
 |         CI->SuperClasses.push_back(SC); | 
 |     } | 
 |     CI->ClassName = std::string(Rec->getValueAsString("Name")); | 
 |     CI->Name = "MCK_" + CI->ClassName; | 
 |     CI->ValueName = std::string(Rec->getName()); | 
 |  | 
 |     // Get or construct the predicate method name. | 
 |     Init *PMName = Rec->getValueInit("PredicateMethod"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(PMName)) { | 
 |       CI->PredicateMethod = std::string(SI->getValue()); | 
 |     } else { | 
 |       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); | 
 |       CI->PredicateMethod = "is" + CI->ClassName; | 
 |     } | 
 |  | 
 |     // Get or construct the render method name. | 
 |     Init *RMName = Rec->getValueInit("RenderMethod"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(RMName)) { | 
 |       CI->RenderMethod = std::string(SI->getValue()); | 
 |     } else { | 
 |       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); | 
 |       CI->RenderMethod = "add" + CI->ClassName + "Operands"; | 
 |     } | 
 |  | 
 |     // Get the parse method name or leave it as empty. | 
 |     Init *PRMName = Rec->getValueInit("ParserMethod"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(PRMName)) | 
 |       CI->ParserMethod = std::string(SI->getValue()); | 
 |  | 
 |     // Get the diagnostic type and string or leave them as empty. | 
 |     Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) | 
 |       CI->DiagnosticType = std::string(SI->getValue()); | 
 |     Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) | 
 |       CI->DiagnosticString = std::string(SI->getValue()); | 
 |     // If we have a DiagnosticString, we need a DiagnosticType for use within | 
 |     // the matcher. | 
 |     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) | 
 |       CI->DiagnosticType = CI->ClassName; | 
 |  | 
 |     Init *IsOptional = Rec->getValueInit("IsOptional"); | 
 |     if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) | 
 |       CI->IsOptional = BI->getValue(); | 
 |  | 
 |     // Get or construct the default method name. | 
 |     Init *DMName = Rec->getValueInit("DefaultMethod"); | 
 |     if (StringInit *SI = dyn_cast<StringInit>(DMName)) { | 
 |       CI->DefaultMethod = std::string(SI->getValue()); | 
 |     } else { | 
 |       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); | 
 |       CI->DefaultMethod = "default" + CI->ClassName + "Operands"; | 
 |     } | 
 |  | 
 |     ++Index; | 
 |   } | 
 | } | 
 |  | 
 | AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, | 
 |                                CodeGenTarget &target, | 
 |                                RecordKeeper &records) | 
 |   : Records(records), AsmParser(asmParser), Target(target) { | 
 | } | 
 |  | 
 | /// buildOperandMatchInfo - Build the necessary information to handle user | 
 | /// defined operand parsing methods. | 
 | void AsmMatcherInfo::buildOperandMatchInfo() { | 
 |  | 
 |   /// Map containing a mask with all operands indices that can be found for | 
 |   /// that class inside a instruction. | 
 |   typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; | 
 |   OpClassMaskTy OpClassMask; | 
 |  | 
 |   for (const auto &MI : Matchables) { | 
 |     OpClassMask.clear(); | 
 |  | 
 |     // Keep track of all operands of this instructions which belong to the | 
 |     // same class. | 
 |     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { | 
 |       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; | 
 |       if (Op.Class->ParserMethod.empty()) | 
 |         continue; | 
 |       unsigned &OperandMask = OpClassMask[Op.Class]; | 
 |       OperandMask |= (1 << i); | 
 |     } | 
 |  | 
 |     // Generate operand match info for each mnemonic/operand class pair. | 
 |     for (const auto &OCM : OpClassMask) { | 
 |       unsigned OpMask = OCM.second; | 
 |       ClassInfo *CI = OCM.first; | 
 |       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, | 
 |                                                            OpMask)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void AsmMatcherInfo::buildInfo() { | 
 |   // Build information about all of the AssemblerPredicates. | 
 |   const std::vector<std::pair<Record *, SubtargetFeatureInfo>> | 
 |       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); | 
 |   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), | 
 |                            SubtargetFeaturePairs.end()); | 
 | #ifndef NDEBUG | 
 |   for (const auto &Pair : SubtargetFeatures) | 
 |     LLVM_DEBUG(Pair.second.dump()); | 
 | #endif // NDEBUG | 
 |  | 
 |   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); | 
 |   bool ReportMultipleNearMisses = | 
 |       AsmParser->getValueAsBit("ReportMultipleNearMisses"); | 
 |  | 
 |   // Parse the instructions; we need to do this first so that we can gather the | 
 |   // singleton register classes. | 
 |   SmallPtrSet<Record*, 16> SingletonRegisters; | 
 |   unsigned VariantCount = Target.getAsmParserVariantCount(); | 
 |   for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
 |     Record *AsmVariant = Target.getAsmParserVariant(VC); | 
 |     StringRef CommentDelimiter = | 
 |         AsmVariant->getValueAsString("CommentDelimiter"); | 
 |     AsmVariantInfo Variant; | 
 |     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); | 
 |     Variant.TokenizingCharacters = | 
 |         AsmVariant->getValueAsString("TokenizingCharacters"); | 
 |     Variant.SeparatorCharacters = | 
 |         AsmVariant->getValueAsString("SeparatorCharacters"); | 
 |     Variant.BreakCharacters = | 
 |         AsmVariant->getValueAsString("BreakCharacters"); | 
 |     Variant.Name = AsmVariant->getValueAsString("Name"); | 
 |     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
 |  | 
 |     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { | 
 |  | 
 |       // If the tblgen -match-prefix option is specified (for tblgen hackers), | 
 |       // filter the set of instructions we consider. | 
 |       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) | 
 |         continue; | 
 |  | 
 |       // Ignore "codegen only" instructions. | 
 |       if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) | 
 |         continue; | 
 |  | 
 |       // Ignore instructions for different instructions | 
 |       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); | 
 |       if (!V.empty() && V != Variant.Name) | 
 |         continue; | 
 |  | 
 |       auto II = std::make_unique<MatchableInfo>(*CGI); | 
 |  | 
 |       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); | 
 |  | 
 |       // Ignore instructions which shouldn't be matched and diagnose invalid | 
 |       // instruction definitions with an error. | 
 |       if (!II->validate(CommentDelimiter, false)) | 
 |         continue; | 
 |  | 
 |       Matchables.push_back(std::move(II)); | 
 |     } | 
 |  | 
 |     // Parse all of the InstAlias definitions and stick them in the list of | 
 |     // matchables. | 
 |     std::vector<Record*> AllInstAliases = | 
 |       Records.getAllDerivedDefinitions("InstAlias"); | 
 |     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { | 
 |       auto Alias = std::make_unique<CodeGenInstAlias>(AllInstAliases[i], | 
 |                                                        Target); | 
 |  | 
 |       // If the tblgen -match-prefix option is specified (for tblgen hackers), | 
 |       // filter the set of instruction aliases we consider, based on the target | 
 |       // instruction. | 
 |       if (!StringRef(Alias->ResultInst->TheDef->getName()) | 
 |             .startswith( MatchPrefix)) | 
 |         continue; | 
 |  | 
 |       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); | 
 |       if (!V.empty() && V != Variant.Name) | 
 |         continue; | 
 |  | 
 |       auto II = std::make_unique<MatchableInfo>(std::move(Alias)); | 
 |  | 
 |       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); | 
 |  | 
 |       // Validate the alias definitions. | 
 |       II->validate(CommentDelimiter, true); | 
 |  | 
 |       Matchables.push_back(std::move(II)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Build info for the register classes. | 
 |   buildRegisterClasses(SingletonRegisters); | 
 |  | 
 |   // Build info for the user defined assembly operand classes. | 
 |   buildOperandClasses(); | 
 |  | 
 |   // Build the information about matchables, now that we have fully formed | 
 |   // classes. | 
 |   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; | 
 |   for (auto &II : Matchables) { | 
 |     // Parse the tokens after the mnemonic. | 
 |     // Note: buildInstructionOperandReference may insert new AsmOperands, so | 
 |     // don't precompute the loop bound. | 
 |     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { | 
 |       MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; | 
 |       StringRef Token = Op.Token; | 
 |  | 
 |       // Check for singleton registers. | 
 |       if (Record *RegRecord = Op.SingletonReg) { | 
 |         Op.Class = RegisterClasses[RegRecord]; | 
 |         assert(Op.Class && Op.Class->Registers.size() == 1 && | 
 |                "Unexpected class for singleton register"); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Check for simple tokens. | 
 |       if (Token[0] != '$') { | 
 |         Op.Class = getTokenClass(Token); | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (Token.size() > 1 && isdigit(Token[1])) { | 
 |         Op.Class = getTokenClass(Token); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Otherwise this is an operand reference. | 
 |       StringRef OperandName; | 
 |       if (Token[1] == '{') | 
 |         OperandName = Token.substr(2, Token.size() - 3); | 
 |       else | 
 |         OperandName = Token.substr(1); | 
 |  | 
 |       if (II->DefRec.is<const CodeGenInstruction*>()) | 
 |         buildInstructionOperandReference(II.get(), OperandName, i); | 
 |       else | 
 |         buildAliasOperandReference(II.get(), OperandName, Op); | 
 |     } | 
 |  | 
 |     if (II->DefRec.is<const CodeGenInstruction*>()) { | 
 |       II->buildInstructionResultOperands(); | 
 |       // If the instruction has a two-operand alias, build up the | 
 |       // matchable here. We'll add them in bulk at the end to avoid | 
 |       // confusing this loop. | 
 |       StringRef Constraint = | 
 |           II->TheDef->getValueAsString("TwoOperandAliasConstraint"); | 
 |       if (Constraint != "") { | 
 |         // Start by making a copy of the original matchable. | 
 |         auto AliasII = std::make_unique<MatchableInfo>(*II); | 
 |  | 
 |         // Adjust it to be a two-operand alias. | 
 |         AliasII->formTwoOperandAlias(Constraint); | 
 |  | 
 |         // Add the alias to the matchables list. | 
 |         NewMatchables.push_back(std::move(AliasII)); | 
 |       } | 
 |     } else | 
 |       // FIXME: The tied operands checking is not yet integrated with the | 
 |       // framework for reporting multiple near misses. To prevent invalid | 
 |       // formats from being matched with an alias if a tied-operands check | 
 |       // would otherwise have disallowed it, we just disallow such constructs | 
 |       // in TableGen completely. | 
 |       II->buildAliasResultOperands(!ReportMultipleNearMisses); | 
 |   } | 
 |   if (!NewMatchables.empty()) | 
 |     Matchables.insert(Matchables.end(), | 
 |                       std::make_move_iterator(NewMatchables.begin()), | 
 |                       std::make_move_iterator(NewMatchables.end())); | 
 |  | 
 |   // Process token alias definitions and set up the associated superclass | 
 |   // information. | 
 |   std::vector<Record*> AllTokenAliases = | 
 |     Records.getAllDerivedDefinitions("TokenAlias"); | 
 |   for (Record *Rec : AllTokenAliases) { | 
 |     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); | 
 |     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); | 
 |     if (FromClass == ToClass) | 
 |       PrintFatalError(Rec->getLoc(), | 
 |                     "error: Destination value identical to source value."); | 
 |     FromClass->SuperClasses.push_back(ToClass); | 
 |   } | 
 |  | 
 |   // Reorder classes so that classes precede super classes. | 
 |   Classes.sort(); | 
 |  | 
 | #ifdef EXPENSIVE_CHECKS | 
 |   // Verify that the table is sorted and operator < works transitively. | 
 |   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { | 
 |     for (auto J = I; J != E; ++J) { | 
 |       assert(!(*J < *I)); | 
 |       assert(I == J || !J->isSubsetOf(*I)); | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | /// buildInstructionOperandReference - The specified operand is a reference to a | 
 | /// named operand such as $src.  Resolve the Class and OperandInfo pointers. | 
 | void AsmMatcherInfo:: | 
 | buildInstructionOperandReference(MatchableInfo *II, | 
 |                                  StringRef OperandName, | 
 |                                  unsigned AsmOpIdx) { | 
 |   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); | 
 |   const CGIOperandList &Operands = CGI.Operands; | 
 |   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; | 
 |  | 
 |   // Map this token to an operand. | 
 |   unsigned Idx; | 
 |   if (!Operands.hasOperandNamed(OperandName, Idx)) | 
 |     PrintFatalError(II->TheDef->getLoc(), | 
 |                     "error: unable to find operand: '" + OperandName + "'"); | 
 |  | 
 |   // If the instruction operand has multiple suboperands, but the parser | 
 |   // match class for the asm operand is still the default "ImmAsmOperand", | 
 |   // then handle each suboperand separately. | 
 |   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { | 
 |     Record *Rec = Operands[Idx].Rec; | 
 |     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); | 
 |     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); | 
 |     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { | 
 |       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. | 
 |       StringRef Token = Op->Token; // save this in case Op gets moved | 
 |       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { | 
 |         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); | 
 |         NewAsmOp.SubOpIdx = SI; | 
 |         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); | 
 |       } | 
 |       // Replace Op with first suboperand. | 
 |       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved | 
 |       Op->SubOpIdx = 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Set up the operand class. | 
 |   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); | 
 |   Op->OrigSrcOpName = OperandName; | 
 |  | 
 |   // If the named operand is tied, canonicalize it to the untied operand. | 
 |   // For example, something like: | 
 |   //   (outs GPR:$dst), (ins GPR:$src) | 
 |   // with an asmstring of | 
 |   //   "inc $src" | 
 |   // we want to canonicalize to: | 
 |   //   "inc $dst" | 
 |   // so that we know how to provide the $dst operand when filling in the result. | 
 |   int OITied = -1; | 
 |   if (Operands[Idx].MINumOperands == 1) | 
 |     OITied = Operands[Idx].getTiedRegister(); | 
 |   if (OITied != -1) { | 
 |     // The tied operand index is an MIOperand index, find the operand that | 
 |     // contains it. | 
 |     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); | 
 |     OperandName = Operands[Idx.first].Name; | 
 |     Op->SubOpIdx = Idx.second; | 
 |   } | 
 |  | 
 |   Op->SrcOpName = OperandName; | 
 | } | 
 |  | 
 | /// buildAliasOperandReference - When parsing an operand reference out of the | 
 | /// matching string (e.g. "movsx $src, $dst"), determine what the class of the | 
 | /// operand reference is by looking it up in the result pattern definition. | 
 | void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, | 
 |                                                 StringRef OperandName, | 
 |                                                 MatchableInfo::AsmOperand &Op) { | 
 |   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); | 
 |  | 
 |   // Set up the operand class. | 
 |   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) | 
 |     if (CGA.ResultOperands[i].isRecord() && | 
 |         CGA.ResultOperands[i].getName() == OperandName) { | 
 |       // It's safe to go with the first one we find, because CodeGenInstAlias | 
 |       // validates that all operands with the same name have the same record. | 
 |       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; | 
 |       // Use the match class from the Alias definition, not the | 
 |       // destination instruction, as we may have an immediate that's | 
 |       // being munged by the match class. | 
 |       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), | 
 |                                  Op.SubOpIdx); | 
 |       Op.SrcOpName = OperandName; | 
 |       Op.OrigSrcOpName = OperandName; | 
 |       return; | 
 |     } | 
 |  | 
 |   PrintFatalError(II->TheDef->getLoc(), | 
 |                   "error: unable to find operand: '" + OperandName + "'"); | 
 | } | 
 |  | 
 | void MatchableInfo::buildInstructionResultOperands() { | 
 |   const CodeGenInstruction *ResultInst = getResultInst(); | 
 |  | 
 |   // Loop over all operands of the result instruction, determining how to | 
 |   // populate them. | 
 |   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { | 
 |     // If this is a tied operand, just copy from the previously handled operand. | 
 |     int TiedOp = -1; | 
 |     if (OpInfo.MINumOperands == 1) | 
 |       TiedOp = OpInfo.getTiedRegister(); | 
 |     if (TiedOp != -1) { | 
 |       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); | 
 |       if (TiedSrcOperand != -1 && | 
 |           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) | 
 |         ResOperands.push_back(ResOperand::getTiedOp( | 
 |             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); | 
 |       else | 
 |         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     int SrcOperand = findAsmOperandNamed(OpInfo.Name); | 
 |     if (OpInfo.Name.empty() || SrcOperand == -1) { | 
 |       // This may happen for operands that are tied to a suboperand of a | 
 |       // complex operand.  Simply use a dummy value here; nobody should | 
 |       // use this operand slot. | 
 |       // FIXME: The long term goal is for the MCOperand list to not contain | 
 |       // tied operands at all. | 
 |       ResOperands.push_back(ResOperand::getImmOp(0)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Check if the one AsmOperand populates the entire operand. | 
 |     unsigned NumOperands = OpInfo.MINumOperands; | 
 |     if (AsmOperands[SrcOperand].SubOpIdx == -1) { | 
 |       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Add a separate ResOperand for each suboperand. | 
 |     for (unsigned AI = 0; AI < NumOperands; ++AI) { | 
 |       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && | 
 |              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && | 
 |              "unexpected AsmOperands for suboperands"); | 
 |       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { | 
 |   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); | 
 |   const CodeGenInstruction *ResultInst = getResultInst(); | 
 |  | 
 |   // Map of:  $reg -> #lastref | 
 |   //   where $reg is the name of the operand in the asm string | 
 |   //   where #lastref is the last processed index where $reg was referenced in | 
 |   //   the asm string. | 
 |   SmallDenseMap<StringRef, int> OperandRefs; | 
 |  | 
 |   // Loop over all operands of the result instruction, determining how to | 
 |   // populate them. | 
 |   unsigned AliasOpNo = 0; | 
 |   unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); | 
 |   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { | 
 |     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; | 
 |  | 
 |     // If this is a tied operand, just copy from the previously handled operand. | 
 |     int TiedOp = -1; | 
 |     if (OpInfo->MINumOperands == 1) | 
 |       TiedOp = OpInfo->getTiedRegister(); | 
 |     if (TiedOp != -1) { | 
 |       unsigned SrcOp1 = 0; | 
 |       unsigned SrcOp2 = 0; | 
 |  | 
 |       // If an operand has been specified twice in the asm string, | 
 |       // add the two source operand's indices to the TiedOp so that | 
 |       // at runtime the 'tied' constraint is checked. | 
 |       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { | 
 |         SrcOp1 = ResOperands[TiedOp].AsmOperandNum; | 
 |  | 
 |         // Find the next operand (similarly named operand) in the string. | 
 |         StringRef Name = AsmOperands[SrcOp1].SrcOpName; | 
 |         auto Insert = OperandRefs.try_emplace(Name, SrcOp1); | 
 |         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); | 
 |  | 
 |         // Not updating the record in OperandRefs will cause TableGen | 
 |         // to fail with an error at the end of this function. | 
 |         if (AliasConstraintsAreChecked) | 
 |           Insert.first->second = SrcOp2; | 
 |  | 
 |         // In case it only has one reference in the asm string, | 
 |         // it doesn't need to be checked for tied constraints. | 
 |         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; | 
 |       } | 
 |  | 
 |       // If the alias operand is of a different operand class, we only want | 
 |       // to benefit from the tied-operands check and just match the operand | 
 |       // as a normal, but not copy the original (TiedOp) to the result | 
 |       // instruction. We do this by passing -1 as the tied operand to copy. | 
 |       if (ResultInst->Operands[i].Rec->getName() != | 
 |           ResultInst->Operands[TiedOp].Rec->getName()) { | 
 |         SrcOp1 = ResOperands[TiedOp].AsmOperandNum; | 
 |         int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; | 
 |         StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); | 
 |         SrcOp2 = findAsmOperand(Name, SubIdx); | 
 |         ResOperands.push_back( | 
 |             ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); | 
 |       } else { | 
 |         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     // Handle all the suboperands for this operand. | 
 |     const std::string &OpName = OpInfo->Name; | 
 |     for ( ; AliasOpNo <  LastOpNo && | 
 |             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { | 
 |       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; | 
 |  | 
 |       // Find out what operand from the asmparser that this MCInst operand | 
 |       // comes from. | 
 |       switch (CGA.ResultOperands[AliasOpNo].Kind) { | 
 |       case CodeGenInstAlias::ResultOperand::K_Record: { | 
 |         StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); | 
 |         int SrcOperand = findAsmOperand(Name, SubIdx); | 
 |         if (SrcOperand == -1) | 
 |           PrintFatalError(TheDef->getLoc(), "Instruction '" + | 
 |                         TheDef->getName() + "' has operand '" + OpName + | 
 |                         "' that doesn't appear in asm string!"); | 
 |  | 
 |         // Add it to the operand references. If it is added a second time, the | 
 |         // record won't be updated and it will fail later on. | 
 |         OperandRefs.try_emplace(Name, SrcOperand); | 
 |  | 
 |         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); | 
 |         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, | 
 |                                                         NumOperands)); | 
 |         break; | 
 |       } | 
 |       case CodeGenInstAlias::ResultOperand::K_Imm: { | 
 |         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); | 
 |         ResOperands.push_back(ResOperand::getImmOp(ImmVal)); | 
 |         break; | 
 |       } | 
 |       case CodeGenInstAlias::ResultOperand::K_Reg: { | 
 |         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); | 
 |         ResOperands.push_back(ResOperand::getRegOp(Reg)); | 
 |         break; | 
 |       } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Check that operands are not repeated more times than is supported. | 
 |   for (auto &T : OperandRefs) { | 
 |     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) | 
 |       PrintFatalError(TheDef->getLoc(), | 
 |                       "Operand '" + T.first + "' can never be matched"); | 
 |   } | 
 | } | 
 |  | 
 | static unsigned | 
 | getConverterOperandID(const std::string &Name, | 
 |                       SmallSetVector<CachedHashString, 16> &Table, | 
 |                       bool &IsNew) { | 
 |   IsNew = Table.insert(CachedHashString(Name)); | 
 |  | 
 |   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); | 
 |  | 
 |   assert(ID < Table.size()); | 
 |  | 
 |   return ID; | 
 | } | 
 |  | 
 | static unsigned | 
 | emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, | 
 |                  std::vector<std::unique_ptr<MatchableInfo>> &Infos, | 
 |                  bool HasMnemonicFirst, bool HasOptionalOperands, | 
 |                  raw_ostream &OS) { | 
 |   SmallSetVector<CachedHashString, 16> OperandConversionKinds; | 
 |   SmallSetVector<CachedHashString, 16> InstructionConversionKinds; | 
 |   std::vector<std::vector<uint8_t> > ConversionTable; | 
 |   size_t MaxRowLength = 2; // minimum is custom converter plus terminator. | 
 |  | 
 |   // TargetOperandClass - This is the target's operand class, like X86Operand. | 
 |   std::string TargetOperandClass = Target.getName().str() + "Operand"; | 
 |  | 
 |   // Write the convert function to a separate stream, so we can drop it after | 
 |   // the enum. We'll build up the conversion handlers for the individual | 
 |   // operand types opportunistically as we encounter them. | 
 |   std::string ConvertFnBody; | 
 |   raw_string_ostream CvtOS(ConvertFnBody); | 
 |   // Start the unified conversion function. | 
 |   if (HasOptionalOperands) { | 
 |     CvtOS << "void " << Target.getName() << ClassName << "::\n" | 
 |           << "convertToMCInst(unsigned Kind, MCInst &Inst, " | 
 |           << "unsigned Opcode,\n" | 
 |           << "                const OperandVector &Operands,\n" | 
 |           << "                const SmallBitVector &OptionalOperandsMask) {\n"; | 
 |   } else { | 
 |     CvtOS << "void " << Target.getName() << ClassName << "::\n" | 
 |           << "convertToMCInst(unsigned Kind, MCInst &Inst, " | 
 |           << "unsigned Opcode,\n" | 
 |           << "                const OperandVector &Operands) {\n"; | 
 |   } | 
 |   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; | 
 |   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n"; | 
 |   if (HasOptionalOperands) { | 
 |     size_t MaxNumOperands = 0; | 
 |     for (const auto &MI : Infos) { | 
 |       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); | 
 |     } | 
 |     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1) | 
 |           << "] = { 0 };\n"; | 
 |     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands) | 
 |           << ");\n"; | 
 |     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) | 
 |           << "; ++i) {\n"; | 
 |     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n"; | 
 |     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; | 
 |     CvtOS << "  }\n"; | 
 |   } | 
 |   CvtOS << "  unsigned OpIdx;\n"; | 
 |   CvtOS << "  Inst.setOpcode(Opcode);\n"; | 
 |   CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"; | 
 |   if (HasOptionalOperands) { | 
 |     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; | 
 |   } else { | 
 |     CvtOS << "    OpIdx = *(p + 1);\n"; | 
 |   } | 
 |   CvtOS << "    switch (*p) {\n"; | 
 |   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"; | 
 |   CvtOS << "    case CVT_Reg:\n"; | 
 |   CvtOS << "      static_cast<" << TargetOperandClass | 
 |         << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; | 
 |   CvtOS << "      break;\n"; | 
 |   CvtOS << "    case CVT_Tied: {\n"; | 
 |   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; | 
 |   CvtOS << "                          std::begin(TiedAsmOperandTable)) &&\n"; | 
 |   CvtOS << "             \"Tied operand not found\");\n"; | 
 |   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; | 
 |   CvtOS << "      if (TiedResOpnd != (uint8_t) -1)\n"; | 
 |   CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; | 
 |   CvtOS << "      break;\n"; | 
 |   CvtOS << "    }\n"; | 
 |  | 
 |   std::string OperandFnBody; | 
 |   raw_string_ostream OpOS(OperandFnBody); | 
 |   // Start the operand number lookup function. | 
 |   OpOS << "void " << Target.getName() << ClassName << "::\n" | 
 |        << "convertToMapAndConstraints(unsigned Kind,\n"; | 
 |   OpOS.indent(27); | 
 |   OpOS << "const OperandVector &Operands) {\n" | 
 |        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" | 
 |        << "  unsigned NumMCOperands = 0;\n" | 
 |        << "  const uint8_t *Converter = ConversionTable[Kind];\n" | 
 |        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n" | 
 |        << "    switch (*p) {\n" | 
 |        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n" | 
 |        << "    case CVT_Reg:\n" | 
 |        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
 |        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n" | 
 |        << "      ++NumMCOperands;\n" | 
 |        << "      break;\n" | 
 |        << "    case CVT_Tied:\n" | 
 |        << "      ++NumMCOperands;\n" | 
 |        << "      break;\n"; | 
 |  | 
 |   // Pre-populate the operand conversion kinds with the standard always | 
 |   // available entries. | 
 |   OperandConversionKinds.insert(CachedHashString("CVT_Done")); | 
 |   OperandConversionKinds.insert(CachedHashString("CVT_Reg")); | 
 |   OperandConversionKinds.insert(CachedHashString("CVT_Tied")); | 
 |   enum { CVT_Done, CVT_Reg, CVT_Tied }; | 
 |  | 
 |   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. | 
 |   std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> | 
 |   TiedOperandsEnumMap; | 
 |  | 
 |   for (auto &II : Infos) { | 
 |     // Check if we have a custom match function. | 
 |     StringRef AsmMatchConverter = | 
 |         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); | 
 |     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { | 
 |       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); | 
 |       II->ConversionFnKind = Signature; | 
 |  | 
 |       // Check if we have already generated this signature. | 
 |       if (!InstructionConversionKinds.insert(CachedHashString(Signature))) | 
 |         continue; | 
 |  | 
 |       // Remember this converter for the kind enum. | 
 |       unsigned KindID = OperandConversionKinds.size(); | 
 |       OperandConversionKinds.insert( | 
 |           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); | 
 |  | 
 |       // Add the converter row for this instruction. | 
 |       ConversionTable.emplace_back(); | 
 |       ConversionTable.back().push_back(KindID); | 
 |       ConversionTable.back().push_back(CVT_Done); | 
 |  | 
 |       // Add the handler to the conversion driver function. | 
 |       CvtOS << "    case CVT_" | 
 |             << getEnumNameForToken(AsmMatchConverter) << ":\n" | 
 |             << "      " << AsmMatchConverter << "(Inst, Operands);\n" | 
 |             << "      break;\n"; | 
 |  | 
 |       // FIXME: Handle the operand number lookup for custom match functions. | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Build the conversion function signature. | 
 |     std::string Signature = "Convert"; | 
 |  | 
 |     std::vector<uint8_t> ConversionRow; | 
 |  | 
 |     // Compute the convert enum and the case body. | 
 |     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); | 
 |  | 
 |     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { | 
 |       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; | 
 |  | 
 |       // Generate code to populate each result operand. | 
 |       switch (OpInfo.Kind) { | 
 |       case MatchableInfo::ResOperand::RenderAsmOperand: { | 
 |         // This comes from something we parsed. | 
 |         const MatchableInfo::AsmOperand &Op = | 
 |           II->AsmOperands[OpInfo.AsmOperandNum]; | 
 |  | 
 |         // Registers are always converted the same, don't duplicate the | 
 |         // conversion function based on them. | 
 |         Signature += "__"; | 
 |         std::string Class; | 
 |         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; | 
 |         Signature += Class; | 
 |         Signature += utostr(OpInfo.MINumOperands); | 
 |         Signature += "_" + itostr(OpInfo.AsmOperandNum); | 
 |  | 
 |         // Add the conversion kind, if necessary, and get the associated ID | 
 |         // the index of its entry in the vector). | 
 |         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : | 
 |                                      Op.Class->RenderMethod); | 
 |         if (Op.Class->IsOptional) { | 
 |           // For optional operands we must also care about DefaultMethod | 
 |           assert(HasOptionalOperands); | 
 |           Name += "_" + Op.Class->DefaultMethod; | 
 |         } | 
 |         Name = getEnumNameForToken(Name); | 
 |  | 
 |         bool IsNewConverter = false; | 
 |         unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
 |                                             IsNewConverter); | 
 |  | 
 |         // Add the operand entry to the instruction kind conversion row. | 
 |         ConversionRow.push_back(ID); | 
 |         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); | 
 |  | 
 |         if (!IsNewConverter) | 
 |           break; | 
 |  | 
 |         // This is a new operand kind. Add a handler for it to the | 
 |         // converter driver. | 
 |         CvtOS << "    case " << Name << ":\n"; | 
 |         if (Op.Class->IsOptional) { | 
 |           // If optional operand is not present in actual instruction then we | 
 |           // should call its DefaultMethod before RenderMethod | 
 |           assert(HasOptionalOperands); | 
 |           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n" | 
 |                 << "        " << Op.Class->DefaultMethod << "()" | 
 |                 << "->" << Op.Class->RenderMethod << "(Inst, " | 
 |                 << OpInfo.MINumOperands << ");\n" | 
 |                 << "      } else {\n" | 
 |                 << "        static_cast<" << TargetOperandClass | 
 |                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod | 
 |                 << "(Inst, " << OpInfo.MINumOperands << ");\n" | 
 |                 << "      }\n"; | 
 |         } else { | 
 |           CvtOS << "      static_cast<" << TargetOperandClass | 
 |                 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod | 
 |                 << "(Inst, " << OpInfo.MINumOperands << ");\n"; | 
 |         } | 
 |         CvtOS << "      break;\n"; | 
 |  | 
 |         // Add a handler for the operand number lookup. | 
 |         OpOS << "    case " << Name << ":\n" | 
 |              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; | 
 |  | 
 |         if (Op.Class->isRegisterClass()) | 
 |           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"; | 
 |         else | 
 |           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"; | 
 |         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n" | 
 |              << "      break;\n"; | 
 |         break; | 
 |       } | 
 |       case MatchableInfo::ResOperand::TiedOperand: { | 
 |         // If this operand is tied to a previous one, just copy the MCInst | 
 |         // operand from the earlier one.We can only tie single MCOperand values. | 
 |         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); | 
 |         uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; | 
 |         uint8_t SrcOp1 = | 
 |             OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; | 
 |         uint8_t SrcOp2 = | 
 |             OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; | 
 |         assert((i > TiedOp || TiedOp == (uint8_t)-1) && | 
 |                "Tied operand precedes its target!"); | 
 |         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + | 
 |                              utostr(SrcOp1) + '_' + utostr(SrcOp2); | 
 |         Signature += "__" + TiedTupleName; | 
 |         ConversionRow.push_back(CVT_Tied); | 
 |         ConversionRow.push_back(TiedOp); | 
 |         ConversionRow.push_back(SrcOp1); | 
 |         ConversionRow.push_back(SrcOp2); | 
 |  | 
 |         // Also create an 'enum' for this combination of tied operands. | 
 |         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); | 
 |         TiedOperandsEnumMap.emplace(Key, TiedTupleName); | 
 |         break; | 
 |       } | 
 |       case MatchableInfo::ResOperand::ImmOperand: { | 
 |         int64_t Val = OpInfo.ImmVal; | 
 |         std::string Ty = "imm_" + itostr(Val); | 
 |         Ty = getEnumNameForToken(Ty); | 
 |         Signature += "__" + Ty; | 
 |  | 
 |         std::string Name = "CVT_" + Ty; | 
 |         bool IsNewConverter = false; | 
 |         unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
 |                                             IsNewConverter); | 
 |         // Add the operand entry to the instruction kind conversion row. | 
 |         ConversionRow.push_back(ID); | 
 |         ConversionRow.push_back(0); | 
 |  | 
 |         if (!IsNewConverter) | 
 |           break; | 
 |  | 
 |         CvtOS << "    case " << Name << ":\n" | 
 |               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n" | 
 |               << "      break;\n"; | 
 |  | 
 |         OpOS << "    case " << Name << ":\n" | 
 |              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
 |              << "      Operands[*(p + 1)]->setConstraint(\"\");\n" | 
 |              << "      ++NumMCOperands;\n" | 
 |              << "      break;\n"; | 
 |         break; | 
 |       } | 
 |       case MatchableInfo::ResOperand::RegOperand: { | 
 |         std::string Reg, Name; | 
 |         if (!OpInfo.Register) { | 
 |           Name = "reg0"; | 
 |           Reg = "0"; | 
 |         } else { | 
 |           Reg = getQualifiedName(OpInfo.Register); | 
 |           Name = "reg" + OpInfo.Register->getName().str(); | 
 |         } | 
 |         Signature += "__" + Name; | 
 |         Name = "CVT_" + Name; | 
 |         bool IsNewConverter = false; | 
 |         unsigned ID = getConverterOperandID(Name, OperandConversionKinds, | 
 |                                             IsNewConverter); | 
 |         // Add the operand entry to the instruction kind conversion row. | 
 |         ConversionRow.push_back(ID); | 
 |         ConversionRow.push_back(0); | 
 |  | 
 |         if (!IsNewConverter) | 
 |           break; | 
 |         CvtOS << "    case " << Name << ":\n" | 
 |               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" | 
 |               << "      break;\n"; | 
 |  | 
 |         OpOS << "    case " << Name << ":\n" | 
 |              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" | 
 |              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n" | 
 |              << "      ++NumMCOperands;\n" | 
 |              << "      break;\n"; | 
 |       } | 
 |       } | 
 |     } | 
 |  | 
 |     // If there were no operands, add to the signature to that effect | 
 |     if (Signature == "Convert") | 
 |       Signature += "_NoOperands"; | 
 |  | 
 |     II->ConversionFnKind = Signature; | 
 |  | 
 |     // Save the signature. If we already have it, don't add a new row | 
 |     // to the table. | 
 |     if (!InstructionConversionKinds.insert(CachedHashString(Signature))) | 
 |       continue; | 
 |  | 
 |     // Add the row to the table. | 
 |     ConversionTable.push_back(std::move(ConversionRow)); | 
 |   } | 
 |  | 
 |   // Finish up the converter driver function. | 
 |   CvtOS << "    }\n  }\n}\n\n"; | 
 |  | 
 |   // Finish up the operand number lookup function. | 
 |   OpOS << "    }\n  }\n}\n\n"; | 
 |  | 
 |   // Output a static table for tied operands. | 
 |   if (TiedOperandsEnumMap.size()) { | 
 |     // The number of tied operand combinations will be small in practice, | 
 |     // but just add the assert to be sure. | 
 |     assert(TiedOperandsEnumMap.size() <= 254 && | 
 |            "Too many tied-operand combinations to reference with " | 
 |            "an 8bit offset from the conversion table, where index " | 
 |            "'255' is reserved as operand not to be copied."); | 
 |  | 
 |     OS << "enum {\n"; | 
 |     for (auto &KV : TiedOperandsEnumMap) { | 
 |       OS << "  " << KV.second << ",\n"; | 
 |     } | 
 |     OS << "};\n\n"; | 
 |  | 
 |     OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; | 
 |     for (auto &KV : TiedOperandsEnumMap) { | 
 |       OS << "  /* " << KV.second << " */ { " | 
 |          << utostr(std::get<0>(KV.first)) << ", " | 
 |          << utostr(std::get<1>(KV.first)) << ", " | 
 |          << utostr(std::get<2>(KV.first)) << " },\n"; | 
 |     } | 
 |     OS << "};\n\n"; | 
 |   } else | 
 |     OS << "static const uint8_t TiedAsmOperandTable[][3] = " | 
 |           "{ /* empty  */ {0, 0, 0} };\n\n"; | 
 |  | 
 |   OS << "namespace {\n"; | 
 |  | 
 |   // Output the operand conversion kind enum. | 
 |   OS << "enum OperatorConversionKind {\n"; | 
 |   for (const auto &Converter : OperandConversionKinds) | 
 |     OS << "  " << Converter << ",\n"; | 
 |   OS << "  CVT_NUM_CONVERTERS\n"; | 
 |   OS << "};\n\n"; | 
 |  | 
 |   // Output the instruction conversion kind enum. | 
 |   OS << "enum InstructionConversionKind {\n"; | 
 |   for (const auto &Signature : InstructionConversionKinds) | 
 |     OS << "  " << Signature << ",\n"; | 
 |   OS << "  CVT_NUM_SIGNATURES\n"; | 
 |   OS << "};\n\n"; | 
 |  | 
 |   OS << "} // end anonymous namespace\n\n"; | 
 |  | 
 |   // Output the conversion table. | 
 |   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" | 
 |      << MaxRowLength << "] = {\n"; | 
 |  | 
 |   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { | 
 |     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); | 
 |     OS << "  // " << InstructionConversionKinds[Row] << "\n"; | 
 |     OS << "  { "; | 
 |     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { | 
 |       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; | 
 |       if (OperandConversionKinds[ConversionTable[Row][i]] != | 
 |           CachedHashString("CVT_Tied")) { | 
 |         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // For a tied operand, emit a reference to the TiedAsmOperandTable | 
 |       // that contains the operand to copy, and the parsed operands to | 
 |       // check for their tied constraints. | 
 |       auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], | 
 |                                  (uint8_t)ConversionTable[Row][i + 2], | 
 |                                  (uint8_t)ConversionTable[Row][i + 3]); | 
 |       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); | 
 |       assert(TiedOpndEnum != TiedOperandsEnumMap.end() && | 
 |              "No record for tied operand pair"); | 
 |       OS << TiedOpndEnum->second << ", "; | 
 |       i += 2; | 
 |     } | 
 |     OS << "CVT_Done },\n"; | 
 |   } | 
 |  | 
 |   OS << "};\n\n"; | 
 |  | 
 |   // Spit out the conversion driver function. | 
 |   OS << CvtOS.str(); | 
 |  | 
 |   // Spit out the operand number lookup function. | 
 |   OS << OpOS.str(); | 
 |  | 
 |   return ConversionTable.size(); | 
 | } | 
 |  | 
 | /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. | 
 | static void emitMatchClassEnumeration(CodeGenTarget &Target, | 
 |                                       std::forward_list<ClassInfo> &Infos, | 
 |                                       raw_ostream &OS) { | 
 |   OS << "namespace {\n\n"; | 
 |  | 
 |   OS << "/// MatchClassKind - The kinds of classes which participate in\n" | 
 |      << "/// instruction matching.\n"; | 
 |   OS << "enum MatchClassKind {\n"; | 
 |   OS << "  InvalidMatchClass = 0,\n"; | 
 |   OS << "  OptionalMatchClass = 1,\n"; | 
 |   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; | 
 |   StringRef LastName = "OptionalMatchClass"; | 
 |   for (const auto &CI : Infos) { | 
 |     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { | 
 |       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n"; | 
 |     } else if (LastKind < ClassInfo::UserClass0 && | 
 |                CI.Kind >= ClassInfo::UserClass0) { | 
 |       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n"; | 
 |     } | 
 |     LastKind = (ClassInfo::ClassInfoKind)CI.Kind; | 
 |     LastName = CI.Name; | 
 |  | 
 |     OS << "  " << CI.Name << ", // "; | 
 |     if (CI.Kind == ClassInfo::Token) { | 
 |       OS << "'" << CI.ValueName << "'\n"; | 
 |     } else if (CI.isRegisterClass()) { | 
 |       if (!CI.ValueName.empty()) | 
 |         OS << "register class '" << CI.ValueName << "'\n"; | 
 |       else | 
 |         OS << "derived register class\n"; | 
 |     } else { | 
 |       OS << "user defined class '" << CI.ValueName << "'\n"; | 
 |     } | 
 |   } | 
 |   OS << "  NumMatchClassKinds\n"; | 
 |   OS << "};\n\n"; | 
 |  | 
 |   OS << "} // end anonymous namespace\n\n"; | 
 | } | 
 |  | 
 | /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be | 
 | /// used when an assembly operand does not match the expected operand class. | 
 | static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { | 
 |   // If the target does not use DiagnosticString for any operands, don't emit | 
 |   // an unused function. | 
 |   if (std::all_of( | 
 |           Info.Classes.begin(), Info.Classes.end(), | 
 |           [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) | 
 |     return; | 
 |  | 
 |   OS << "static const char *getMatchKindDiag(" << Info.Target.getName() | 
 |      << "AsmParser::" << Info.Target.getName() | 
 |      << "MatchResultTy MatchResult) {\n"; | 
 |   OS << "  switch (MatchResult) {\n"; | 
 |  | 
 |   for (const auto &CI: Info.Classes) { | 
 |     if (!CI.DiagnosticString.empty()) { | 
 |       assert(!CI.DiagnosticType.empty() && | 
 |              "DiagnosticString set without DiagnosticType"); | 
 |       OS << "  case " << Info.Target.getName() | 
 |          << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; | 
 |       OS << "    return \"" << CI.DiagnosticString << "\";\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   OS << "  default:\n"; | 
 |   OS << "    return nullptr;\n"; | 
 |  | 
 |   OS << "  }\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { | 
 |   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " | 
 |         "RegisterClass) {\n"; | 
 |   if (none_of(Info.Classes, [](const ClassInfo &CI) { | 
 |         return CI.isRegisterClass() && !CI.DiagnosticType.empty(); | 
 |       })) { | 
 |     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
 |   } else { | 
 |     OS << "  switch (RegisterClass) {\n"; | 
 |     for (const auto &CI: Info.Classes) { | 
 |       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { | 
 |         OS << "  case " << CI.Name << ":\n"; | 
 |         OS << "    return " << Info.Target.getName() << "AsmParser::Match_" | 
 |            << CI.DiagnosticType << ";\n"; | 
 |       } | 
 |     } | 
 |  | 
 |     OS << "  default:\n"; | 
 |     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
 |  | 
 |     OS << "  }\n"; | 
 |   } | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// emitValidateOperandClass - Emit the function to validate an operand class. | 
 | static void emitValidateOperandClass(AsmMatcherInfo &Info, | 
 |                                      raw_ostream &OS) { | 
 |   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " | 
 |      << "MatchClassKind Kind) {\n"; | 
 |   OS << "  " << Info.Target.getName() << "Operand &Operand = (" | 
 |      << Info.Target.getName() << "Operand&)GOp;\n"; | 
 |  | 
 |   // The InvalidMatchClass is not to match any operand. | 
 |   OS << "  if (Kind == InvalidMatchClass)\n"; | 
 |   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n"; | 
 |  | 
 |   // Check for Token operands first. | 
 |   // FIXME: Use a more specific diagnostic type. | 
 |   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; | 
 |   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" | 
 |      << "             MCTargetAsmParser::Match_Success :\n" | 
 |      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n"; | 
 |  | 
 |   // Check the user classes. We don't care what order since we're only | 
 |   // actually matching against one of them. | 
 |   OS << "  switch (Kind) {\n" | 
 |         "  default: break;\n"; | 
 |   for (const auto &CI : Info.Classes) { | 
 |     if (!CI.isUserClass()) | 
 |       continue; | 
 |  | 
 |     OS << "  // '" << CI.ClassName << "' class\n"; | 
 |     OS << "  case " << CI.Name << ": {\n"; | 
 |     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod | 
 |        << "());\n"; | 
 |     OS << "    if (DP.isMatch())\n"; | 
 |     OS << "      return MCTargetAsmParser::Match_Success;\n"; | 
 |     if (!CI.DiagnosticType.empty()) { | 
 |       OS << "    if (DP.isNearMatch())\n"; | 
 |       OS << "      return " << Info.Target.getName() << "AsmParser::Match_" | 
 |          << CI.DiagnosticType << ";\n"; | 
 |       OS << "    break;\n"; | 
 |     } | 
 |     else | 
 |       OS << "    break;\n"; | 
 |     OS << "    }\n"; | 
 |   } | 
 |   OS << "  } // end switch (Kind)\n\n"; | 
 |  | 
 |   // Check for register operands, including sub-classes. | 
 |   OS << "  if (Operand.isReg()) {\n"; | 
 |   OS << "    MatchClassKind OpKind;\n"; | 
 |   OS << "    switch (Operand.getReg()) {\n"; | 
 |   OS << "    default: OpKind = InvalidMatchClass; break;\n"; | 
 |   for (const auto &RC : Info.RegisterClasses) | 
 |     OS << "    case " << RC.first->getValueAsString("Namespace") << "::" | 
 |        << RC.first->getName() << ": OpKind = " << RC.second->Name | 
 |        << "; break;\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    return isSubclass(OpKind, Kind) ? " | 
 |      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     " | 
 |      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n"; | 
 |  | 
 |   // Expected operand is a register, but actual is not. | 
 |   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; | 
 |   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n"; | 
 |  | 
 |   // Generic fallthrough match failure case for operands that don't have | 
 |   // specialized diagnostic types. | 
 |   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// emitIsSubclass - Emit the subclass predicate function. | 
 | static void emitIsSubclass(CodeGenTarget &Target, | 
 |                            std::forward_list<ClassInfo> &Infos, | 
 |                            raw_ostream &OS) { | 
 |   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; | 
 |   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; | 
 |   OS << "  if (A == B)\n"; | 
 |   OS << "    return true;\n\n"; | 
 |  | 
 |   bool EmittedSwitch = false; | 
 |   for (const auto &A : Infos) { | 
 |     std::vector<StringRef> SuperClasses; | 
 |     if (A.IsOptional) | 
 |       SuperClasses.push_back("OptionalMatchClass"); | 
 |     for (const auto &B : Infos) { | 
 |       if (&A != &B && A.isSubsetOf(B)) | 
 |         SuperClasses.push_back(B.Name); | 
 |     } | 
 |  | 
 |     if (SuperClasses.empty()) | 
 |       continue; | 
 |  | 
 |     // If this is the first SuperClass, emit the switch header. | 
 |     if (!EmittedSwitch) { | 
 |       OS << "  switch (A) {\n"; | 
 |       OS << "  default:\n"; | 
 |       OS << "    return false;\n"; | 
 |       EmittedSwitch = true; | 
 |     } | 
 |  | 
 |     OS << "\n  case " << A.Name << ":\n"; | 
 |  | 
 |     if (SuperClasses.size() == 1) { | 
 |       OS << "    return B == " << SuperClasses.back() << ";\n"; | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (!SuperClasses.empty()) { | 
 |       OS << "    switch (B) {\n"; | 
 |       OS << "    default: return false;\n"; | 
 |       for (StringRef SC : SuperClasses) | 
 |         OS << "    case " << SC << ": return true;\n"; | 
 |       OS << "    }\n"; | 
 |     } else { | 
 |       // No case statement to emit | 
 |       OS << "    return false;\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // If there were case statements emitted into the string stream write the | 
 |   // default. | 
 |   if (EmittedSwitch) | 
 |     OS << "  }\n"; | 
 |   else | 
 |     OS << "  return false;\n"; | 
 |  | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// emitMatchTokenString - Emit the function to match a token string to the | 
 | /// appropriate match class value. | 
 | static void emitMatchTokenString(CodeGenTarget &Target, | 
 |                                  std::forward_list<ClassInfo> &Infos, | 
 |                                  raw_ostream &OS) { | 
 |   // Construct the match list. | 
 |   std::vector<StringMatcher::StringPair> Matches; | 
 |   for (const auto &CI : Infos) { | 
 |     if (CI.Kind == ClassInfo::Token) | 
 |       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); | 
 |   } | 
 |  | 
 |   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; | 
 |  | 
 |   StringMatcher("Name", Matches, OS).Emit(); | 
 |  | 
 |   OS << "  return InvalidMatchClass;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// emitMatchRegisterName - Emit the function to match a string to the target | 
 | /// specific register enum. | 
 | static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, | 
 |                                   raw_ostream &OS) { | 
 |   // Construct the match list. | 
 |   std::vector<StringMatcher::StringPair> Matches; | 
 |   const auto &Regs = Target.getRegBank().getRegisters(); | 
 |   for (const CodeGenRegister &Reg : Regs) { | 
 |     if (Reg.TheDef->getValueAsString("AsmName").empty()) | 
 |       continue; | 
 |  | 
 |     Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), | 
 |                          "return " + utostr(Reg.EnumValue) + ";"); | 
 |   } | 
 |  | 
 |   OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; | 
 |  | 
 |   bool IgnoreDuplicates = | 
 |       AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); | 
 |   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); | 
 |  | 
 |   OS << "  return 0;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// Emit the function to match a string to the target | 
 | /// specific register enum. | 
 | static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, | 
 |                                      raw_ostream &OS) { | 
 |   // Construct the match list. | 
 |   std::vector<StringMatcher::StringPair> Matches; | 
 |   const auto &Regs = Target.getRegBank().getRegisters(); | 
 |   for (const CodeGenRegister &Reg : Regs) { | 
 |  | 
 |     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); | 
 |  | 
 |     for (auto AltName : AltNames) { | 
 |       AltName = StringRef(AltName).trim(); | 
 |  | 
 |       // don't handle empty alternative names | 
 |       if (AltName.empty()) | 
 |         continue; | 
 |  | 
 |       Matches.emplace_back(std::string(AltName), | 
 |                            "return " + utostr(Reg.EnumValue) + ";"); | 
 |     } | 
 |   } | 
 |  | 
 |   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; | 
 |  | 
 |   bool IgnoreDuplicates = | 
 |       AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); | 
 |   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); | 
 |  | 
 |   OS << "  return 0;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. | 
 | static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { | 
 |   // Get the set of diagnostic types from all of the operand classes. | 
 |   std::set<StringRef> Types; | 
 |   for (const auto &OpClassEntry : Info.AsmOperandClasses) { | 
 |     if (!OpClassEntry.second->DiagnosticType.empty()) | 
 |       Types.insert(OpClassEntry.second->DiagnosticType); | 
 |   } | 
 |   for (const auto &OpClassEntry : Info.RegisterClassClasses) { | 
 |     if (!OpClassEntry.second->DiagnosticType.empty()) | 
 |       Types.insert(OpClassEntry.second->DiagnosticType); | 
 |   } | 
 |  | 
 |   if (Types.empty()) return; | 
 |  | 
 |   // Now emit the enum entries. | 
 |   for (StringRef Type : Types) | 
 |     OS << "  Match_" << Type << ",\n"; | 
 |   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n"; | 
 | } | 
 |  | 
 | /// emitGetSubtargetFeatureName - Emit the helper function to get the | 
 | /// user-level name for a subtarget feature. | 
 | static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { | 
 |   OS << "// User-level names for subtarget features that participate in\n" | 
 |      << "// instruction matching.\n" | 
 |      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; | 
 |   if (!Info.SubtargetFeatures.empty()) { | 
 |     OS << "  switch(Val) {\n"; | 
 |     for (const auto &SF : Info.SubtargetFeatures) { | 
 |       const SubtargetFeatureInfo &SFI = SF.second; | 
 |       // FIXME: Totally just a placeholder name to get the algorithm working. | 
 |       OS << "  case " << SFI.getEnumBitName() << ": return \"" | 
 |          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; | 
 |     } | 
 |     OS << "  default: return \"(unknown)\";\n"; | 
 |     OS << "  }\n"; | 
 |   } else { | 
 |     // Nothing to emit, so skip the switch | 
 |     OS << "  return \"(unknown)\";\n"; | 
 |   } | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | static std::string GetAliasRequiredFeatures(Record *R, | 
 |                                             const AsmMatcherInfo &Info) { | 
 |   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); | 
 |   std::string Result; | 
 |  | 
 |   if (ReqFeatures.empty()) | 
 |     return Result; | 
 |  | 
 |   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { | 
 |     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); | 
 |  | 
 |     if (!F) | 
 |       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + | 
 |                     "' is not marked as an AssemblerPredicate!"); | 
 |  | 
 |     if (i) | 
 |       Result += " && "; | 
 |  | 
 |     Result += "Features.test(" + F->getEnumBitName() + ')'; | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, | 
 |                                      std::vector<Record*> &Aliases, | 
 |                                      unsigned Indent = 0, | 
 |                                   StringRef AsmParserVariantName = StringRef()){ | 
 |   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the | 
 |   // iteration order of the map is stable. | 
 |   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; | 
 |  | 
 |   for (Record *R : Aliases) { | 
 |     // FIXME: Allow AssemblerVariantName to be a comma separated list. | 
 |     StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); | 
 |     if (AsmVariantName != AsmParserVariantName) | 
 |       continue; | 
 |     AliasesFromMnemonic[std::string(R->getValueAsString("FromMnemonic"))] | 
 |         .push_back(R); | 
 |   } | 
 |   if (AliasesFromMnemonic.empty()) | 
 |     return; | 
 |  | 
 |   // Process each alias a "from" mnemonic at a time, building the code executed | 
 |   // by the string remapper. | 
 |   std::vector<StringMatcher::StringPair> Cases; | 
 |   for (const auto &AliasEntry : AliasesFromMnemonic) { | 
 |     const std::vector<Record*> &ToVec = AliasEntry.second; | 
 |  | 
 |     // Loop through each alias and emit code that handles each case.  If there | 
 |     // are two instructions without predicates, emit an error.  If there is one, | 
 |     // emit it last. | 
 |     std::string MatchCode; | 
 |     int AliasWithNoPredicate = -1; | 
 |  | 
 |     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { | 
 |       Record *R = ToVec[i]; | 
 |       std::string FeatureMask = GetAliasRequiredFeatures(R, Info); | 
 |  | 
 |       // If this unconditionally matches, remember it for later and diagnose | 
 |       // duplicates. | 
 |       if (FeatureMask.empty()) { | 
 |         if (AliasWithNoPredicate != -1) { | 
 |           // We can't have two aliases from the same mnemonic with no predicate. | 
 |           PrintError(ToVec[AliasWithNoPredicate]->getLoc(), | 
 |                      "two MnemonicAliases with the same 'from' mnemonic!"); | 
 |           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); | 
 |         } | 
 |  | 
 |         AliasWithNoPredicate = i; | 
 |         continue; | 
 |       } | 
 |       if (R->getValueAsString("ToMnemonic") == AliasEntry.first) | 
 |         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); | 
 |  | 
 |       if (!MatchCode.empty()) | 
 |         MatchCode += "else "; | 
 |       MatchCode += "if (" + FeatureMask + ")\n"; | 
 |       MatchCode += "  Mnemonic = \""; | 
 |       MatchCode += R->getValueAsString("ToMnemonic"); | 
 |       MatchCode += "\";\n"; | 
 |     } | 
 |  | 
 |     if (AliasWithNoPredicate != -1) { | 
 |       Record *R = ToVec[AliasWithNoPredicate]; | 
 |       if (!MatchCode.empty()) | 
 |         MatchCode += "else\n  "; | 
 |       MatchCode += "Mnemonic = \""; | 
 |       MatchCode += R->getValueAsString("ToMnemonic"); | 
 |       MatchCode += "\";\n"; | 
 |     } | 
 |  | 
 |     MatchCode += "return;"; | 
 |  | 
 |     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); | 
 |   } | 
 |   StringMatcher("Mnemonic", Cases, OS).Emit(Indent); | 
 | } | 
 |  | 
 | /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, | 
 | /// emit a function for them and return true, otherwise return false. | 
 | static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, | 
 |                                 CodeGenTarget &Target) { | 
 |   // Ignore aliases when match-prefix is set. | 
 |   if (!MatchPrefix.empty()) | 
 |     return false; | 
 |  | 
 |   std::vector<Record*> Aliases = | 
 |     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); | 
 |   if (Aliases.empty()) return false; | 
 |  | 
 |   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " | 
 |     "const FeatureBitset &Features, unsigned VariantID) {\n"; | 
 |   OS << "  switch (VariantID) {\n"; | 
 |   unsigned VariantCount = Target.getAsmParserVariantCount(); | 
 |   for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
 |     Record *AsmVariant = Target.getAsmParserVariant(VC); | 
 |     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); | 
 |     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); | 
 |     OS << "    case " << AsmParserVariantNo << ":\n"; | 
 |     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, | 
 |                              AsmParserVariantName); | 
 |     OS << "    break;\n"; | 
 |   } | 
 |   OS << "  }\n"; | 
 |  | 
 |   // Emit aliases that apply to all variants. | 
 |   emitMnemonicAliasVariant(OS, Info, Aliases); | 
 |  | 
 |   OS << "}\n\n"; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, | 
 |                               const AsmMatcherInfo &Info, StringRef ClassName, | 
 |                               StringToOffsetTable &StringTable, | 
 |                               unsigned MaxMnemonicIndex, | 
 |                               unsigned MaxFeaturesIndex, | 
 |                               bool HasMnemonicFirst) { | 
 |   unsigned MaxMask = 0; | 
 |   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { | 
 |     MaxMask |= OMI.OperandMask; | 
 |   } | 
 |  | 
 |   // Emit the static custom operand parsing table; | 
 |   OS << "namespace {\n"; | 
 |   OS << "  struct OperandMatchEntry {\n"; | 
 |   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) | 
 |                << " Mnemonic;\n"; | 
 |   OS << "    " << getMinimalTypeForRange(MaxMask) | 
 |                << " OperandMask;\n"; | 
 |   OS << "    " << getMinimalTypeForRange(std::distance( | 
 |                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; | 
 |   OS << "    " << getMinimalTypeForRange(MaxFeaturesIndex) | 
 |                << " RequiredFeaturesIdx;\n\n"; | 
 |   OS << "    StringRef getMnemonic() const {\n"; | 
 |   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n"; | 
 |   OS << "                       MnemonicTable[Mnemonic]);\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "  };\n\n"; | 
 |  | 
 |   OS << "  // Predicate for searching for an opcode.\n"; | 
 |   OS << "  struct LessOpcodeOperand {\n"; | 
 |   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; | 
 |   OS << "      return LHS.getMnemonic()  < RHS;\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; | 
 |   OS << "      return LHS < RHS.getMnemonic();\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    bool operator()(const OperandMatchEntry &LHS,"; | 
 |   OS << " const OperandMatchEntry &RHS) {\n"; | 
 |   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "  };\n"; | 
 |  | 
 |   OS << "} // end anonymous namespace\n\n"; | 
 |  | 
 |   OS << "static const OperandMatchEntry OperandMatchTable[" | 
 |      << Info.OperandMatchInfo.size() << "] = {\n"; | 
 |  | 
 |   OS << "  /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; | 
 |   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { | 
 |     const MatchableInfo &II = *OMI.MI; | 
 |  | 
 |     OS << "  { "; | 
 |  | 
 |     // Store a pascal-style length byte in the mnemonic. | 
 |     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); | 
 |     OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) | 
 |        << " /* " << II.Mnemonic << " */, "; | 
 |  | 
 |     OS << OMI.OperandMask; | 
 |     OS << " /* "; | 
 |     bool printComma = false; | 
 |     for (int i = 0, e = 31; i !=e; ++i) | 
 |       if (OMI.OperandMask & (1 << i)) { | 
 |         if (printComma) | 
 |           OS << ", "; | 
 |         OS << i; | 
 |         printComma = true; | 
 |       } | 
 |     OS << " */, "; | 
 |  | 
 |     OS << OMI.CI->Name; | 
 |  | 
 |     // Write the required features mask. | 
 |     OS << ", AMFBS"; | 
 |     if (II.RequiredFeatures.empty()) | 
 |       OS << "_None"; | 
 |     else | 
 |       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) | 
 |         OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); | 
 |  | 
 |     OS << " },\n"; | 
 |   } | 
 |   OS << "};\n\n"; | 
 |  | 
 |   // Emit the operand class switch to call the correct custom parser for | 
 |   // the found operand class. | 
 |   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" | 
 |      << "tryCustomParseOperand(OperandVector" | 
 |      << " &Operands,\n                      unsigned MCK) {\n\n" | 
 |      << "  switch(MCK) {\n"; | 
 |  | 
 |   for (const auto &CI : Info.Classes) { | 
 |     if (CI.ParserMethod.empty()) | 
 |       continue; | 
 |     OS << "  case " << CI.Name << ":\n" | 
 |        << "    return " << CI.ParserMethod << "(Operands);\n"; | 
 |   } | 
 |  | 
 |   OS << "  default:\n"; | 
 |   OS << "    return MatchOperand_NoMatch;\n"; | 
 |   OS << "  }\n"; | 
 |   OS << "  return MatchOperand_NoMatch;\n"; | 
 |   OS << "}\n\n"; | 
 |  | 
 |   // Emit the static custom operand parser. This code is very similar with | 
 |   // the other matcher. Also use MatchResultTy here just in case we go for | 
 |   // a better error handling. | 
 |   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" | 
 |      << "MatchOperandParserImpl(OperandVector" | 
 |      << " &Operands,\n                       StringRef Mnemonic,\n" | 
 |      << "                       bool ParseForAllFeatures) {\n"; | 
 |  | 
 |   // Emit code to get the available features. | 
 |   OS << "  // Get the current feature set.\n"; | 
 |   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; | 
 |  | 
 |   OS << "  // Get the next operand index.\n"; | 
 |   OS << "  unsigned NextOpNum = Operands.size()" | 
 |      << (HasMnemonicFirst ? " - 1" : "") << ";\n"; | 
 |  | 
 |   // Emit code to search the table. | 
 |   OS << "  // Search the table.\n"; | 
 |   if (HasMnemonicFirst) { | 
 |     OS << "  auto MnemonicRange =\n"; | 
 |     OS << "    std::equal_range(std::begin(OperandMatchTable), " | 
 |           "std::end(OperandMatchTable),\n"; | 
 |     OS << "                     Mnemonic, LessOpcodeOperand());\n\n"; | 
 |   } else { | 
 |     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," | 
 |           " std::end(OperandMatchTable));\n"; | 
 |     OS << "  if (!Mnemonic.empty())\n"; | 
 |     OS << "    MnemonicRange =\n"; | 
 |     OS << "      std::equal_range(std::begin(OperandMatchTable), " | 
 |           "std::end(OperandMatchTable),\n"; | 
 |     OS << "                       Mnemonic, LessOpcodeOperand());\n\n"; | 
 |   } | 
 |  | 
 |   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n"; | 
 |   OS << "    return MatchOperand_NoMatch;\n\n"; | 
 |  | 
 |   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n" | 
 |      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n"; | 
 |  | 
 |   OS << "    // equal_range guarantees that instruction mnemonic matches.\n"; | 
 |   OS << "    assert(Mnemonic == it->getMnemonic());\n\n"; | 
 |  | 
 |   // Emit check that the required features are available. | 
 |   OS << "    // check if the available features match\n"; | 
 |   OS << "    const FeatureBitset &RequiredFeatures = " | 
 |         "FeatureBitsets[it->RequiredFeaturesIdx];\n"; | 
 |   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & " | 
 |         "RequiredFeatures) != RequiredFeatures)\n"; | 
 |   OS << "        continue;\n\n"; | 
 |  | 
 |   // Emit check to ensure the operand number matches. | 
 |   OS << "    // check if the operand in question has a custom parser.\n"; | 
 |   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n"; | 
 |   OS << "      continue;\n\n"; | 
 |  | 
 |   // Emit call to the custom parser method | 
 |   OS << "    // call custom parse method to handle the operand\n"; | 
 |   OS << "    OperandMatchResultTy Result = "; | 
 |   OS << "tryCustomParseOperand(Operands, it->Class);\n"; | 
 |   OS << "    if (Result != MatchOperand_NoMatch)\n"; | 
 |   OS << "      return Result;\n"; | 
 |   OS << "  }\n\n"; | 
 |  | 
 |   OS << "  // Okay, we had no match.\n"; | 
 |   OS << "  return MatchOperand_NoMatch;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, | 
 |                                           AsmMatcherInfo &Info, | 
 |                                           raw_ostream &OS) { | 
 |   std::string AsmParserName = | 
 |       std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); | 
 |   OS << "static bool "; | 
 |   OS << "checkAsmTiedOperandConstraints(const " << Target.getName() | 
 |      << AsmParserName << "&AsmParser,\n"; | 
 |   OS << "                               unsigned Kind,\n"; | 
 |   OS << "                               const OperandVector &Operands,\n"; | 
 |   OS << "                               uint64_t &ErrorInfo) {\n"; | 
 |   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; | 
 |   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n"; | 
 |   OS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"; | 
 |   OS << "    switch (*p) {\n"; | 
 |   OS << "    case CVT_Tied: {\n"; | 
 |   OS << "      unsigned OpIdx = *(p+1);\n"; | 
 |   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; | 
 |   OS << "                              std::begin(TiedAsmOperandTable)) &&\n"; | 
 |   OS << "             \"Tied operand not found\");\n"; | 
 |   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; | 
 |   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; | 
 |   OS << "      if (OpndNum1 != OpndNum2) {\n"; | 
 |   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n"; | 
 |   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n"; | 
 |   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; | 
 |   OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; | 
 |   OS << "            ErrorInfo = OpndNum2;\n"; | 
 |   OS << "            return false;\n"; | 
 |   OS << "          }\n"; | 
 |   OS << "        }\n"; | 
 |   OS << "      }\n"; | 
 |   OS << "      break;\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    default:\n"; | 
 |   OS << "      break;\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "  }\n"; | 
 |   OS << "  return true;\n"; | 
 |   OS << "}\n\n"; | 
 | } | 
 |  | 
 | static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, | 
 |                                      unsigned VariantCount) { | 
 |   OS << "static std::string " << Target.getName() | 
 |      << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," | 
 |      << " unsigned VariantID) {\n"; | 
 |   if (!VariantCount) | 
 |     OS <<  "  return \"\";"; | 
 |   else { | 
 |     OS << "  const unsigned MaxEditDist = 2;\n"; | 
 |     OS << "  std::vector<StringRef> Candidates;\n"; | 
 |     OS << "  StringRef Prev = \"\";\n\n"; | 
 |  | 
 |     OS << "  // Find the appropriate table for this asm variant.\n"; | 
 |     OS << "  const MatchEntry *Start, *End;\n"; | 
 |     OS << "  switch (VariantID) {\n"; | 
 |     OS << "  default: llvm_unreachable(\"invalid variant!\");\n"; | 
 |     for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
 |       Record *AsmVariant = Target.getAsmParserVariant(VC); | 
 |       int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
 |       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC | 
 |          << "); End = std::end(MatchTable" << VC << "); break;\n"; | 
 |     } | 
 |     OS << "  }\n\n"; | 
 |     OS << "  for (auto I = Start; I < End; I++) {\n"; | 
 |     OS << "    // Ignore unsupported instructions.\n"; | 
 |     OS << "    const FeatureBitset &RequiredFeatures = " | 
 |           "FeatureBitsets[I->RequiredFeaturesIdx];\n"; | 
 |     OS << "    if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; | 
 |     OS << "      continue;\n"; | 
 |     OS << "\n"; | 
 |     OS << "    StringRef T = I->getMnemonic();\n"; | 
 |     OS << "    // Avoid recomputing the edit distance for the same string.\n"; | 
 |     OS << "    if (T.equals(Prev))\n"; | 
 |     OS << "      continue;\n"; | 
 |     OS << "\n"; | 
 |     OS << "    Prev = T;\n"; | 
 |     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; | 
 |     OS << "    if (Dist <= MaxEditDist)\n"; | 
 |     OS << "      Candidates.push_back(T);\n"; | 
 |     OS << "  }\n"; | 
 |     OS << "\n"; | 
 |     OS << "  if (Candidates.empty())\n"; | 
 |     OS << "    return \"\";\n"; | 
 |     OS << "\n"; | 
 |     OS << "  std::string Res = \", did you mean: \";\n"; | 
 |     OS << "  unsigned i = 0;\n"; | 
 |     OS << "  for( ; i < Candidates.size() - 1; i++)\n"; | 
 |     OS << "    Res += Candidates[i].str() + \", \";\n"; | 
 |     OS << "  return Res + Candidates[i].str() + \"?\";\n"; | 
 |   } | 
 |   OS << "}\n"; | 
 |   OS << "\n"; | 
 | } | 
 |  | 
 |  | 
 | // Emit a function mapping match classes to strings, for debugging. | 
 | static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, | 
 |                                     raw_ostream &OS) { | 
 |   OS << "#ifndef NDEBUG\n"; | 
 |   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; | 
 |   OS << "  switch (Kind) {\n"; | 
 |  | 
 |   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n"; | 
 |   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n"; | 
 |   for (const auto &CI : Infos) { | 
 |     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n"; | 
 |   } | 
 |   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; | 
 |  | 
 |   OS << "  }\n"; | 
 |   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n"; | 
 |   OS << "}\n\n"; | 
 |   OS << "#endif // NDEBUG\n"; | 
 | } | 
 |  | 
 | static std::string | 
 | getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { | 
 |   std::string Name = "AMFBS"; | 
 |   for (const auto &Feature : FeatureBitset) | 
 |     Name += ("_" + Feature->getName()).str(); | 
 |   return Name; | 
 | } | 
 |  | 
 | void AsmMatcherEmitter::run(raw_ostream &OS) { | 
 |   CodeGenTarget Target(Records); | 
 |   Record *AsmParser = Target.getAsmParser(); | 
 |   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); | 
 |  | 
 |   // Compute the information on the instructions to match. | 
 |   AsmMatcherInfo Info(AsmParser, Target, Records); | 
 |   Info.buildInfo(); | 
 |  | 
 |   // Sort the instruction table using the partial order on classes. We use | 
 |   // stable_sort to ensure that ambiguous instructions are still | 
 |   // deterministically ordered. | 
 |   llvm::stable_sort( | 
 |       Info.Matchables, | 
 |       [](const std::unique_ptr<MatchableInfo> &a, | 
 |          const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); | 
 |  | 
 | #ifdef EXPENSIVE_CHECKS | 
 |   // Verify that the table is sorted and operator < works transitively. | 
 |   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; | 
 |        ++I) { | 
 |     for (auto J = I; J != E; ++J) { | 
 |       assert(!(**J < **I)); | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   DEBUG_WITH_TYPE("instruction_info", { | 
 |       for (const auto &MI : Info.Matchables) | 
 |         MI->dump(); | 
 |     }); | 
 |  | 
 |   // Check for ambiguous matchables. | 
 |   DEBUG_WITH_TYPE("ambiguous_instrs", { | 
 |     unsigned NumAmbiguous = 0; | 
 |     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; | 
 |          ++I) { | 
 |       for (auto J = std::next(I); J != E; ++J) { | 
 |         const MatchableInfo &A = **I; | 
 |         const MatchableInfo &B = **J; | 
 |  | 
 |         if (A.couldMatchAmbiguouslyWith(B)) { | 
 |           errs() << "warning: ambiguous matchables:\n"; | 
 |           A.dump(); | 
 |           errs() << "\nis incomparable with:\n"; | 
 |           B.dump(); | 
 |           errs() << "\n\n"; | 
 |           ++NumAmbiguous; | 
 |         } | 
 |       } | 
 |     } | 
 |     if (NumAmbiguous) | 
 |       errs() << "warning: " << NumAmbiguous | 
 |              << " ambiguous matchables!\n"; | 
 |   }); | 
 |  | 
 |   // Compute the information on the custom operand parsing. | 
 |   Info.buildOperandMatchInfo(); | 
 |  | 
 |   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); | 
 |   bool HasOptionalOperands = Info.hasOptionalOperands(); | 
 |   bool ReportMultipleNearMisses = | 
 |       AsmParser->getValueAsBit("ReportMultipleNearMisses"); | 
 |  | 
 |   // Write the output. | 
 |  | 
 |   // Information for the class declaration. | 
 |   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; | 
 |   OS << "#undef GET_ASSEMBLER_HEADER\n"; | 
 |   OS << "  // This should be included into the middle of the declaration of\n"; | 
 |   OS << "  // your subclasses implementation of MCTargetAsmParser.\n"; | 
 |   OS << "  FeatureBitset ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; | 
 |   if (HasOptionalOperands) { | 
 |     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, " | 
 |        << "unsigned Opcode,\n" | 
 |        << "                       const OperandVector &Operands,\n" | 
 |        << "                       const SmallBitVector &OptionalOperandsMask);\n"; | 
 |   } else { | 
 |     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, " | 
 |        << "unsigned Opcode,\n" | 
 |        << "                       const OperandVector &Operands);\n"; | 
 |   } | 
 |   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                "; | 
 |   OS << "           const OperandVector &Operands) override;\n"; | 
 |   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n" | 
 |      << "                                MCInst &Inst,\n"; | 
 |   if (ReportMultipleNearMisses) | 
 |     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n"; | 
 |   else | 
 |     OS << "                                uint64_t &ErrorInfo,\n" | 
 |        << "                                FeatureBitset &MissingFeatures,\n"; | 
 |   OS << "                                bool matchingInlineAsm,\n" | 
 |      << "                                unsigned VariantID = 0);\n"; | 
 |   if (!ReportMultipleNearMisses) | 
 |     OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n" | 
 |        << "                                MCInst &Inst,\n" | 
 |        << "                                uint64_t &ErrorInfo,\n" | 
 |        << "                                bool matchingInlineAsm,\n" | 
 |        << "                                unsigned VariantID = 0) {\n" | 
 |        << "    FeatureBitset MissingFeatures;\n" | 
 |        << "    return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" | 
 |        << "                                matchingInlineAsm, VariantID);\n" | 
 |        << "  }\n\n"; | 
 |  | 
 |  | 
 |   if (!Info.OperandMatchInfo.empty()) { | 
 |     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n"; | 
 |     OS << "    OperandVector &Operands,\n"; | 
 |     OS << "    StringRef Mnemonic,\n"; | 
 |     OS << "    bool ParseForAllFeatures = false);\n"; | 
 |  | 
 |     OS << "  OperandMatchResultTy tryCustomParseOperand(\n"; | 
 |     OS << "    OperandVector &Operands,\n"; | 
 |     OS << "    unsigned MCK);\n\n"; | 
 |   } | 
 |  | 
 |   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; | 
 |  | 
 |   // Emit the operand match diagnostic enum names. | 
 |   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; | 
 |   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; | 
 |   emitOperandDiagnosticTypes(Info, OS); | 
 |   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; | 
 |  | 
 |   OS << "\n#ifdef GET_REGISTER_MATCHER\n"; | 
 |   OS << "#undef GET_REGISTER_MATCHER\n\n"; | 
 |  | 
 |   // Emit the subtarget feature enumeration. | 
 |   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( | 
 |       Info.SubtargetFeatures, OS); | 
 |  | 
 |   // Emit the function to match a register name to number. | 
 |   // This should be omitted for Mips target | 
 |   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) | 
 |     emitMatchRegisterName(Target, AsmParser, OS); | 
 |  | 
 |   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) | 
 |     emitMatchRegisterAltName(Target, AsmParser, OS); | 
 |  | 
 |   OS << "#endif // GET_REGISTER_MATCHER\n\n"; | 
 |  | 
 |   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; | 
 |   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; | 
 |  | 
 |   // Generate the helper function to get the names for subtarget features. | 
 |   emitGetSubtargetFeatureName(Info, OS); | 
 |  | 
 |   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; | 
 |  | 
 |   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; | 
 |   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; | 
 |  | 
 |   // Generate the function that remaps for mnemonic aliases. | 
 |   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); | 
 |  | 
 |   // Generate the convertToMCInst function to convert operands into an MCInst. | 
 |   // Also, generate the convertToMapAndConstraints function for MS-style inline | 
 |   // assembly.  The latter doesn't actually generate a MCInst. | 
 |   unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, | 
 |                                             HasMnemonicFirst, | 
 |                                             HasOptionalOperands, OS); | 
 |  | 
 |   // Emit the enumeration for classes which participate in matching. | 
 |   emitMatchClassEnumeration(Target, Info.Classes, OS); | 
 |  | 
 |   // Emit a function to get the user-visible string to describe an operand | 
 |   // match failure in diagnostics. | 
 |   emitOperandMatchErrorDiagStrings(Info, OS); | 
 |  | 
 |   // Emit a function to map register classes to operand match failure codes. | 
 |   emitRegisterMatchErrorFunc(Info, OS); | 
 |  | 
 |   // Emit the routine to match token strings to their match class. | 
 |   emitMatchTokenString(Target, Info.Classes, OS); | 
 |  | 
 |   // Emit the subclass predicate routine. | 
 |   emitIsSubclass(Target, Info.Classes, OS); | 
 |  | 
 |   // Emit the routine to validate an operand against a match class. | 
 |   emitValidateOperandClass(Info, OS); | 
 |  | 
 |   emitMatchClassKindNames(Info.Classes, OS); | 
 |  | 
 |   // Emit the available features compute function. | 
 |   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( | 
 |       Info.Target.getName(), ClassName, "ComputeAvailableFeatures", | 
 |       Info.SubtargetFeatures, OS); | 
 |  | 
 |   if (!ReportMultipleNearMisses) | 
 |     emitAsmTiedOperandConstraints(Target, Info, OS); | 
 |  | 
 |   StringToOffsetTable StringTable; | 
 |  | 
 |   size_t MaxNumOperands = 0; | 
 |   unsigned MaxMnemonicIndex = 0; | 
 |   bool HasDeprecation = false; | 
 |   for (const auto &MI : Info.Matchables) { | 
 |     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); | 
 |     HasDeprecation |= MI->HasDeprecation; | 
 |  | 
 |     // Store a pascal-style length byte in the mnemonic. | 
 |     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); | 
 |     MaxMnemonicIndex = std::max(MaxMnemonicIndex, | 
 |                         StringTable.GetOrAddStringOffset(LenMnemonic, false)); | 
 |   } | 
 |  | 
 |   OS << "static const char *const MnemonicTable =\n"; | 
 |   StringTable.EmitString(OS); | 
 |   OS << ";\n\n"; | 
 |  | 
 |   std::vector<std::vector<Record *>> FeatureBitsets; | 
 |   for (const auto &MI : Info.Matchables) { | 
 |     if (MI->RequiredFeatures.empty()) | 
 |       continue; | 
 |     FeatureBitsets.emplace_back(); | 
 |     for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) | 
 |       FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); | 
 |   } | 
 |  | 
 |   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, | 
 |                                  const std::vector<Record *> &B) { | 
 |     if (A.size() < B.size()) | 
 |       return true; | 
 |     if (A.size() > B.size()) | 
 |       return false; | 
 |     for (auto Pair : zip(A, B)) { | 
 |       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) | 
 |         return true; | 
 |       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) | 
 |         return false; | 
 |     } | 
 |     return false; | 
 |   }); | 
 |   FeatureBitsets.erase( | 
 |       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), | 
 |       FeatureBitsets.end()); | 
 |   OS << "// Feature bitsets.\n" | 
 |      << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" | 
 |      << "  AMFBS_None,\n"; | 
 |   for (const auto &FeatureBitset : FeatureBitsets) { | 
 |     if (FeatureBitset.empty()) | 
 |       continue; | 
 |     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n"; | 
 |   } | 
 |   OS << "};\n\n" | 
 |      << "static constexpr FeatureBitset FeatureBitsets[] = {\n" | 
 |      << "  {}, // AMFBS_None\n"; | 
 |   for (const auto &FeatureBitset : FeatureBitsets) { | 
 |     if (FeatureBitset.empty()) | 
 |       continue; | 
 |     OS << "  {"; | 
 |     for (const auto &Feature : FeatureBitset) { | 
 |       const auto &I = Info.SubtargetFeatures.find(Feature); | 
 |       assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); | 
 |       OS << I->second.getEnumBitName() << ", "; | 
 |     } | 
 |     OS << "},\n"; | 
 |   } | 
 |   OS << "};\n\n"; | 
 |  | 
 |   // Emit the static match table; unused classes get initialized to 0 which is | 
 |   // guaranteed to be InvalidMatchClass. | 
 |   // | 
 |   // FIXME: We can reduce the size of this table very easily. First, we change | 
 |   // it so that store the kinds in separate bit-fields for each index, which | 
 |   // only needs to be the max width used for classes at that index (we also need | 
 |   // to reject based on this during classification). If we then make sure to | 
 |   // order the match kinds appropriately (putting mnemonics last), then we | 
 |   // should only end up using a few bits for each class, especially the ones | 
 |   // following the mnemonic. | 
 |   OS << "namespace {\n"; | 
 |   OS << "  struct MatchEntry {\n"; | 
 |   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex) | 
 |                << " Mnemonic;\n"; | 
 |   OS << "    uint16_t Opcode;\n"; | 
 |   OS << "    " << getMinimalTypeForRange(NumConverters) | 
 |                << " ConvertFn;\n"; | 
 |   OS << "    " << getMinimalTypeForRange(FeatureBitsets.size()) | 
 |                << " RequiredFeaturesIdx;\n"; | 
 |   OS << "    " << getMinimalTypeForRange( | 
 |                       std::distance(Info.Classes.begin(), Info.Classes.end())) | 
 |      << " Classes[" << MaxNumOperands << "];\n"; | 
 |   OS << "    StringRef getMnemonic() const {\n"; | 
 |   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n"; | 
 |   OS << "                       MnemonicTable[Mnemonic]);\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "  };\n\n"; | 
 |  | 
 |   OS << "  // Predicate for searching for an opcode.\n"; | 
 |   OS << "  struct LessOpcode {\n"; | 
 |   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; | 
 |   OS << "      return LHS.getMnemonic() < RHS;\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; | 
 |   OS << "      return LHS < RHS.getMnemonic();\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; | 
 |   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n"; | 
 |   OS << "    }\n"; | 
 |   OS << "  };\n"; | 
 |  | 
 |   OS << "} // end anonymous namespace\n\n"; | 
 |  | 
 |   unsigned VariantCount = Target.getAsmParserVariantCount(); | 
 |   for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
 |     Record *AsmVariant = Target.getAsmParserVariant(VC); | 
 |     int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
 |  | 
 |     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; | 
 |  | 
 |     for (const auto &MI : Info.Matchables) { | 
 |       if (MI->AsmVariantID != AsmVariantNo) | 
 |         continue; | 
 |  | 
 |       // Store a pascal-style length byte in the mnemonic. | 
 |       std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); | 
 |       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) | 
 |          << " /* " << MI->Mnemonic << " */, " | 
 |          << Target.getInstNamespace() << "::" | 
 |          << MI->getResultInst()->TheDef->getName() << ", " | 
 |          << MI->ConversionFnKind << ", "; | 
 |  | 
 |       // Write the required features mask. | 
 |       OS << "AMFBS"; | 
 |       if (MI->RequiredFeatures.empty()) | 
 |         OS << "_None"; | 
 |       else | 
 |         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) | 
 |           OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); | 
 |  | 
 |       OS << ", { "; | 
 |       for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { | 
 |         const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; | 
 |  | 
 |         if (i) OS << ", "; | 
 |         OS << Op.Class->Name; | 
 |       } | 
 |       OS << " }, },\n"; | 
 |     } | 
 |  | 
 |     OS << "};\n\n"; | 
 |   } | 
 |  | 
 |   OS << "#include \"llvm/Support/Debug.h\"\n"; | 
 |   OS << "#include \"llvm/Support/Format.h\"\n\n"; | 
 |  | 
 |   // Finally, build the match function. | 
 |   OS << "unsigned " << Target.getName() << ClassName << "::\n" | 
 |      << "MatchInstructionImpl(const OperandVector &Operands,\n"; | 
 |   OS << "                     MCInst &Inst,\n"; | 
 |   if (ReportMultipleNearMisses) | 
 |     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n"; | 
 |   else | 
 |     OS << "                     uint64_t &ErrorInfo,\n" | 
 |        << "                     FeatureBitset &MissingFeatures,\n"; | 
 |   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n"; | 
 |  | 
 |   if (!ReportMultipleNearMisses) { | 
 |     OS << "  // Eliminate obvious mismatches.\n"; | 
 |     OS << "  if (Operands.size() > " | 
 |        << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; | 
 |     OS << "    ErrorInfo = " | 
 |        << (MaxNumOperands + HasMnemonicFirst) << ";\n"; | 
 |     OS << "    return Match_InvalidOperand;\n"; | 
 |     OS << "  }\n\n"; | 
 |   } | 
 |  | 
 |   // Emit code to get the available features. | 
 |   OS << "  // Get the current feature set.\n"; | 
 |   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; | 
 |  | 
 |   OS << "  // Get the instruction mnemonic, which is the first token.\n"; | 
 |   if (HasMnemonicFirst) { | 
 |     OS << "  StringRef Mnemonic = ((" << Target.getName() | 
 |        << "Operand&)*Operands[0]).getToken();\n\n"; | 
 |   } else { | 
 |     OS << "  StringRef Mnemonic;\n"; | 
 |     OS << "  if (Operands[0]->isToken())\n"; | 
 |     OS << "    Mnemonic = ((" << Target.getName() | 
 |        << "Operand&)*Operands[0]).getToken();\n\n"; | 
 |   } | 
 |  | 
 |   if (HasMnemonicAliases) { | 
 |     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n"; | 
 |     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; | 
 |   } | 
 |  | 
 |   // Emit code to compute the class list for this operand vector. | 
 |   if (!ReportMultipleNearMisses) { | 
 |     OS << "  // Some state to try to produce better error messages.\n"; | 
 |     OS << "  bool HadMatchOtherThanFeatures = false;\n"; | 
 |     OS << "  bool HadMatchOtherThanPredicate = false;\n"; | 
 |     OS << "  unsigned RetCode = Match_InvalidOperand;\n"; | 
 |     OS << "  MissingFeatures.set();\n"; | 
 |     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n"; | 
 |     OS << "  // wrong for all instances of the instruction.\n"; | 
 |     OS << "  ErrorInfo = ~0ULL;\n"; | 
 |   } | 
 |  | 
 |   if (HasOptionalOperands) { | 
 |     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; | 
 |   } | 
 |  | 
 |   // Emit code to search the table. | 
 |   OS << "  // Find the appropriate table for this asm variant.\n"; | 
 |   OS << "  const MatchEntry *Start, *End;\n"; | 
 |   OS << "  switch (VariantID) {\n"; | 
 |   OS << "  default: llvm_unreachable(\"invalid variant!\");\n"; | 
 |   for (unsigned VC = 0; VC != VariantCount; ++VC) { | 
 |     Record *AsmVariant = Target.getAsmParserVariant(VC); | 
 |     int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); | 
 |     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC | 
 |        << "); End = std::end(MatchTable" << VC << "); break;\n"; | 
 |   } | 
 |   OS << "  }\n"; | 
 |  | 
 |   OS << "  // Search the table.\n"; | 
 |   if (HasMnemonicFirst) { | 
 |     OS << "  auto MnemonicRange = " | 
 |           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; | 
 |   } else { | 
 |     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n"; | 
 |     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; | 
 |     OS << "  if (!Mnemonic.empty())\n"; | 
 |     OS << "    MnemonicRange = " | 
 |           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; | 
 |   } | 
 |  | 
 |   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" | 
 |      << "  std::distance(MnemonicRange.first, MnemonicRange.second) << \n" | 
 |      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; | 
 |  | 
 |   OS << "  // Return a more specific error code if no mnemonics match.\n"; | 
 |   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n"; | 
 |   OS << "    return Match_MnemonicFail;\n\n"; | 
 |  | 
 |   OS << "  for (const MatchEntry *it = MnemonicRange.first, " | 
 |      << "*ie = MnemonicRange.second;\n"; | 
 |   OS << "       it != ie; ++it) {\n"; | 
 |   OS << "    const FeatureBitset &RequiredFeatures = " | 
 |         "FeatureBitsets[it->RequiredFeaturesIdx];\n"; | 
 |   OS << "    bool HasRequiredFeatures =\n"; | 
 |   OS << "      (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; | 
 |   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; | 
 |   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n"; | 
 |  | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "    // Some state to record ways in which this instruction did not match.\n"; | 
 |     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; | 
 |     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; | 
 |     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; | 
 |     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; | 
 |     OS << "    bool MultipleInvalidOperands = false;\n"; | 
 |   } | 
 |  | 
 |   if (HasMnemonicFirst) { | 
 |     OS << "    // equal_range guarantees that instruction mnemonic matches.\n"; | 
 |     OS << "    assert(Mnemonic == it->getMnemonic());\n"; | 
 |   } | 
 |  | 
 |   // Emit check that the subclasses match. | 
 |   if (!ReportMultipleNearMisses) | 
 |     OS << "    bool OperandsValid = true;\n"; | 
 |   if (HasOptionalOperands) { | 
 |     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; | 
 |   } | 
 |   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") | 
 |      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") | 
 |      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; | 
 |   OS << "      auto Formal = " | 
 |      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; | 
 |   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
 |   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n"; | 
 |   OS << "                             << \" against actual operand at index \" << ActualIdx);\n"; | 
 |   OS << "      if (ActualIdx < Operands.size())\n"; | 
 |   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; | 
 |   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; | 
 |   OS << "      else\n"; | 
 |   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; | 
 |   OS << "      if (ActualIdx >= Operands.size()) {\n"; | 
 |   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " | 
 |                                    "isSubclass(Formal, OptionalMatchClass);\n"; | 
 |     OS << "        if (!ThisOperandValid) {\n"; | 
 |     OS << "          if (!OperandNearMiss) {\n"; | 
 |     OS << "            // Record info about match failure for later use.\n"; | 
 |     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; | 
 |     OS << "            OperandNearMiss =\n"; | 
 |     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; | 
 |     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; | 
 |     OS << "            // If more than one operand is invalid, give up on this match entry.\n"; | 
 |     OS << "            DEBUG_WITH_TYPE(\n"; | 
 |     OS << "                \"asm-matcher\",\n"; | 
 |     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; | 
 |     OS << "            MultipleInvalidOperands = true;\n"; | 
 |     OS << "            break;\n"; | 
 |     OS << "          }\n"; | 
 |     OS << "        } else {\n"; | 
 |     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; | 
 |     OS << "          break;\n"; | 
 |     OS << "        }\n"; | 
 |     OS << "        continue;\n"; | 
 |   } else { | 
 |     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; | 
 |     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n"; | 
 |     if (HasOptionalOperands) { | 
 |       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands | 
 |          << ");\n"; | 
 |     } | 
 |     OS << "        break;\n"; | 
 |   } | 
 |   OS << "      }\n"; | 
 |   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; | 
 |   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n"; | 
 |   OS << "      if (Diag == Match_Success) {\n"; | 
 |   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
 |   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n"; | 
 |   OS << "        ++ActualIdx;\n"; | 
 |   OS << "        continue;\n"; | 
 |   OS << "      }\n"; | 
 |   OS << "      // If the generic handler indicates an invalid operand\n"; | 
 |   OS << "      // failure, check for a special case.\n"; | 
 |   OS << "      if (Diag != Match_Success) {\n"; | 
 |   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; | 
 |   OS << "        if (TargetDiag == Match_Success) {\n"; | 
 |   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n"; | 
 |   OS << "                          dbgs() << \"match success using target matcher\\n\");\n"; | 
 |   OS << "          ++ActualIdx;\n"; | 
 |   OS << "          continue;\n"; | 
 |   OS << "        }\n"; | 
 |   OS << "        // If the target matcher returned a specific error code use\n"; | 
 |   OS << "        // that, else use the one from the generic matcher.\n"; | 
 |   OS << "        if (TargetDiag != Match_InvalidOperand && " | 
 |         "HasRequiredFeatures)\n"; | 
 |   OS << "          Diag = TargetDiag;\n"; | 
 |   OS << "      }\n"; | 
 |   OS << "      // If current formal operand wasn't matched and it is optional\n" | 
 |      << "      // then try to match next formal operand\n"; | 
 |   OS << "      if (Diag == Match_InvalidOperand " | 
 |      << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; | 
 |   if (HasOptionalOperands) { | 
 |     OS << "        OptionalOperandsMask.set(FormalIdx);\n"; | 
 |   } | 
 |     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; | 
 |   OS << "        continue;\n"; | 
 |   OS << "      }\n"; | 
 |  | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "      if (!OperandNearMiss) {\n"; | 
 |     OS << "        // If this is the first invalid operand we have seen, record some\n"; | 
 |     OS << "        // information about it.\n"; | 
 |     OS << "        DEBUG_WITH_TYPE(\n"; | 
 |     OS << "            \"asm-matcher\",\n"; | 
 |     OS << "            dbgs()\n"; | 
 |     OS << "                << \"operand match failed, recording near-miss with diag code \"\n"; | 
 |     OS << "                << Diag << \"\\n\");\n"; | 
 |     OS << "        OperandNearMiss =\n"; | 
 |     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; | 
 |     OS << "        ++ActualIdx;\n"; | 
 |     OS << "      } else {\n"; | 
 |     OS << "        // If more than one operand is invalid, give up on this match entry.\n"; | 
 |     OS << "        DEBUG_WITH_TYPE(\n"; | 
 |     OS << "            \"asm-matcher\",\n"; | 
 |     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; | 
 |     OS << "        MultipleInvalidOperands = true;\n"; | 
 |     OS << "        break;\n"; | 
 |     OS << "      }\n"; | 
 |     OS << "    }\n\n"; | 
 |   } else { | 
 |     OS << "      // If this operand is broken for all of the instances of this\n"; | 
 |     OS << "      // mnemonic, keep track of it so we can report loc info.\n"; | 
 |     OS << "      // If we already had a match that only failed due to a\n"; | 
 |     OS << "      // target predicate, that diagnostic is preferred.\n"; | 
 |     OS << "      if (!HadMatchOtherThanPredicate &&\n"; | 
 |     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; | 
 |     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " | 
 |           "!= Match_InvalidOperand))\n"; | 
 |     OS << "          RetCode = Diag;\n"; | 
 |     OS << "        ErrorInfo = ActualIdx;\n"; | 
 |     OS << "      }\n"; | 
 |     OS << "      // Otherwise, just reject this instance of the mnemonic.\n"; | 
 |     OS << "      OperandsValid = false;\n"; | 
 |     OS << "      break;\n"; | 
 |     OS << "    }\n\n"; | 
 |   } | 
 |  | 
 |   if (ReportMultipleNearMisses) | 
 |     OS << "    if (MultipleInvalidOperands) {\n"; | 
 |   else | 
 |     OS << "    if (!OperandsValid) {\n"; | 
 |   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
 |   OS << "                                               \"operand mismatches, ignoring \"\n"; | 
 |   OS << "                                               \"this opcode\\n\");\n"; | 
 |   OS << "      continue;\n"; | 
 |   OS << "    }\n"; | 
 |  | 
 |   // Emit check that the required features are available. | 
 |   OS << "    if (!HasRequiredFeatures) {\n"; | 
 |   if (!ReportMultipleNearMisses) | 
 |     OS << "      HadMatchOtherThanFeatures = true;\n"; | 
 |   OS << "      FeatureBitset NewMissingFeatures = RequiredFeatures & " | 
 |         "~AvailableFeatures;\n"; | 
 |   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; | 
 |   OS << "                       for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; | 
 |   OS << "                         if (NewMissingFeatures[I])\n"; | 
 |   OS << "                           dbgs() << ' ' << I;\n"; | 
 |   OS << "                       dbgs() << \"\\n\");\n"; | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; | 
 |   } else { | 
 |     OS << "      if (NewMissingFeatures.count() <=\n" | 
 |           "          MissingFeatures.count())\n"; | 
 |     OS << "        MissingFeatures = NewMissingFeatures;\n"; | 
 |     OS << "      continue;\n"; | 
 |   } | 
 |   OS << "    }\n"; | 
 |   OS << "\n"; | 
 |   OS << "    Inst.clear();\n\n"; | 
 |   OS << "    Inst.setOpcode(it->Opcode);\n"; | 
 |   // Verify the instruction with the target-specific match predicate function. | 
 |   OS << "    // We have a potential match but have not rendered the operands.\n" | 
 |      << "    // Check the target predicate to handle any context sensitive\n" | 
 |         "    // constraints.\n" | 
 |      << "    // For example, Ties that are referenced multiple times must be\n" | 
 |         "    // checked here to ensure the input is the same for each match\n" | 
 |         "    // constraints. If we leave it any later the ties will have been\n" | 
 |         "    // canonicalized\n" | 
 |      << "    unsigned MatchResult;\n" | 
 |      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " | 
 |         "Operands)) != Match_Success) {\n" | 
 |      << "      Inst.clear();\n"; | 
 |   OS << "      DEBUG_WITH_TYPE(\n"; | 
 |   OS << "          \"asm-matcher\",\n"; | 
 |   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n"; | 
 |   OS << "                 << MatchResult << \"\\n\");\n"; | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; | 
 |   } else { | 
 |     OS << "      RetCode = MatchResult;\n" | 
 |        << "      HadMatchOtherThanPredicate = true;\n" | 
 |        << "      continue;\n"; | 
 |   } | 
 |   OS << "    }\n\n"; | 
 |  | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "    // If we did not successfully match the operands, then we can't convert to\n"; | 
 |     OS << "    // an MCInst, so bail out on this instruction variant now.\n"; | 
 |     OS << "    if (OperandNearMiss) {\n"; | 
 |     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; | 
 |     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; | 
 |     OS << "        DEBUG_WITH_TYPE(\n"; | 
 |     OS << "            \"asm-matcher\",\n"; | 
 |     OS << "            dbgs()\n"; | 
 |     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; | 
 |     OS << "        NearMisses->push_back(OperandNearMiss);\n"; | 
 |     OS << "      } else {\n"; | 
 |     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
 |     OS << "                                                 \"types of mismatch, so not \"\n"; | 
 |     OS << "                                                 \"reporting near-miss\\n\");\n"; | 
 |     OS << "      }\n"; | 
 |     OS << "      continue;\n"; | 
 |     OS << "    }\n\n"; | 
 |   } | 
 |  | 
 |   OS << "    if (matchingInlineAsm) {\n"; | 
 |   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n"; | 
 |   if (!ReportMultipleNearMisses) { | 
 |     OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " | 
 |           "Operands, ErrorInfo))\n"; | 
 |     OS << "        return Match_InvalidTiedOperand;\n"; | 
 |     OS << "\n"; | 
 |   } | 
 |   OS << "      return Match_Success;\n"; | 
 |   OS << "    }\n\n"; | 
 |   OS << "    // We have selected a definite instruction, convert the parsed\n" | 
 |      << "    // operands into the appropriate MCInst.\n"; | 
 |   if (HasOptionalOperands) { | 
 |     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" | 
 |        << "                    OptionalOperandsMask);\n"; | 
 |   } else { | 
 |     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; | 
 |   } | 
 |   OS << "\n"; | 
 |  | 
 |   // Verify the instruction with the target-specific match predicate function. | 
 |   OS << "    // We have a potential match. Check the target predicate to\n" | 
 |      << "    // handle any context sensitive constraints.\n" | 
 |      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" | 
 |      << " Match_Success) {\n" | 
 |      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n" | 
 |      << "                      dbgs() << \"Target match predicate failed with diag code \"\n" | 
 |      << "                             << MatchResult << \"\\n\");\n" | 
 |      << "      Inst.clear();\n"; | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; | 
 |   } else { | 
 |     OS << "      RetCode = MatchResult;\n" | 
 |        << "      HadMatchOtherThanPredicate = true;\n" | 
 |        << "      continue;\n"; | 
 |   } | 
 |   OS << "    }\n\n"; | 
 |  | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; | 
 |     OS << "                         (int)(bool)FeaturesNearMiss +\n"; | 
 |     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n"; | 
 |     OS << "                         (int)(bool)LatePredicateNearMiss);\n"; | 
 |     OS << "    if (NumNearMisses == 1) {\n"; | 
 |     OS << "      // We had exactly one type of near-miss, so add that to the list.\n"; | 
 |     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; | 
 |     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; | 
 |     OS << "                                            \"mismatch, so reporting a \"\n"; | 
 |     OS << "                                            \"near-miss\\n\");\n"; | 
 |     OS << "      if (NearMisses && FeaturesNearMiss)\n"; | 
 |     OS << "        NearMisses->push_back(FeaturesNearMiss);\n"; | 
 |     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n"; | 
 |     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n"; | 
 |     OS << "      else if (NearMisses && LatePredicateNearMiss)\n"; | 
 |     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n"; | 
 |     OS << "\n"; | 
 |     OS << "      continue;\n"; | 
 |     OS << "    } else if (NumNearMisses > 1) {\n"; | 
 |     OS << "      // This instruction missed in more than one way, so ignore it.\n"; | 
 |     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; | 
 |     OS << "                                               \"types of mismatch, so not \"\n"; | 
 |     OS << "                                               \"reporting near-miss\\n\");\n"; | 
 |     OS << "      continue;\n"; | 
 |     OS << "    }\n"; | 
 |   } | 
 |  | 
 |   // Call the post-processing function, if used. | 
 |   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); | 
 |   if (!InsnCleanupFn.empty()) | 
 |     OS << "    " << InsnCleanupFn << "(Inst);\n"; | 
 |  | 
 |   if (HasDeprecation) { | 
 |     OS << "    std::string Info;\n"; | 
 |     OS << "    if (!getParser().getTargetParser().\n"; | 
 |     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n"; | 
 |     OS << "        MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; | 
 |     OS << "      SMLoc Loc = ((" << Target.getName() | 
 |        << "Operand&)*Operands[0]).getStartLoc();\n"; | 
 |     OS << "      getParser().Warning(Loc, Info, None);\n"; | 
 |     OS << "    }\n"; | 
 |   } | 
 |  | 
 |   if (!ReportMultipleNearMisses) { | 
 |     OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " | 
 |           "Operands, ErrorInfo))\n"; | 
 |     OS << "      return Match_InvalidTiedOperand;\n"; | 
 |     OS << "\n"; | 
 |   } | 
 |  | 
 |   OS << "    DEBUG_WITH_TYPE(\n"; | 
 |   OS << "        \"asm-matcher\",\n"; | 
 |   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; | 
 |   OS << "    return Match_Success;\n"; | 
 |   OS << "  }\n\n"; | 
 |  | 
 |   if (ReportMultipleNearMisses) { | 
 |     OS << "  // No instruction variants matched exactly.\n"; | 
 |     OS << "  return Match_NearMisses;\n"; | 
 |   } else { | 
 |     OS << "  // Okay, we had no match.  Try to return a useful error code.\n"; | 
 |     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; | 
 |     OS << "    return RetCode;\n\n"; | 
 |     OS << "  ErrorInfo = 0;\n"; | 
 |     OS << "  return Match_MissingFeature;\n"; | 
 |   } | 
 |   OS << "}\n\n"; | 
 |  | 
 |   if (!Info.OperandMatchInfo.empty()) | 
 |     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, | 
 |                              MaxMnemonicIndex, FeatureBitsets.size(), | 
 |                              HasMnemonicFirst); | 
 |  | 
 |   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; | 
 |  | 
 |   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; | 
 |   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; | 
 |  | 
 |   emitMnemonicSpellChecker(OS, Target, VariantCount); | 
 |  | 
 |   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; | 
 | } | 
 |  | 
 | namespace llvm { | 
 |  | 
 | void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { | 
 |   emitSourceFileHeader("Assembly Matcher Source Fragment", OS); | 
 |   AsmMatcherEmitter(RK).run(OS); | 
 | } | 
 |  | 
 | } // end namespace llvm |