|  | //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements some loop unrolling utilities for loops with run-time | 
|  | // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time | 
|  | // trip counts. | 
|  | // | 
|  | // The functions in this file are used to generate extra code when the | 
|  | // run-time trip count modulo the unroll factor is not 0.  When this is the | 
|  | // case, we need to generate code to execute these 'left over' iterations. | 
|  | // | 
|  | // The current strategy generates an if-then-else sequence prior to the | 
|  | // unrolled loop to execute the 'left over' iterations before or after the | 
|  | // unrolled loop. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | 
|  | #include "llvm/Transforms/Utils/UnrollLoop.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unroll" | 
|  |  | 
|  | STATISTIC(NumRuntimeUnrolled, | 
|  | "Number of loops unrolled with run-time trip counts"); | 
|  | static cl::opt<bool> UnrollRuntimeMultiExit( | 
|  | "unroll-runtime-multi-exit", cl::init(false), cl::Hidden, | 
|  | cl::desc("Allow runtime unrolling for loops with multiple exits, when " | 
|  | "epilog is generated")); | 
|  |  | 
|  | /// Connect the unrolling prolog code to the original loop. | 
|  | /// The unrolling prolog code contains code to execute the | 
|  | /// 'extra' iterations if the run-time trip count modulo the | 
|  | /// unroll count is non-zero. | 
|  | /// | 
|  | /// This function performs the following: | 
|  | /// - Create PHI nodes at prolog end block to combine values | 
|  | ///   that exit the prolog code and jump around the prolog. | 
|  | /// - Add a PHI operand to a PHI node at the loop exit block | 
|  | ///   for values that exit the prolog and go around the loop. | 
|  | /// - Branch around the original loop if the trip count is less | 
|  | ///   than the unroll factor. | 
|  | /// | 
|  | static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, | 
|  | BasicBlock *PrologExit, | 
|  | BasicBlock *OriginalLoopLatchExit, | 
|  | BasicBlock *PreHeader, BasicBlock *NewPreHeader, | 
|  | ValueToValueMapTy &VMap, DominatorTree *DT, | 
|  | LoopInfo *LI, bool PreserveLCSSA) { | 
|  | // Loop structure should be the following: | 
|  | // Preheader | 
|  | //  PrologHeader | 
|  | //  ... | 
|  | //  PrologLatch | 
|  | //  PrologExit | 
|  | //   NewPreheader | 
|  | //    Header | 
|  | //    ... | 
|  | //    Latch | 
|  | //      LatchExit | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | assert(Latch && "Loop must have a latch"); | 
|  | BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]); | 
|  |  | 
|  | // Create a PHI node for each outgoing value from the original loop | 
|  | // (which means it is an outgoing value from the prolog code too). | 
|  | // The new PHI node is inserted in the prolog end basic block. | 
|  | // The new PHI node value is added as an operand of a PHI node in either | 
|  | // the loop header or the loop exit block. | 
|  | for (BasicBlock *Succ : successors(Latch)) { | 
|  | for (PHINode &PN : Succ->phis()) { | 
|  | // Add a new PHI node to the prolog end block and add the | 
|  | // appropriate incoming values. | 
|  | // TODO: This code assumes that the PrologExit (or the LatchExit block for | 
|  | // prolog loop) contains only one predecessor from the loop, i.e. the | 
|  | // PrologLatch. When supporting multiple-exiting block loops, we can have | 
|  | // two or more blocks that have the LatchExit as the target in the | 
|  | // original loop. | 
|  | PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", | 
|  | PrologExit->getFirstNonPHI()); | 
|  | // Adding a value to the new PHI node from the original loop preheader. | 
|  | // This is the value that skips all the prolog code. | 
|  | if (L->contains(&PN)) { | 
|  | // Succ is loop header. | 
|  | NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), | 
|  | PreHeader); | 
|  | } else { | 
|  | // Succ is LatchExit. | 
|  | NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader); | 
|  | } | 
|  |  | 
|  | Value *V = PN.getIncomingValueForBlock(Latch); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (L->contains(I)) { | 
|  | V = VMap.lookup(I); | 
|  | } | 
|  | } | 
|  | // Adding a value to the new PHI node from the last prolog block | 
|  | // that was created. | 
|  | NewPN->addIncoming(V, PrologLatch); | 
|  |  | 
|  | // Update the existing PHI node operand with the value from the | 
|  | // new PHI node.  How this is done depends on if the existing | 
|  | // PHI node is in the original loop block, or the exit block. | 
|  | if (L->contains(&PN)) | 
|  | PN.setIncomingValueForBlock(NewPreHeader, NewPN); | 
|  | else | 
|  | PN.addIncoming(NewPN, PrologExit); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure that created prolog loop is in simplified form | 
|  | SmallVector<BasicBlock *, 4> PrologExitPreds; | 
|  | Loop *PrologLoop = LI->getLoopFor(PrologLatch); | 
|  | if (PrologLoop) { | 
|  | for (BasicBlock *PredBB : predecessors(PrologExit)) | 
|  | if (PrologLoop->contains(PredBB)) | 
|  | PrologExitPreds.push_back(PredBB); | 
|  |  | 
|  | SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI, | 
|  | nullptr, PreserveLCSSA); | 
|  | } | 
|  |  | 
|  | // Create a branch around the original loop, which is taken if there are no | 
|  | // iterations remaining to be executed after running the prologue. | 
|  | Instruction *InsertPt = PrologExit->getTerminator(); | 
|  | IRBuilder<> B(InsertPt); | 
|  |  | 
|  | assert(Count != 0 && "nonsensical Count!"); | 
|  |  | 
|  | // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1) | 
|  | // This means %xtraiter is (BECount + 1) and all of the iterations of this | 
|  | // loop were executed by the prologue.  Note that if BECount <u (Count - 1) | 
|  | // then (BECount + 1) cannot unsigned-overflow. | 
|  | Value *BrLoopExit = | 
|  | B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1)); | 
|  | // Split the exit to maintain loop canonicalization guarantees | 
|  | SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit)); | 
|  | SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI, | 
|  | nullptr, PreserveLCSSA); | 
|  | // Add the branch to the exit block (around the unrolled loop) | 
|  | B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader); | 
|  | InsertPt->eraseFromParent(); | 
|  | if (DT) | 
|  | DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit); | 
|  | } | 
|  |  | 
|  | /// Connect the unrolling epilog code to the original loop. | 
|  | /// The unrolling epilog code contains code to execute the | 
|  | /// 'extra' iterations if the run-time trip count modulo the | 
|  | /// unroll count is non-zero. | 
|  | /// | 
|  | /// This function performs the following: | 
|  | /// - Update PHI nodes at the unrolling loop exit and epilog loop exit | 
|  | /// - Create PHI nodes at the unrolling loop exit to combine | 
|  | ///   values that exit the unrolling loop code and jump around it. | 
|  | /// - Update PHI operands in the epilog loop by the new PHI nodes | 
|  | /// - Branch around the epilog loop if extra iters (ModVal) is zero. | 
|  | /// | 
|  | static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, | 
|  | BasicBlock *Exit, BasicBlock *PreHeader, | 
|  | BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, | 
|  | ValueToValueMapTy &VMap, DominatorTree *DT, | 
|  | LoopInfo *LI, bool PreserveLCSSA)  { | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | assert(Latch && "Loop must have a latch"); | 
|  | BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]); | 
|  |  | 
|  | // Loop structure should be the following: | 
|  | // | 
|  | // PreHeader | 
|  | // NewPreHeader | 
|  | //   Header | 
|  | //   ... | 
|  | //   Latch | 
|  | // NewExit (PN) | 
|  | // EpilogPreHeader | 
|  | //   EpilogHeader | 
|  | //   ... | 
|  | //   EpilogLatch | 
|  | // Exit (EpilogPN) | 
|  |  | 
|  | // Update PHI nodes at NewExit and Exit. | 
|  | for (PHINode &PN : NewExit->phis()) { | 
|  | // PN should be used in another PHI located in Exit block as | 
|  | // Exit was split by SplitBlockPredecessors into Exit and NewExit | 
|  | // Basicaly it should look like: | 
|  | // NewExit: | 
|  | //   PN = PHI [I, Latch] | 
|  | // ... | 
|  | // Exit: | 
|  | //   EpilogPN = PHI [PN, EpilogPreHeader] | 
|  | // | 
|  | // There is EpilogPreHeader incoming block instead of NewExit as | 
|  | // NewExit was spilt 1 more time to get EpilogPreHeader. | 
|  | assert(PN.hasOneUse() && "The phi should have 1 use"); | 
|  | PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser()); | 
|  | assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block"); | 
|  |  | 
|  | // Add incoming PreHeader from branch around the Loop | 
|  | PN.addIncoming(UndefValue::get(PN.getType()), PreHeader); | 
|  |  | 
|  | Value *V = PN.getIncomingValueForBlock(Latch); | 
|  | Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (I && L->contains(I)) | 
|  | // If value comes from an instruction in the loop add VMap value. | 
|  | V = VMap.lookup(I); | 
|  | // For the instruction out of the loop, constant or undefined value | 
|  | // insert value itself. | 
|  | EpilogPN->addIncoming(V, EpilogLatch); | 
|  |  | 
|  | assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 && | 
|  | "EpilogPN should have EpilogPreHeader incoming block"); | 
|  | // Change EpilogPreHeader incoming block to NewExit. | 
|  | EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader), | 
|  | NewExit); | 
|  | // Now PHIs should look like: | 
|  | // NewExit: | 
|  | //   PN = PHI [I, Latch], [undef, PreHeader] | 
|  | // ... | 
|  | // Exit: | 
|  | //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch] | 
|  | } | 
|  |  | 
|  | // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader). | 
|  | // Update corresponding PHI nodes in epilog loop. | 
|  | for (BasicBlock *Succ : successors(Latch)) { | 
|  | // Skip this as we already updated phis in exit blocks. | 
|  | if (!L->contains(Succ)) | 
|  | continue; | 
|  | for (PHINode &PN : Succ->phis()) { | 
|  | // Add new PHI nodes to the loop exit block and update epilog | 
|  | // PHIs with the new PHI values. | 
|  | PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr", | 
|  | NewExit->getFirstNonPHI()); | 
|  | // Adding a value to the new PHI node from the unrolling loop preheader. | 
|  | NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader); | 
|  | // Adding a value to the new PHI node from the unrolling loop latch. | 
|  | NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch); | 
|  |  | 
|  | // Update the existing PHI node operand with the value from the new PHI | 
|  | // node.  Corresponding instruction in epilog loop should be PHI. | 
|  | PHINode *VPN = cast<PHINode>(VMap[&PN]); | 
|  | VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN); | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *InsertPt = NewExit->getTerminator(); | 
|  | IRBuilder<> B(InsertPt); | 
|  | Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod"); | 
|  | assert(Exit && "Loop must have a single exit block only"); | 
|  | // Split the epilogue exit to maintain loop canonicalization guarantees | 
|  | SmallVector<BasicBlock*, 4> Preds(predecessors(Exit)); | 
|  | SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr, | 
|  | PreserveLCSSA); | 
|  | // Add the branch to the exit block (around the unrolling loop) | 
|  | B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit); | 
|  | InsertPt->eraseFromParent(); | 
|  | if (DT) | 
|  | DT->changeImmediateDominator(Exit, NewExit); | 
|  |  | 
|  | // Split the main loop exit to maintain canonicalization guarantees. | 
|  | SmallVector<BasicBlock*, 4> NewExitPreds{Latch}; | 
|  | SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr, | 
|  | PreserveLCSSA); | 
|  | } | 
|  |  | 
|  | /// Create a clone of the blocks in a loop and connect them together. | 
|  | /// If CreateRemainderLoop is false, loop structure will not be cloned, | 
|  | /// otherwise a new loop will be created including all cloned blocks, and the | 
|  | /// iterator of it switches to count NewIter down to 0. | 
|  | /// The cloned blocks should be inserted between InsertTop and InsertBot. | 
|  | /// If loop structure is cloned InsertTop should be new preheader, InsertBot | 
|  | /// new loop exit. | 
|  | /// Return the new cloned loop that is created when CreateRemainderLoop is true. | 
|  | static Loop * | 
|  | CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop, | 
|  | const bool UseEpilogRemainder, const bool UnrollRemainder, | 
|  | BasicBlock *InsertTop, | 
|  | BasicBlock *InsertBot, BasicBlock *Preheader, | 
|  | std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, | 
|  | ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) { | 
|  | StringRef suffix = UseEpilogRemainder ? "epil" : "prol"; | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | Function *F = Header->getParent(); | 
|  | LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); | 
|  | LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); | 
|  | Loop *ParentLoop = L->getParentLoop(); | 
|  | NewLoopsMap NewLoops; | 
|  | NewLoops[ParentLoop] = ParentLoop; | 
|  | if (!CreateRemainderLoop) | 
|  | NewLoops[L] = ParentLoop; | 
|  |  | 
|  | // For each block in the original loop, create a new copy, | 
|  | // and update the value map with the newly created values. | 
|  | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | 
|  | BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F); | 
|  | NewBlocks.push_back(NewBB); | 
|  |  | 
|  | // If we're unrolling the outermost loop, there's no remainder loop, | 
|  | // and this block isn't in a nested loop, then the new block is not | 
|  | // in any loop. Otherwise, add it to loopinfo. | 
|  | if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop) | 
|  | addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops); | 
|  |  | 
|  | VMap[*BB] = NewBB; | 
|  | if (Header == *BB) { | 
|  | // For the first block, add a CFG connection to this newly | 
|  | // created block. | 
|  | InsertTop->getTerminator()->setSuccessor(0, NewBB); | 
|  | } | 
|  |  | 
|  | if (DT) { | 
|  | if (Header == *BB) { | 
|  | // The header is dominated by the preheader. | 
|  | DT->addNewBlock(NewBB, InsertTop); | 
|  | } else { | 
|  | // Copy information from original loop to unrolled loop. | 
|  | BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock(); | 
|  | DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB])); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Latch == *BB) { | 
|  | // For the last block, if CreateRemainderLoop is false, create a direct | 
|  | // jump to InsertBot. If not, create a loop back to cloned head. | 
|  | VMap.erase((*BB)->getTerminator()); | 
|  | BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]); | 
|  | BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator()); | 
|  | IRBuilder<> Builder(LatchBR); | 
|  | if (!CreateRemainderLoop) { | 
|  | Builder.CreateBr(InsertBot); | 
|  | } else { | 
|  | PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, | 
|  | suffix + ".iter", | 
|  | FirstLoopBB->getFirstNonPHI()); | 
|  | Value *IdxSub = | 
|  | Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), | 
|  | NewIdx->getName() + ".sub"); | 
|  | Value *IdxCmp = | 
|  | Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp"); | 
|  | Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot); | 
|  | NewIdx->addIncoming(NewIter, InsertTop); | 
|  | NewIdx->addIncoming(IdxSub, NewBB); | 
|  | } | 
|  | LatchBR->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Change the incoming values to the ones defined in the preheader or | 
|  | // cloned loop. | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *NewPHI = cast<PHINode>(VMap[&*I]); | 
|  | if (!CreateRemainderLoop) { | 
|  | if (UseEpilogRemainder) { | 
|  | unsigned idx = NewPHI->getBasicBlockIndex(Preheader); | 
|  | NewPHI->setIncomingBlock(idx, InsertTop); | 
|  | NewPHI->removeIncomingValue(Latch, false); | 
|  | } else { | 
|  | VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader); | 
|  | cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); | 
|  | } | 
|  | } else { | 
|  | unsigned idx = NewPHI->getBasicBlockIndex(Preheader); | 
|  | NewPHI->setIncomingBlock(idx, InsertTop); | 
|  | BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); | 
|  | idx = NewPHI->getBasicBlockIndex(Latch); | 
|  | Value *InVal = NewPHI->getIncomingValue(idx); | 
|  | NewPHI->setIncomingBlock(idx, NewLatch); | 
|  | if (Value *V = VMap.lookup(InVal)) | 
|  | NewPHI->setIncomingValue(idx, V); | 
|  | } | 
|  | } | 
|  | if (CreateRemainderLoop) { | 
|  | Loop *NewLoop = NewLoops[L]; | 
|  | assert(NewLoop && "L should have been cloned"); | 
|  | MDNode *LoopID = NewLoop->getLoopID(); | 
|  |  | 
|  | // Only add loop metadata if the loop is not going to be completely | 
|  | // unrolled. | 
|  | if (UnrollRemainder) | 
|  | return NewLoop; | 
|  |  | 
|  | Optional<MDNode *> NewLoopID = makeFollowupLoopID( | 
|  | LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder}); | 
|  | if (NewLoopID.hasValue()) { | 
|  | NewLoop->setLoopID(NewLoopID.getValue()); | 
|  |  | 
|  | // Do not setLoopAlreadyUnrolled if loop attributes have been defined | 
|  | // explicitly. | 
|  | return NewLoop; | 
|  | } | 
|  |  | 
|  | // Add unroll disable metadata to disable future unrolling for this loop. | 
|  | NewLoop->setLoopAlreadyUnrolled(); | 
|  | return NewLoop; | 
|  | } | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits | 
|  | /// is populated with all the loop exit blocks other than the LatchExit block. | 
|  | static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit, | 
|  | bool PreserveLCSSA, | 
|  | bool UseEpilogRemainder) { | 
|  |  | 
|  | // We currently have some correctness constrains in unrolling a multi-exit | 
|  | // loop. Check for these below. | 
|  |  | 
|  | // We rely on LCSSA form being preserved when the exit blocks are transformed. | 
|  | if (!PreserveLCSSA) | 
|  | return false; | 
|  |  | 
|  | // TODO: Support multiple exiting blocks jumping to the `LatchExit` when | 
|  | // UnrollRuntimeMultiExit is true. This will need updating the logic in | 
|  | // connectEpilog/connectProlog. | 
|  | if (!LatchExit->getSinglePredecessor()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "Bailout for multi-exit handling when latch exit has >1 " | 
|  | "predecessor.\n"); | 
|  | return false; | 
|  | } | 
|  | // FIXME: We bail out of multi-exit unrolling when epilog loop is generated | 
|  | // and L is an inner loop. This is because in presence of multiple exits, the | 
|  | // outer loop is incorrect: we do not add the EpilogPreheader and exit to the | 
|  | // outer loop. This is automatically handled in the prolog case, so we do not | 
|  | // have that bug in prolog generation. | 
|  | if (UseEpilogRemainder && L->getParentLoop()) | 
|  | return false; | 
|  |  | 
|  | // All constraints have been satisfied. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if we can profitably unroll the multi-exit loop L. Currently, | 
|  | /// we return true only if UnrollRuntimeMultiExit is set to true. | 
|  | static bool canProfitablyUnrollMultiExitLoop( | 
|  | Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit, | 
|  | bool PreserveLCSSA, bool UseEpilogRemainder) { | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, | 
|  | UseEpilogRemainder) && | 
|  | "Should be safe to unroll before checking profitability!"); | 
|  | #endif | 
|  |  | 
|  | // Priority goes to UnrollRuntimeMultiExit if it's supplied. | 
|  | if (UnrollRuntimeMultiExit.getNumOccurrences()) | 
|  | return UnrollRuntimeMultiExit; | 
|  |  | 
|  | // The main pain point with multi-exit loop unrolling is that once unrolled, | 
|  | // we will not be able to merge all blocks into a straight line code. | 
|  | // There are branches within the unrolled loop that go to the OtherExits. | 
|  | // The second point is the increase in code size, but this is true | 
|  | // irrespective of multiple exits. | 
|  |  | 
|  | // Note: Both the heuristics below are coarse grained. We are essentially | 
|  | // enabling unrolling of loops that have a single side exit other than the | 
|  | // normal LatchExit (i.e. exiting into a deoptimize block). | 
|  | // The heuristics considered are: | 
|  | // 1. low number of branches in the unrolled version. | 
|  | // 2. high predictability of these extra branches. | 
|  | // We avoid unrolling loops that have more than two exiting blocks. This | 
|  | // limits the total number of branches in the unrolled loop to be atmost | 
|  | // the unroll factor (since one of the exiting blocks is the latch block). | 
|  | SmallVector<BasicBlock*, 4> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  | if (ExitingBlocks.size() > 2) | 
|  | return false; | 
|  |  | 
|  | // The second heuristic is that L has one exit other than the latchexit and | 
|  | // that exit is a deoptimize block. We know that deoptimize blocks are rarely | 
|  | // taken, which also implies the branch leading to the deoptimize block is | 
|  | // highly predictable. | 
|  | return (OtherExits.size() == 1 && | 
|  | OtherExits[0]->getTerminatingDeoptimizeCall()); | 
|  | // TODO: These can be fine-tuned further to consider code size or deopt states | 
|  | // that are captured by the deoptimize exit block. | 
|  | // Also, we can extend this to support more cases, if we actually | 
|  | // know of kinds of multiexit loops that would benefit from unrolling. | 
|  | } | 
|  |  | 
|  | /// Insert code in the prolog/epilog code when unrolling a loop with a | 
|  | /// run-time trip-count. | 
|  | /// | 
|  | /// This method assumes that the loop unroll factor is total number | 
|  | /// of loop bodies in the loop after unrolling. (Some folks refer | 
|  | /// to the unroll factor as the number of *extra* copies added). | 
|  | /// We assume also that the loop unroll factor is a power-of-two. So, after | 
|  | /// unrolling the loop, the number of loop bodies executed is 2, | 
|  | /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch | 
|  | /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for | 
|  | /// the switch instruction is generated. | 
|  | /// | 
|  | /// ***Prolog case*** | 
|  | ///        extraiters = tripcount % loopfactor | 
|  | ///        if (extraiters == 0) jump Loop: | 
|  | ///        else jump Prol: | 
|  | /// Prol:  LoopBody; | 
|  | ///        extraiters -= 1                 // Omitted if unroll factor is 2. | 
|  | ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2. | 
|  | ///        if (tripcount < loopfactor) jump End: | 
|  | /// Loop: | 
|  | /// ... | 
|  | /// End: | 
|  | /// | 
|  | /// ***Epilog case*** | 
|  | ///        extraiters = tripcount % loopfactor | 
|  | ///        if (tripcount < loopfactor) jump LoopExit: | 
|  | ///        unroll_iters = tripcount - extraiters | 
|  | /// Loop:  LoopBody; (executes unroll_iter times); | 
|  | ///        unroll_iter -= 1 | 
|  | ///        if (unroll_iter != 0) jump Loop: | 
|  | /// LoopExit: | 
|  | ///        if (extraiters == 0) jump EpilExit: | 
|  | /// Epil:  LoopBody; (executes extraiters times) | 
|  | ///        extraiters -= 1                 // Omitted if unroll factor is 2. | 
|  | ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2. | 
|  | /// EpilExit: | 
|  |  | 
|  | bool llvm::UnrollRuntimeLoopRemainder( | 
|  | Loop *L, unsigned Count, bool AllowExpensiveTripCount, | 
|  | bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, | 
|  | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, | 
|  | const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) { | 
|  | LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n"); | 
|  | LLVM_DEBUG(L->dump()); | 
|  | LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n" | 
|  | : dbgs() << "Using prolog remainder.\n"); | 
|  |  | 
|  | // Make sure the loop is in canonical form. | 
|  | if (!L->isLoopSimplifyForm()) { | 
|  | LLVM_DEBUG(dbgs() << "Not in simplify form!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Guaranteed by LoopSimplifyForm. | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | BasicBlock *Header = L->getHeader(); | 
|  |  | 
|  | BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); | 
|  |  | 
|  | if (!LatchBR || LatchBR->isUnconditional()) { | 
|  | // The loop-rotate pass can be helpful to avoid this in many cases. | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "Loop latch not terminated by a conditional branch.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0; | 
|  | BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex); | 
|  |  | 
|  | if (L->contains(LatchExit)) { | 
|  | // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the | 
|  | // targets of the Latch be an exit block out of the loop. | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "One of the loop latch successors must be the exit block.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // These are exit blocks other than the target of the latch exiting block. | 
|  | SmallVector<BasicBlock *, 4> OtherExits; | 
|  | L->getUniqueNonLatchExitBlocks(OtherExits); | 
|  | bool isMultiExitUnrollingEnabled = | 
|  | canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA, | 
|  | UseEpilogRemainder) && | 
|  | canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA, | 
|  | UseEpilogRemainder); | 
|  | // Support only single exit and exiting block unless multi-exit loop unrolling is enabled. | 
|  | if (!isMultiExitUnrollingEnabled && | 
|  | (!L->getExitingBlock() || OtherExits.size())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "Multiple exit/exiting blocks in loop and multi-exit unrolling not " | 
|  | "enabled!\n"); | 
|  | return false; | 
|  | } | 
|  | // Use Scalar Evolution to compute the trip count. This allows more loops to | 
|  | // be unrolled than relying on induction var simplification. | 
|  | if (!SE) | 
|  | return false; | 
|  |  | 
|  | // Only unroll loops with a computable trip count, and the trip count needs | 
|  | // to be an int value (allowing a pointer type is a TODO item). | 
|  | // We calculate the backedge count by using getExitCount on the Latch block, | 
|  | // which is proven to be the only exiting block in this loop. This is same as | 
|  | // calculating getBackedgeTakenCount on the loop (which computes SCEV for all | 
|  | // exiting blocks). | 
|  | const SCEV *BECountSC = SE->getExitCount(L, Latch); | 
|  | if (isa<SCEVCouldNotCompute>(BECountSC) || | 
|  | !BECountSC->getType()->isIntegerTy()) { | 
|  | LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth(); | 
|  |  | 
|  | // Add 1 since the backedge count doesn't include the first loop iteration. | 
|  | const SCEV *TripCountSC = | 
|  | SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1)); | 
|  | if (isa<SCEVCouldNotCompute>(TripCountSC)) { | 
|  | LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BasicBlock *PreHeader = L->getLoopPreheader(); | 
|  | BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); | 
|  | const DataLayout &DL = Header->getModule()->getDataLayout(); | 
|  | SCEVExpander Expander(*SE, DL, "loop-unroll"); | 
|  | if (!AllowExpensiveTripCount && | 
|  | Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget, | 
|  | TTI, PreHeaderBR)) { | 
|  | LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This constraint lets us deal with an overflowing trip count easily; see the | 
|  | // comment on ModVal below. | 
|  | if (Log2_32(Count) > BEWidth) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() | 
|  | << "Count failed constraint on overflow trip count calculation.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Loop structure is the following: | 
|  | // | 
|  | // PreHeader | 
|  | //   Header | 
|  | //   ... | 
|  | //   Latch | 
|  | // LatchExit | 
|  |  | 
|  | BasicBlock *NewPreHeader; | 
|  | BasicBlock *NewExit = nullptr; | 
|  | BasicBlock *PrologExit = nullptr; | 
|  | BasicBlock *EpilogPreHeader = nullptr; | 
|  | BasicBlock *PrologPreHeader = nullptr; | 
|  |  | 
|  | if (UseEpilogRemainder) { | 
|  | // If epilog remainder | 
|  | // Split PreHeader to insert a branch around loop for unrolling. | 
|  | NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI); | 
|  | NewPreHeader->setName(PreHeader->getName() + ".new"); | 
|  | // Split LatchExit to create phi nodes from branch above. | 
|  | SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit)); | 
|  | NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI, | 
|  | nullptr, PreserveLCSSA); | 
|  | // NewExit gets its DebugLoc from LatchExit, which is not part of the | 
|  | // original Loop. | 
|  | // Fix this by setting Loop's DebugLoc to NewExit. | 
|  | auto *NewExitTerminator = NewExit->getTerminator(); | 
|  | NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc()); | 
|  | // Split NewExit to insert epilog remainder loop. | 
|  | EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI); | 
|  | EpilogPreHeader->setName(Header->getName() + ".epil.preheader"); | 
|  | } else { | 
|  | // If prolog remainder | 
|  | // Split the original preheader twice to insert prolog remainder loop | 
|  | PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI); | 
|  | PrologPreHeader->setName(Header->getName() + ".prol.preheader"); | 
|  | PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(), | 
|  | DT, LI); | 
|  | PrologExit->setName(Header->getName() + ".prol.loopexit"); | 
|  | // Split PrologExit to get NewPreHeader. | 
|  | NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI); | 
|  | NewPreHeader->setName(PreHeader->getName() + ".new"); | 
|  | } | 
|  | // Loop structure should be the following: | 
|  | //  Epilog             Prolog | 
|  | // | 
|  | // PreHeader         PreHeader | 
|  | // *NewPreHeader     *PrologPreHeader | 
|  | //   Header          *PrologExit | 
|  | //   ...             *NewPreHeader | 
|  | //   Latch             Header | 
|  | // *NewExit            ... | 
|  | // *EpilogPreHeader    Latch | 
|  | // LatchExit              LatchExit | 
|  |  | 
|  | // Calculate conditions for branch around loop for unrolling | 
|  | // in epilog case and around prolog remainder loop in prolog case. | 
|  | // Compute the number of extra iterations required, which is: | 
|  | //  extra iterations = run-time trip count % loop unroll factor | 
|  | PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); | 
|  | Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(), | 
|  | PreHeaderBR); | 
|  | Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(), | 
|  | PreHeaderBR); | 
|  | IRBuilder<> B(PreHeaderBR); | 
|  | Value *ModVal; | 
|  | // Calculate ModVal = (BECount + 1) % Count. | 
|  | // Note that TripCount is BECount + 1. | 
|  | if (isPowerOf2_32(Count)) { | 
|  | // When Count is power of 2 we don't BECount for epilog case, however we'll | 
|  | // need it for a branch around unrolling loop for prolog case. | 
|  | ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter"); | 
|  | //  1. There are no iterations to be run in the prolog/epilog loop. | 
|  | // OR | 
|  | //  2. The addition computing TripCount overflowed. | 
|  | // | 
|  | // If (2) is true, we know that TripCount really is (1 << BEWidth) and so | 
|  | // the number of iterations that remain to be run in the original loop is a | 
|  | // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we | 
|  | // explicitly check this above). | 
|  | } else { | 
|  | // As (BECount + 1) can potentially unsigned overflow we count | 
|  | // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count. | 
|  | Value *ModValTmp = B.CreateURem(BECount, | 
|  | ConstantInt::get(BECount->getType(), | 
|  | Count)); | 
|  | Value *ModValAdd = B.CreateAdd(ModValTmp, | 
|  | ConstantInt::get(ModValTmp->getType(), 1)); | 
|  | // At that point (BECount % Count) + 1 could be equal to Count. | 
|  | // To handle this case we need to take mod by Count one more time. | 
|  | ModVal = B.CreateURem(ModValAdd, | 
|  | ConstantInt::get(BECount->getType(), Count), | 
|  | "xtraiter"); | 
|  | } | 
|  | Value *BranchVal = | 
|  | UseEpilogRemainder ? B.CreateICmpULT(BECount, | 
|  | ConstantInt::get(BECount->getType(), | 
|  | Count - 1)) : | 
|  | B.CreateIsNotNull(ModVal, "lcmp.mod"); | 
|  | BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader; | 
|  | BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit; | 
|  | // Branch to either remainder (extra iterations) loop or unrolling loop. | 
|  | B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop); | 
|  | PreHeaderBR->eraseFromParent(); | 
|  | if (DT) { | 
|  | if (UseEpilogRemainder) | 
|  | DT->changeImmediateDominator(NewExit, PreHeader); | 
|  | else | 
|  | DT->changeImmediateDominator(PrologExit, PreHeader); | 
|  | } | 
|  | Function *F = Header->getParent(); | 
|  | // Get an ordered list of blocks in the loop to help with the ordering of the | 
|  | // cloned blocks in the prolog/epilog code | 
|  | LoopBlocksDFS LoopBlocks(L); | 
|  | LoopBlocks.perform(LI); | 
|  |  | 
|  | // | 
|  | // For each extra loop iteration, create a copy of the loop's basic blocks | 
|  | // and generate a condition that branches to the copy depending on the | 
|  | // number of 'left over' iterations. | 
|  | // | 
|  | std::vector<BasicBlock *> NewBlocks; | 
|  | ValueToValueMapTy VMap; | 
|  |  | 
|  | // For unroll factor 2 remainder loop will have 1 iterations. | 
|  | // Do not create 1 iteration loop. | 
|  | bool CreateRemainderLoop = (Count != 2); | 
|  |  | 
|  | // Clone all the basic blocks in the loop. If Count is 2, we don't clone | 
|  | // the loop, otherwise we create a cloned loop to execute the extra | 
|  | // iterations. This function adds the appropriate CFG connections. | 
|  | BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit; | 
|  | BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader; | 
|  | Loop *remainderLoop = CloneLoopBlocks( | 
|  | L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder, | 
|  | InsertTop, InsertBot, | 
|  | NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI); | 
|  |  | 
|  | // Insert the cloned blocks into the function. | 
|  | F->getBasicBlockList().splice(InsertBot->getIterator(), | 
|  | F->getBasicBlockList(), | 
|  | NewBlocks[0]->getIterator(), | 
|  | F->end()); | 
|  |  | 
|  | // Now the loop blocks are cloned and the other exiting blocks from the | 
|  | // remainder are connected to the original Loop's exit blocks. The remaining | 
|  | // work is to update the phi nodes in the original loop, and take in the | 
|  | // values from the cloned region. | 
|  | for (auto *BB : OtherExits) { | 
|  | for (auto &II : *BB) { | 
|  |  | 
|  | // Given we preserve LCSSA form, we know that the values used outside the | 
|  | // loop will be used through these phi nodes at the exit blocks that are | 
|  | // transformed below. | 
|  | if (!isa<PHINode>(II)) | 
|  | break; | 
|  | PHINode *Phi = cast<PHINode>(&II); | 
|  | unsigned oldNumOperands = Phi->getNumIncomingValues(); | 
|  | // Add the incoming values from the remainder code to the end of the phi | 
|  | // node. | 
|  | for (unsigned i =0; i < oldNumOperands; i++){ | 
|  | Value *newVal = VMap.lookup(Phi->getIncomingValue(i)); | 
|  | // newVal can be a constant or derived from values outside the loop, and | 
|  | // hence need not have a VMap value. Also, since lookup already generated | 
|  | // a default "null" VMap entry for this value, we need to populate that | 
|  | // VMap entry correctly, with the mapped entry being itself. | 
|  | if (!newVal) { | 
|  | newVal = Phi->getIncomingValue(i); | 
|  | VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i); | 
|  | } | 
|  | Phi->addIncoming(newVal, | 
|  | cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)])); | 
|  | } | 
|  | } | 
|  | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) | 
|  | for (BasicBlock *SuccBB : successors(BB)) { | 
|  | assert(!(any_of(OtherExits, | 
|  | [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) || | 
|  | SuccBB == LatchExit) && | 
|  | "Breaks the definition of dedicated exits!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Update the immediate dominator of the exit blocks and blocks that are | 
|  | // reachable from the exit blocks. This is needed because we now have paths | 
|  | // from both the original loop and the remainder code reaching the exit | 
|  | // blocks. While the IDom of these exit blocks were from the original loop, | 
|  | // now the IDom is the preheader (which decides whether the original loop or | 
|  | // remainder code should run). | 
|  | if (DT && !L->getExitingBlock()) { | 
|  | SmallVector<BasicBlock *, 16> ChildrenToUpdate; | 
|  | // NB! We have to examine the dom children of all loop blocks, not just | 
|  | // those which are the IDom of the exit blocks. This is because blocks | 
|  | // reachable from the exit blocks can have their IDom as the nearest common | 
|  | // dominator of the exit blocks. | 
|  | for (auto *BB : L->blocks()) { | 
|  | auto *DomNodeBB = DT->getNode(BB); | 
|  | for (auto *DomChild : DomNodeBB->children()) { | 
|  | auto *DomChildBB = DomChild->getBlock(); | 
|  | if (!L->contains(LI->getLoopFor(DomChildBB))) | 
|  | ChildrenToUpdate.push_back(DomChildBB); | 
|  | } | 
|  | } | 
|  | for (auto *BB : ChildrenToUpdate) | 
|  | DT->changeImmediateDominator(BB, PreHeader); | 
|  | } | 
|  |  | 
|  | // Loop structure should be the following: | 
|  | //  Epilog             Prolog | 
|  | // | 
|  | // PreHeader         PreHeader | 
|  | // NewPreHeader      PrologPreHeader | 
|  | //   Header            PrologHeader | 
|  | //   ...               ... | 
|  | //   Latch             PrologLatch | 
|  | // NewExit           PrologExit | 
|  | // EpilogPreHeader   NewPreHeader | 
|  | //   EpilogHeader      Header | 
|  | //   ...               ... | 
|  | //   EpilogLatch       Latch | 
|  | // LatchExit              LatchExit | 
|  |  | 
|  | // Rewrite the cloned instruction operands to use the values created when the | 
|  | // clone is created. | 
|  | for (BasicBlock *BB : NewBlocks) { | 
|  | for (Instruction &I : *BB) { | 
|  | RemapInstruction(&I, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (UseEpilogRemainder) { | 
|  | // Connect the epilog code to the original loop and update the | 
|  | // PHI functions. | 
|  | ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, | 
|  | EpilogPreHeader, NewPreHeader, VMap, DT, LI, | 
|  | PreserveLCSSA); | 
|  |  | 
|  | // Update counter in loop for unrolling. | 
|  | // I should be multiply of Count. | 
|  | IRBuilder<> B2(NewPreHeader->getTerminator()); | 
|  | Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter"); | 
|  | BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); | 
|  | B2.SetInsertPoint(LatchBR); | 
|  | PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter", | 
|  | Header->getFirstNonPHI()); | 
|  | Value *IdxSub = | 
|  | B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1), | 
|  | NewIdx->getName() + ".nsub"); | 
|  | Value *IdxCmp; | 
|  | if (LatchBR->getSuccessor(0) == Header) | 
|  | IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp"); | 
|  | else | 
|  | IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp"); | 
|  | NewIdx->addIncoming(TestVal, NewPreHeader); | 
|  | NewIdx->addIncoming(IdxSub, Latch); | 
|  | LatchBR->setCondition(IdxCmp); | 
|  | } else { | 
|  | // Connect the prolog code to the original loop and update the | 
|  | // PHI functions. | 
|  | ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader, | 
|  | NewPreHeader, VMap, DT, LI, PreserveLCSSA); | 
|  | } | 
|  |  | 
|  | // If this loop is nested, then the loop unroller changes the code in the any | 
|  | // of its parent loops, so the Scalar Evolution pass needs to be run again. | 
|  | SE->forgetTopmostLoop(L); | 
|  |  | 
|  | // Verify that the Dom Tree is correct. | 
|  | #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG) | 
|  | if (DT) | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Full)); | 
|  | #endif | 
|  |  | 
|  | // Canonicalize to LoopSimplifyForm both original and remainder loops. We | 
|  | // cannot rely on the LoopUnrollPass to do this because it only does | 
|  | // canonicalization for parent/subloops and not the sibling loops. | 
|  | if (OtherExits.size() > 0) { | 
|  | // Generate dedicated exit blocks for the original loop, to preserve | 
|  | // LoopSimplifyForm. | 
|  | formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA); | 
|  | // Generate dedicated exit blocks for the remainder loop if one exists, to | 
|  | // preserve LoopSimplifyForm. | 
|  | if (remainderLoop) | 
|  | formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA); | 
|  | } | 
|  |  | 
|  | auto UnrollResult = LoopUnrollResult::Unmodified; | 
|  | if (remainderLoop && UnrollRemainder) { | 
|  | LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n"); | 
|  | UnrollResult = | 
|  | UnrollLoop(remainderLoop, | 
|  | {/*Count*/ Count - 1, /*TripCount*/ Count - 1, | 
|  | /*Force*/ false, /*AllowRuntime*/ false, | 
|  | /*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true, | 
|  | /*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1, | 
|  | /*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV}, | 
|  | LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA); | 
|  | } | 
|  |  | 
|  | if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled) | 
|  | *ResultLoop = remainderLoop; | 
|  | NumRuntimeUnrolled++; | 
|  | return true; | 
|  | } |