| //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass identifies expensive constants to hoist and coalesces them to | 
 | // better prepare it for SelectionDAG-based code generation. This works around | 
 | // the limitations of the basic-block-at-a-time approach. | 
 | // | 
 | // First it scans all instructions for integer constants and calculates its | 
 | // cost. If the constant can be folded into the instruction (the cost is | 
 | // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't | 
 | // consider it expensive and leave it alone. This is the default behavior and | 
 | // the default implementation of getIntImmCostInst will always return TCC_Free. | 
 | // | 
 | // If the cost is more than TCC_BASIC, then the integer constant can't be folded | 
 | // into the instruction and it might be beneficial to hoist the constant. | 
 | // Similar constants are coalesced to reduce register pressure and | 
 | // materialization code. | 
 | // | 
 | // When a constant is hoisted, it is also hidden behind a bitcast to force it to | 
 | // be live-out of the basic block. Otherwise the constant would be just | 
 | // duplicated and each basic block would have its own copy in the SelectionDAG. | 
 | // The SelectionDAG recognizes such constants as opaque and doesn't perform | 
 | // certain transformations on them, which would create a new expensive constant. | 
 | // | 
 | // This optimization is only applied to integer constants in instructions and | 
 | // simple (this means not nested) constant cast expressions. For example: | 
 | // %0 = load i64* inttoptr (i64 big_constant to i64*) | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Scalar/ConstantHoisting.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/None.h" | 
 | #include "llvm/ADT/Optional.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
 | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DebugInfoMetadata.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/BlockFrequency.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Transforms/Scalar.h" | 
 | #include "llvm/Transforms/Utils/Local.h" | 
 | #include "llvm/Transforms/Utils/SizeOpts.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <tuple> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 | using namespace consthoist; | 
 |  | 
 | #define DEBUG_TYPE "consthoist" | 
 |  | 
 | STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); | 
 | STATISTIC(NumConstantsRebased, "Number of constants rebased"); | 
 |  | 
 | static cl::opt<bool> ConstHoistWithBlockFrequency( | 
 |     "consthoist-with-block-frequency", cl::init(true), cl::Hidden, | 
 |     cl::desc("Enable the use of the block frequency analysis to reduce the " | 
 |              "chance to execute const materialization more frequently than " | 
 |              "without hoisting.")); | 
 |  | 
 | static cl::opt<bool> ConstHoistGEP( | 
 |     "consthoist-gep", cl::init(false), cl::Hidden, | 
 |     cl::desc("Try hoisting constant gep expressions")); | 
 |  | 
 | static cl::opt<unsigned> | 
 | MinNumOfDependentToRebase("consthoist-min-num-to-rebase", | 
 |     cl::desc("Do not rebase if number of dependent constants of a Base is less " | 
 |              "than this number."), | 
 |     cl::init(0), cl::Hidden); | 
 |  | 
 | namespace { | 
 |  | 
 | /// The constant hoisting pass. | 
 | class ConstantHoistingLegacyPass : public FunctionPass { | 
 | public: | 
 |   static char ID; // Pass identification, replacement for typeid | 
 |  | 
 |   ConstantHoistingLegacyPass() : FunctionPass(ID) { | 
 |     initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   bool runOnFunction(Function &Fn) override; | 
 |  | 
 |   StringRef getPassName() const override { return "Constant Hoisting"; } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.setPreservesCFG(); | 
 |     if (ConstHoistWithBlockFrequency) | 
 |       AU.addRequired<BlockFrequencyInfoWrapperPass>(); | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
 |     AU.addRequired<TargetTransformInfoWrapperPass>(); | 
 |   } | 
 |  | 
 | private: | 
 |   ConstantHoistingPass Impl; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char ConstantHoistingLegacyPass::ID = 0; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", | 
 |                       "Constant Hoisting", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
 | INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", | 
 |                     "Constant Hoisting", false, false) | 
 |  | 
 | FunctionPass *llvm::createConstantHoistingPass() { | 
 |   return new ConstantHoistingLegacyPass(); | 
 | } | 
 |  | 
 | /// Perform the constant hoisting optimization for the given function. | 
 | bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { | 
 |   if (skipFunction(Fn)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); | 
 |   LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); | 
 |  | 
 |   bool MadeChange = | 
 |       Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), | 
 |                    getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
 |                    ConstHoistWithBlockFrequency | 
 |                        ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() | 
 |                        : nullptr, | 
 |                    Fn.getEntryBlock(), | 
 |                    &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); | 
 |  | 
 |   if (MadeChange) { | 
 |     LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " | 
 |                       << Fn.getName() << '\n'); | 
 |     LLVM_DEBUG(dbgs() << Fn); | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | /// Find the constant materialization insertion point. | 
 | Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, | 
 |                                                    unsigned Idx) const { | 
 |   // If the operand is a cast instruction, then we have to materialize the | 
 |   // constant before the cast instruction. | 
 |   if (Idx != ~0U) { | 
 |     Value *Opnd = Inst->getOperand(Idx); | 
 |     if (auto CastInst = dyn_cast<Instruction>(Opnd)) | 
 |       if (CastInst->isCast()) | 
 |         return CastInst; | 
 |   } | 
 |  | 
 |   // The simple and common case. This also includes constant expressions. | 
 |   if (!isa<PHINode>(Inst) && !Inst->isEHPad()) | 
 |     return Inst; | 
 |  | 
 |   // We can't insert directly before a phi node or an eh pad. Insert before | 
 |   // the terminator of the incoming or dominating block. | 
 |   assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); | 
 |   if (Idx != ~0U && isa<PHINode>(Inst)) | 
 |     return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator(); | 
 |  | 
 |   // This must be an EH pad. Iterate over immediate dominators until we find a | 
 |   // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads | 
 |   // and terminators. | 
 |   auto IDom = DT->getNode(Inst->getParent())->getIDom(); | 
 |   while (IDom->getBlock()->isEHPad()) { | 
 |     assert(Entry != IDom->getBlock() && "eh pad in entry block"); | 
 |     IDom = IDom->getIDom(); | 
 |   } | 
 |  | 
 |   return IDom->getBlock()->getTerminator(); | 
 | } | 
 |  | 
 | /// Given \p BBs as input, find another set of BBs which collectively | 
 | /// dominates \p BBs and have the minimal sum of frequencies. Return the BB | 
 | /// set found in \p BBs. | 
 | static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, | 
 |                                  BasicBlock *Entry, | 
 |                                  SetVector<BasicBlock *> &BBs) { | 
 |   assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); | 
 |   // Nodes on the current path to the root. | 
 |   SmallPtrSet<BasicBlock *, 8> Path; | 
 |   // Candidates includes any block 'BB' in set 'BBs' that is not strictly | 
 |   // dominated by any other blocks in set 'BBs', and all nodes in the path | 
 |   // in the dominator tree from Entry to 'BB'. | 
 |   SmallPtrSet<BasicBlock *, 16> Candidates; | 
 |   for (auto BB : BBs) { | 
 |     // Ignore unreachable basic blocks. | 
 |     if (!DT.isReachableFromEntry(BB)) | 
 |       continue; | 
 |     Path.clear(); | 
 |     // Walk up the dominator tree until Entry or another BB in BBs | 
 |     // is reached. Insert the nodes on the way to the Path. | 
 |     BasicBlock *Node = BB; | 
 |     // The "Path" is a candidate path to be added into Candidates set. | 
 |     bool isCandidate = false; | 
 |     do { | 
 |       Path.insert(Node); | 
 |       if (Node == Entry || Candidates.count(Node)) { | 
 |         isCandidate = true; | 
 |         break; | 
 |       } | 
 |       assert(DT.getNode(Node)->getIDom() && | 
 |              "Entry doens't dominate current Node"); | 
 |       Node = DT.getNode(Node)->getIDom()->getBlock(); | 
 |     } while (!BBs.count(Node)); | 
 |  | 
 |     // If isCandidate is false, Node is another Block in BBs dominating | 
 |     // current 'BB'. Drop the nodes on the Path. | 
 |     if (!isCandidate) | 
 |       continue; | 
 |  | 
 |     // Add nodes on the Path into Candidates. | 
 |     Candidates.insert(Path.begin(), Path.end()); | 
 |   } | 
 |  | 
 |   // Sort the nodes in Candidates in top-down order and save the nodes | 
 |   // in Orders. | 
 |   unsigned Idx = 0; | 
 |   SmallVector<BasicBlock *, 16> Orders; | 
 |   Orders.push_back(Entry); | 
 |   while (Idx != Orders.size()) { | 
 |     BasicBlock *Node = Orders[Idx++]; | 
 |     for (auto ChildDomNode : DT.getNode(Node)->children()) { | 
 |       if (Candidates.count(ChildDomNode->getBlock())) | 
 |         Orders.push_back(ChildDomNode->getBlock()); | 
 |     } | 
 |   } | 
 |  | 
 |   // Visit Orders in bottom-up order. | 
 |   using InsertPtsCostPair = | 
 |       std::pair<SetVector<BasicBlock *>, BlockFrequency>; | 
 |  | 
 |   // InsertPtsMap is a map from a BB to the best insertion points for the | 
 |   // subtree of BB (subtree not including the BB itself). | 
 |   DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; | 
 |   InsertPtsMap.reserve(Orders.size() + 1); | 
 |   for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { | 
 |     BasicBlock *Node = *RIt; | 
 |     bool NodeInBBs = BBs.count(Node); | 
 |     auto &InsertPts = InsertPtsMap[Node].first; | 
 |     BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; | 
 |  | 
 |     // Return the optimal insert points in BBs. | 
 |     if (Node == Entry) { | 
 |       BBs.clear(); | 
 |       if (InsertPtsFreq > BFI.getBlockFreq(Node) || | 
 |           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) | 
 |         BBs.insert(Entry); | 
 |       else | 
 |         BBs.insert(InsertPts.begin(), InsertPts.end()); | 
 |       break; | 
 |     } | 
 |  | 
 |     BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); | 
 |     // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child | 
 |     // will update its parent's ParentInsertPts and ParentPtsFreq. | 
 |     auto &ParentInsertPts = InsertPtsMap[Parent].first; | 
 |     BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; | 
 |     // Choose to insert in Node or in subtree of Node. | 
 |     // Don't hoist to EHPad because we may not find a proper place to insert | 
 |     // in EHPad. | 
 |     // If the total frequency of InsertPts is the same as the frequency of the | 
 |     // target Node, and InsertPts contains more than one nodes, choose hoisting | 
 |     // to reduce code size. | 
 |     if (NodeInBBs || | 
 |         (!Node->isEHPad() && | 
 |          (InsertPtsFreq > BFI.getBlockFreq(Node) || | 
 |           (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { | 
 |       ParentInsertPts.insert(Node); | 
 |       ParentPtsFreq += BFI.getBlockFreq(Node); | 
 |     } else { | 
 |       ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); | 
 |       ParentPtsFreq += InsertPtsFreq; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Find an insertion point that dominates all uses. | 
 | SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( | 
 |     const ConstantInfo &ConstInfo) const { | 
 |   assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); | 
 |   // Collect all basic blocks. | 
 |   SetVector<BasicBlock *> BBs; | 
 |   SetVector<Instruction *> InsertPts; | 
 |   for (auto const &RCI : ConstInfo.RebasedConstants) | 
 |     for (auto const &U : RCI.Uses) | 
 |       BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); | 
 |  | 
 |   if (BBs.count(Entry)) { | 
 |     InsertPts.insert(&Entry->front()); | 
 |     return InsertPts; | 
 |   } | 
 |  | 
 |   if (BFI) { | 
 |     findBestInsertionSet(*DT, *BFI, Entry, BBs); | 
 |     for (auto BB : BBs) { | 
 |       BasicBlock::iterator InsertPt = BB->begin(); | 
 |       for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) | 
 |         ; | 
 |       InsertPts.insert(&*InsertPt); | 
 |     } | 
 |     return InsertPts; | 
 |   } | 
 |  | 
 |   while (BBs.size() >= 2) { | 
 |     BasicBlock *BB, *BB1, *BB2; | 
 |     BB1 = BBs.pop_back_val(); | 
 |     BB2 = BBs.pop_back_val(); | 
 |     BB = DT->findNearestCommonDominator(BB1, BB2); | 
 |     if (BB == Entry) { | 
 |       InsertPts.insert(&Entry->front()); | 
 |       return InsertPts; | 
 |     } | 
 |     BBs.insert(BB); | 
 |   } | 
 |   assert((BBs.size() == 1) && "Expected only one element."); | 
 |   Instruction &FirstInst = (*BBs.begin())->front(); | 
 |   InsertPts.insert(findMatInsertPt(&FirstInst)); | 
 |   return InsertPts; | 
 | } | 
 |  | 
 | /// Record constant integer ConstInt for instruction Inst at operand | 
 | /// index Idx. | 
 | /// | 
 | /// The operand at index Idx is not necessarily the constant integer itself. It | 
 | /// could also be a cast instruction or a constant expression that uses the | 
 | /// constant integer. | 
 | void ConstantHoistingPass::collectConstantCandidates( | 
 |     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, | 
 |     ConstantInt *ConstInt) { | 
 |   unsigned Cost; | 
 |   // Ask the target about the cost of materializing the constant for the given | 
 |   // instruction and operand index. | 
 |   if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) | 
 |     Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx, | 
 |                                     ConstInt->getValue(), ConstInt->getType(), | 
 |                                     TargetTransformInfo::TCK_SizeAndLatency); | 
 |   else | 
 |     Cost = TTI->getIntImmCostInst(Inst->getOpcode(), Idx, ConstInt->getValue(), | 
 |                                   ConstInt->getType(), | 
 |                                   TargetTransformInfo::TCK_SizeAndLatency); | 
 |  | 
 |   // Ignore cheap integer constants. | 
 |   if (Cost > TargetTransformInfo::TCC_Basic) { | 
 |     ConstCandMapType::iterator Itr; | 
 |     bool Inserted; | 
 |     ConstPtrUnionType Cand = ConstInt; | 
 |     std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); | 
 |     if (Inserted) { | 
 |       ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); | 
 |       Itr->second = ConstIntCandVec.size() - 1; | 
 |     } | 
 |     ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost); | 
 |     LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() | 
 |                    << "Collect constant " << *ConstInt << " from " << *Inst | 
 |                    << " with cost " << Cost << '\n'; | 
 |                else dbgs() << "Collect constant " << *ConstInt | 
 |                            << " indirectly from " << *Inst << " via " | 
 |                            << *Inst->getOperand(Idx) << " with cost " << Cost | 
 |                            << '\n';); | 
 |   } | 
 | } | 
 |  | 
 | /// Record constant GEP expression for instruction Inst at operand index Idx. | 
 | void ConstantHoistingPass::collectConstantCandidates( | 
 |     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, | 
 |     ConstantExpr *ConstExpr) { | 
 |   // TODO: Handle vector GEPs | 
 |   if (ConstExpr->getType()->isVectorTy()) | 
 |     return; | 
 |  | 
 |   GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); | 
 |   if (!BaseGV) | 
 |     return; | 
 |  | 
 |   // Get offset from the base GV. | 
 |   PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); | 
 |   IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); | 
 |   APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); | 
 |   auto *GEPO = cast<GEPOperator>(ConstExpr); | 
 |   if (!GEPO->accumulateConstantOffset(*DL, Offset)) | 
 |     return; | 
 |  | 
 |   if (!Offset.isIntN(32)) | 
 |     return; | 
 |  | 
 |   // A constant GEP expression that has a GlobalVariable as base pointer is | 
 |   // usually lowered to a load from constant pool. Such operation is unlikely | 
 |   // to be cheaper than compute it by <Base + Offset>, which can be lowered to | 
 |   // an ADD instruction or folded into Load/Store instruction. | 
 |   int Cost = TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy, | 
 |                                     TargetTransformInfo::TCK_SizeAndLatency); | 
 |   ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; | 
 |   ConstCandMapType::iterator Itr; | 
 |   bool Inserted; | 
 |   ConstPtrUnionType Cand = ConstExpr; | 
 |   std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); | 
 |   if (Inserted) { | 
 |     ExprCandVec.push_back(ConstantCandidate( | 
 |         ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), | 
 |         ConstExpr)); | 
 |     Itr->second = ExprCandVec.size() - 1; | 
 |   } | 
 |   ExprCandVec[Itr->second].addUser(Inst, Idx, Cost); | 
 | } | 
 |  | 
 | /// Check the operand for instruction Inst at index Idx. | 
 | void ConstantHoistingPass::collectConstantCandidates( | 
 |     ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { | 
 |   Value *Opnd = Inst->getOperand(Idx); | 
 |  | 
 |   // Visit constant integers. | 
 |   if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { | 
 |     collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Visit cast instructions that have constant integers. | 
 |   if (auto CastInst = dyn_cast<Instruction>(Opnd)) { | 
 |     // Only visit cast instructions, which have been skipped. All other | 
 |     // instructions should have already been visited. | 
 |     if (!CastInst->isCast()) | 
 |       return; | 
 |  | 
 |     if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { | 
 |       // Pretend the constant is directly used by the instruction and ignore | 
 |       // the cast instruction. | 
 |       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Visit constant expressions that have constant integers. | 
 |   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { | 
 |     // Handle constant gep expressions. | 
 |     if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) | 
 |       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); | 
 |  | 
 |     // Only visit constant cast expressions. | 
 |     if (!ConstExpr->isCast()) | 
 |       return; | 
 |  | 
 |     if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { | 
 |       // Pretend the constant is directly used by the instruction and ignore | 
 |       // the constant expression. | 
 |       collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Scan the instruction for expensive integer constants and record them | 
 | /// in the constant candidate vector. | 
 | void ConstantHoistingPass::collectConstantCandidates( | 
 |     ConstCandMapType &ConstCandMap, Instruction *Inst) { | 
 |   // Skip all cast instructions. They are visited indirectly later on. | 
 |   if (Inst->isCast()) | 
 |     return; | 
 |  | 
 |   // Scan all operands. | 
 |   for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { | 
 |     // The cost of materializing the constants (defined in | 
 |     // `TargetTransformInfo::getIntImmCostInst`) for instructions which only | 
 |     // take constant variables is lower than `TargetTransformInfo::TCC_Basic`. | 
 |     // So it's safe for us to collect constant candidates from all | 
 |     // IntrinsicInsts. | 
 |     if (canReplaceOperandWithVariable(Inst, Idx)) { | 
 |       collectConstantCandidates(ConstCandMap, Inst, Idx); | 
 |     } | 
 |   } // end of for all operands | 
 | } | 
 |  | 
 | /// Collect all integer constants in the function that cannot be folded | 
 | /// into an instruction itself. | 
 | void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { | 
 |   ConstCandMapType ConstCandMap; | 
 |   for (BasicBlock &BB : Fn) { | 
 |     // Ignore unreachable basic blocks. | 
 |     if (!DT->isReachableFromEntry(&BB)) | 
 |       continue; | 
 |     for (Instruction &Inst : BB) | 
 |       collectConstantCandidates(ConstCandMap, &Inst); | 
 |   } | 
 | } | 
 |  | 
 | // This helper function is necessary to deal with values that have different | 
 | // bit widths (APInt Operator- does not like that). If the value cannot be | 
 | // represented in uint64 we return an "empty" APInt. This is then interpreted | 
 | // as the value is not in range. | 
 | static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { | 
 |   Optional<APInt> Res = None; | 
 |   unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? | 
 |                 V1.getBitWidth() : V2.getBitWidth(); | 
 |   uint64_t LimVal1 = V1.getLimitedValue(); | 
 |   uint64_t LimVal2 = V2.getLimitedValue(); | 
 |  | 
 |   if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) | 
 |     return Res; | 
 |  | 
 |   uint64_t Diff = LimVal1 - LimVal2; | 
 |   return APInt(BW, Diff, true); | 
 | } | 
 |  | 
 | // From a list of constants, one needs to picked as the base and the other | 
 | // constants will be transformed into an offset from that base constant. The | 
 | // question is which we can pick best? For example, consider these constants | 
 | // and their number of uses: | 
 | // | 
 | //  Constants| 2 | 4 | 12 | 42 | | 
 | //  NumUses  | 3 | 2 |  8 |  7 | | 
 | // | 
 | // Selecting constant 12 because it has the most uses will generate negative | 
 | // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative | 
 | // offsets lead to less optimal code generation, then there might be better | 
 | // solutions. Suppose immediates in the range of 0..35 are most optimally | 
 | // supported by the architecture, then selecting constant 2 is most optimal | 
 | // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in | 
 | // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would | 
 | // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in | 
 | // selecting the base constant the range of the offsets is a very important | 
 | // factor too that we take into account here. This algorithm calculates a total | 
 | // costs for selecting a constant as the base and substract the costs if | 
 | // immediates are out of range. It has quadratic complexity, so we call this | 
 | // function only when we're optimising for size and there are less than 100 | 
 | // constants, we fall back to the straightforward algorithm otherwise | 
 | // which does not do all the offset calculations. | 
 | unsigned | 
 | ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, | 
 |                                            ConstCandVecType::iterator E, | 
 |                                            ConstCandVecType::iterator &MaxCostItr) { | 
 |   unsigned NumUses = 0; | 
 |  | 
 |   bool OptForSize = Entry->getParent()->hasOptSize() || | 
 |                     llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI, | 
 |                                                 PGSOQueryType::IRPass); | 
 |   if (!OptForSize || std::distance(S,E) > 100) { | 
 |     for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
 |       NumUses += ConstCand->Uses.size(); | 
 |       if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) | 
 |         MaxCostItr = ConstCand; | 
 |     } | 
 |     return NumUses; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); | 
 |   int MaxCost = -1; | 
 |   for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
 |     auto Value = ConstCand->ConstInt->getValue(); | 
 |     Type *Ty = ConstCand->ConstInt->getType(); | 
 |     int Cost = 0; | 
 |     NumUses += ConstCand->Uses.size(); | 
 |     LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() | 
 |                       << "\n"); | 
 |  | 
 |     for (auto User : ConstCand->Uses) { | 
 |       unsigned Opcode = User.Inst->getOpcode(); | 
 |       unsigned OpndIdx = User.OpndIdx; | 
 |       Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty, | 
 |                                      TargetTransformInfo::TCK_SizeAndLatency); | 
 |       LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); | 
 |  | 
 |       for (auto C2 = S; C2 != E; ++C2) { | 
 |         Optional<APInt> Diff = calculateOffsetDiff( | 
 |                                    C2->ConstInt->getValue(), | 
 |                                    ConstCand->ConstInt->getValue()); | 
 |         if (Diff) { | 
 |           const int ImmCosts = | 
 |             TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); | 
 |           Cost -= ImmCosts; | 
 |           LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " | 
 |                             << "has penalty: " << ImmCosts << "\n" | 
 |                             << "Adjusted cost: " << Cost << "\n"); | 
 |         } | 
 |       } | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); | 
 |     if (Cost > MaxCost) { | 
 |       MaxCost = Cost; | 
 |       MaxCostItr = ConstCand; | 
 |       LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() | 
 |                         << "\n"); | 
 |     } | 
 |   } | 
 |   return NumUses; | 
 | } | 
 |  | 
 | /// Find the base constant within the given range and rebase all other | 
 | /// constants with respect to the base constant. | 
 | void ConstantHoistingPass::findAndMakeBaseConstant( | 
 |     ConstCandVecType::iterator S, ConstCandVecType::iterator E, | 
 |     SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { | 
 |   auto MaxCostItr = S; | 
 |   unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); | 
 |  | 
 |   // Don't hoist constants that have only one use. | 
 |   if (NumUses <= 1) | 
 |     return; | 
 |  | 
 |   ConstantInt *ConstInt = MaxCostItr->ConstInt; | 
 |   ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; | 
 |   ConstantInfo ConstInfo; | 
 |   ConstInfo.BaseInt = ConstInt; | 
 |   ConstInfo.BaseExpr = ConstExpr; | 
 |   Type *Ty = ConstInt->getType(); | 
 |  | 
 |   // Rebase the constants with respect to the base constant. | 
 |   for (auto ConstCand = S; ConstCand != E; ++ConstCand) { | 
 |     APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); | 
 |     Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); | 
 |     Type *ConstTy = | 
 |         ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; | 
 |     ConstInfo.RebasedConstants.push_back( | 
 |       RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); | 
 |   } | 
 |   ConstInfoVec.push_back(std::move(ConstInfo)); | 
 | } | 
 |  | 
 | /// Finds and combines constant candidates that can be easily | 
 | /// rematerialized with an add from a common base constant. | 
 | void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { | 
 |   // If BaseGV is nullptr, find base among candidate constant integers; | 
 |   // Otherwise find base among constant GEPs that share the same BaseGV. | 
 |   ConstCandVecType &ConstCandVec = BaseGV ? | 
 |       ConstGEPCandMap[BaseGV] : ConstIntCandVec; | 
 |   ConstInfoVecType &ConstInfoVec = BaseGV ? | 
 |       ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; | 
 |  | 
 |   // Sort the constants by value and type. This invalidates the mapping! | 
 |   llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, | 
 |                                      const ConstantCandidate &RHS) { | 
 |     if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) | 
 |       return LHS.ConstInt->getType()->getBitWidth() < | 
 |              RHS.ConstInt->getType()->getBitWidth(); | 
 |     return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); | 
 |   }); | 
 |  | 
 |   // Simple linear scan through the sorted constant candidate vector for viable | 
 |   // merge candidates. | 
 |   auto MinValItr = ConstCandVec.begin(); | 
 |   for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); | 
 |        CC != E; ++CC) { | 
 |     if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { | 
 |       Type *MemUseValTy = nullptr; | 
 |       for (auto &U : CC->Uses) { | 
 |         auto *UI = U.Inst; | 
 |         if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { | 
 |           MemUseValTy = LI->getType(); | 
 |           break; | 
 |         } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { | 
 |           // Make sure the constant is used as pointer operand of the StoreInst. | 
 |           if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { | 
 |             MemUseValTy = SI->getValueOperand()->getType(); | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Check if the constant is in range of an add with immediate. | 
 |       APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); | 
 |       if ((Diff.getBitWidth() <= 64) && | 
 |           TTI->isLegalAddImmediate(Diff.getSExtValue()) && | 
 |           // Check if Diff can be used as offset in addressing mode of the user | 
 |           // memory instruction. | 
 |           (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, | 
 |            /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), | 
 |            /*HasBaseReg*/true, /*Scale*/0))) | 
 |         continue; | 
 |     } | 
 |     // We either have now a different constant type or the constant is not in | 
 |     // range of an add with immediate anymore. | 
 |     findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); | 
 |     // Start a new base constant search. | 
 |     MinValItr = CC; | 
 |   } | 
 |   // Finalize the last base constant search. | 
 |   findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); | 
 | } | 
 |  | 
 | /// Updates the operand at Idx in instruction Inst with the result of | 
 | ///        instruction Mat. If the instruction is a PHI node then special | 
 | ///        handling for duplicate values form the same incoming basic block is | 
 | ///        required. | 
 | /// \return The update will always succeed, but the return value indicated if | 
 | ///         Mat was used for the update or not. | 
 | static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { | 
 |   if (auto PHI = dyn_cast<PHINode>(Inst)) { | 
 |     // Check if any previous operand of the PHI node has the same incoming basic | 
 |     // block. This is a very odd case that happens when the incoming basic block | 
 |     // has a switch statement. In this case use the same value as the previous | 
 |     // operand(s), otherwise we will fail verification due to different values. | 
 |     // The values are actually the same, but the variable names are different | 
 |     // and the verifier doesn't like that. | 
 |     BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); | 
 |     for (unsigned i = 0; i < Idx; ++i) { | 
 |       if (PHI->getIncomingBlock(i) == IncomingBB) { | 
 |         Value *IncomingVal = PHI->getIncomingValue(i); | 
 |         Inst->setOperand(Idx, IncomingVal); | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   Inst->setOperand(Idx, Mat); | 
 |   return true; | 
 | } | 
 |  | 
 | /// Emit materialization code for all rebased constants and update their | 
 | /// users. | 
 | void ConstantHoistingPass::emitBaseConstants(Instruction *Base, | 
 |                                              Constant *Offset, | 
 |                                              Type *Ty, | 
 |                                              const ConstantUser &ConstUser) { | 
 |   Instruction *Mat = Base; | 
 |  | 
 |   // The same offset can be dereferenced to different types in nested struct. | 
 |   if (!Offset && Ty && Ty != Base->getType()) | 
 |     Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); | 
 |  | 
 |   if (Offset) { | 
 |     Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, | 
 |                                                ConstUser.OpndIdx); | 
 |     if (Ty) { | 
 |       // Constant being rebased is a ConstantExpr. | 
 |       PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, | 
 |           cast<PointerType>(Ty)->getAddressSpace()); | 
 |       Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); | 
 |       Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, | 
 |           Offset, "mat_gep", InsertionPt); | 
 |       Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); | 
 |     } else | 
 |       // Constant being rebased is a ConstantInt. | 
 |       Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, | 
 |                                  "const_mat", InsertionPt); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) | 
 |                       << " + " << *Offset << ") in BB " | 
 |                       << Mat->getParent()->getName() << '\n' | 
 |                       << *Mat << '\n'); | 
 |     Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); | 
 |   } | 
 |   Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); | 
 |  | 
 |   // Visit constant integer. | 
 |   if (isa<ConstantInt>(Opnd)) { | 
 |     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
 |     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) | 
 |       Mat->eraseFromParent(); | 
 |     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Visit cast instruction. | 
 |   if (auto CastInst = dyn_cast<Instruction>(Opnd)) { | 
 |     assert(CastInst->isCast() && "Expected an cast instruction!"); | 
 |     // Check if we already have visited this cast instruction before to avoid | 
 |     // unnecessary cloning. | 
 |     Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; | 
 |     if (!ClonedCastInst) { | 
 |       ClonedCastInst = CastInst->clone(); | 
 |       ClonedCastInst->setOperand(0, Mat); | 
 |       ClonedCastInst->insertAfter(CastInst); | 
 |       // Use the same debug location as the original cast instruction. | 
 |       ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); | 
 |       LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' | 
 |                         << "To               : " << *ClonedCastInst << '\n'); | 
 |     } | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
 |     updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); | 
 |     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Visit constant expression. | 
 |   if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { | 
 |     if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { | 
 |       // Operand is a ConstantGEP, replace it. | 
 |       updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); | 
 |       return; | 
 |     } | 
 |  | 
 |     // Aside from constant GEPs, only constant cast expressions are collected. | 
 |     assert(ConstExpr->isCast() && "ConstExpr should be a cast"); | 
 |     Instruction *ConstExprInst = ConstExpr->getAsInstruction(); | 
 |     ConstExprInst->setOperand(0, Mat); | 
 |     ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, | 
 |                                                 ConstUser.OpndIdx)); | 
 |  | 
 |     // Use the same debug location as the instruction we are about to update. | 
 |     ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' | 
 |                       << "From              : " << *ConstExpr << '\n'); | 
 |     LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); | 
 |     if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { | 
 |       ConstExprInst->eraseFromParent(); | 
 |       if (Offset) | 
 |         Mat->eraseFromParent(); | 
 |     } | 
 |     LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// Hoist and hide the base constant behind a bitcast and emit | 
 | /// materialization code for derived constants. | 
 | bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { | 
 |   bool MadeChange = false; | 
 |   SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = | 
 |       BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; | 
 |   for (auto const &ConstInfo : ConstInfoVec) { | 
 |     SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); | 
 |     // We can have an empty set if the function contains unreachable blocks. | 
 |     if (IPSet.empty()) | 
 |       continue; | 
 |  | 
 |     unsigned UsesNum = 0; | 
 |     unsigned ReBasesNum = 0; | 
 |     unsigned NotRebasedNum = 0; | 
 |     for (Instruction *IP : IPSet) { | 
 |       // First, collect constants depending on this IP of the base. | 
 |       unsigned Uses = 0; | 
 |       using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; | 
 |       SmallVector<RebasedUse, 4> ToBeRebased; | 
 |       for (auto const &RCI : ConstInfo.RebasedConstants) { | 
 |         for (auto const &U : RCI.Uses) { | 
 |           Uses++; | 
 |           BasicBlock *OrigMatInsertBB = | 
 |               findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); | 
 |           // If Base constant is to be inserted in multiple places, | 
 |           // generate rebase for U using the Base dominating U. | 
 |           if (IPSet.size() == 1 || | 
 |               DT->dominates(IP->getParent(), OrigMatInsertBB)) | 
 |             ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); | 
 |         } | 
 |       } | 
 |       UsesNum = Uses; | 
 |  | 
 |       // If only few constants depend on this IP of base, skip rebasing, | 
 |       // assuming the base and the rebased have the same materialization cost. | 
 |       if (ToBeRebased.size() < MinNumOfDependentToRebase) { | 
 |         NotRebasedNum += ToBeRebased.size(); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Emit an instance of the base at this IP. | 
 |       Instruction *Base = nullptr; | 
 |       // Hoist and hide the base constant behind a bitcast. | 
 |       if (ConstInfo.BaseExpr) { | 
 |         assert(BaseGV && "A base constant expression must have an base GV"); | 
 |         Type *Ty = ConstInfo.BaseExpr->getType(); | 
 |         Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); | 
 |       } else { | 
 |         IntegerType *Ty = ConstInfo.BaseInt->getType(); | 
 |         Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); | 
 |       } | 
 |  | 
 |       Base->setDebugLoc(IP->getDebugLoc()); | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt | 
 |                         << ") to BB " << IP->getParent()->getName() << '\n' | 
 |                         << *Base << '\n'); | 
 |  | 
 |       // Emit materialization code for rebased constants depending on this IP. | 
 |       for (auto const &R : ToBeRebased) { | 
 |         Constant *Off = std::get<0>(R); | 
 |         Type *Ty = std::get<1>(R); | 
 |         ConstantUser U = std::get<2>(R); | 
 |         emitBaseConstants(Base, Off, Ty, U); | 
 |         ReBasesNum++; | 
 |         // Use the same debug location as the last user of the constant. | 
 |         Base->setDebugLoc(DILocation::getMergedLocation( | 
 |             Base->getDebugLoc(), U.Inst->getDebugLoc())); | 
 |       } | 
 |       assert(!Base->use_empty() && "The use list is empty!?"); | 
 |       assert(isa<Instruction>(Base->user_back()) && | 
 |              "All uses should be instructions."); | 
 |     } | 
 |     (void)UsesNum; | 
 |     (void)ReBasesNum; | 
 |     (void)NotRebasedNum; | 
 |     // Expect all uses are rebased after rebase is done. | 
 |     assert(UsesNum == (ReBasesNum + NotRebasedNum) && | 
 |            "Not all uses are rebased"); | 
 |  | 
 |     NumConstantsHoisted++; | 
 |  | 
 |     // Base constant is also included in ConstInfo.RebasedConstants, so | 
 |     // deduct 1 from ConstInfo.RebasedConstants.size(). | 
 |     NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; | 
 |  | 
 |     MadeChange = true; | 
 |   } | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | /// Check all cast instructions we made a copy of and remove them if they | 
 | /// have no more users. | 
 | void ConstantHoistingPass::deleteDeadCastInst() const { | 
 |   for (auto const &I : ClonedCastMap) | 
 |     if (I.first->use_empty()) | 
 |       I.first->eraseFromParent(); | 
 | } | 
 |  | 
 | /// Optimize expensive integer constants in the given function. | 
 | bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, | 
 |                                    DominatorTree &DT, BlockFrequencyInfo *BFI, | 
 |                                    BasicBlock &Entry, ProfileSummaryInfo *PSI) { | 
 |   this->TTI = &TTI; | 
 |   this->DT = &DT; | 
 |   this->BFI = BFI; | 
 |   this->DL = &Fn.getParent()->getDataLayout(); | 
 |   this->Ctx = &Fn.getContext(); | 
 |   this->Entry = &Entry; | 
 |   this->PSI = PSI; | 
 |   // Collect all constant candidates. | 
 |   collectConstantCandidates(Fn); | 
 |  | 
 |   // Combine constants that can be easily materialized with an add from a common | 
 |   // base constant. | 
 |   if (!ConstIntCandVec.empty()) | 
 |     findBaseConstants(nullptr); | 
 |   for (auto &MapEntry : ConstGEPCandMap) | 
 |     if (!MapEntry.second.empty()) | 
 |       findBaseConstants(MapEntry.first); | 
 |  | 
 |   // Finally hoist the base constant and emit materialization code for dependent | 
 |   // constants. | 
 |   bool MadeChange = false; | 
 |   if (!ConstIntInfoVec.empty()) | 
 |     MadeChange = emitBaseConstants(nullptr); | 
 |   for (auto MapEntry : ConstGEPInfoMap) | 
 |     if (!MapEntry.second.empty()) | 
 |       MadeChange |= emitBaseConstants(MapEntry.first); | 
 |  | 
 |  | 
 |   // Cleanup dead instructions. | 
 |   deleteDeadCastInst(); | 
 |  | 
 |   cleanup(); | 
 |  | 
 |   return MadeChange; | 
 | } | 
 |  | 
 | PreservedAnalyses ConstantHoistingPass::run(Function &F, | 
 |                                             FunctionAnalysisManager &AM) { | 
 |   auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
 |   auto &TTI = AM.getResult<TargetIRAnalysis>(F); | 
 |   auto BFI = ConstHoistWithBlockFrequency | 
 |                  ? &AM.getResult<BlockFrequencyAnalysis>(F) | 
 |                  : nullptr; | 
 |   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); | 
 |   auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); | 
 |   if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) | 
 |     return PreservedAnalyses::all(); | 
 |  | 
 |   PreservedAnalyses PA; | 
 |   PA.preserveSet<CFGAnalyses>(); | 
 |   return PA; | 
 | } |