| //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the TargetLoweringBase class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include "llvm/ADT/Twine.h" | 
 | #include "llvm/Analysis/Loads.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/CodeGen/Analysis.h" | 
 | #include "llvm/CodeGen/ISDOpcodes.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/RuntimeLibcalls.h" | 
 | #include "llvm/CodeGen/StackMaps.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetOpcodes.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/ValueTypes.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/CallingConv.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/Support/BranchProbability.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MachineValueType.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Transforms/Utils/SizeOpts.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <cstring> | 
 | #include <iterator> | 
 | #include <string> | 
 | #include <tuple> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> JumpIsExpensiveOverride( | 
 |     "jump-is-expensive", cl::init(false), | 
 |     cl::desc("Do not create extra branches to split comparison logic."), | 
 |     cl::Hidden); | 
 |  | 
 | static cl::opt<unsigned> MinimumJumpTableEntries | 
 |   ("min-jump-table-entries", cl::init(4), cl::Hidden, | 
 |    cl::desc("Set minimum number of entries to use a jump table.")); | 
 |  | 
 | static cl::opt<unsigned> MaximumJumpTableSize | 
 |   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, | 
 |    cl::desc("Set maximum size of jump tables.")); | 
 |  | 
 | /// Minimum jump table density for normal functions. | 
 | static cl::opt<unsigned> | 
 |     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, | 
 |                      cl::desc("Minimum density for building a jump table in " | 
 |                               "a normal function")); | 
 |  | 
 | /// Minimum jump table density for -Os or -Oz functions. | 
 | static cl::opt<unsigned> OptsizeJumpTableDensity( | 
 |     "optsize-jump-table-density", cl::init(40), cl::Hidden, | 
 |     cl::desc("Minimum density for building a jump table in " | 
 |              "an optsize function")); | 
 |  | 
 | // FIXME: This option is only to test if the strict fp operation processed | 
 | // correctly by preventing mutating strict fp operation to normal fp operation | 
 | // during development. When the backend supports strict float operation, this | 
 | // option will be meaningless. | 
 | static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", | 
 |        cl::desc("Don't mutate strict-float node to a legalize node"), | 
 |        cl::init(false), cl::Hidden); | 
 |  | 
 | static bool darwinHasSinCos(const Triple &TT) { | 
 |   assert(TT.isOSDarwin() && "should be called with darwin triple"); | 
 |   // Don't bother with 32 bit x86. | 
 |   if (TT.getArch() == Triple::x86) | 
 |     return false; | 
 |   // Macos < 10.9 has no sincos_stret. | 
 |   if (TT.isMacOSX()) | 
 |     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); | 
 |   // iOS < 7.0 has no sincos_stret. | 
 |   if (TT.isiOS()) | 
 |     return !TT.isOSVersionLT(7, 0); | 
 |   // Any other darwin such as WatchOS/TvOS is new enough. | 
 |   return true; | 
 | } | 
 |  | 
 | // Although this default value is arbitrary, it is not random. It is assumed | 
 | // that a condition that evaluates the same way by a higher percentage than this | 
 | // is best represented as control flow. Therefore, the default value N should be | 
 | // set such that the win from N% correct executions is greater than the loss | 
 | // from (100 - N)% mispredicted executions for the majority of intended targets. | 
 | static cl::opt<int> MinPercentageForPredictableBranch( | 
 |     "min-predictable-branch", cl::init(99), | 
 |     cl::desc("Minimum percentage (0-100) that a condition must be either true " | 
 |              "or false to assume that the condition is predictable"), | 
 |     cl::Hidden); | 
 |  | 
 | void TargetLoweringBase::InitLibcalls(const Triple &TT) { | 
 | #define HANDLE_LIBCALL(code, name) \ | 
 |   setLibcallName(RTLIB::code, name); | 
 | #include "llvm/IR/RuntimeLibcalls.def" | 
 | #undef HANDLE_LIBCALL | 
 |   // Initialize calling conventions to their default. | 
 |   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) | 
 |     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); | 
 |  | 
 |   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". | 
 |   if (TT.getArch() == Triple::ppc || TT.isPPC64()) { | 
 |     setLibcallName(RTLIB::ADD_F128, "__addkf3"); | 
 |     setLibcallName(RTLIB::SUB_F128, "__subkf3"); | 
 |     setLibcallName(RTLIB::MUL_F128, "__mulkf3"); | 
 |     setLibcallName(RTLIB::DIV_F128, "__divkf3"); | 
 |     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); | 
 |     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); | 
 |     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); | 
 |     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); | 
 |     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); | 
 |     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); | 
 |     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); | 
 |     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); | 
 |     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); | 
 |     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); | 
 |     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); | 
 |     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); | 
 |     setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); | 
 |     setLibcallName(RTLIB::UNE_F128, "__nekf2"); | 
 |     setLibcallName(RTLIB::OGE_F128, "__gekf2"); | 
 |     setLibcallName(RTLIB::OLT_F128, "__ltkf2"); | 
 |     setLibcallName(RTLIB::OLE_F128, "__lekf2"); | 
 |     setLibcallName(RTLIB::OGT_F128, "__gtkf2"); | 
 |     setLibcallName(RTLIB::UO_F128, "__unordkf2"); | 
 |   } | 
 |  | 
 |   // A few names are different on particular architectures or environments. | 
 |   if (TT.isOSDarwin()) { | 
 |     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead | 
 |     // of the gnueabi-style __gnu_*_ieee. | 
 |     // FIXME: What about other targets? | 
 |     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); | 
 |     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); | 
 |  | 
 |     // Some darwins have an optimized __bzero/bzero function. | 
 |     switch (TT.getArch()) { | 
 |     case Triple::x86: | 
 |     case Triple::x86_64: | 
 |       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) | 
 |         setLibcallName(RTLIB::BZERO, "__bzero"); | 
 |       break; | 
 |     case Triple::aarch64: | 
 |     case Triple::aarch64_32: | 
 |       setLibcallName(RTLIB::BZERO, "bzero"); | 
 |       break; | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |     if (darwinHasSinCos(TT)) { | 
 |       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); | 
 |       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); | 
 |       if (TT.isWatchABI()) { | 
 |         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, | 
 |                               CallingConv::ARM_AAPCS_VFP); | 
 |         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, | 
 |                               CallingConv::ARM_AAPCS_VFP); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); | 
 |     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); | 
 |   } | 
 |  | 
 |   if (TT.isGNUEnvironment() || TT.isOSFuchsia() || | 
 |       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { | 
 |     setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
 |     setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
 |     setLibcallName(RTLIB::SINCOS_F80, "sincosl"); | 
 |     setLibcallName(RTLIB::SINCOS_F128, "sincosl"); | 
 |     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); | 
 |   } | 
 |  | 
 |   if (TT.isPS4CPU()) { | 
 |     setLibcallName(RTLIB::SINCOS_F32, "sincosf"); | 
 |     setLibcallName(RTLIB::SINCOS_F64, "sincos"); | 
 |   } | 
 |  | 
 |   if (TT.isOSOpenBSD()) { | 
 |     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); | 
 |   } | 
 | } | 
 |  | 
 | /// getFPEXT - Return the FPEXT_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { | 
 |   if (OpVT == MVT::f16) { | 
 |     if (RetVT == MVT::f32) | 
 |       return FPEXT_F16_F32; | 
 |   } else if (OpVT == MVT::f32) { | 
 |     if (RetVT == MVT::f64) | 
 |       return FPEXT_F32_F64; | 
 |     if (RetVT == MVT::f128) | 
 |       return FPEXT_F32_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return FPEXT_F32_PPCF128; | 
 |   } else if (OpVT == MVT::f64) { | 
 |     if (RetVT == MVT::f128) | 
 |       return FPEXT_F64_F128; | 
 |     else if (RetVT == MVT::ppcf128) | 
 |       return FPEXT_F64_PPCF128; | 
 |   } else if (OpVT == MVT::f80) { | 
 |     if (RetVT == MVT::f128) | 
 |       return FPEXT_F80_F128; | 
 |   } | 
 |  | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | /// getFPROUND - Return the FPROUND_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { | 
 |   if (RetVT == MVT::f16) { | 
 |     if (OpVT == MVT::f32) | 
 |       return FPROUND_F32_F16; | 
 |     if (OpVT == MVT::f64) | 
 |       return FPROUND_F64_F16; | 
 |     if (OpVT == MVT::f80) | 
 |       return FPROUND_F80_F16; | 
 |     if (OpVT == MVT::f128) | 
 |       return FPROUND_F128_F16; | 
 |     if (OpVT == MVT::ppcf128) | 
 |       return FPROUND_PPCF128_F16; | 
 |   } else if (RetVT == MVT::f32) { | 
 |     if (OpVT == MVT::f64) | 
 |       return FPROUND_F64_F32; | 
 |     if (OpVT == MVT::f80) | 
 |       return FPROUND_F80_F32; | 
 |     if (OpVT == MVT::f128) | 
 |       return FPROUND_F128_F32; | 
 |     if (OpVT == MVT::ppcf128) | 
 |       return FPROUND_PPCF128_F32; | 
 |   } else if (RetVT == MVT::f64) { | 
 |     if (OpVT == MVT::f80) | 
 |       return FPROUND_F80_F64; | 
 |     if (OpVT == MVT::f128) | 
 |       return FPROUND_F128_F64; | 
 |     if (OpVT == MVT::ppcf128) | 
 |       return FPROUND_PPCF128_F64; | 
 |   } else if (RetVT == MVT::f80) { | 
 |     if (OpVT == MVT::f128) | 
 |       return FPROUND_F128_F80; | 
 |   } | 
 |  | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { | 
 |   if (OpVT == MVT::f32) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOSINT_F32_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOSINT_F32_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOSINT_F32_I128; | 
 |   } else if (OpVT == MVT::f64) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOSINT_F64_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOSINT_F64_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOSINT_F64_I128; | 
 |   } else if (OpVT == MVT::f80) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOSINT_F80_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOSINT_F80_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOSINT_F80_I128; | 
 |   } else if (OpVT == MVT::f128) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOSINT_F128_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOSINT_F128_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOSINT_F128_I128; | 
 |   } else if (OpVT == MVT::ppcf128) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOSINT_PPCF128_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOSINT_PPCF128_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOSINT_PPCF128_I128; | 
 |   } | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { | 
 |   if (OpVT == MVT::f32) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOUINT_F32_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOUINT_F32_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOUINT_F32_I128; | 
 |   } else if (OpVT == MVT::f64) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOUINT_F64_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOUINT_F64_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOUINT_F64_I128; | 
 |   } else if (OpVT == MVT::f80) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOUINT_F80_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOUINT_F80_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOUINT_F80_I128; | 
 |   } else if (OpVT == MVT::f128) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOUINT_F128_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOUINT_F128_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOUINT_F128_I128; | 
 |   } else if (OpVT == MVT::ppcf128) { | 
 |     if (RetVT == MVT::i32) | 
 |       return FPTOUINT_PPCF128_I32; | 
 |     if (RetVT == MVT::i64) | 
 |       return FPTOUINT_PPCF128_I64; | 
 |     if (RetVT == MVT::i128) | 
 |       return FPTOUINT_PPCF128_I128; | 
 |   } | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { | 
 |   if (OpVT == MVT::i32) { | 
 |     if (RetVT == MVT::f32) | 
 |       return SINTTOFP_I32_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return SINTTOFP_I32_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return SINTTOFP_I32_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return SINTTOFP_I32_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return SINTTOFP_I32_PPCF128; | 
 |   } else if (OpVT == MVT::i64) { | 
 |     if (RetVT == MVT::f32) | 
 |       return SINTTOFP_I64_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return SINTTOFP_I64_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return SINTTOFP_I64_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return SINTTOFP_I64_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return SINTTOFP_I64_PPCF128; | 
 |   } else if (OpVT == MVT::i128) { | 
 |     if (RetVT == MVT::f32) | 
 |       return SINTTOFP_I128_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return SINTTOFP_I128_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return SINTTOFP_I128_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return SINTTOFP_I128_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return SINTTOFP_I128_PPCF128; | 
 |   } | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or | 
 | /// UNKNOWN_LIBCALL if there is none. | 
 | RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { | 
 |   if (OpVT == MVT::i32) { | 
 |     if (RetVT == MVT::f32) | 
 |       return UINTTOFP_I32_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return UINTTOFP_I32_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return UINTTOFP_I32_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return UINTTOFP_I32_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return UINTTOFP_I32_PPCF128; | 
 |   } else if (OpVT == MVT::i64) { | 
 |     if (RetVT == MVT::f32) | 
 |       return UINTTOFP_I64_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return UINTTOFP_I64_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return UINTTOFP_I64_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return UINTTOFP_I64_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return UINTTOFP_I64_PPCF128; | 
 |   } else if (OpVT == MVT::i128) { | 
 |     if (RetVT == MVT::f32) | 
 |       return UINTTOFP_I128_F32; | 
 |     if (RetVT == MVT::f64) | 
 |       return UINTTOFP_I128_F64; | 
 |     if (RetVT == MVT::f80) | 
 |       return UINTTOFP_I128_F80; | 
 |     if (RetVT == MVT::f128) | 
 |       return UINTTOFP_I128_F128; | 
 |     if (RetVT == MVT::ppcf128) | 
 |       return UINTTOFP_I128_PPCF128; | 
 |   } | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { | 
 | #define OP_TO_LIBCALL(Name, Enum)                                              \ | 
 |   case Name:                                                                   \ | 
 |     switch (VT.SimpleTy) {                                                     \ | 
 |     default:                                                                   \ | 
 |       return UNKNOWN_LIBCALL;                                                  \ | 
 |     case MVT::i8:                                                              \ | 
 |       return Enum##_1;                                                         \ | 
 |     case MVT::i16:                                                             \ | 
 |       return Enum##_2;                                                         \ | 
 |     case MVT::i32:                                                             \ | 
 |       return Enum##_4;                                                         \ | 
 |     case MVT::i64:                                                             \ | 
 |       return Enum##_8;                                                         \ | 
 |     case MVT::i128:                                                            \ | 
 |       return Enum##_16;                                                        \ | 
 |     } | 
 |  | 
 |   switch (Opc) { | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) | 
 |     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) | 
 |   } | 
 |  | 
 | #undef OP_TO_LIBCALL | 
 |  | 
 |   return UNKNOWN_LIBCALL; | 
 | } | 
 |  | 
 | RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
 |   switch (ElementSize) { | 
 |   case 1: | 
 |     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; | 
 |   case 2: | 
 |     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; | 
 |   case 4: | 
 |     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; | 
 |   case 8: | 
 |     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; | 
 |   case 16: | 
 |     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; | 
 |   default: | 
 |     return UNKNOWN_LIBCALL; | 
 |   } | 
 | } | 
 |  | 
 | RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
 |   switch (ElementSize) { | 
 |   case 1: | 
 |     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; | 
 |   case 2: | 
 |     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; | 
 |   case 4: | 
 |     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; | 
 |   case 8: | 
 |     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; | 
 |   case 16: | 
 |     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; | 
 |   default: | 
 |     return UNKNOWN_LIBCALL; | 
 |   } | 
 | } | 
 |  | 
 | RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { | 
 |   switch (ElementSize) { | 
 |   case 1: | 
 |     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; | 
 |   case 2: | 
 |     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; | 
 |   case 4: | 
 |     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; | 
 |   case 8: | 
 |     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; | 
 |   case 16: | 
 |     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; | 
 |   default: | 
 |     return UNKNOWN_LIBCALL; | 
 |   } | 
 | } | 
 |  | 
 | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
 | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
 |   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | 
 |   CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
 |   CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
 |   CCs[RTLIB::OEQ_F128] = ISD::SETEQ; | 
 |   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; | 
 |   CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
 |   CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
 |   CCs[RTLIB::UNE_F128] = ISD::SETNE; | 
 |   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; | 
 |   CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
 |   CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
 |   CCs[RTLIB::OGE_F128] = ISD::SETGE; | 
 |   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; | 
 |   CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
 |   CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
 |   CCs[RTLIB::OLT_F128] = ISD::SETLT; | 
 |   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; | 
 |   CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
 |   CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
 |   CCs[RTLIB::OLE_F128] = ISD::SETLE; | 
 |   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; | 
 |   CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
 |   CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
 |   CCs[RTLIB::OGT_F128] = ISD::SETGT; | 
 |   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; | 
 |   CCs[RTLIB::UO_F32] = ISD::SETNE; | 
 |   CCs[RTLIB::UO_F64] = ISD::SETNE; | 
 |   CCs[RTLIB::UO_F128] = ISD::SETNE; | 
 |   CCs[RTLIB::UO_PPCF128] = ISD::SETNE; | 
 | } | 
 |  | 
 | /// NOTE: The TargetMachine owns TLOF. | 
 | TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { | 
 |   initActions(); | 
 |  | 
 |   // Perform these initializations only once. | 
 |   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = | 
 |       MaxLoadsPerMemcmp = 8; | 
 |   MaxGluedStoresPerMemcpy = 0; | 
 |   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = | 
 |       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; | 
 |   HasMultipleConditionRegisters = false; | 
 |   HasExtractBitsInsn = false; | 
 |   JumpIsExpensive = JumpIsExpensiveOverride; | 
 |   PredictableSelectIsExpensive = false; | 
 |   EnableExtLdPromotion = false; | 
 |   StackPointerRegisterToSaveRestore = 0; | 
 |   BooleanContents = UndefinedBooleanContent; | 
 |   BooleanFloatContents = UndefinedBooleanContent; | 
 |   BooleanVectorContents = UndefinedBooleanContent; | 
 |   SchedPreferenceInfo = Sched::ILP; | 
 |   GatherAllAliasesMaxDepth = 18; | 
 |   IsStrictFPEnabled = DisableStrictNodeMutation; | 
 |   // TODO: the default will be switched to 0 in the next commit, along | 
 |   // with the Target-specific changes necessary. | 
 |   MaxAtomicSizeInBitsSupported = 1024; | 
 |  | 
 |   MinCmpXchgSizeInBits = 0; | 
 |   SupportsUnalignedAtomics = false; | 
 |  | 
 |   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); | 
 |  | 
 |   InitLibcalls(TM.getTargetTriple()); | 
 |   InitCmpLibcallCCs(CmpLibcallCCs); | 
 | } | 
 |  | 
 | void TargetLoweringBase::initActions() { | 
 |   // All operations default to being supported. | 
 |   memset(OpActions, 0, sizeof(OpActions)); | 
 |   memset(LoadExtActions, 0, sizeof(LoadExtActions)); | 
 |   memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); | 
 |   memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); | 
 |   memset(CondCodeActions, 0, sizeof(CondCodeActions)); | 
 |   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); | 
 |   std::fill(std::begin(TargetDAGCombineArray), | 
 |             std::end(TargetDAGCombineArray), 0); | 
 |  | 
 |   for (MVT VT : MVT::fp_valuetypes()) { | 
 |     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits().getFixedSize()); | 
 |     if (IntVT.isValid()) { | 
 |       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); | 
 |       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); | 
 |     } | 
 |   } | 
 |  | 
 |   // Set default actions for various operations. | 
 |   for (MVT VT : MVT::all_valuetypes()) { | 
 |     // Default all indexed load / store to expand. | 
 |     for (unsigned IM = (unsigned)ISD::PRE_INC; | 
 |          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
 |       setIndexedLoadAction(IM, VT, Expand); | 
 |       setIndexedStoreAction(IM, VT, Expand); | 
 |       setIndexedMaskedLoadAction(IM, VT, Expand); | 
 |       setIndexedMaskedStoreAction(IM, VT, Expand); | 
 |     } | 
 |  | 
 |     // Most backends expect to see the node which just returns the value loaded. | 
 |     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); | 
 |  | 
 |     // These operations default to expand. | 
 |     setOperationAction(ISD::FGETSIGN, VT, Expand); | 
 |     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); | 
 |     setOperationAction(ISD::FMINNUM, VT, Expand); | 
 |     setOperationAction(ISD::FMAXNUM, VT, Expand); | 
 |     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); | 
 |     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); | 
 |     setOperationAction(ISD::FMINIMUM, VT, Expand); | 
 |     setOperationAction(ISD::FMAXIMUM, VT, Expand); | 
 |     setOperationAction(ISD::FMAD, VT, Expand); | 
 |     setOperationAction(ISD::SMIN, VT, Expand); | 
 |     setOperationAction(ISD::SMAX, VT, Expand); | 
 |     setOperationAction(ISD::UMIN, VT, Expand); | 
 |     setOperationAction(ISD::UMAX, VT, Expand); | 
 |     setOperationAction(ISD::ABS, VT, Expand); | 
 |     setOperationAction(ISD::FSHL, VT, Expand); | 
 |     setOperationAction(ISD::FSHR, VT, Expand); | 
 |     setOperationAction(ISD::SADDSAT, VT, Expand); | 
 |     setOperationAction(ISD::UADDSAT, VT, Expand); | 
 |     setOperationAction(ISD::SSUBSAT, VT, Expand); | 
 |     setOperationAction(ISD::USUBSAT, VT, Expand); | 
 |     setOperationAction(ISD::SMULFIX, VT, Expand); | 
 |     setOperationAction(ISD::SMULFIXSAT, VT, Expand); | 
 |     setOperationAction(ISD::UMULFIX, VT, Expand); | 
 |     setOperationAction(ISD::UMULFIXSAT, VT, Expand); | 
 |     setOperationAction(ISD::SDIVFIX, VT, Expand); | 
 |     setOperationAction(ISD::SDIVFIXSAT, VT, Expand); | 
 |     setOperationAction(ISD::UDIVFIX, VT, Expand); | 
 |     setOperationAction(ISD::UDIVFIXSAT, VT, Expand); | 
 |  | 
 |     // Overflow operations default to expand | 
 |     setOperationAction(ISD::SADDO, VT, Expand); | 
 |     setOperationAction(ISD::SSUBO, VT, Expand); | 
 |     setOperationAction(ISD::UADDO, VT, Expand); | 
 |     setOperationAction(ISD::USUBO, VT, Expand); | 
 |     setOperationAction(ISD::SMULO, VT, Expand); | 
 |     setOperationAction(ISD::UMULO, VT, Expand); | 
 |  | 
 |     // ADDCARRY operations default to expand | 
 |     setOperationAction(ISD::ADDCARRY, VT, Expand); | 
 |     setOperationAction(ISD::SUBCARRY, VT, Expand); | 
 |     setOperationAction(ISD::SETCCCARRY, VT, Expand); | 
 |  | 
 |     // ADDC/ADDE/SUBC/SUBE default to expand. | 
 |     setOperationAction(ISD::ADDC, VT, Expand); | 
 |     setOperationAction(ISD::ADDE, VT, Expand); | 
 |     setOperationAction(ISD::SUBC, VT, Expand); | 
 |     setOperationAction(ISD::SUBE, VT, Expand); | 
 |  | 
 |     // These default to Expand so they will be expanded to CTLZ/CTTZ by default. | 
 |     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); | 
 |     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); | 
 |  | 
 |     setOperationAction(ISD::BITREVERSE, VT, Expand); | 
 |  | 
 |     // These library functions default to expand. | 
 |     setOperationAction(ISD::FROUND, VT, Expand); | 
 |     setOperationAction(ISD::FROUNDEVEN, VT, Expand); | 
 |     setOperationAction(ISD::FPOWI, VT, Expand); | 
 |  | 
 |     // These operations default to expand for vector types. | 
 |     if (VT.isVector()) { | 
 |       setOperationAction(ISD::FCOPYSIGN, VT, Expand); | 
 |       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | 
 |       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); | 
 |       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); | 
 |       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); | 
 |       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); | 
 |     } | 
 |  | 
 |     // Constrained floating-point operations default to expand. | 
 | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \ | 
 |     setOperationAction(ISD::STRICT_##DAGN, VT, Expand); | 
 | #include "llvm/IR/ConstrainedOps.def" | 
 |  | 
 |     // For most targets @llvm.get.dynamic.area.offset just returns 0. | 
 |     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); | 
 |  | 
 |     // Vector reduction default to expand. | 
 |     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_AND, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_OR, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); | 
 |     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); | 
 |   } | 
 |  | 
 |   // Most targets ignore the @llvm.prefetch intrinsic. | 
 |   setOperationAction(ISD::PREFETCH, MVT::Other, Expand); | 
 |  | 
 |   // Most targets also ignore the @llvm.readcyclecounter intrinsic. | 
 |   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); | 
 |  | 
 |   // ConstantFP nodes default to expand.  Targets can either change this to | 
 |   // Legal, in which case all fp constants are legal, or use isFPImmLegal() | 
 |   // to optimize expansions for certain constants. | 
 |   setOperationAction(ISD::ConstantFP, MVT::f16, Expand); | 
 |   setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
 |   setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
 |   setOperationAction(ISD::ConstantFP, MVT::f80, Expand); | 
 |   setOperationAction(ISD::ConstantFP, MVT::f128, Expand); | 
 |  | 
 |   // These library functions default to expand. | 
 |   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { | 
 |     setOperationAction(ISD::FCBRT,      VT, Expand); | 
 |     setOperationAction(ISD::FLOG ,      VT, Expand); | 
 |     setOperationAction(ISD::FLOG2,      VT, Expand); | 
 |     setOperationAction(ISD::FLOG10,     VT, Expand); | 
 |     setOperationAction(ISD::FEXP ,      VT, Expand); | 
 |     setOperationAction(ISD::FEXP2,      VT, Expand); | 
 |     setOperationAction(ISD::FFLOOR,     VT, Expand); | 
 |     setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
 |     setOperationAction(ISD::FCEIL,      VT, Expand); | 
 |     setOperationAction(ISD::FRINT,      VT, Expand); | 
 |     setOperationAction(ISD::FTRUNC,     VT, Expand); | 
 |     setOperationAction(ISD::FROUND,     VT, Expand); | 
 |     setOperationAction(ISD::FROUNDEVEN, VT, Expand); | 
 |     setOperationAction(ISD::LROUND,     VT, Expand); | 
 |     setOperationAction(ISD::LLROUND,    VT, Expand); | 
 |     setOperationAction(ISD::LRINT,      VT, Expand); | 
 |     setOperationAction(ISD::LLRINT,     VT, Expand); | 
 |   } | 
 |  | 
 |   // Default ISD::TRAP to expand (which turns it into abort). | 
 |   setOperationAction(ISD::TRAP, MVT::Other, Expand); | 
 |  | 
 |   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" | 
 |   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. | 
 |   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); | 
 | } | 
 |  | 
 | MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, | 
 |                                                EVT) const { | 
 |   return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); | 
 | } | 
 |  | 
 | EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, | 
 |                                          bool LegalTypes) const { | 
 |   assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | 
 |   if (LHSTy.isVector()) | 
 |     return LHSTy; | 
 |   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) | 
 |                     : getPointerTy(DL); | 
 | } | 
 |  | 
 | bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { | 
 |   assert(isTypeLegal(VT)); | 
 |   switch (Op) { | 
 |   default: | 
 |     return false; | 
 |   case ISD::SDIV: | 
 |   case ISD::UDIV: | 
 |   case ISD::SREM: | 
 |   case ISD::UREM: | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { | 
 |   // If the command-line option was specified, ignore this request. | 
 |   if (!JumpIsExpensiveOverride.getNumOccurrences()) | 
 |     JumpIsExpensive = isExpensive; | 
 | } | 
 |  | 
 | TargetLoweringBase::LegalizeKind | 
 | TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { | 
 |   // If this is a simple type, use the ComputeRegisterProp mechanism. | 
 |   if (VT.isSimple()) { | 
 |     MVT SVT = VT.getSimpleVT(); | 
 |     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); | 
 |     MVT NVT = TransformToType[SVT.SimpleTy]; | 
 |     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); | 
 |  | 
 |     assert((LA == TypeLegal || LA == TypeSoftenFloat || | 
 |             LA == TypeSoftPromoteHalf || | 
 |             (NVT.isVector() || | 
 |              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && | 
 |            "Promote may not follow Expand or Promote"); | 
 |  | 
 |     if (LA == TypeSplitVector) | 
 |       return LegalizeKind(LA, | 
 |                           EVT::getVectorVT(Context, SVT.getVectorElementType(), | 
 |                                            SVT.getVectorElementCount() / 2)); | 
 |     if (LA == TypeScalarizeVector) | 
 |       return LegalizeKind(LA, SVT.getVectorElementType()); | 
 |     return LegalizeKind(LA, NVT); | 
 |   } | 
 |  | 
 |   // Handle Extended Scalar Types. | 
 |   if (!VT.isVector()) { | 
 |     assert(VT.isInteger() && "Float types must be simple"); | 
 |     unsigned BitSize = VT.getSizeInBits(); | 
 |     // First promote to a power-of-two size, then expand if necessary. | 
 |     if (BitSize < 8 || !isPowerOf2_32(BitSize)) { | 
 |       EVT NVT = VT.getRoundIntegerType(Context); | 
 |       assert(NVT != VT && "Unable to round integer VT"); | 
 |       LegalizeKind NextStep = getTypeConversion(Context, NVT); | 
 |       // Avoid multi-step promotion. | 
 |       if (NextStep.first == TypePromoteInteger) | 
 |         return NextStep; | 
 |       // Return rounded integer type. | 
 |       return LegalizeKind(TypePromoteInteger, NVT); | 
 |     } | 
 |  | 
 |     return LegalizeKind(TypeExpandInteger, | 
 |                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); | 
 |   } | 
 |  | 
 |   // Handle vector types. | 
 |   ElementCount NumElts = VT.getVectorElementCount(); | 
 |   EVT EltVT = VT.getVectorElementType(); | 
 |  | 
 |   // Vectors with only one element are always scalarized. | 
 |   if (NumElts == 1) | 
 |     return LegalizeKind(TypeScalarizeVector, EltVT); | 
 |  | 
 |   if (VT.getVectorElementCount() == ElementCount(1, true)) | 
 |     report_fatal_error("Cannot legalize this vector"); | 
 |  | 
 |   // Try to widen vector elements until the element type is a power of two and | 
 |   // promote it to a legal type later on, for example: | 
 |   // <3 x i8> -> <4 x i8> -> <4 x i32> | 
 |   if (EltVT.isInteger()) { | 
 |     // Vectors with a number of elements that is not a power of two are always | 
 |     // widened, for example <3 x i8> -> <4 x i8>. | 
 |     if (!VT.isPow2VectorType()) { | 
 |       NumElts = NumElts.NextPowerOf2(); | 
 |       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); | 
 |       return LegalizeKind(TypeWidenVector, NVT); | 
 |     } | 
 |  | 
 |     // Examine the element type. | 
 |     LegalizeKind LK = getTypeConversion(Context, EltVT); | 
 |  | 
 |     // If type is to be expanded, split the vector. | 
 |     //  <4 x i140> -> <2 x i140> | 
 |     if (LK.first == TypeExpandInteger) | 
 |       return LegalizeKind(TypeSplitVector, | 
 |                           EVT::getVectorVT(Context, EltVT, NumElts / 2)); | 
 |  | 
 |     // Promote the integer element types until a legal vector type is found | 
 |     // or until the element integer type is too big. If a legal type was not | 
 |     // found, fallback to the usual mechanism of widening/splitting the | 
 |     // vector. | 
 |     EVT OldEltVT = EltVT; | 
 |     while (true) { | 
 |       // Increase the bitwidth of the element to the next pow-of-two | 
 |       // (which is greater than 8 bits). | 
 |       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) | 
 |                   .getRoundIntegerType(Context); | 
 |  | 
 |       // Stop trying when getting a non-simple element type. | 
 |       // Note that vector elements may be greater than legal vector element | 
 |       // types. Example: X86 XMM registers hold 64bit element on 32bit | 
 |       // systems. | 
 |       if (!EltVT.isSimple()) | 
 |         break; | 
 |  | 
 |       // Build a new vector type and check if it is legal. | 
 |       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
 |       // Found a legal promoted vector type. | 
 |       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) | 
 |         return LegalizeKind(TypePromoteInteger, | 
 |                             EVT::getVectorVT(Context, EltVT, NumElts)); | 
 |     } | 
 |  | 
 |     // Reset the type to the unexpanded type if we did not find a legal vector | 
 |     // type with a promoted vector element type. | 
 |     EltVT = OldEltVT; | 
 |   } | 
 |  | 
 |   // Try to widen the vector until a legal type is found. | 
 |   // If there is no wider legal type, split the vector. | 
 |   while (true) { | 
 |     // Round up to the next power of 2. | 
 |     NumElts = NumElts.NextPowerOf2(); | 
 |  | 
 |     // If there is no simple vector type with this many elements then there | 
 |     // cannot be a larger legal vector type.  Note that this assumes that | 
 |     // there are no skipped intermediate vector types in the simple types. | 
 |     if (!EltVT.isSimple()) | 
 |       break; | 
 |     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
 |     if (LargerVector == MVT()) | 
 |       break; | 
 |  | 
 |     // If this type is legal then widen the vector. | 
 |     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) | 
 |       return LegalizeKind(TypeWidenVector, LargerVector); | 
 |   } | 
 |  | 
 |   // Widen odd vectors to next power of two. | 
 |   if (!VT.isPow2VectorType()) { | 
 |     EVT NVT = VT.getPow2VectorType(Context); | 
 |     return LegalizeKind(TypeWidenVector, NVT); | 
 |   } | 
 |  | 
 |   // Vectors with illegal element types are expanded. | 
 |   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorElementCount() / 2); | 
 |   return LegalizeKind(TypeSplitVector, NVT); | 
 | } | 
 |  | 
 | static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, | 
 |                                           unsigned &NumIntermediates, | 
 |                                           MVT &RegisterVT, | 
 |                                           TargetLoweringBase *TLI) { | 
 |   // Figure out the right, legal destination reg to copy into. | 
 |   ElementCount EC = VT.getVectorElementCount(); | 
 |   MVT EltTy = VT.getVectorElementType(); | 
 |  | 
 |   unsigned NumVectorRegs = 1; | 
 |  | 
 |   // Scalable vectors cannot be scalarized, so splitting or widening is | 
 |   // required. | 
 |   if (VT.isScalableVector() && !isPowerOf2_32(EC.Min)) | 
 |     llvm_unreachable( | 
 |         "Splitting or widening of non-power-of-2 MVTs is not implemented."); | 
 |  | 
 |   // FIXME: We don't support non-power-of-2-sized vectors for now. | 
 |   // Ideally we could break down into LHS/RHS like LegalizeDAG does. | 
 |   if (!isPowerOf2_32(EC.Min)) { | 
 |     // Split EC to unit size (scalable property is preserved). | 
 |     NumVectorRegs = EC.Min; | 
 |     EC = EC / NumVectorRegs; | 
 |   } | 
 |  | 
 |   // Divide the input until we get to a supported size. This will | 
 |   // always end up with an EC that represent a scalar or a scalable | 
 |   // scalar. | 
 |   while (EC.Min > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { | 
 |     EC.Min >>= 1; | 
 |     NumVectorRegs <<= 1; | 
 |   } | 
 |  | 
 |   NumIntermediates = NumVectorRegs; | 
 |  | 
 |   MVT NewVT = MVT::getVectorVT(EltTy, EC); | 
 |   if (!TLI->isTypeLegal(NewVT)) | 
 |     NewVT = EltTy; | 
 |   IntermediateVT = NewVT; | 
 |  | 
 |   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits().getFixedSize(); | 
 |  | 
 |   // Convert sizes such as i33 to i64. | 
 |   if (!isPowerOf2_32(LaneSizeInBits)) | 
 |     LaneSizeInBits = NextPowerOf2(LaneSizeInBits); | 
 |  | 
 |   MVT DestVT = TLI->getRegisterType(NewVT); | 
 |   RegisterVT = DestVT; | 
 |   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16. | 
 |     return NumVectorRegs * | 
 |            (LaneSizeInBits / DestVT.getScalarSizeInBits().getFixedSize()); | 
 |  | 
 |   // Otherwise, promotion or legal types use the same number of registers as | 
 |   // the vector decimated to the appropriate level. | 
 |   return NumVectorRegs; | 
 | } | 
 |  | 
 | /// isLegalRC - Return true if the value types that can be represented by the | 
 | /// specified register class are all legal. | 
 | bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, | 
 |                                    const TargetRegisterClass &RC) const { | 
 |   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) | 
 |     if (isTypeLegal(*I)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// Replace/modify any TargetFrameIndex operands with a targte-dependent | 
 | /// sequence of memory operands that is recognized by PrologEpilogInserter. | 
 | MachineBasicBlock * | 
 | TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, | 
 |                                    MachineBasicBlock *MBB) const { | 
 |   MachineInstr *MI = &InitialMI; | 
 |   MachineFunction &MF = *MI->getMF(); | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |  | 
 |   // We're handling multiple types of operands here: | 
 |   // PATCHPOINT MetaArgs - live-in, read only, direct | 
 |   // STATEPOINT Deopt Spill - live-through, read only, indirect | 
 |   // STATEPOINT Deopt Alloca - live-through, read only, direct | 
 |   // (We're currently conservative and mark the deopt slots read/write in | 
 |   // practice.) | 
 |   // STATEPOINT GC Spill - live-through, read/write, indirect | 
 |   // STATEPOINT GC Alloca - live-through, read/write, direct | 
 |   // The live-in vs live-through is handled already (the live through ones are | 
 |   // all stack slots), but we need to handle the different type of stackmap | 
 |   // operands and memory effects here. | 
 |  | 
 |   if (!llvm::any_of(MI->operands(), | 
 |                     [](MachineOperand &Operand) { return Operand.isFI(); })) | 
 |     return MBB; | 
 |  | 
 |   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); | 
 |  | 
 |   // Inherit previous memory operands. | 
 |   MIB.cloneMemRefs(*MI); | 
 |  | 
 |   for (auto &MO : MI->operands()) { | 
 |     if (!MO.isFI()) { | 
 |       MIB.add(MO); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // foldMemoryOperand builds a new MI after replacing a single FI operand | 
 |     // with the canonical set of five x86 addressing-mode operands. | 
 |     int FI = MO.getIndex(); | 
 |  | 
 |     // Add frame index operands recognized by stackmaps.cpp | 
 |     if (MFI.isStatepointSpillSlotObjectIndex(FI)) { | 
 |       // indirect-mem-ref tag, size, #FI, offset. | 
 |       // Used for spills inserted by StatepointLowering.  This codepath is not | 
 |       // used for patchpoints/stackmaps at all, for these spilling is done via | 
 |       // foldMemoryOperand callback only. | 
 |       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); | 
 |       MIB.addImm(StackMaps::IndirectMemRefOp); | 
 |       MIB.addImm(MFI.getObjectSize(FI)); | 
 |       MIB.add(MO); | 
 |       MIB.addImm(0); | 
 |     } else { | 
 |       // direct-mem-ref tag, #FI, offset. | 
 |       // Used by patchpoint, and direct alloca arguments to statepoints | 
 |       MIB.addImm(StackMaps::DirectMemRefOp); | 
 |       MIB.add(MO); | 
 |       MIB.addImm(0); | 
 |     } | 
 |  | 
 |     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); | 
 |  | 
 |     // Add a new memory operand for this FI. | 
 |     assert(MFI.getObjectOffset(FI) != -1); | 
 |  | 
 |     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and | 
 |     // PATCHPOINT should be updated to do the same. (TODO) | 
 |     if (MI->getOpcode() != TargetOpcode::STATEPOINT) { | 
 |       auto Flags = MachineMemOperand::MOLoad; | 
 |       MachineMemOperand *MMO = MF.getMachineMemOperand( | 
 |           MachinePointerInfo::getFixedStack(MF, FI), Flags, | 
 |           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); | 
 |       MIB->addMemOperand(MF, MMO); | 
 |     } | 
 |   } | 
 |   MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
 |   MI->eraseFromParent(); | 
 |   return MBB; | 
 | } | 
 |  | 
 | MachineBasicBlock * | 
 | TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, | 
 |                                         MachineBasicBlock *MBB) const { | 
 |   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && | 
 |          "Called emitXRayCustomEvent on the wrong MI!"); | 
 |   auto &MF = *MI.getMF(); | 
 |   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); | 
 |   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) | 
 |     MIB.add(MI.getOperand(OpIdx)); | 
 |  | 
 |   MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
 |   MI.eraseFromParent(); | 
 |   return MBB; | 
 | } | 
 |  | 
 | MachineBasicBlock * | 
 | TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, | 
 |                                        MachineBasicBlock *MBB) const { | 
 |   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && | 
 |          "Called emitXRayTypedEvent on the wrong MI!"); | 
 |   auto &MF = *MI.getMF(); | 
 |   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); | 
 |   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) | 
 |     MIB.add(MI.getOperand(OpIdx)); | 
 |  | 
 |   MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
 |   MI.eraseFromParent(); | 
 |   return MBB; | 
 | } | 
 |  | 
 | /// findRepresentativeClass - Return the largest legal super-reg register class | 
 | /// of the register class for the specified type and its associated "cost". | 
 | // This function is in TargetLowering because it uses RegClassForVT which would | 
 | // need to be moved to TargetRegisterInfo and would necessitate moving | 
 | // isTypeLegal over as well - a massive change that would just require | 
 | // TargetLowering having a TargetRegisterInfo class member that it would use. | 
 | std::pair<const TargetRegisterClass *, uint8_t> | 
 | TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, | 
 |                                             MVT VT) const { | 
 |   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; | 
 |   if (!RC) | 
 |     return std::make_pair(RC, 0); | 
 |  | 
 |   // Compute the set of all super-register classes. | 
 |   BitVector SuperRegRC(TRI->getNumRegClasses()); | 
 |   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) | 
 |     SuperRegRC.setBitsInMask(RCI.getMask()); | 
 |  | 
 |   // Find the first legal register class with the largest spill size. | 
 |   const TargetRegisterClass *BestRC = RC; | 
 |   for (unsigned i : SuperRegRC.set_bits()) { | 
 |     const TargetRegisterClass *SuperRC = TRI->getRegClass(i); | 
 |     // We want the largest possible spill size. | 
 |     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) | 
 |       continue; | 
 |     if (!isLegalRC(*TRI, *SuperRC)) | 
 |       continue; | 
 |     BestRC = SuperRC; | 
 |   } | 
 |   return std::make_pair(BestRC, 1); | 
 | } | 
 |  | 
 | /// computeRegisterProperties - Once all of the register classes are added, | 
 | /// this allows us to compute derived properties we expose. | 
 | void TargetLoweringBase::computeRegisterProperties( | 
 |     const TargetRegisterInfo *TRI) { | 
 |   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, | 
 |                 "Too many value types for ValueTypeActions to hold!"); | 
 |  | 
 |   // Everything defaults to needing one register. | 
 |   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
 |     NumRegistersForVT[i] = 1; | 
 |     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; | 
 |   } | 
 |   // ...except isVoid, which doesn't need any registers. | 
 |   NumRegistersForVT[MVT::isVoid] = 0; | 
 |  | 
 |   // Find the largest integer register class. | 
 |   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; | 
 |   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) | 
 |     assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
 |  | 
 |   // Every integer value type larger than this largest register takes twice as | 
 |   // many registers to represent as the previous ValueType. | 
 |   for (unsigned ExpandedReg = LargestIntReg + 1; | 
 |        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { | 
 |     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | 
 |     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; | 
 |     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); | 
 |     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, | 
 |                                    TypeExpandInteger); | 
 |   } | 
 |  | 
 |   // Inspect all of the ValueType's smaller than the largest integer | 
 |   // register to see which ones need promotion. | 
 |   unsigned LegalIntReg = LargestIntReg; | 
 |   for (unsigned IntReg = LargestIntReg - 1; | 
 |        IntReg >= (unsigned)MVT::i1; --IntReg) { | 
 |     MVT IVT = (MVT::SimpleValueType)IntReg; | 
 |     if (isTypeLegal(IVT)) { | 
 |       LegalIntReg = IntReg; | 
 |     } else { | 
 |       RegisterTypeForVT[IntReg] = TransformToType[IntReg] = | 
 |         (MVT::SimpleValueType)LegalIntReg; | 
 |       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); | 
 |     } | 
 |   } | 
 |  | 
 |   // ppcf128 type is really two f64's. | 
 |   if (!isTypeLegal(MVT::ppcf128)) { | 
 |     if (isTypeLegal(MVT::f64)) { | 
 |       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | 
 |       RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | 
 |       TransformToType[MVT::ppcf128] = MVT::f64; | 
 |       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); | 
 |     } else { | 
 |       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; | 
 |       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; | 
 |       TransformToType[MVT::ppcf128] = MVT::i128; | 
 |       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); | 
 |     } | 
 |   } | 
 |  | 
 |   // Decide how to handle f128. If the target does not have native f128 support, | 
 |   // expand it to i128 and we will be generating soft float library calls. | 
 |   if (!isTypeLegal(MVT::f128)) { | 
 |     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; | 
 |     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; | 
 |     TransformToType[MVT::f128] = MVT::i128; | 
 |     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); | 
 |   } | 
 |  | 
 |   // Decide how to handle f64. If the target does not have native f64 support, | 
 |   // expand it to i64 and we will be generating soft float library calls. | 
 |   if (!isTypeLegal(MVT::f64)) { | 
 |     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | 
 |     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | 
 |     TransformToType[MVT::f64] = MVT::i64; | 
 |     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); | 
 |   } | 
 |  | 
 |   // Decide how to handle f32. If the target does not have native f32 support, | 
 |   // expand it to i32 and we will be generating soft float library calls. | 
 |   if (!isTypeLegal(MVT::f32)) { | 
 |     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | 
 |     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | 
 |     TransformToType[MVT::f32] = MVT::i32; | 
 |     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); | 
 |   } | 
 |  | 
 |   // Decide how to handle f16. If the target does not have native f16 support, | 
 |   // promote it to f32, because there are no f16 library calls (except for | 
 |   // conversions). | 
 |   if (!isTypeLegal(MVT::f16)) { | 
 |     // Allow targets to control how we legalize half. | 
 |     if (softPromoteHalfType()) { | 
 |       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; | 
 |       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; | 
 |       TransformToType[MVT::f16] = MVT::f32; | 
 |       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); | 
 |     } else { | 
 |       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; | 
 |       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; | 
 |       TransformToType[MVT::f16] = MVT::f32; | 
 |       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); | 
 |     } | 
 |   } | 
 |  | 
 |   // Loop over all of the vector value types to see which need transformations. | 
 |   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | 
 |        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
 |     MVT VT = (MVT::SimpleValueType) i; | 
 |     if (isTypeLegal(VT)) | 
 |       continue; | 
 |  | 
 |     MVT EltVT = VT.getVectorElementType(); | 
 |     ElementCount EC = VT.getVectorElementCount(); | 
 |     bool IsLegalWiderType = false; | 
 |     bool IsScalable = VT.isScalableVector(); | 
 |     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); | 
 |     switch (PreferredAction) { | 
 |     case TypePromoteInteger: { | 
 |       MVT::SimpleValueType EndVT = IsScalable ? | 
 |                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : | 
 |                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; | 
 |       // Try to promote the elements of integer vectors. If no legal | 
 |       // promotion was found, fall through to the widen-vector method. | 
 |       for (unsigned nVT = i + 1; | 
 |            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { | 
 |         MVT SVT = (MVT::SimpleValueType) nVT; | 
 |         // Promote vectors of integers to vectors with the same number | 
 |         // of elements, with a wider element type. | 
 |         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && | 
 |             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { | 
 |           TransformToType[i] = SVT; | 
 |           RegisterTypeForVT[i] = SVT; | 
 |           NumRegistersForVT[i] = 1; | 
 |           ValueTypeActions.setTypeAction(VT, TypePromoteInteger); | 
 |           IsLegalWiderType = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |       if (IsLegalWiderType) | 
 |         break; | 
 |       LLVM_FALLTHROUGH; | 
 |     } | 
 |  | 
 |     case TypeWidenVector: | 
 |       if (isPowerOf2_32(EC.Min)) { | 
 |         // Try to widen the vector. | 
 |         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
 |           MVT SVT = (MVT::SimpleValueType) nVT; | 
 |           if (SVT.getVectorElementType() == EltVT && | 
 |               SVT.isScalableVector() == IsScalable && | 
 |               SVT.getVectorElementCount().Min > EC.Min && isTypeLegal(SVT)) { | 
 |             TransformToType[i] = SVT; | 
 |             RegisterTypeForVT[i] = SVT; | 
 |             NumRegistersForVT[i] = 1; | 
 |             ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
 |             IsLegalWiderType = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |         if (IsLegalWiderType) | 
 |           break; | 
 |       } else { | 
 |         // Only widen to the next power of 2 to keep consistency with EVT. | 
 |         MVT NVT = VT.getPow2VectorType(); | 
 |         if (isTypeLegal(NVT)) { | 
 |           TransformToType[i] = NVT; | 
 |           ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
 |           RegisterTypeForVT[i] = NVT; | 
 |           NumRegistersForVT[i] = 1; | 
 |           break; | 
 |         } | 
 |       } | 
 |       LLVM_FALLTHROUGH; | 
 |  | 
 |     case TypeSplitVector: | 
 |     case TypeScalarizeVector: { | 
 |       MVT IntermediateVT; | 
 |       MVT RegisterVT; | 
 |       unsigned NumIntermediates; | 
 |       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, | 
 |           NumIntermediates, RegisterVT, this); | 
 |       NumRegistersForVT[i] = NumRegisters; | 
 |       assert(NumRegistersForVT[i] == NumRegisters && | 
 |              "NumRegistersForVT size cannot represent NumRegisters!"); | 
 |       RegisterTypeForVT[i] = RegisterVT; | 
 |  | 
 |       MVT NVT = VT.getPow2VectorType(); | 
 |       if (NVT == VT) { | 
 |         // Type is already a power of 2.  The default action is to split. | 
 |         TransformToType[i] = MVT::Other; | 
 |         if (PreferredAction == TypeScalarizeVector) | 
 |           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); | 
 |         else if (PreferredAction == TypeSplitVector) | 
 |           ValueTypeActions.setTypeAction(VT, TypeSplitVector); | 
 |         else if (EC.Min > 1) | 
 |           ValueTypeActions.setTypeAction(VT, TypeSplitVector); | 
 |         else | 
 |           ValueTypeActions.setTypeAction(VT, EC.Scalable | 
 |                                                  ? TypeScalarizeScalableVector | 
 |                                                  : TypeScalarizeVector); | 
 |       } else { | 
 |         TransformToType[i] = NVT; | 
 |         ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
 |       } | 
 |       break; | 
 |     } | 
 |     default: | 
 |       llvm_unreachable("Unknown vector legalization action!"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Determine the 'representative' register class for each value type. | 
 |   // An representative register class is the largest (meaning one which is | 
 |   // not a sub-register class / subreg register class) legal register class for | 
 |   // a group of value types. For example, on i386, i8, i16, and i32 | 
 |   // representative would be GR32; while on x86_64 it's GR64. | 
 |   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
 |     const TargetRegisterClass* RRC; | 
 |     uint8_t Cost; | 
 |     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); | 
 |     RepRegClassForVT[i] = RRC; | 
 |     RepRegClassCostForVT[i] = Cost; | 
 |   } | 
 | } | 
 |  | 
 | EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, | 
 |                                            EVT VT) const { | 
 |   assert(!VT.isVector() && "No default SetCC type for vectors!"); | 
 |   return getPointerTy(DL).SimpleTy; | 
 | } | 
 |  | 
 | MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { | 
 |   return MVT::i32; // return the default value | 
 | } | 
 |  | 
 | /// getVectorTypeBreakdown - Vector types are broken down into some number of | 
 | /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 | 
 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
 | /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | 
 | /// | 
 | /// This method returns the number of registers needed, and the VT for each | 
 | /// register.  It also returns the VT and quantity of the intermediate values | 
 | /// before they are promoted/expanded. | 
 | unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, | 
 |                                                 EVT &IntermediateVT, | 
 |                                                 unsigned &NumIntermediates, | 
 |                                                 MVT &RegisterVT) const { | 
 |   ElementCount EltCnt = VT.getVectorElementCount(); | 
 |  | 
 |   // If there is a wider vector type with the same element type as this one, | 
 |   // or a promoted vector type that has the same number of elements which | 
 |   // are wider, then we should convert to that legal vector type. | 
 |   // This handles things like <2 x float> -> <4 x float> and | 
 |   // <4 x i1> -> <4 x i32>. | 
 |   LegalizeTypeAction TA = getTypeAction(Context, VT); | 
 |   if (EltCnt.Min != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { | 
 |     EVT RegisterEVT = getTypeToTransformTo(Context, VT); | 
 |     if (isTypeLegal(RegisterEVT)) { | 
 |       IntermediateVT = RegisterEVT; | 
 |       RegisterVT = RegisterEVT.getSimpleVT(); | 
 |       NumIntermediates = 1; | 
 |       return 1; | 
 |     } | 
 |   } | 
 |  | 
 |   // Figure out the right, legal destination reg to copy into. | 
 |   EVT EltTy = VT.getVectorElementType(); | 
 |  | 
 |   unsigned NumVectorRegs = 1; | 
 |  | 
 |   // Scalable vectors cannot be scalarized, so handle the legalisation of the | 
 |   // types like done elsewhere in SelectionDAG. | 
 |   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.Min)) { | 
 |     LegalizeKind LK; | 
 |     EVT PartVT = VT; | 
 |     do { | 
 |       // Iterate until we've found a legal (part) type to hold VT. | 
 |       LK = getTypeConversion(Context, PartVT); | 
 |       PartVT = LK.second; | 
 |     } while (LK.first != TypeLegal); | 
 |  | 
 |     NumIntermediates = | 
 |         VT.getVectorElementCount().Min / PartVT.getVectorElementCount().Min; | 
 |  | 
 |     // FIXME: This code needs to be extended to handle more complex vector | 
 |     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only | 
 |     // supported cases are vectors that are broken down into equal parts | 
 |     // such as nxv6i64 -> 3 x nxv2i64. | 
 |     assert(NumIntermediates * PartVT.getVectorElementCount().Min == | 
 |                VT.getVectorElementCount().Min && | 
 |            "Expected an integer multiple of PartVT"); | 
 |     IntermediateVT = PartVT; | 
 |     RegisterVT = getRegisterType(Context, IntermediateVT); | 
 |     return NumIntermediates; | 
 |   } | 
 |  | 
 |   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally | 
 |   // we could break down into LHS/RHS like LegalizeDAG does. | 
 |   if (!isPowerOf2_32(EltCnt.Min)) { | 
 |     NumVectorRegs = EltCnt.Min; | 
 |     EltCnt.Min = 1; | 
 |   } | 
 |  | 
 |   // Divide the input until we get to a supported size.  This will always | 
 |   // end with a scalar if the target doesn't support vectors. | 
 |   while (EltCnt.Min > 1 && | 
 |          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { | 
 |     EltCnt.Min >>= 1; | 
 |     NumVectorRegs <<= 1; | 
 |   } | 
 |  | 
 |   NumIntermediates = NumVectorRegs; | 
 |  | 
 |   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); | 
 |   if (!isTypeLegal(NewVT)) | 
 |     NewVT = EltTy; | 
 |   IntermediateVT = NewVT; | 
 |  | 
 |   MVT DestVT = getRegisterType(Context, NewVT); | 
 |   RegisterVT = DestVT; | 
 |  | 
 |   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16. | 
 |     TypeSize NewVTSize = NewVT.getSizeInBits(); | 
 |     // Convert sizes such as i33 to i64. | 
 |     if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) | 
 |       NewVTSize = NewVTSize.NextPowerOf2(); | 
 |     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | 
 |   } | 
 |  | 
 |   // Otherwise, promotion or legal types use the same number of registers as | 
 |   // the vector decimated to the appropriate level. | 
 |   return NumVectorRegs; | 
 | } | 
 |  | 
 | bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, | 
 |                                                 uint64_t NumCases, | 
 |                                                 uint64_t Range, | 
 |                                                 ProfileSummaryInfo *PSI, | 
 |                                                 BlockFrequencyInfo *BFI) const { | 
 |   // FIXME: This function check the maximum table size and density, but the | 
 |   // minimum size is not checked. It would be nice if the minimum size is | 
 |   // also combined within this function. Currently, the minimum size check is | 
 |   // performed in findJumpTable() in SelectionDAGBuiler and | 
 |   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. | 
 |   const bool OptForSize = | 
 |       SI->getParent()->getParent()->hasOptSize() || | 
 |       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); | 
 |   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); | 
 |   const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); | 
 |  | 
 |   // Check whether the number of cases is small enough and | 
 |   // the range is dense enough for a jump table. | 
 |   return (OptForSize || Range <= MaxJumpTableSize) && | 
 |          (NumCases * 100 >= Range * MinDensity); | 
 | } | 
 |  | 
 | /// Get the EVTs and ArgFlags collections that represent the legalized return | 
 | /// type of the given function.  This does not require a DAG or a return value, | 
 | /// and is suitable for use before any DAGs for the function are constructed. | 
 | /// TODO: Move this out of TargetLowering.cpp. | 
 | void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, | 
 |                          AttributeList attr, | 
 |                          SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                          const TargetLowering &TLI, const DataLayout &DL) { | 
 |   SmallVector<EVT, 4> ValueVTs; | 
 |   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); | 
 |   unsigned NumValues = ValueVTs.size(); | 
 |   if (NumValues == 0) return; | 
 |  | 
 |   for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
 |     EVT VT = ValueVTs[j]; | 
 |     ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
 |  | 
 |     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) | 
 |       ExtendKind = ISD::SIGN_EXTEND; | 
 |     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) | 
 |       ExtendKind = ISD::ZERO_EXTEND; | 
 |  | 
 |     // FIXME: C calling convention requires the return type to be promoted to | 
 |     // at least 32-bit. But this is not necessary for non-C calling | 
 |     // conventions. The frontend should mark functions whose return values | 
 |     // require promoting with signext or zeroext attributes. | 
 |     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
 |       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); | 
 |       if (VT.bitsLT(MinVT)) | 
 |         VT = MinVT; | 
 |     } | 
 |  | 
 |     unsigned NumParts = | 
 |         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); | 
 |     MVT PartVT = | 
 |         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); | 
 |  | 
 |     // 'inreg' on function refers to return value | 
 |     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
 |     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) | 
 |       Flags.setInReg(); | 
 |  | 
 |     // Propagate extension type if any | 
 |     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) | 
 |       Flags.setSExt(); | 
 |     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) | 
 |       Flags.setZExt(); | 
 |  | 
 |     for (unsigned i = 0; i < NumParts; ++i) | 
 |       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); | 
 |   } | 
 | } | 
 |  | 
 | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
 | /// function arguments in the caller parameter area.  This is the actual | 
 | /// alignment, not its logarithm. | 
 | unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, | 
 |                                                    const DataLayout &DL) const { | 
 |   return DL.getABITypeAlign(Ty).value(); | 
 | } | 
 |  | 
 | bool TargetLoweringBase::allowsMemoryAccessForAlignment( | 
 |     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, | 
 |     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { | 
 |   // Check if the specified alignment is sufficient based on the data layout. | 
 |   // TODO: While using the data layout works in practice, a better solution | 
 |   // would be to implement this check directly (make this a virtual function). | 
 |   // For example, the ABI alignment may change based on software platform while | 
 |   // this function should only be affected by hardware implementation. | 
 |   Type *Ty = VT.getTypeForEVT(Context); | 
 |   if (Alignment >= DL.getABITypeAlign(Ty)) { | 
 |     // Assume that an access that meets the ABI-specified alignment is fast. | 
 |     if (Fast != nullptr) | 
 |       *Fast = true; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // This is a misaligned access. | 
 |   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags, | 
 |                                         Fast); | 
 | } | 
 |  | 
 | bool TargetLoweringBase::allowsMemoryAccessForAlignment( | 
 |     LLVMContext &Context, const DataLayout &DL, EVT VT, | 
 |     const MachineMemOperand &MMO, bool *Fast) const { | 
 |   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), | 
 |                                         MMO.getAlign(), MMO.getFlags(), Fast); | 
 | } | 
 |  | 
 | bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, | 
 |                                             const DataLayout &DL, EVT VT, | 
 |                                             unsigned AddrSpace, Align Alignment, | 
 |                                             MachineMemOperand::Flags Flags, | 
 |                                             bool *Fast) const { | 
 |   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, | 
 |                                         Flags, Fast); | 
 | } | 
 |  | 
 | bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, | 
 |                                             const DataLayout &DL, EVT VT, | 
 |                                             const MachineMemOperand &MMO, | 
 |                                             bool *Fast) const { | 
 |   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), | 
 |                             MMO.getFlags(), Fast); | 
 | } | 
 |  | 
 | BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { | 
 |   return BranchProbability(MinPercentageForPredictableBranch, 100); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  TargetTransformInfo Helpers | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { | 
 |   enum InstructionOpcodes { | 
 | #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, | 
 | #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM | 
 | #include "llvm/IR/Instruction.def" | 
 |   }; | 
 |   switch (static_cast<InstructionOpcodes>(Opcode)) { | 
 |   case Ret:            return 0; | 
 |   case Br:             return 0; | 
 |   case Switch:         return 0; | 
 |   case IndirectBr:     return 0; | 
 |   case Invoke:         return 0; | 
 |   case CallBr:         return 0; | 
 |   case Resume:         return 0; | 
 |   case Unreachable:    return 0; | 
 |   case CleanupRet:     return 0; | 
 |   case CatchRet:       return 0; | 
 |   case CatchPad:       return 0; | 
 |   case CatchSwitch:    return 0; | 
 |   case CleanupPad:     return 0; | 
 |   case FNeg:           return ISD::FNEG; | 
 |   case Add:            return ISD::ADD; | 
 |   case FAdd:           return ISD::FADD; | 
 |   case Sub:            return ISD::SUB; | 
 |   case FSub:           return ISD::FSUB; | 
 |   case Mul:            return ISD::MUL; | 
 |   case FMul:           return ISD::FMUL; | 
 |   case UDiv:           return ISD::UDIV; | 
 |   case SDiv:           return ISD::SDIV; | 
 |   case FDiv:           return ISD::FDIV; | 
 |   case URem:           return ISD::UREM; | 
 |   case SRem:           return ISD::SREM; | 
 |   case FRem:           return ISD::FREM; | 
 |   case Shl:            return ISD::SHL; | 
 |   case LShr:           return ISD::SRL; | 
 |   case AShr:           return ISD::SRA; | 
 |   case And:            return ISD::AND; | 
 |   case Or:             return ISD::OR; | 
 |   case Xor:            return ISD::XOR; | 
 |   case Alloca:         return 0; | 
 |   case Load:           return ISD::LOAD; | 
 |   case Store:          return ISD::STORE; | 
 |   case GetElementPtr:  return 0; | 
 |   case Fence:          return 0; | 
 |   case AtomicCmpXchg:  return 0; | 
 |   case AtomicRMW:      return 0; | 
 |   case Trunc:          return ISD::TRUNCATE; | 
 |   case ZExt:           return ISD::ZERO_EXTEND; | 
 |   case SExt:           return ISD::SIGN_EXTEND; | 
 |   case FPToUI:         return ISD::FP_TO_UINT; | 
 |   case FPToSI:         return ISD::FP_TO_SINT; | 
 |   case UIToFP:         return ISD::UINT_TO_FP; | 
 |   case SIToFP:         return ISD::SINT_TO_FP; | 
 |   case FPTrunc:        return ISD::FP_ROUND; | 
 |   case FPExt:          return ISD::FP_EXTEND; | 
 |   case PtrToInt:       return ISD::BITCAST; | 
 |   case IntToPtr:       return ISD::BITCAST; | 
 |   case BitCast:        return ISD::BITCAST; | 
 |   case AddrSpaceCast:  return ISD::ADDRSPACECAST; | 
 |   case ICmp:           return ISD::SETCC; | 
 |   case FCmp:           return ISD::SETCC; | 
 |   case PHI:            return 0; | 
 |   case Call:           return 0; | 
 |   case Select:         return ISD::SELECT; | 
 |   case UserOp1:        return 0; | 
 |   case UserOp2:        return 0; | 
 |   case VAArg:          return 0; | 
 |   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; | 
 |   case InsertElement:  return ISD::INSERT_VECTOR_ELT; | 
 |   case ShuffleVector:  return ISD::VECTOR_SHUFFLE; | 
 |   case ExtractValue:   return ISD::MERGE_VALUES; | 
 |   case InsertValue:    return ISD::MERGE_VALUES; | 
 |   case LandingPad:     return 0; | 
 |   case Freeze:         return ISD::FREEZE; | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unknown instruction type encountered!"); | 
 | } | 
 |  | 
 | std::pair<int, MVT> | 
 | TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, | 
 |                                             Type *Ty) const { | 
 |   LLVMContext &C = Ty->getContext(); | 
 |   EVT MTy = getValueType(DL, Ty); | 
 |  | 
 |   int Cost = 1; | 
 |   // We keep legalizing the type until we find a legal kind. We assume that | 
 |   // the only operation that costs anything is the split. After splitting | 
 |   // we need to handle two types. | 
 |   while (true) { | 
 |     LegalizeKind LK = getTypeConversion(C, MTy); | 
 |  | 
 |     if (LK.first == TypeLegal) | 
 |       return std::make_pair(Cost, MTy.getSimpleVT()); | 
 |  | 
 |     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) | 
 |       Cost *= 2; | 
 |  | 
 |     // Do not loop with f128 type. | 
 |     if (MTy == LK.second) | 
 |       return std::make_pair(Cost, MTy.getSimpleVT()); | 
 |  | 
 |     // Keep legalizing the type. | 
 |     MTy = LK.second; | 
 |   } | 
 | } | 
 |  | 
 | Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, | 
 |                                                               bool UseTLS) const { | 
 |   // compiler-rt provides a variable with a magic name.  Targets that do not | 
 |   // link with compiler-rt may also provide such a variable. | 
 |   Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
 |   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; | 
 |   auto UnsafeStackPtr = | 
 |       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); | 
 |  | 
 |   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); | 
 |  | 
 |   if (!UnsafeStackPtr) { | 
 |     auto TLSModel = UseTLS ? | 
 |         GlobalValue::InitialExecTLSModel : | 
 |         GlobalValue::NotThreadLocal; | 
 |     // The global variable is not defined yet, define it ourselves. | 
 |     // We use the initial-exec TLS model because we do not support the | 
 |     // variable living anywhere other than in the main executable. | 
 |     UnsafeStackPtr = new GlobalVariable( | 
 |         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, | 
 |         UnsafeStackPtrVar, nullptr, TLSModel); | 
 |   } else { | 
 |     // The variable exists, check its type and attributes. | 
 |     if (UnsafeStackPtr->getValueType() != StackPtrTy) | 
 |       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); | 
 |     if (UseTLS != UnsafeStackPtr->isThreadLocal()) | 
 |       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + | 
 |                          (UseTLS ? "" : "not ") + "be thread-local"); | 
 |   } | 
 |   return UnsafeStackPtr; | 
 | } | 
 |  | 
 | Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { | 
 |   if (!TM.getTargetTriple().isAndroid()) | 
 |     return getDefaultSafeStackPointerLocation(IRB, true); | 
 |  | 
 |   // Android provides a libc function to retrieve the address of the current | 
 |   // thread's unsafe stack pointer. | 
 |   Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | 
 |   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); | 
 |   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", | 
 |                                              StackPtrTy->getPointerTo(0)); | 
 |   return IRB.CreateCall(Fn); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Loop Strength Reduction hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isLegalAddressingMode - Return true if the addressing mode represented | 
 | /// by AM is legal for this target, for a load/store of the specified type. | 
 | bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, | 
 |                                                const AddrMode &AM, Type *Ty, | 
 |                                                unsigned AS, Instruction *I) const { | 
 |   // The default implementation of this implements a conservative RISCy, r+r and | 
 |   // r+i addr mode. | 
 |  | 
 |   // Allows a sign-extended 16-bit immediate field. | 
 |   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
 |     return false; | 
 |  | 
 |   // No global is ever allowed as a base. | 
 |   if (AM.BaseGV) | 
 |     return false; | 
 |  | 
 |   // Only support r+r, | 
 |   switch (AM.Scale) { | 
 |   case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
 |     break; | 
 |   case 1: | 
 |     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
 |       return false; | 
 |     // Otherwise we have r+r or r+i. | 
 |     break; | 
 |   case 2: | 
 |     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
 |       return false; | 
 |     // Allow 2*r as r+r. | 
 |     break; | 
 |   default: // Don't allow n * r | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Stack Protector | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // For OpenBSD return its special guard variable. Otherwise return nullptr, | 
 | // so that SelectionDAG handle SSP. | 
 | Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { | 
 |   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { | 
 |     Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); | 
 |     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); | 
 |     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); | 
 |     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) | 
 |       G->setVisibility(GlobalValue::HiddenVisibility); | 
 |     return C; | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | // Currently only support "standard" __stack_chk_guard. | 
 | // TODO: add LOAD_STACK_GUARD support. | 
 | void TargetLoweringBase::insertSSPDeclarations(Module &M) const { | 
 |   if (!M.getNamedValue("__stack_chk_guard")) | 
 |     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, | 
 |                        GlobalVariable::ExternalLinkage, | 
 |                        nullptr, "__stack_chk_guard"); | 
 | } | 
 |  | 
 | // Currently only support "standard" __stack_chk_guard. | 
 | // TODO: add LOAD_STACK_GUARD support. | 
 | Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { | 
 |   return M.getNamedValue("__stack_chk_guard"); | 
 | } | 
 |  | 
 | Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { | 
 |   return nullptr; | 
 | } | 
 |  | 
 | unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { | 
 |   return MinimumJumpTableEntries; | 
 | } | 
 |  | 
 | void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { | 
 |   MinimumJumpTableEntries = Val; | 
 | } | 
 |  | 
 | unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { | 
 |   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; | 
 | } | 
 |  | 
 | unsigned TargetLoweringBase::getMaximumJumpTableSize() const { | 
 |   return MaximumJumpTableSize; | 
 | } | 
 |  | 
 | void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { | 
 |   MaximumJumpTableSize = Val; | 
 | } | 
 |  | 
 | bool TargetLoweringBase::isJumpTableRelative() const { | 
 |   return getTargetMachine().isPositionIndependent(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Reciprocal Estimates | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Get the reciprocal estimate attribute string for a function that will | 
 | /// override the target defaults. | 
 | static StringRef getRecipEstimateForFunc(MachineFunction &MF) { | 
 |   const Function &F = MF.getFunction(); | 
 |   return F.getFnAttribute("reciprocal-estimates").getValueAsString(); | 
 | } | 
 |  | 
 | /// Construct a string for the given reciprocal operation of the given type. | 
 | /// This string should match the corresponding option to the front-end's | 
 | /// "-mrecip" flag assuming those strings have been passed through in an | 
 | /// attribute string. For example, "vec-divf" for a division of a vXf32. | 
 | static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { | 
 |   std::string Name = VT.isVector() ? "vec-" : ""; | 
 |  | 
 |   Name += IsSqrt ? "sqrt" : "div"; | 
 |  | 
 |   // TODO: Handle "half" or other float types? | 
 |   if (VT.getScalarType() == MVT::f64) { | 
 |     Name += "d"; | 
 |   } else { | 
 |     assert(VT.getScalarType() == MVT::f32 && | 
 |            "Unexpected FP type for reciprocal estimate"); | 
 |     Name += "f"; | 
 |   } | 
 |  | 
 |   return Name; | 
 | } | 
 |  | 
 | /// Return the character position and value (a single numeric character) of a | 
 | /// customized refinement operation in the input string if it exists. Return | 
 | /// false if there is no customized refinement step count. | 
 | static bool parseRefinementStep(StringRef In, size_t &Position, | 
 |                                 uint8_t &Value) { | 
 |   const char RefStepToken = ':'; | 
 |   Position = In.find(RefStepToken); | 
 |   if (Position == StringRef::npos) | 
 |     return false; | 
 |  | 
 |   StringRef RefStepString = In.substr(Position + 1); | 
 |   // Allow exactly one numeric character for the additional refinement | 
 |   // step parameter. | 
 |   if (RefStepString.size() == 1) { | 
 |     char RefStepChar = RefStepString[0]; | 
 |     if (RefStepChar >= '0' && RefStepChar <= '9') { | 
 |       Value = RefStepChar - '0'; | 
 |       return true; | 
 |     } | 
 |   } | 
 |   report_fatal_error("Invalid refinement step for -recip."); | 
 | } | 
 |  | 
 | /// For the input attribute string, return one of the ReciprocalEstimate enum | 
 | /// status values (enabled, disabled, or not specified) for this operation on | 
 | /// the specified data type. | 
 | static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { | 
 |   if (Override.empty()) | 
 |     return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 |  | 
 |   SmallVector<StringRef, 4> OverrideVector; | 
 |   Override.split(OverrideVector, ','); | 
 |   unsigned NumArgs = OverrideVector.size(); | 
 |  | 
 |   // Check if "all", "none", or "default" was specified. | 
 |   if (NumArgs == 1) { | 
 |     // Look for an optional setting of the number of refinement steps needed | 
 |     // for this type of reciprocal operation. | 
 |     size_t RefPos; | 
 |     uint8_t RefSteps; | 
 |     if (parseRefinementStep(Override, RefPos, RefSteps)) { | 
 |       // Split the string for further processing. | 
 |       Override = Override.substr(0, RefPos); | 
 |     } | 
 |  | 
 |     // All reciprocal types are enabled. | 
 |     if (Override == "all") | 
 |       return TargetLoweringBase::ReciprocalEstimate::Enabled; | 
 |  | 
 |     // All reciprocal types are disabled. | 
 |     if (Override == "none") | 
 |       return TargetLoweringBase::ReciprocalEstimate::Disabled; | 
 |  | 
 |     // Target defaults for enablement are used. | 
 |     if (Override == "default") | 
 |       return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 |   } | 
 |  | 
 |   // The attribute string may omit the size suffix ('f'/'d'). | 
 |   std::string VTName = getReciprocalOpName(IsSqrt, VT); | 
 |   std::string VTNameNoSize = VTName; | 
 |   VTNameNoSize.pop_back(); | 
 |   static const char DisabledPrefix = '!'; | 
 |  | 
 |   for (StringRef RecipType : OverrideVector) { | 
 |     size_t RefPos; | 
 |     uint8_t RefSteps; | 
 |     if (parseRefinementStep(RecipType, RefPos, RefSteps)) | 
 |       RecipType = RecipType.substr(0, RefPos); | 
 |  | 
 |     // Ignore the disablement token for string matching. | 
 |     bool IsDisabled = RecipType[0] == DisabledPrefix; | 
 |     if (IsDisabled) | 
 |       RecipType = RecipType.substr(1); | 
 |  | 
 |     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) | 
 |       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled | 
 |                         : TargetLoweringBase::ReciprocalEstimate::Enabled; | 
 |   } | 
 |  | 
 |   return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 | } | 
 |  | 
 | /// For the input attribute string, return the customized refinement step count | 
 | /// for this operation on the specified data type. If the step count does not | 
 | /// exist, return the ReciprocalEstimate enum value for unspecified. | 
 | static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { | 
 |   if (Override.empty()) | 
 |     return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 |  | 
 |   SmallVector<StringRef, 4> OverrideVector; | 
 |   Override.split(OverrideVector, ','); | 
 |   unsigned NumArgs = OverrideVector.size(); | 
 |  | 
 |   // Check if "all", "default", or "none" was specified. | 
 |   if (NumArgs == 1) { | 
 |     // Look for an optional setting of the number of refinement steps needed | 
 |     // for this type of reciprocal operation. | 
 |     size_t RefPos; | 
 |     uint8_t RefSteps; | 
 |     if (!parseRefinementStep(Override, RefPos, RefSteps)) | 
 |       return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 |  | 
 |     // Split the string for further processing. | 
 |     Override = Override.substr(0, RefPos); | 
 |     assert(Override != "none" && | 
 |            "Disabled reciprocals, but specifed refinement steps?"); | 
 |  | 
 |     // If this is a general override, return the specified number of steps. | 
 |     if (Override == "all" || Override == "default") | 
 |       return RefSteps; | 
 |   } | 
 |  | 
 |   // The attribute string may omit the size suffix ('f'/'d'). | 
 |   std::string VTName = getReciprocalOpName(IsSqrt, VT); | 
 |   std::string VTNameNoSize = VTName; | 
 |   VTNameNoSize.pop_back(); | 
 |  | 
 |   for (StringRef RecipType : OverrideVector) { | 
 |     size_t RefPos; | 
 |     uint8_t RefSteps; | 
 |     if (!parseRefinementStep(RecipType, RefPos, RefSteps)) | 
 |       continue; | 
 |  | 
 |     RecipType = RecipType.substr(0, RefPos); | 
 |     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) | 
 |       return RefSteps; | 
 |   } | 
 |  | 
 |   return TargetLoweringBase::ReciprocalEstimate::Unspecified; | 
 | } | 
 |  | 
 | int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, | 
 |                                                     MachineFunction &MF) const { | 
 |   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); | 
 | } | 
 |  | 
 | int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, | 
 |                                                    MachineFunction &MF) const { | 
 |   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); | 
 | } | 
 |  | 
 | int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, | 
 |                                                MachineFunction &MF) const { | 
 |   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); | 
 | } | 
 |  | 
 | int TargetLoweringBase::getDivRefinementSteps(EVT VT, | 
 |                                               MachineFunction &MF) const { | 
 |   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); | 
 | } | 
 |  | 
 | void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { | 
 |   MF.getRegInfo().freezeReservedRegs(MF); | 
 | } | 
 |  | 
 | MachineMemOperand::Flags | 
 | TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, | 
 |                                            const DataLayout &DL) const { | 
 |   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; | 
 |   if (LI.isVolatile()) | 
 |     Flags |= MachineMemOperand::MOVolatile; | 
 |  | 
 |   if (LI.hasMetadata(LLVMContext::MD_nontemporal)) | 
 |     Flags |= MachineMemOperand::MONonTemporal; | 
 |  | 
 |   if (LI.hasMetadata(LLVMContext::MD_invariant_load)) | 
 |     Flags |= MachineMemOperand::MOInvariant; | 
 |  | 
 |   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) | 
 |     Flags |= MachineMemOperand::MODereferenceable; | 
 |  | 
 |   Flags |= getTargetMMOFlags(LI); | 
 |   return Flags; | 
 | } | 
 |  | 
 | MachineMemOperand::Flags | 
 | TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, | 
 |                                             const DataLayout &DL) const { | 
 |   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; | 
 |  | 
 |   if (SI.isVolatile()) | 
 |     Flags |= MachineMemOperand::MOVolatile; | 
 |  | 
 |   if (SI.hasMetadata(LLVMContext::MD_nontemporal)) | 
 |     Flags |= MachineMemOperand::MONonTemporal; | 
 |  | 
 |   // FIXME: Not preserving dereferenceable | 
 |   Flags |= getTargetMMOFlags(SI); | 
 |   return Flags; | 
 | } | 
 |  | 
 | MachineMemOperand::Flags | 
 | TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, | 
 |                                              const DataLayout &DL) const { | 
 |   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; | 
 |  | 
 |   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { | 
 |     if (RMW->isVolatile()) | 
 |       Flags |= MachineMemOperand::MOVolatile; | 
 |   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { | 
 |     if (CmpX->isVolatile()) | 
 |       Flags |= MachineMemOperand::MOVolatile; | 
 |   } else | 
 |     llvm_unreachable("not an atomic instruction"); | 
 |  | 
 |   // FIXME: Not preserving dereferenceable | 
 |   Flags |= getTargetMMOFlags(AI); | 
 |   return Flags; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  GlobalISel Hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, | 
 |                                         const TargetTransformInfo *TTI) const { | 
 |   auto &MF = *MI.getMF(); | 
 |   auto &MRI = MF.getRegInfo(); | 
 |   // Assuming a spill and reload of a value has a cost of 1 instruction each, | 
 |   // this helper function computes the maximum number of uses we should consider | 
 |   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We | 
 |   // break even in terms of code size when the original MI has 2 users vs | 
 |   // choosing to potentially spill. Any more than 2 users we we have a net code | 
 |   // size increase. This doesn't take into account register pressure though. | 
 |   auto maxUses = [](unsigned RematCost) { | 
 |     // A cost of 1 means remats are basically free. | 
 |     if (RematCost == 1) | 
 |       return UINT_MAX; | 
 |     if (RematCost == 2) | 
 |       return 2U; | 
 |  | 
 |     // Remat is too expensive, only sink if there's one user. | 
 |     if (RematCost > 2) | 
 |       return 1U; | 
 |     llvm_unreachable("Unexpected remat cost"); | 
 |   }; | 
 |  | 
 |   // Helper to walk through uses and terminate if we've reached a limit. Saves | 
 |   // us spending time traversing uses if all we want to know is if it's >= min. | 
 |   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { | 
 |     unsigned NumUses = 0; | 
 |     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); | 
 |     for (; UI != UE && NumUses < MaxUses; ++UI) { | 
 |       NumUses++; | 
 |     } | 
 |     // If we haven't reached the end yet then there are more than MaxUses users. | 
 |     return UI == UE; | 
 |   }; | 
 |  | 
 |   switch (MI.getOpcode()) { | 
 |   default: | 
 |     return false; | 
 |   // Constants-like instructions should be close to their users. | 
 |   // We don't want long live-ranges for them. | 
 |   case TargetOpcode::G_CONSTANT: | 
 |   case TargetOpcode::G_FCONSTANT: | 
 |   case TargetOpcode::G_FRAME_INDEX: | 
 |   case TargetOpcode::G_INTTOPTR: | 
 |     return true; | 
 |   case TargetOpcode::G_GLOBAL_VALUE: { | 
 |     unsigned RematCost = TTI->getGISelRematGlobalCost(); | 
 |     Register Reg = MI.getOperand(0).getReg(); | 
 |     unsigned MaxUses = maxUses(RematCost); | 
 |     if (MaxUses == UINT_MAX) | 
 |       return true; // Remats are "free" so always localize. | 
 |     bool B = isUsesAtMost(Reg, MaxUses); | 
 |     return B; | 
 |   } | 
 |   } | 
 | } |