| //===- Deserializer.cpp - MLIR SPIR-V Deserialization ---------------------===// |
| // |
| // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SPIR-V binary to MLIR SPIR-V module deserialization. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/SPIRV/Serialization.h" |
| |
| #include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h" |
| #include "mlir/Dialect/SPIRV/SPIRVOps.h" |
| #include "mlir/Dialect/SPIRV/SPIRVTypes.h" |
| #include "mlir/IR/BlockAndValueMapping.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/Support/LogicalResult.h" |
| #include "mlir/Support/StringExtras.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/bit.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace mlir; |
| |
| #define DEBUG_TYPE "spirv-deserialization" |
| |
| /// Decodes a string literal in `words` starting at `wordIndex`. Update the |
| /// latter to point to the position in words after the string literal. |
| static inline StringRef decodeStringLiteral(ArrayRef<uint32_t> words, |
| unsigned &wordIndex) { |
| StringRef str(reinterpret_cast<const char *>(words.data() + wordIndex)); |
| wordIndex += str.size() / 4 + 1; |
| return str; |
| } |
| |
| /// Extracts the opcode from the given first word of a SPIR-V instruction. |
| static inline spirv::Opcode extractOpcode(uint32_t word) { |
| return static_cast<spirv::Opcode>(word & 0xffff); |
| } |
| |
| /// Returns true if the given `block` is a function entry block. |
| static inline bool isFnEntryBlock(Block *block) { |
| return block->isEntryBlock() && isa_and_nonnull<FuncOp>(block->getParentOp()); |
| } |
| |
| namespace { |
| /// A struct for containing a header block's merge and continue targets. |
| /// |
| /// This struct is used to track original structured control flow info from |
| /// SPIR-V blob. This info will be used to create spv.selection/spv.loop |
| /// later. |
| struct BlockMergeInfo { |
| Block *mergeBlock; |
| Block *continueBlock; // nullptr for spv.selection |
| |
| BlockMergeInfo() : mergeBlock(nullptr), continueBlock(nullptr) {} |
| BlockMergeInfo(Block *m, Block *c = nullptr) |
| : mergeBlock(m), continueBlock(c) {} |
| }; |
| |
| /// Map from a selection/loop's header block to its merge (and continue) target. |
| using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>; |
| |
| /// A SPIR-V module serializer. |
| /// |
| /// A SPIR-V binary module is a single linear stream of instructions; each |
| /// instruction is composed of 32-bit words. The first word of an instruction |
| /// records the total number of words of that instruction using the 16 |
| /// higher-order bits. So this deserializer uses that to get instruction |
| /// boundary and parse instructions and build a SPIR-V ModuleOp gradually. |
| /// |
| // TODO(antiagainst): clean up created ops on errors |
| class Deserializer { |
| public: |
| /// Creates a deserializer for the given SPIR-V `binary` module. |
| /// The SPIR-V ModuleOp will be created into `context. |
| explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context); |
| |
| /// Deserializes the remembered SPIR-V binary module. |
| LogicalResult deserialize(); |
| |
| /// Collects the final SPIR-V ModuleOp. |
| Optional<spirv::ModuleOp> collect(); |
| |
| private: |
| //===--------------------------------------------------------------------===// |
| // Module structure |
| //===--------------------------------------------------------------------===// |
| |
| /// Initializes the `module` ModuleOp in this deserializer instance. |
| spirv::ModuleOp createModuleOp(); |
| |
| /// Processes SPIR-V module header in `binary`. |
| LogicalResult processHeader(); |
| |
| /// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping |
| /// in the deserializer. |
| LogicalResult processCapability(ArrayRef<uint32_t> operands); |
| |
| /// Attaches all collected capabilities to `module` as an attribute. |
| void attachCapabilities(); |
| |
| /// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping |
| /// in the deserializer. |
| LogicalResult processExtension(ArrayRef<uint32_t> words); |
| |
| /// Processes the SPIR-V OpExtInstImport with `operands` and updates |
| /// bookkeeping in the deserializer. |
| LogicalResult processExtInstImport(ArrayRef<uint32_t> words); |
| |
| /// Attaches all collected extensions to `module` as an attribute. |
| void attachExtensions(); |
| |
| /// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`. |
| LogicalResult processMemoryModel(ArrayRef<uint32_t> operands); |
| |
| /// Process SPIR-V OpName with `operands`. |
| LogicalResult processName(ArrayRef<uint32_t> operands); |
| |
| /// Processes an OpDecorate instruction. |
| LogicalResult processDecoration(ArrayRef<uint32_t> words); |
| |
| // Processes an OpMemberDecorate instruction. |
| LogicalResult processMemberDecoration(ArrayRef<uint32_t> words); |
| |
| /// Processes an OpMemberName instruction. |
| LogicalResult processMemberName(ArrayRef<uint32_t> words); |
| |
| /// Gets the FuncOp associated with a result <id> of OpFunction. |
| FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); } |
| |
| /// Processes the SPIR-V function at the current `offset` into `binary`. |
| /// The operands to the OpFunction instruction is passed in as ``operands`. |
| /// This method processes each instruction inside the function and dispatches |
| /// them to their handler method accordingly. |
| LogicalResult processFunction(ArrayRef<uint32_t> operands); |
| |
| /// Processes OpFunctionEnd and finalizes function. This wires up block |
| /// argument created from OpPhi instructions and also structurizes control |
| /// flow. |
| LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands); |
| |
| /// Gets the constant's attribute and type associated with the given <id>. |
| Optional<std::pair<Attribute, Type>> getConstant(uint32_t id); |
| |
| /// Gets the constant's integer attribute with the given <id>. Returns a null |
| /// IntegerAttr if the given is not registered or does not correspond to an |
| /// integer constant. |
| IntegerAttr getConstantInt(uint32_t id); |
| |
| /// Returns a symbol to be used for the function name with the given |
| /// result <id>. This tries to use the function's OpName if |
| /// exists; otherwise creates one based on the <id>. |
| std::string getFunctionSymbol(uint32_t id); |
| |
| /// Returns a symbol to be used for the specialization constant with the given |
| /// result <id>. This tries to use the specialization constant's OpName if |
| /// exists; otherwise creates one based on the <id>. |
| std::string getSpecConstantSymbol(uint32_t id); |
| |
| /// Gets the specialization constant with the given result <id>. |
| spirv::SpecConstantOp getSpecConstant(uint32_t id) { |
| return specConstMap.lookup(id); |
| } |
| |
| /// Creates a spirv::SpecConstantOp. |
| spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID, |
| Attribute defaultValue); |
| |
| /// Processes the OpVariable instructions at current `offset` into `binary`. |
| /// It is expected that this method is used for variables that are to be |
| /// defined at module scope and will be deserialized into a spv.globalVariable |
| /// instruction. |
| LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands); |
| |
| /// Gets the global variable associated with a result <id> of OpVariable. |
| spirv::GlobalVariableOp getGlobalVariable(uint32_t id) { |
| return globalVariableMap.lookup(id); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Type |
| //===--------------------------------------------------------------------===// |
| |
| /// Gets type for a given result <id>. |
| Type getType(uint32_t id) { return typeMap.lookup(id); } |
| |
| /// Get the type associated with the result <id> of an OpUndef. |
| Type getUndefType(uint32_t id) { return undefMap.lookup(id); } |
| |
| /// Returns true if the given `type` is for SPIR-V void type. |
| bool isVoidType(Type type) const { return type.isa<NoneType>(); } |
| |
| /// Processes a SPIR-V type instruction with given `opcode` and `operands` and |
| /// registers the type into `module`. |
| LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands); |
| |
| LogicalResult processArrayType(ArrayRef<uint32_t> operands); |
| |
| LogicalResult processFunctionType(ArrayRef<uint32_t> operands); |
| |
| LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands); |
| |
| LogicalResult processStructType(ArrayRef<uint32_t> operands); |
| |
| //===--------------------------------------------------------------------===// |
| // Constant |
| //===--------------------------------------------------------------------===// |
| |
| /// Processes a SPIR-V Op{|Spec}Constant instruction with the given |
| /// `operands`. `isSpec` indicates whether this is a specialization constant. |
| LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec); |
| |
| /// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the |
| /// given `operands`. `isSpec` indicates whether this is a specialization |
| /// constant. |
| LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands, |
| bool isSpec); |
| |
| /// Processes a SPIR-V OpConstantComposite instruction with the given |
| /// `operands`. |
| LogicalResult processConstantComposite(ArrayRef<uint32_t> operands); |
| |
| /// Processes a SPIR-V OpConstantNull instruction with the given `operands`. |
| LogicalResult processConstantNull(ArrayRef<uint32_t> operands); |
| |
| //===--------------------------------------------------------------------===// |
| // Control flow |
| //===--------------------------------------------------------------------===// |
| |
| /// Returns the block for the given label <id>. |
| Block *getBlock(uint32_t id) const { return blockMap.lookup(id); } |
| |
| // In SPIR-V, structured control flow is explicitly declared using merge |
| // instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect, |
| // we use spv.selection and spv.loop to group structured control flow. |
| // The deserializer need to turn structured control flow marked with merge |
| // instructions into using spv.selection/spv.loop ops. |
| // |
| // Because structured control flow can nest and the basic block order have |
| // flexibility, we cannot isolate a structured selection/loop without |
| // deserializing all the blocks. So we use the following approach: |
| // |
| // 1. Deserialize all basic blocks in a function and create MLIR blocks for |
| // them into the function's region. In the meanwhile, keep a map between |
| // selection/loop header blocks to their corresponding merge (and continue) |
| // target blocks. |
| // 2. For each selection/loop header block, recursively get all basic blocks |
| // reachable (except the merge block) and put them in a newly created |
| // spv.selection/spv.loop's region. Structured control flow guarantees |
| // that we enter and exit in structured ways and the construct is nestable. |
| // 3. Put the new spv.selection/spv.loop op at the beginning of the old merge |
| // block and redirect all branches to the old header block to the old |
| // merge block (which contains the spv.selection/spv.loop op now). |
| |
| /// For OpPhi instructions, we use block arguments to represent them. OpPhi |
| /// encodes a list of (value, predecessor) pairs. At the time of handling the |
| /// block containing an OpPhi instruction, the predecessor block might not be |
| /// processed yet, also the value sent by it. So we need to defer handling |
| /// the block argument from the predecessors. We use the following approach: |
| /// |
| /// 1. For each OpPhi instruction, add a block argument to the current block |
| /// in construction. Record the block argument in `valueMap` so its uses |
| /// can be resolved. For the list of (value, predecessor) pairs, update |
| /// `blockPhiInfo` for bookkeeping. |
| /// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each |
| /// block recorded there to create the proper block arguments on their |
| /// terminators. |
| |
| /// A data structure for containing a SPIR-V block's phi info. It will be |
| /// represented as block argument in SPIR-V dialect. |
| using BlockPhiInfo = |
| SmallVector<uint32_t, 2>; // The result <id> of the values sent |
| |
| /// Gets or creates the block corresponding to the given label <id>. The newly |
| /// created block will always be placed at the end of the current function. |
| Block *getOrCreateBlock(uint32_t id); |
| |
| LogicalResult processBranch(ArrayRef<uint32_t> operands); |
| |
| LogicalResult processBranchConditional(ArrayRef<uint32_t> operands); |
| |
| /// Processes a SPIR-V OpLabel instruction with the given `operands`. |
| LogicalResult processLabel(ArrayRef<uint32_t> operands); |
| |
| /// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`. |
| LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands); |
| |
| /// Processes a SPIR-V OpLoopMerge instruction with the given `operands`. |
| LogicalResult processLoopMerge(ArrayRef<uint32_t> operands); |
| |
| /// Processes a SPIR-V OpPhi instruction with the given `operands`. |
| LogicalResult processPhi(ArrayRef<uint32_t> operands); |
| |
| /// Creates block arguments on predecessors previously recorded when handling |
| /// OpPhi instructions. |
| LogicalResult wireUpBlockArgument(); |
| |
| /// Extracts blocks belonging to a structured selection/loop into a |
| /// spv.selection/spv.loop op. This method iterates until all blocks |
| /// declared as selection/loop headers are handled. |
| LogicalResult structurizeControlFlow(); |
| |
| //===--------------------------------------------------------------------===// |
| // Instruction |
| //===--------------------------------------------------------------------===// |
| |
| /// Get the Value associated with a result <id>. |
| /// |
| /// This method materializes normal constants and inserts "casting" ops |
| /// (`spv._address_of` and `spv._reference_of`) to turn an symbol into a SSA |
| /// value for handling uses of module scope constants/variables in functions. |
| Value getValue(uint32_t id); |
| |
| /// Slices the first instruction out of `binary` and returns its opcode and |
| /// operands via `opcode` and `operands` respectively. Returns failure if |
| /// there is no more remaining instructions (`expectedOpcode` will be used to |
| /// compose the error message) or the next instruction is malformed. |
| LogicalResult |
| sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands, |
| Optional<spirv::Opcode> expectedOpcode = llvm::None); |
| |
| /// Processes a SPIR-V instruction with the given `opcode` and `operands`. |
| /// This method is the main entrance for handling SPIR-V instruction; it |
| /// checks the instruction opcode and dispatches to the corresponding handler. |
| /// Processing of Some instructions (like OpEntryPoint and OpExecutionMode) |
| /// might need to be deferred, since they contain forward references to <id>s |
| /// in the deserialized binary, but module in SPIR-V dialect expects these to |
| /// be ssa-uses. |
| LogicalResult processInstruction(spirv::Opcode opcode, |
| ArrayRef<uint32_t> operands, |
| bool deferInstructions = true); |
| |
| /// Processes a OpUndef instruction. Adds a spv.Undef operation at the current |
| /// insertion point. |
| LogicalResult processUndef(ArrayRef<uint32_t> operands); |
| |
| /// Processes an OpBitcast instruction. |
| LogicalResult processBitcast(ArrayRef<uint32_t> words); |
| |
| /// Method to dispatch to the specialized deserialization function for an |
| /// operation in SPIR-V dialect that is a mirror of an instruction in the |
| /// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for |
| /// all operations in SPIR-V dialect that have hasOpcode == 1. |
| LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode, |
| ArrayRef<uint32_t> words); |
| |
| /// Processes a SPIR-V OpExtInst with given `operands`. This slices the |
| /// entries of `operands` that specify the extended instruction set <id> and |
| /// the instruction opcode. The op deserializer is then invoked using the |
| /// other entries. |
| LogicalResult processExtInst(ArrayRef<uint32_t> operands); |
| |
| /// Dispatches the deserialization of extended instruction set operation based |
| /// on the extended instruction set name, and instruction opcode. This is |
| /// autogenerated from ODS. |
| LogicalResult |
| dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName, |
| uint32_t instructionID, |
| ArrayRef<uint32_t> words); |
| |
| /// Method to deserialize an operation in the SPIR-V dialect that is a mirror |
| /// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode |
| /// == 1 and autogenSerialization == 1 in ODS. |
| template <typename OpTy> LogicalResult processOp(ArrayRef<uint32_t> words) { |
| return emitError(unknownLoc, "unsupported deserialization for ") |
| << OpTy::getOperationName() << " op"; |
| } |
| |
| private: |
| /// The SPIR-V binary module. |
| ArrayRef<uint32_t> binary; |
| |
| /// The current word offset into the binary module. |
| unsigned curOffset = 0; |
| |
| /// MLIRContext to create SPIR-V ModuleOp into. |
| MLIRContext *context; |
| |
| // TODO(antiagainst): create Location subclass for binary blob |
| Location unknownLoc; |
| |
| /// The SPIR-V ModuleOp. |
| Optional<spirv::ModuleOp> module; |
| |
| /// The current function under construction. |
| Optional<FuncOp> curFunction; |
| |
| /// The current block under construction. |
| Block *curBlock = nullptr; |
| |
| OpBuilder opBuilder; |
| |
| /// The list of capabilities used by the module. |
| llvm::SmallSetVector<spirv::Capability, 4> capabilities; |
| |
| /// The list of extensions used by the module. |
| llvm::SmallSetVector<StringRef, 2> extensions; |
| |
| // Result <id> to type mapping. |
| DenseMap<uint32_t, Type> typeMap; |
| |
| // Result <id> to constant attribute and type mapping. |
| /// |
| /// In the SPIR-V binary format, all constants are placed in the module and |
| /// shared by instructions at module level and in subsequent functions. But in |
| /// the SPIR-V dialect, we materialize the constant to where it's used in the |
| /// function. So when seeing a constant instruction in the binary format, we |
| /// don't immediately emit a constant op into the module, we keep its value |
| /// (and type) here. Later when it's used, we materialize the constant. |
| DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap; |
| |
| // Result <id> to variable mapping. |
| DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap; |
| |
| // Result <id> to variable mapping. |
| DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap; |
| |
| // Result <id> to function mapping. |
| DenseMap<uint32_t, FuncOp> funcMap; |
| |
| // Result <id> to block mapping. |
| DenseMap<uint32_t, Block *> blockMap; |
| |
| // Header block to its merge (and continue) target mapping. |
| BlockMergeInfoMap blockMergeInfo; |
| |
| // Block to its phi (block argument) mapping. |
| DenseMap<Block *, BlockPhiInfo> blockPhiInfo; |
| |
| // Result <id> to value mapping. |
| DenseMap<uint32_t, Value> valueMap; |
| |
| // Mapping from result <id> to undef value of a type. |
| DenseMap<uint32_t, Type> undefMap; |
| |
| // Result <id> to name mapping. |
| DenseMap<uint32_t, StringRef> nameMap; |
| |
| // Result <id> to decorations mapping. |
| DenseMap<uint32_t, NamedAttributeList> decorations; |
| |
| // Result <id> to type decorations. |
| DenseMap<uint32_t, uint32_t> typeDecorations; |
| |
| // Result <id> to member decorations. |
| // decorated-struct-type-<id> -> |
| // (struct-member-index -> (decoration -> decoration-operands)) |
| DenseMap<uint32_t, |
| DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>> |
| memberDecorationMap; |
| |
| // Result <id> to member name. |
| // struct-type-<id> -> (struct-member-index -> name) |
| DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap; |
| |
| // Result <id> to extended instruction set name. |
| DenseMap<uint32_t, StringRef> extendedInstSets; |
| |
| // List of instructions that are processed in a deferred fashion (after an |
| // initial processing of the entire binary). Some operations like |
| // OpEntryPoint, and OpExecutionMode use forward references to function |
| // <id>s. In SPIR-V dialect the corresponding operations (spv.EntryPoint and |
| // spv.ExecutionMode) need these references resolved. So these instructions |
| // are deserialized and stored for processing once the entire binary is |
| // processed. |
| SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4> |
| deferredInstructions; |
| }; |
| } // namespace |
| |
| Deserializer::Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context) |
| : binary(binary), context(context), unknownLoc(UnknownLoc::get(context)), |
| module(createModuleOp()), opBuilder(module->body()) {} |
| |
| LogicalResult Deserializer::deserialize() { |
| LLVM_DEBUG(llvm::dbgs() << "+++ starting deserialization +++\n"); |
| |
| if (failed(processHeader())) |
| return failure(); |
| |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> operands; |
| auto binarySize = binary.size(); |
| while (curOffset < binarySize) { |
| // Slice the next instruction out and populate `opcode` and `operands`. |
| // Internally this also updates `curOffset`. |
| if (failed(sliceInstruction(opcode, operands))) |
| return failure(); |
| |
| if (failed(processInstruction(opcode, operands))) |
| return failure(); |
| } |
| |
| assert(curOffset == binarySize && |
| "deserializer should never index beyond the binary end"); |
| |
| for (auto &deferred : deferredInstructions) { |
| if (failed(processInstruction(deferred.first, deferred.second, false))) { |
| return failure(); |
| } |
| } |
| |
| // Attaches the capabilities/extensions as an attribute to the module. |
| attachCapabilities(); |
| attachExtensions(); |
| |
| LLVM_DEBUG(llvm::dbgs() << "+++ completed deserialization +++\n"); |
| return success(); |
| } |
| |
| Optional<spirv::ModuleOp> Deserializer::collect() { return module; } |
| |
| //===----------------------------------------------------------------------===// |
| // Module structure |
| //===----------------------------------------------------------------------===// |
| |
| spirv::ModuleOp Deserializer::createModuleOp() { |
| Builder builder(context); |
| OperationState state(unknownLoc, spirv::ModuleOp::getOperationName()); |
| // TODO(antiagainst): use target environment to select the version |
| state.addAttribute("major_version", builder.getI32IntegerAttr(1)); |
| state.addAttribute("minor_version", builder.getI32IntegerAttr(0)); |
| spirv::ModuleOp::build(&builder, state); |
| return cast<spirv::ModuleOp>(Operation::create(state)); |
| } |
| |
| LogicalResult Deserializer::processHeader() { |
| if (binary.size() < spirv::kHeaderWordCount) |
| return emitError(unknownLoc, |
| "SPIR-V binary module must have a 5-word header"); |
| |
| if (binary[0] != spirv::kMagicNumber) |
| return emitError(unknownLoc, "incorrect magic number"); |
| |
| // TODO(antiagainst): generator number, bound, schema |
| curOffset = spirv::kHeaderWordCount; |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processCapability(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 1) |
| return emitError(unknownLoc, "OpMemoryModel must have one parameter"); |
| |
| auto cap = spirv::symbolizeCapability(operands[0]); |
| if (!cap) |
| return emitError(unknownLoc, "unknown capability: ") << operands[0]; |
| |
| capabilities.insert(*cap); |
| return success(); |
| } |
| |
| void Deserializer::attachCapabilities() { |
| if (capabilities.empty()) |
| return; |
| |
| SmallVector<StringRef, 2> caps; |
| caps.reserve(capabilities.size()); |
| |
| for (auto cap : capabilities) { |
| caps.push_back(spirv::stringifyCapability(cap)); |
| } |
| |
| module->setAttr("capabilities", opBuilder.getStrArrayAttr(caps)); |
| } |
| |
| LogicalResult Deserializer::processExtension(ArrayRef<uint32_t> words) { |
| if (words.empty()) { |
| return emitError( |
| unknownLoc, |
| "OpExtension must have a literal string for the extension name"); |
| } |
| |
| unsigned wordIndex = 0; |
| StringRef extName = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpExtension instruction"); |
| } |
| |
| extensions.insert(extName); |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processExtInstImport(ArrayRef<uint32_t> words) { |
| if (words.size() < 2) { |
| return emitError(unknownLoc, |
| "OpExtInstImport must have a result <id> and a literal " |
| "string for the extended instruction set name"); |
| } |
| |
| unsigned wordIndex = 1; |
| extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpExtInstImport"); |
| } |
| return success(); |
| } |
| |
| void Deserializer::attachExtensions() { |
| if (extensions.empty()) |
| return; |
| |
| module->setAttr("extensions", |
| opBuilder.getStrArrayAttr(extensions.getArrayRef())); |
| } |
| |
| LogicalResult Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) |
| return emitError(unknownLoc, "OpMemoryModel must have two operands"); |
| |
| module->setAttr( |
| "addressing_model", |
| opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.front()))); |
| module->setAttr( |
| "memory_model", |
| opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.back()))); |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processDecoration(ArrayRef<uint32_t> words) { |
| // TODO : This function should also be auto-generated. For now, since only a |
| // few decorations are processed/handled in a meaningful manner, going with a |
| // manual implementation. |
| if (words.size() < 2) { |
| return emitError( |
| unknownLoc, "OpDecorate must have at least result <id> and Decoration"); |
| } |
| auto decorationName = |
| stringifyDecoration(static_cast<spirv::Decoration>(words[1])); |
| if (decorationName.empty()) { |
| return emitError(unknownLoc, "invalid Decoration code : ") << words[1]; |
| } |
| auto attrName = convertToSnakeCase(decorationName); |
| auto symbol = opBuilder.getIdentifier(attrName); |
| switch (static_cast<spirv::Decoration>(words[1])) { |
| case spirv::Decoration::DescriptorSet: |
| case spirv::Decoration::Binding: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2]))); |
| break; |
| case spirv::Decoration::BuiltIn: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getStringAttr( |
| stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2])))); |
| break; |
| case spirv::Decoration::ArrayStride: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| typeDecorations[words[0]] = words[2]; |
| break; |
| case spirv::Decoration::Block: |
| case spirv::Decoration::BufferBlock: |
| if (words.size() != 2) { |
| return emitError(unknownLoc, "OpDecoration with ") |
| << decorationName << "needs a single target <id>"; |
| } |
| // Block decoration does not affect spv.struct type, but is still stored for |
| // verification. |
| // TODO: Update StructType to contain this information since |
| // it is needed for many validation rules. |
| decorations[words[0]].set(symbol, opBuilder.getUnitAttr()); |
| break; |
| case spirv::Decoration::SpecId: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecoration with ") |
| << decorationName << "needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2]))); |
| break; |
| default: |
| return emitError(unknownLoc, "unhandled Decoration : '") << decorationName; |
| } |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) { |
| // The binary layout of OpMemberDecorate is different comparing to OpDecorate |
| if (words.size() < 3) { |
| return emitError(unknownLoc, |
| "OpMemberDecorate must have at least 3 operands"); |
| } |
| |
| auto decoration = static_cast<spirv::Decoration>(words[2]); |
| if (decoration == spirv::Decoration::Offset && words.size() != 4) { |
| return emitError(unknownLoc, |
| " missing offset specification in OpMemberDecorate with " |
| "Offset decoration"); |
| } |
| ArrayRef<uint32_t> decorationOperands; |
| if (words.size() > 3) { |
| decorationOperands = words.slice(3); |
| } |
| memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands; |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processMemberName(ArrayRef<uint32_t> words) { |
| if (words.size() < 3) { |
| return emitError(unknownLoc, "OpMemberName must have at least 3 operands"); |
| } |
| unsigned wordIndex = 2; |
| auto name = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpMemberName instruction"); |
| } |
| memberNameMap[words[0]][words[1]] = name; |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processFunction(ArrayRef<uint32_t> operands) { |
| if (curFunction) { |
| return emitError(unknownLoc, "found function inside function"); |
| } |
| |
| // Get the result type |
| if (operands.size() != 4) { |
| return emitError(unknownLoc, "OpFunction must have 4 parameters"); |
| } |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| if (funcMap.count(operands[1])) { |
| return emitError(unknownLoc, "duplicate function definition/declaration"); |
| } |
| |
| auto functionControl = spirv::symbolizeFunctionControl(operands[2]); |
| if (!functionControl) { |
| return emitError(unknownLoc, "unknown Function Control: ") << operands[2]; |
| } |
| if (functionControl.getValue() != spirv::FunctionControl::None) { |
| /// TODO : Handle different function controls |
| return emitError(unknownLoc, "unhandled Function Control: '") |
| << spirv::stringifyFunctionControl(functionControl.getValue()) |
| << "'"; |
| } |
| |
| Type fnType = getType(operands[3]); |
| if (!fnType || !fnType.isa<FunctionType>()) { |
| return emitError(unknownLoc, "unknown function type from <id> ") |
| << operands[3]; |
| } |
| auto functionType = fnType.cast<FunctionType>(); |
| |
| if ((isVoidType(resultType) && functionType.getNumResults() != 0) || |
| (functionType.getNumResults() == 1 && |
| functionType.getResult(0) != resultType)) { |
| return emitError(unknownLoc, "mismatch in function type ") |
| << functionType << " and return type " << resultType << " specified"; |
| } |
| |
| std::string fnName = getFunctionSymbol(operands[1]); |
| auto funcOp = opBuilder.create<FuncOp>(unknownLoc, fnName, functionType, |
| ArrayRef<NamedAttribute>()); |
| curFunction = funcMap[operands[1]] = funcOp; |
| LLVM_DEBUG(llvm::dbgs() << "-- start function " << fnName << " (type = " |
| << fnType << ", id = " << operands[1] << ") --\n"); |
| auto *entryBlock = funcOp.addEntryBlock(); |
| LLVM_DEBUG(llvm::dbgs() << "[block] created entry block " << entryBlock |
| << "\n"); |
| |
| // Parse the op argument instructions |
| if (functionType.getNumInputs()) { |
| for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) { |
| auto argType = functionType.getInput(i); |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> operands; |
| if (failed(sliceInstruction(opcode, operands, |
| spirv::Opcode::OpFunctionParameter))) { |
| return failure(); |
| } |
| if (opcode != spirv::Opcode::OpFunctionParameter) { |
| return emitError( |
| unknownLoc, |
| "missing OpFunctionParameter instruction for argument ") |
| << i; |
| } |
| if (operands.size() != 2) { |
| return emitError( |
| unknownLoc, |
| "expected result type and result <id> for OpFunctionParameter"); |
| } |
| auto argDefinedType = getType(operands[0]); |
| if (!argDefinedType || argDefinedType != argType) { |
| return emitError(unknownLoc, |
| "mismatch in argument type between function type " |
| "definition ") |
| << functionType << " and argument type definition " |
| << argDefinedType << " at argument " << i; |
| } |
| if (getValue(operands[1])) { |
| return emitError(unknownLoc, "duplicate definition of result <id> '") |
| << operands[1]; |
| } |
| auto argValue = funcOp.getArgument(i); |
| valueMap[operands[1]] = argValue; |
| } |
| } |
| |
| // RAII guard to reset the insertion point to the module's region after |
| // deserializing the body of this function. |
| OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder); |
| |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> instOperands; |
| |
| // Special handling for the entry block. We need to make sure it starts with |
| // an OpLabel instruction. The entry block takes the same parameters as the |
| // function. All other blocks do not take any parameter. We have already |
| // created the entry block, here we need to register it to the correct label |
| // <id>. |
| if (failed(sliceInstruction(opcode, instOperands, |
| spirv::Opcode::OpFunctionEnd))) { |
| return failure(); |
| } |
| if (opcode == spirv::Opcode::OpFunctionEnd) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "-- completed function '" << fnName << "' (type = " << fnType |
| << ", id = " << operands[1] << ") --\n"); |
| return processFunctionEnd(instOperands); |
| } |
| if (opcode != spirv::Opcode::OpLabel) { |
| return emitError(unknownLoc, "a basic block must start with OpLabel"); |
| } |
| if (instOperands.size() != 1) { |
| return emitError(unknownLoc, "OpLabel should only have result <id>"); |
| } |
| blockMap[instOperands[0]] = entryBlock; |
| if (failed(processLabel(instOperands))) { |
| return failure(); |
| } |
| |
| // Then process all the other instructions in the function until we hit |
| // OpFunctionEnd. |
| while (succeeded(sliceInstruction(opcode, instOperands, |
| spirv::Opcode::OpFunctionEnd)) && |
| opcode != spirv::Opcode::OpFunctionEnd) { |
| if (failed(processInstruction(opcode, instOperands))) { |
| return failure(); |
| } |
| } |
| if (opcode != spirv::Opcode::OpFunctionEnd) { |
| return failure(); |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << fnName << "' (type = " |
| << fnType << ", id = " << operands[1] << ") --\n"); |
| return processFunctionEnd(instOperands); |
| } |
| |
| LogicalResult Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) { |
| // Process OpFunctionEnd. |
| if (!operands.empty()) { |
| return emitError(unknownLoc, "unexpected operands for OpFunctionEnd"); |
| } |
| |
| // Wire up block arguments from OpPhi instructions. |
| // Put all structured control flow in spv.selection/spv.loop ops. |
| if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) { |
| return failure(); |
| } |
| |
| curBlock = nullptr; |
| curFunction = llvm::None; |
| |
| return success(); |
| } |
| |
| Optional<std::pair<Attribute, Type>> Deserializer::getConstant(uint32_t id) { |
| auto constIt = constantMap.find(id); |
| if (constIt == constantMap.end()) |
| return llvm::None; |
| return constIt->getSecond(); |
| } |
| |
| std::string Deserializer::getFunctionSymbol(uint32_t id) { |
| auto funcName = nameMap.lookup(id).str(); |
| if (funcName.empty()) { |
| funcName = "spirv_fn_" + std::to_string(id); |
| } |
| return funcName; |
| } |
| |
| std::string Deserializer::getSpecConstantSymbol(uint32_t id) { |
| auto constName = nameMap.lookup(id).str(); |
| if (constName.empty()) { |
| constName = "spirv_spec_const_" + std::to_string(id); |
| } |
| return constName; |
| } |
| |
| spirv::SpecConstantOp Deserializer::createSpecConstant(Location loc, |
| uint32_t resultID, |
| Attribute defaultValue) { |
| auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID)); |
| auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName, |
| defaultValue); |
| if (decorations.count(resultID)) { |
| for (auto attr : decorations[resultID].getAttrs()) |
| op.setAttr(attr.first, attr.second); |
| } |
| specConstMap[resultID] = op; |
| return op; |
| } |
| |
| LogicalResult Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) { |
| unsigned wordIndex = 0; |
| if (operands.size() < 3) { |
| return emitError( |
| unknownLoc, |
| "OpVariable needs at least 3 operands, type, <id> and storage class"); |
| } |
| |
| // Result Type. |
| auto type = getType(operands[wordIndex]); |
| if (!type) { |
| return emitError(unknownLoc, "unknown result type <id> : ") |
| << operands[wordIndex]; |
| } |
| auto ptrType = type.dyn_cast<spirv::PointerType>(); |
| if (!ptrType) { |
| return emitError(unknownLoc, |
| "expected a result type <id> to be a spv.ptr, found : ") |
| << type; |
| } |
| wordIndex++; |
| |
| // Result <id>. |
| auto variableID = operands[wordIndex]; |
| auto variableName = nameMap.lookup(variableID).str(); |
| if (variableName.empty()) { |
| variableName = "spirv_var_" + std::to_string(variableID); |
| } |
| wordIndex++; |
| |
| // Storage class. |
| auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]); |
| if (ptrType.getStorageClass() != storageClass) { |
| return emitError(unknownLoc, "mismatch in storage class of pointer type ") |
| << type << " and that specified in OpVariable instruction : " |
| << stringifyStorageClass(storageClass); |
| } |
| wordIndex++; |
| |
| // Initializer. |
| FlatSymbolRefAttr initializer = nullptr; |
| if (wordIndex < operands.size()) { |
| auto initializerOp = getGlobalVariable(operands[wordIndex]); |
| if (!initializerOp) { |
| return emitError(unknownLoc, "unknown <id> ") |
| << operands[wordIndex] << "used as initializer"; |
| } |
| wordIndex++; |
| initializer = opBuilder.getSymbolRefAttr(initializerOp.getOperation()); |
| } |
| if (wordIndex != operands.size()) { |
| return emitError(unknownLoc, |
| "found more operands than expected when deserializing " |
| "OpVariable instruction, only ") |
| << wordIndex << " of " << operands.size() << " processed"; |
| } |
| auto varOp = opBuilder.create<spirv::GlobalVariableOp>( |
| unknownLoc, TypeAttr::get(type), opBuilder.getStringAttr(variableName), |
| initializer); |
| |
| // Decorations. |
| if (decorations.count(variableID)) { |
| for (auto attr : decorations[variableID].getAttrs()) { |
| varOp.setAttr(attr.first, attr.second); |
| } |
| } |
| globalVariableMap[variableID] = varOp; |
| return success(); |
| } |
| |
| IntegerAttr Deserializer::getConstantInt(uint32_t id) { |
| auto constInfo = getConstant(id); |
| if (!constInfo) { |
| return nullptr; |
| } |
| return constInfo->first.dyn_cast<IntegerAttr>(); |
| } |
| |
| LogicalResult Deserializer::processName(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) { |
| return emitError(unknownLoc, "OpName needs at least 2 operands"); |
| } |
| if (!nameMap.lookup(operands[0]).empty()) { |
| return emitError(unknownLoc, "duplicate name found for result <id> ") |
| << operands[0]; |
| } |
| unsigned wordIndex = 1; |
| StringRef name = decodeStringLiteral(operands, wordIndex); |
| if (wordIndex != operands.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpName instruction"); |
| } |
| nameMap[operands[0]] = name; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult Deserializer::processType(spirv::Opcode opcode, |
| ArrayRef<uint32_t> operands) { |
| if (operands.empty()) { |
| return emitError(unknownLoc, "type instruction with opcode ") |
| << spirv::stringifyOpcode(opcode) << " needs at least one <id>"; |
| } |
| |
| /// TODO: Types might be forward declared in some instructions and need to be |
| /// handled appropriately. |
| if (typeMap.count(operands[0])) { |
| return emitError(unknownLoc, "duplicate definition for result <id> ") |
| << operands[0]; |
| } |
| |
| switch (opcode) { |
| case spirv::Opcode::OpTypeVoid: |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpTypeVoid must have no parameters"); |
| } |
| typeMap[operands[0]] = opBuilder.getNoneType(); |
| break; |
| case spirv::Opcode::OpTypeBool: |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpTypeBool must have no parameters"); |
| } |
| typeMap[operands[0]] = opBuilder.getI1Type(); |
| break; |
| case spirv::Opcode::OpTypeInt: |
| if (operands.size() != 3) { |
| return emitError( |
| unknownLoc, "OpTypeInt must have bitwidth and signedness parameters"); |
| } |
| // TODO: Ignoring the signedness right now. Need to handle this effectively |
| // in the MLIR representation. |
| typeMap[operands[0]] = opBuilder.getIntegerType(operands[1]); |
| break; |
| case spirv::Opcode::OpTypeFloat: { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter"); |
| } |
| Type floatTy; |
| switch (operands[1]) { |
| case 16: |
| floatTy = opBuilder.getF16Type(); |
| break; |
| case 32: |
| floatTy = opBuilder.getF32Type(); |
| break; |
| case 64: |
| floatTy = opBuilder.getF64Type(); |
| break; |
| default: |
| return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = floatTy; |
| } break; |
| case spirv::Opcode::OpTypeVector: { |
| if (operands.size() != 3) { |
| return emitError( |
| unknownLoc, |
| "OpTypeVector must have element type and count parameters"); |
| } |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, "OpTypeVector references undefined <id> ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy); |
| } break; |
| case spirv::Opcode::OpTypePointer: { |
| if (operands.size() != 3) { |
| return emitError(unknownLoc, "OpTypePointer must have two parameters"); |
| } |
| auto pointeeType = getType(operands[2]); |
| if (!pointeeType) { |
| return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ") |
| << operands[2]; |
| } |
| auto storageClass = static_cast<spirv::StorageClass>(operands[1]); |
| typeMap[operands[0]] = spirv::PointerType::get(pointeeType, storageClass); |
| } break; |
| case spirv::Opcode::OpTypeArray: |
| return processArrayType(operands); |
| case spirv::Opcode::OpTypeFunction: |
| return processFunctionType(operands); |
| case spirv::Opcode::OpTypeRuntimeArray: |
| return processRuntimeArrayType(operands); |
| case spirv::Opcode::OpTypeStruct: |
| return processStructType(operands); |
| default: |
| return emitError(unknownLoc, "unhandled type instruction"); |
| } |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processArrayType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 3) { |
| return emitError(unknownLoc, |
| "OpTypeArray must have element type and count parameters"); |
| } |
| |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, "OpTypeArray references undefined <id> ") |
| << operands[1]; |
| } |
| |
| unsigned count = 0; |
| // TODO(antiagainst): The count can also come frome a specialization constant. |
| auto countInfo = getConstant(operands[2]); |
| if (!countInfo) { |
| return emitError(unknownLoc, "OpTypeArray count <id> ") |
| << operands[2] << "can only come from normal constant right now"; |
| } |
| |
| if (auto intVal = countInfo->first.dyn_cast<IntegerAttr>()) { |
| count = intVal.getInt(); |
| } else { |
| return emitError(unknownLoc, "OpTypeArray count must come from a " |
| "scalar integer constant instruction"); |
| } |
| |
| typeMap[operands[0]] = spirv::ArrayType::get( |
| elementTy, count, typeDecorations.lookup(operands[0])); |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processFunctionType(ArrayRef<uint32_t> operands) { |
| assert(!operands.empty() && "No operands for processing function type"); |
| if (operands.size() == 1) { |
| return emitError(unknownLoc, "missing return type for OpTypeFunction"); |
| } |
| auto returnType = getType(operands[1]); |
| if (!returnType) { |
| return emitError(unknownLoc, "unknown return type in OpTypeFunction"); |
| } |
| SmallVector<Type, 1> argTypes; |
| for (size_t i = 2, e = operands.size(); i < e; ++i) { |
| auto ty = getType(operands[i]); |
| if (!ty) { |
| return emitError(unknownLoc, "unknown argument type in OpTypeFunction"); |
| } |
| argTypes.push_back(ty); |
| } |
| ArrayRef<Type> returnTypes; |
| if (!isVoidType(returnType)) { |
| returnTypes = llvm::makeArrayRef(returnType); |
| } |
| typeMap[operands[0]] = FunctionType::get(argTypes, returnTypes, context); |
| return success(); |
| } |
| |
| LogicalResult |
| Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands"); |
| } |
| Type memberType = getType(operands[1]); |
| if (!memberType) { |
| return emitError(unknownLoc, |
| "OpTypeRuntimeArray references undefined <id> ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = spirv::RuntimeArrayType::get(memberType); |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processStructType(ArrayRef<uint32_t> operands) { |
| if (operands.empty()) { |
| return emitError(unknownLoc, "OpTypeStruct must have at least result <id>"); |
| } |
| if (operands.size() == 1) { |
| // Handle empty struct. |
| typeMap[operands[0]] = spirv::StructType::getEmpty(context); |
| return success(); |
| } |
| |
| SmallVector<Type, 0> memberTypes; |
| for (auto op : llvm::drop_begin(operands, 1)) { |
| Type memberType = getType(op); |
| if (!memberType) { |
| return emitError(unknownLoc, "OpTypeStruct references undefined <id> ") |
| << op; |
| } |
| memberTypes.push_back(memberType); |
| } |
| |
| SmallVector<spirv::StructType::LayoutInfo, 0> layoutInfo; |
| SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo; |
| if (memberDecorationMap.count(operands[0])) { |
| auto &allMemberDecorations = memberDecorationMap[operands[0]]; |
| for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) { |
| if (allMemberDecorations.count(memberIndex)) { |
| for (auto &memberDecoration : allMemberDecorations[memberIndex]) { |
| // Check for offset. |
| if (memberDecoration.first == spirv::Decoration::Offset) { |
| // If layoutInfo is empty, resize to the number of members; |
| if (layoutInfo.empty()) { |
| layoutInfo.resize(memberTypes.size()); |
| } |
| layoutInfo[memberIndex] = memberDecoration.second[0]; |
| } else { |
| if (!memberDecoration.second.empty()) { |
| return emitError(unknownLoc, |
| "unhandled OpMemberDecoration with decoration ") |
| << stringifyDecoration(memberDecoration.first) |
| << " which has additional operands"; |
| } |
| memberDecorationsInfo.emplace_back(memberIndex, |
| memberDecoration.first); |
| } |
| } |
| } |
| } |
| } |
| typeMap[operands[0]] = |
| spirv::StructType::get(memberTypes, layoutInfo, memberDecorationsInfo); |
| // TODO(ravishankarm): Update StructType to have member name as attribute as |
| // well. |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult Deserializer::processConstant(ArrayRef<uint32_t> operands, |
| bool isSpec) { |
| StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant"; |
| |
| if (operands.size() < 2) { |
| return emitError(unknownLoc) |
| << opname << " must have type <id> and result <id>"; |
| } |
| if (operands.size() < 3) { |
| return emitError(unknownLoc) |
| << opname << " must have at least 1 more parameter"; |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult { |
| if (bitwidth == 64) { |
| if (operands.size() == 4) { |
| return success(); |
| } |
| return emitError(unknownLoc) |
| << opname << " should have 2 parameters for 64-bit values"; |
| } |
| if (bitwidth <= 32) { |
| if (operands.size() == 3) { |
| return success(); |
| } |
| |
| return emitError(unknownLoc) |
| << opname |
| << " should have 1 parameter for values with no more than 32 bits"; |
| } |
| return emitError(unknownLoc, "unsupported OpConstant bitwidth: ") |
| << bitwidth; |
| }; |
| |
| auto resultID = operands[1]; |
| |
| if (auto intType = resultType.dyn_cast<IntegerType>()) { |
| auto bitwidth = intType.getWidth(); |
| if (failed(checkOperandSizeForBitwidth(bitwidth))) { |
| return failure(); |
| } |
| |
| APInt value; |
| if (bitwidth == 64) { |
| // 64-bit integers are represented with two SPIR-V words. According to |
| // SPIR-V spec: "When the type’s bit width is larger than one word, the |
| // literal’s low-order words appear first." |
| struct DoubleWord { |
| uint32_t word1; |
| uint32_t word2; |
| } words = {operands[2], operands[3]}; |
| value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true); |
| } else if (bitwidth <= 32) { |
| value = APInt(bitwidth, operands[2], /*isSigned=*/true); |
| } |
| |
| auto attr = opBuilder.getIntegerAttr(intType, value); |
| |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, intType); |
| } |
| |
| return success(); |
| } |
| |
| if (auto floatType = resultType.dyn_cast<FloatType>()) { |
| auto bitwidth = floatType.getWidth(); |
| if (failed(checkOperandSizeForBitwidth(bitwidth))) { |
| return failure(); |
| } |
| |
| APFloat value(0.f); |
| if (floatType.isF64()) { |
| // Double values are represented with two SPIR-V words. According to |
| // SPIR-V spec: "When the type’s bit width is larger than one word, the |
| // literal’s low-order words appear first." |
| struct DoubleWord { |
| uint32_t word1; |
| uint32_t word2; |
| } words = {operands[2], operands[3]}; |
| value = APFloat(llvm::bit_cast<double>(words)); |
| } else if (floatType.isF32()) { |
| value = APFloat(llvm::bit_cast<float>(operands[2])); |
| } else if (floatType.isF16()) { |
| APInt data(16, operands[2]); |
| value = APFloat(APFloat::IEEEhalf(), data); |
| } |
| |
| auto attr = opBuilder.getFloatAttr(floatType, value); |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, floatType); |
| } |
| |
| return success(); |
| } |
| |
| return emitError(unknownLoc, "OpConstant can only generate values of " |
| "scalar integer or floating-point type"); |
| } |
| |
| LogicalResult Deserializer::processConstantBool(bool isTrue, |
| ArrayRef<uint32_t> operands, |
| bool isSpec) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "Op") |
| << (isSpec ? "Spec" : "") << "Constant" |
| << (isTrue ? "True" : "False") |
| << " must have type <id> and result <id>"; |
| } |
| |
| auto attr = opBuilder.getBoolAttr(isTrue); |
| auto resultID = operands[1]; |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, opBuilder.getI1Type()); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult |
| Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have type <id> and result <id>"); |
| } |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have at least 1 parameter"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| SmallVector<Attribute, 4> elements; |
| elements.reserve(operands.size() - 2); |
| for (unsigned i = 2, e = operands.size(); i < e; ++i) { |
| auto elementInfo = getConstant(operands[i]); |
| if (!elementInfo) { |
| return emitError(unknownLoc, "OpConstantComposite component <id> ") |
| << operands[i] << " must come from a normal constant"; |
| } |
| elements.push_back(elementInfo->first); |
| } |
| |
| auto resultID = operands[1]; |
| if (auto vectorType = resultType.dyn_cast<VectorType>()) { |
| auto attr = DenseElementsAttr::get(vectorType, elements); |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, resultType); |
| } else if (auto arrayType = resultType.dyn_cast<spirv::ArrayType>()) { |
| auto attr = opBuilder.getArrayAttr(elements); |
| constantMap.try_emplace(resultID, attr, resultType); |
| } else { |
| return emitError(unknownLoc, "unsupported OpConstantComposite type: ") |
| << resultType; |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processConstantNull(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, |
| "OpConstantNull must have type <id> and result <id>"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto resultID = operands[1]; |
| if (resultType.isa<IntegerType>() || resultType.isa<FloatType>() || |
| resultType.isa<VectorType>()) { |
| auto attr = opBuilder.getZeroAttr(resultType); |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, resultType); |
| return success(); |
| } |
| |
| return emitError(unknownLoc, "unsupported OpConstantNull type: ") |
| << resultType; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Control flow |
| //===----------------------------------------------------------------------===// |
| |
| Block *Deserializer::getOrCreateBlock(uint32_t id) { |
| if (auto *block = getBlock(id)) { |
| LLVM_DEBUG(llvm::dbgs() << "[block] got exiting block for id = " << id |
| << " @ " << block << "\n"); |
| return block; |
| } |
| |
| // We don't know where this block will be placed finally (in a spv.selection |
| // or spv.loop or function). Create it into the function for now and sort |
| // out the proper place later. |
| auto *block = curFunction->addBlock(); |
| LLVM_DEBUG(llvm::dbgs() << "[block] created block for id = " << id << " @ " |
| << block << "\n"); |
| return blockMap[id] = block; |
| } |
| |
| LogicalResult Deserializer::processBranch(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpBranch must appear inside a block"); |
| } |
| |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpBranch must take exactly one target label"); |
| } |
| |
| auto *target = getOrCreateBlock(operands[0]); |
| opBuilder.create<spirv::BranchOp>(unknownLoc, target); |
| |
| return success(); |
| } |
| |
| LogicalResult |
| Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, |
| "OpBranchConditional must appear inside a block"); |
| } |
| |
| if (operands.size() != 3 && operands.size() != 5) { |
| return emitError(unknownLoc, |
| "OpBranchConditional must have condition, true label, " |
| "false label, and optionally two branch weights"); |
| } |
| |
| auto condition = getValue(operands[0]); |
| auto *trueBlock = getOrCreateBlock(operands[1]); |
| auto *falseBlock = getOrCreateBlock(operands[2]); |
| |
| Optional<std::pair<uint32_t, uint32_t>> weights; |
| if (operands.size() == 5) { |
| weights = std::make_pair(operands[3], operands[4]); |
| } |
| |
| opBuilder.create<spirv::BranchConditionalOp>( |
| unknownLoc, condition, trueBlock, |
| /*trueArguments=*/ArrayRef<Value>(), falseBlock, |
| /*falseArguments=*/ArrayRef<Value>(), weights); |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processLabel(ArrayRef<uint32_t> operands) { |
| if (!curFunction) { |
| return emitError(unknownLoc, "OpLabel must appear inside a function"); |
| } |
| |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpLabel should only have result <id>"); |
| } |
| |
| auto labelID = operands[0]; |
| // We may have forward declared this block. |
| auto *block = getOrCreateBlock(labelID); |
| LLVM_DEBUG(llvm::dbgs() << "[block] populating block " << block << "\n"); |
| // If we have seen this block, make sure it was just a forward declaration. |
| assert(block->empty() && "re-deserialize the same block!"); |
| |
| opBuilder.setInsertionPointToStart(block); |
| blockMap[labelID] = curBlock = block; |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpSelectionMerge must appear in a block"); |
| } |
| |
| if (operands.size() < 2) { |
| return emitError( |
| unknownLoc, |
| "OpSelectionMerge must specify merge target and selection control"); |
| } |
| |
| if (static_cast<uint32_t>(spirv::SelectionControl::None) != operands[1]) { |
| return emitError(unknownLoc, |
| "unimplmented OpSelectionMerge selection control: ") |
| << operands[2]; |
| } |
| |
| auto *mergeBlock = getOrCreateBlock(operands[0]); |
| |
| if (!blockMergeInfo.try_emplace(curBlock, mergeBlock).second) { |
| return emitError( |
| unknownLoc, |
| "a block cannot have more than one OpSelectionMerge instruction"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpLoopMerge must appear in a block"); |
| } |
| |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, "OpLoopMerge must specify merge target, " |
| "continue target and loop control"); |
| } |
| |
| if (static_cast<uint32_t>(spirv::LoopControl::None) != operands[2]) { |
| return emitError(unknownLoc, "unimplmented OpLoopMerge loop control: ") |
| << operands[2]; |
| } |
| |
| auto *mergeBlock = getOrCreateBlock(operands[0]); |
| auto *continueBlock = getOrCreateBlock(operands[1]); |
| |
| if (!blockMergeInfo.try_emplace(curBlock, mergeBlock, continueBlock).second) { |
| return emitError( |
| unknownLoc, |
| "a block cannot have more than one OpLoopMerge instruction"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processPhi(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpPhi must appear in a block"); |
| } |
| |
| if (operands.size() < 4) { |
| return emitError(unknownLoc, "OpPhi must specify result type, result <id>, " |
| "and variable-parent pairs"); |
| } |
| |
| // Create a block argument for this OpPhi instruction. |
| Type blockArgType = getType(operands[0]); |
| BlockArgument blockArg = curBlock->addArgument(blockArgType); |
| valueMap[operands[1]] = blockArg; |
| LLVM_DEBUG(llvm::dbgs() << "[phi] created block argument " << blockArg |
| << " id = " << operands[1] << " of type " |
| << blockArgType << '\n'); |
| |
| // For each (value, predecessor) pair, insert the value to the predecessor's |
| // blockPhiInfo entry so later we can fix the block argument there. |
| for (unsigned i = 2, e = operands.size(); i < e; i += 2) { |
| uint32_t value = operands[i]; |
| Block *predecessor = getOrCreateBlock(operands[i + 1]); |
| blockPhiInfo[predecessor].push_back(value); |
| LLVM_DEBUG(llvm::dbgs() << "[phi] predecessor @ " << predecessor |
| << " with arg id = " << value << '\n'); |
| } |
| |
| return success(); |
| } |
| |
| namespace { |
| /// A class for putting all blocks in a structured selection/loop in a |
| /// spv.selection/spv.loop op. |
| class ControlFlowStructurizer { |
| public: |
| /// Structurizes the loop at the given `headerBlock`. |
| /// |
| /// This method will create an spv.loop op in the `mergeBlock` and move all |
| /// blocks in the structured loop into the spv.loop's region. All branches to |
| /// the `headerBlock` will be redirected to the `mergeBlock`. |
| /// This method will also update `mergeInfo` by remapping all blocks inside to |
| /// the newly cloned ones inside structured control flow op's regions. |
| static LogicalResult structurize(Location loc, BlockMergeInfoMap &mergeInfo, |
| Block *headerBlock, Block *mergeBlock, |
| Block *continueBlock) { |
| return ControlFlowStructurizer(loc, mergeInfo, headerBlock, mergeBlock, |
| continueBlock) |
| .structurizeImpl(); |
| } |
| |
| private: |
| ControlFlowStructurizer(Location loc, BlockMergeInfoMap &mergeInfo, |
| Block *header, Block *merge, Block *cont) |
| : location(loc), blockMergeInfo(mergeInfo), headerBlock(header), |
| mergeBlock(merge), continueBlock(cont) {} |
| |
| /// Creates a new spv.selection op at the beginning of the `mergeBlock`. |
| spirv::SelectionOp createSelectionOp(); |
| |
| /// Creates a new spv.loop op at the beginning of the `mergeBlock`. |
| spirv::LoopOp createLoopOp(); |
| |
| /// Collects all blocks reachable from `headerBlock` except `mergeBlock`. |
| void collectBlocksInConstruct(); |
| |
| LogicalResult structurizeImpl(); |
| |
| Location location; |
| |
| BlockMergeInfoMap &blockMergeInfo; |
| |
| Block *headerBlock; |
| Block *mergeBlock; |
| Block *continueBlock; // nullptr for spv.selection |
| |
| llvm::SetVector<Block *> constructBlocks; |
| }; |
| } // namespace |
| |
| spirv::SelectionOp ControlFlowStructurizer::createSelectionOp() { |
| // Create a builder and set the insertion point to the beginning of the |
| // merge block so that the newly created SelectionOp will be inserted there. |
| OpBuilder builder(&mergeBlock->front()); |
| |
| auto control = builder.getI32IntegerAttr( |
| static_cast<uint32_t>(spirv::SelectionControl::None)); |
| auto selectionOp = builder.create<spirv::SelectionOp>(location, control); |
| selectionOp.addMergeBlock(); |
| |
| return selectionOp; |
| } |
| |
| spirv::LoopOp ControlFlowStructurizer::createLoopOp() { |
| // Create a builder and set the insertion point to the beginning of the |
| // merge block so that the newly created LoopOp will be inserted there. |
| OpBuilder builder(&mergeBlock->front()); |
| |
| // TODO(antiagainst): handle loop control properly |
| auto loopOp = builder.create<spirv::LoopOp>(location); |
| loopOp.addEntryAndMergeBlock(); |
| |
| return loopOp; |
| } |
| |
| void ControlFlowStructurizer::collectBlocksInConstruct() { |
| assert(constructBlocks.empty() && "expected empty constructBlocks"); |
| |
| // Put the header block in the work list first. |
| constructBlocks.insert(headerBlock); |
| |
| // For each item in the work list, add its successors excluding the merge |
| // block. |
| for (unsigned i = 0; i < constructBlocks.size(); ++i) { |
| for (auto *successor : constructBlocks[i]->getSuccessors()) |
| if (successor != mergeBlock) |
| constructBlocks.insert(successor); |
| } |
| } |
| |
| LogicalResult ControlFlowStructurizer::structurizeImpl() { |
| Operation *op = nullptr; |
| bool isLoop = continueBlock != nullptr; |
| if (isLoop) { |
| if (auto loopOp = createLoopOp()) |
| op = loopOp.getOperation(); |
| } else { |
| if (auto selectionOp = createSelectionOp()) |
| op = selectionOp.getOperation(); |
| } |
| if (!op) |
| return failure(); |
| Region &body = op->getRegion(0); |
| |
| BlockAndValueMapping mapper; |
| // All references to the old merge block should be directed to the |
| // selection/loop merge block in the SelectionOp/LoopOp's region. |
| mapper.map(mergeBlock, &body.back()); |
| |
| collectBlocksInConstruct(); |
| |
| // We've identified all blocks belonging to the selection/loop's region. Now |
| // need to "move" them into the selection/loop. Instead of really moving the |
| // blocks, in the following we copy them and remap all values and branches. |
| // This is because: |
| // * Inserting a block into a region requires the block not in any region |
| // before. But selections/loops can nest so we can create selection/loop ops |
| // in a nested manner, which means some blocks may already be in a |
| // selection/loop region when to be moved again. |
| // * It's much trickier to fix up the branches into and out of the loop's |
| // region: we need to treat not-moved blocks and moved blocks differently: |
| // Not-moved blocks jumping to the loop header block need to jump to the |
| // merge point containing the new loop op but not the loop continue block's |
| // back edge. Moved blocks jumping out of the loop need to jump to the |
| // merge block inside the loop region but not other not-moved blocks. |
| // We cannot use replaceAllUsesWith clearly and it's harder to follow the |
| // logic. |
| |
| // Create a corresponding block in the SelectionOp/LoopOp's region for each |
| // block in this loop construct. |
| OpBuilder builder(body); |
| for (auto *block : constructBlocks) { |
| // Create a block and insert it before the selection/loop merge block in the |
| // SelectionOp/LoopOp's region. |
| auto *newBlock = builder.createBlock(&body.back()); |
| mapper.map(block, newBlock); |
| LLVM_DEBUG(llvm::dbgs() << "[cf] cloned block " << newBlock |
| << " from block " << block << "\n"); |
| if (!isFnEntryBlock(block)) { |
| for (BlockArgument blockArg : block->getArguments()) { |
| auto newArg = newBlock->addArgument(blockArg.getType()); |
| mapper.map(blockArg, newArg); |
| LLVM_DEBUG(llvm::dbgs() << "[cf] remapped block argument " << blockArg |
| << " to " << newArg << '\n'); |
| } |
| } else { |
| LLVM_DEBUG(llvm::dbgs() |
| << "[cf] block " << block << " is a function entry block\n"); |
| } |
| |
| for (auto &op : *block) |
| newBlock->push_back(op.clone(mapper)); |
| } |
| |
| // Go through all ops and remap the operands. |
| auto remapOperands = [&](Operation *op) { |
| for (auto &operand : op->getOpOperands()) |
| if (auto mappedOp = mapper.lookupOrNull(operand.get())) |
| operand.set(mappedOp); |
| for (auto &succOp : op->getBlockOperands()) |
| if (auto mappedOp = mapper.lookupOrNull(succOp.get())) |
| succOp.set(mappedOp); |
| }; |
| for (auto &block : body) { |
| block.walk(remapOperands); |
| } |
| |
| // We have created the SelectionOp/LoopOp and "moved" all blocks belonging to |
| // the selection/loop construct into its region. Next we need to fix the |
| // connections between this new SelectionOp/LoopOp with existing blocks. |
| |
| // All existing incoming branches should go to the merge block, where the |
| // SelectionOp/LoopOp resides right now. |
| headerBlock->replaceAllUsesWith(mergeBlock); |
| |
| if (isLoop) { |
| // The loop selection/loop header block may have block arguments. Since now |
| // we place the selection/loop op inside the old merge block, we need to |
| // make sure the old merge block has the same block argument list. |
| assert(mergeBlock->args_empty() && "OpPhi in loop merge block unsupported"); |
| for (BlockArgument blockArg : headerBlock->getArguments()) { |
| mergeBlock->addArgument(blockArg.getType()); |
| } |
| |
| // If the loop header block has block arguments, make sure the spv.branch op |
| // matches. |
| SmallVector<Value, 4> blockArgs; |
| if (!headerBlock->args_empty()) |
| blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()}; |
| |
| // The loop entry block should have a unconditional branch jumping to the |
| // loop header block. |
| builder.setInsertionPointToEnd(&body.front()); |
| builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock), |
| ArrayRef<Value>(blockArgs)); |
| } |
| |
| // All the blocks cloned into the SelectionOp/LoopOp's region can now be |
| // cleaned up. |
| LLVM_DEBUG(llvm::dbgs() << "[cf] cleaning up blocks after clone\n"); |
| // First we need to drop all operands' references inside all blocks. This is |
| // needed because we can have blocks referencing SSA values from one another. |
| for (auto *block : constructBlocks) |
| block->dropAllReferences(); |
| |
| // Then erase all old blocks. |
| for (auto *block : constructBlocks) { |
| // We've cloned all blocks belonging to this construct into the structured |
| // control flow op's region. Among these blocks, some may compose another |
| // selection/loop. If so, they will be recorded within blockMergeInfo. |
| // We need to update the pointers there to the newly remapped ones so we can |
| // continue structurizing them later. |
| // TODO(antiagainst): The asserts in the following assumes input SPIR-V blob |
| // forms correctly nested selection/loop constructs. We should relax this |
| // and support error cases better. |
| auto it = blockMergeInfo.find(block); |
| if (it != blockMergeInfo.end()) { |
| Block *newHeader = mapper.lookupOrNull(block); |
| assert(newHeader && "nested loop header block should be remapped!"); |
| |
| Block *newContinue = it->second.continueBlock; |
| if (newContinue) { |
| newContinue = mapper.lookupOrNull(newContinue); |
| assert(newContinue && "nested loop continue block should be remapped!"); |
| } |
| |
| Block *newMerge = it->second.mergeBlock; |
| if (Block *mappedTo = mapper.lookupOrNull(newMerge)) |
| newMerge = mappedTo; |
| |
| // The iterator should be erased before adding a new entry into |
| // blockMergeInfo to avoid iterator invalidation. |
| blockMergeInfo.erase(it); |
| blockMergeInfo.try_emplace(newHeader, newMerge, newContinue); |
| } |
| |
| // The structured selection/loop's entry block does not have arguments. |
| // If the function's header block is also part of the structured control |
| // flow, we cannot just simply erase it because it may contain arguments |
| // matching the function signature and used by the cloned blocks. |
| if (isFnEntryBlock(block)) { |
| LLVM_DEBUG(llvm::dbgs() << "[cf] changing entry block " << block |
| << " to only contain a spv.Branch op\n"); |
| // Still keep the function entry block for the potential block arguments, |
| // but replace all ops inside with a branch to the merge block. |
| block->clear(); |
| builder.setInsertionPointToEnd(block); |
| builder.create<spirv::BranchOp>(location, mergeBlock); |
| } else { |
| LLVM_DEBUG(llvm::dbgs() << "[cf] erasing block " << block << "\n"); |
| block->erase(); |
| } |
| } |
| |
| LLVM_DEBUG( |
| llvm::dbgs() << "[cf] after structurizing construct with header block " |
| << headerBlock << ":\n" |
| << *op << '\n'); |
| |
| return success(); |
| } |
| |
| LogicalResult Deserializer::wireUpBlockArgument() { |
| LLVM_DEBUG(llvm::dbgs() << "[phi] start wiring up block arguments\n"); |
| |
| OpBuilder::InsertionGuard guard(opBuilder); |
| |
| for (const auto &info : blockPhiInfo) { |
| Block *block = info.first; |
| const BlockPhiInfo &phiInfo = info.second; |
| LLVM_DEBUG(llvm::dbgs() << "[phi] block " << block << "\n"); |
| LLVM_DEBUG(llvm::dbgs() << "[phi] before creating block argument:\n"); |
| LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs())); |
| LLVM_DEBUG(llvm::dbgs() << '\n'); |
| |
| // Set insertion point to before this block's terminator early because we |
| // may materialize ops via getValue() call. |
| auto *op = block->getTerminator(); |
| opBuilder.setInsertionPoint(op); |
| |
| SmallVector<Value, 4> blockArgs; |
| blockArgs.reserve(phiInfo.size()); |
| for (uint32_t valueId : phiInfo) { |
| if (Value value = getValue(valueId)) { |
| blockArgs.push_back(value); |
| LLVM_DEBUG(llvm::dbgs() << "[phi] block argument " << value |
| << " id = " << valueId << '\n'); |
| } else { |
| return emitError(unknownLoc, "OpPhi references undefined value!"); |
| } |
| } |
| |
| if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) { |
| // Replace the previous branch op with a new one with block arguments. |
| opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(), |
| blockArgs); |
| branchOp.erase(); |
| } else { |
| return emitError(unknownLoc, "unimplemented terminator for Phi creation"); |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "[phi] after creating block argument:\n"); |
| LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs())); |
| LLVM_DEBUG(llvm::dbgs() << '\n'); |
| } |
| blockPhiInfo.clear(); |
| |
| LLVM_DEBUG(llvm::dbgs() << "[phi] completed wiring up block arguments\n"); |
| return success(); |
| } |
| |
| LogicalResult Deserializer::structurizeControlFlow() { |
| LLVM_DEBUG(llvm::dbgs() << "[cf] start structurizing control flow\n"); |
| |
| while (!blockMergeInfo.empty()) { |
| Block *headerBlock = blockMergeInfo.begin()->first; |
| BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second; |
| |
| LLVM_DEBUG(llvm::dbgs() << "[cf] header block " << headerBlock << ":\n"); |
| LLVM_DEBUG(headerBlock->print(llvm::dbgs())); |
| |
| auto *mergeBlock = mergeInfo.mergeBlock; |
| assert(mergeBlock && "merge block cannot be nullptr"); |
| if (!mergeBlock->args_empty()) |
| return emitError(unknownLoc, "OpPhi in loop merge block unimplemented"); |
| LLVM_DEBUG(llvm::dbgs() << "[cf] merge block " << mergeBlock << ":\n"); |
| LLVM_DEBUG(mergeBlock->print(llvm::dbgs())); |
| |
| auto *continueBlock = mergeInfo.continueBlock; |
| if (continueBlock) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "[cf] continue block " << continueBlock << ":\n"); |
| LLVM_DEBUG(continueBlock->print(llvm::dbgs())); |
| } |
| |
| // Erase this case before calling into structurizer, who will update |
| // blockMergeInfo. |
| blockMergeInfo.erase(blockMergeInfo.begin()); |
| if (failed(ControlFlowStructurizer::structurize(unknownLoc, blockMergeInfo, |
| headerBlock, mergeBlock, |
| continueBlock))) |
| return failure(); |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "[cf] completed structurizing control flow\n"); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction |
| //===----------------------------------------------------------------------===// |
| |
| Value Deserializer::getValue(uint32_t id) { |
| if (auto constInfo = getConstant(id)) { |
| // Materialize a `spv.constant` op at every use site. |
| return opBuilder.create<spirv::ConstantOp>(unknownLoc, constInfo->second, |
| constInfo->first); |
| } |
| if (auto varOp = getGlobalVariable(id)) { |
| auto addressOfOp = opBuilder.create<spirv::AddressOfOp>( |
| unknownLoc, varOp.type(), |
| opBuilder.getSymbolRefAttr(varOp.getOperation())); |
| return addressOfOp.pointer(); |
| } |
| if (auto constOp = getSpecConstant(id)) { |
| auto referenceOfOp = opBuilder.create<spirv::ReferenceOfOp>( |
| unknownLoc, constOp.default_value().getType(), |
| opBuilder.getSymbolRefAttr(constOp.getOperation())); |
| return referenceOfOp.reference(); |
| } |
| if (auto undef = getUndefType(id)) { |
| return opBuilder.create<spirv::UndefOp>(unknownLoc, undef); |
| } |
| return valueMap.lookup(id); |
| } |
| |
| LogicalResult |
| Deserializer::sliceInstruction(spirv::Opcode &opcode, |
| ArrayRef<uint32_t> &operands, |
| Optional<spirv::Opcode> expectedOpcode) { |
| auto binarySize = binary.size(); |
| if (curOffset >= binarySize) { |
| return emitError(unknownLoc, "expected ") |
| << (expectedOpcode ? spirv::stringifyOpcode(*expectedOpcode) |
| : "more") |
| << " instruction"; |
| } |
| |
| // For each instruction, get its word count from the first word to slice it |
| // from the stream properly, and then dispatch to the instruction handler. |
| |
| uint32_t wordCount = binary[curOffset] >> 16; |
| |
| if (wordCount == 0) |
| return emitError(unknownLoc, "word count cannot be zero"); |
| |
| uint32_t nextOffset = curOffset + wordCount; |
| if (nextOffset > binarySize) |
| return emitError(unknownLoc, "insufficient words for the last instruction"); |
| |
| opcode = extractOpcode(binary[curOffset]); |
| operands = binary.slice(curOffset + 1, wordCount - 1); |
| curOffset = nextOffset; |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processInstruction(spirv::Opcode opcode, |
| ArrayRef<uint32_t> operands, |
| bool deferInstructions) { |
| LLVM_DEBUG(llvm::dbgs() << "[inst] processing instruction " |
| << spirv::stringifyOpcode(opcode) << "\n"); |
| |
| // First dispatch all the instructions whose opcode does not correspond to |
| // those that have a direct mirror in the SPIR-V dialect |
| switch (opcode) { |
| case spirv::Opcode::OpBitcast: |
| return processBitcast(operands); |
| case spirv::Opcode::OpCapability: |
| return processCapability(operands); |
| case spirv::Opcode::OpExtension: |
| return processExtension(operands); |
| case spirv::Opcode::OpExtInst: |
| return processExtInst(operands); |
| case spirv::Opcode::OpExtInstImport: |
| return processExtInstImport(operands); |
| case spirv::Opcode::OpMemberName: |
| return processMemberName(operands); |
| case spirv::Opcode::OpMemoryModel: |
| return processMemoryModel(operands); |
| case spirv::Opcode::OpEntryPoint: |
| case spirv::Opcode::OpExecutionMode: |
| if (deferInstructions) { |
| deferredInstructions.emplace_back(opcode, operands); |
| return success(); |
| } |
| break; |
| case spirv::Opcode::OpVariable: |
| if (isa<spirv::ModuleOp>(opBuilder.getBlock()->getParentOp())) { |
| return processGlobalVariable(operands); |
| } |
| break; |
| case spirv::Opcode::OpName: |
| return processName(operands); |
| case spirv::Opcode::OpModuleProcessed: |
| case spirv::Opcode::OpString: |
| case spirv::Opcode::OpSource: |
| case spirv::Opcode::OpSourceContinued: |
| case spirv::Opcode::OpSourceExtension: |
| // TODO: This is debug information embedded in the binary which should be |
| // translated into the spv.module. |
| return success(); |
| case spirv::Opcode::OpTypeVoid: |
| case spirv::Opcode::OpTypeBool: |
| case spirv::Opcode::OpTypeInt: |
| case spirv::Opcode::OpTypeFloat: |
| case spirv::Opcode::OpTypeVector: |
| case spirv::Opcode::OpTypeArray: |
| case spirv::Opcode::OpTypeFunction: |
| case spirv::Opcode::OpTypeRuntimeArray: |
| case spirv::Opcode::OpTypeStruct: |
| case spirv::Opcode::OpTypePointer: |
| return processType(opcode, operands); |
| case spirv::Opcode::OpConstant: |
| return processConstant(operands, /*isSpec=*/false); |
| case spirv::Opcode::OpSpecConstant: |
| return processConstant(operands, /*isSpec=*/true); |
| case spirv::Opcode::OpConstantComposite: |
| return processConstantComposite(operands); |
| case spirv::Opcode::OpConstantTrue: |
| return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/false); |
| case spirv::Opcode::OpSpecConstantTrue: |
| return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/true); |
| case spirv::Opcode::OpConstantFalse: |
| return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/false); |
| case spirv::Opcode::OpSpecConstantFalse: |
| return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/true); |
| case spirv::Opcode::OpConstantNull: |
| return processConstantNull(operands); |
| case spirv::Opcode::OpDecorate: |
| return processDecoration(operands); |
| case spirv::Opcode::OpMemberDecorate: |
| return processMemberDecoration(operands); |
| case spirv::Opcode::OpFunction: |
| return processFunction(operands); |
| case spirv::Opcode::OpLabel: |
| return processLabel(operands); |
| case spirv::Opcode::OpBranch: |
| return processBranch(operands); |
| case spirv::Opcode::OpBranchConditional: |
| return processBranchConditional(operands); |
| case spirv::Opcode::OpSelectionMerge: |
| return processSelectionMerge(operands); |
| case spirv::Opcode::OpLoopMerge: |
| return processLoopMerge(operands); |
| case spirv::Opcode::OpPhi: |
| return processPhi(operands); |
| case spirv::Opcode::OpUndef: |
| return processUndef(operands); |
| default: |
| break; |
| } |
| return dispatchToAutogenDeserialization(opcode, operands); |
| } |
| |
| LogicalResult Deserializer::processUndef(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "OpUndef instruction must have two operands"); |
| } |
| auto type = getType(operands[0]); |
| if (!type) { |
| return emitError(unknownLoc, "unknown type <id> with OpUndef instruction"); |
| } |
| undefMap[operands[1]] = type; |
| return success(); |
| } |
| |
| // TODO(b/130356985): This method is copied from the auto-generated |
| // deserialization function for OpBitcast instruction. This is to avoid |
| // generating a Bitcast operations for cast from signed integer to unsigned |
| // integer and viceversa. MLIR doesn't have native support for this so they both |
| // end up mapping to the same type right now which is illegal according to |
| // OpBitcast semantics (and enforced by the SPIR-V dialect). |
| LogicalResult Deserializer::processBitcast(ArrayRef<uint32_t> words) { |
| SmallVector<Type, 1> resultTypes; |
| size_t wordIndex = 0; |
| (void)wordIndex; |
| uint32_t valueID = 0; |
| (void)valueID; |
| { |
| if (wordIndex >= words.size()) { |
| return emitError( |
| unknownLoc, |
| "expected result type <id> while deserializing spirv::BitcastOp"); |
| } |
| auto ty = getType(words[wordIndex]); |
| if (!ty) { |
| return emitError(unknownLoc, "unknown type result <id> : ") |
| << words[wordIndex]; |
| } |
| resultTypes.push_back(ty); |
| wordIndex++; |
| if (wordIndex >= words.size()) { |
| return emitError( |
| unknownLoc, |
| "expected result <id> while deserializing spirv::BitcastOp"); |
| } |
| } |
| valueID = words[wordIndex++]; |
| SmallVector<Value, 4> operands; |
| SmallVector<NamedAttribute, 4> attributes; |
| if (wordIndex < words.size()) { |
| auto arg = getValue(words[wordIndex]); |
| if (!arg) { |
| return emitError(unknownLoc, "unknown result <id> : ") |
| << words[wordIndex]; |
| } |
| operands.push_back(arg); |
| wordIndex++; |
| } |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "found more operands than expected when deserializing " |
| "spirv::BitcastOp, only ") |
| << wordIndex << " of " << words.size() << " processed"; |
| } |
| if (resultTypes[0] == operands[0].getType() && |
| resultTypes[0].isa<IntegerType>()) { |
| // TODO(b/130356985): This check is added to ignore error in Op verification |
| // due to both signed and unsigned integers mapping to the same |
| // type. Without this check this method is same as what is auto-generated. |
| valueMap[valueID] = operands[0]; |
| return success(); |
| } |
| |
| auto op = opBuilder.create<spirv::BitcastOp>(unknownLoc, resultTypes, |
| operands, attributes); |
| (void)op; |
| valueMap[valueID] = op.getResult(); |
| |
| if (decorations.count(valueID)) { |
| auto attrs = decorations[valueID].getAttrs(); |
| attributes.append(attrs.begin(), attrs.end()); |
| } |
| return success(); |
| } |
| |
| LogicalResult Deserializer::processExtInst(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 4) { |
| return emitError(unknownLoc, |
| "OpExtInst must have at least 4 operands, result type " |
| "<id>, result <id>, set <id> and instruction opcode"); |
| } |
| if (!extendedInstSets.count(operands[2])) { |
| return emitError(unknownLoc, "undefined set <id> in OpExtInst"); |
| } |
| SmallVector<uint32_t, 4> slicedOperands; |
| slicedOperands.append(operands.begin(), std::next(operands.begin(), 2)); |
| slicedOperands.append(std::next(operands.begin(), 4), operands.end()); |
| return dispatchToExtensionSetAutogenDeserialization( |
| extendedInstSets[operands[2]], operands[3], slicedOperands); |
| } |
| |
| namespace { |
| |
| template <> |
| LogicalResult |
| Deserializer::processOp<spirv::EntryPointOp>(ArrayRef<uint32_t> words) { |
| unsigned wordIndex = 0; |
| if (wordIndex >= words.size()) { |
| return emitError(unknownLoc, |
| "missing Execution Model specification in OpEntryPoint"); |
| } |
| auto exec_model = opBuilder.getI32IntegerAttr(words[wordIndex++]); |
| if (wordIndex >= words.size()) { |
| return emitError(unknownLoc, "missing <id> in OpEntryPoint"); |
| } |
| // Get the function <id> |
| auto fnID = words[wordIndex++]; |
| // Get the function name |
| auto fnName = decodeStringLiteral(words, wordIndex); |
| // Verify that the function <id> matches the fnName |
| auto parsedFunc = getFunction(fnID); |
| if (!parsedFunc) { |
| return emitError(unknownLoc, "no function matching <id> ") << fnID; |
| } |
| if (parsedFunc.getName() != fnName) { |
| return emitError(unknownLoc, "function name mismatch between OpEntryPoint " |
| "and OpFunction with <id> ") |
| << fnID << ": " << fnName << " vs. " << parsedFunc.getName(); |
| } |
| SmallVector<Attribute, 4> interface; |
| while (wordIndex < words.size()) { |
| auto arg = getGlobalVariable(words[wordIndex]); |
| if (!arg) { |
| return emitError(unknownLoc, "undefined result <id> ") |
| << words[wordIndex] << " while decoding OpEntryPoint"; |
| } |
| interface.push_back(opBuilder.getSymbolRefAttr(arg.getOperation())); |
| wordIndex++; |
| } |
| opBuilder.create<spirv::EntryPointOp>(unknownLoc, exec_model, |
| opBuilder.getSymbolRefAttr(fnName), |
| opBuilder.getArrayAttr(interface)); |
| return success(); |
| } |
| |
| template <> |
| LogicalResult |
| Deserializer::processOp<spirv::ExecutionModeOp>(ArrayRef<uint32_t> words) { |
| unsigned wordIndex = 0; |
| if (wordIndex >= words.size()) { |
| return emitError(unknownLoc, |
| "missing function result <id> in OpExecutionMode"); |
| } |
| // Get the function <id> to get the name of the function |
| auto fnID = words[wordIndex++]; |
| auto fn = getFunction(fnID); |
| if (!fn) { |
| return emitError(unknownLoc, "no function matching <id> ") << fnID; |
| } |
| // Get the Execution mode |
| if (wordIndex >= words.size()) { |
| return emitError(unknownLoc, "missing Execution Mode in OpExecutionMode"); |
| } |
| auto execMode = opBuilder.getI32IntegerAttr(words[wordIndex++]); |
| |
| // Get the values |
| SmallVector<Attribute, 4> attrListElems; |
| while (wordIndex < words.size()) { |
| attrListElems.push_back(opBuilder.getI32IntegerAttr(words[wordIndex++])); |
| } |
| auto values = opBuilder.getArrayAttr(attrListElems); |
| opBuilder.create<spirv::ExecutionModeOp>( |
| unknownLoc, opBuilder.getSymbolRefAttr(fn.getName()), execMode, values); |
| return success(); |
| } |
| |
| template <> |
| LogicalResult |
| Deserializer::processOp<spirv::ControlBarrierOp>(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 3) { |
| return emitError( |
| unknownLoc, |
| "OpControlBarrier must have execution scope <id>, memory scope <id> " |
| "and memory semantics <id>"); |
| } |
| |
| SmallVector<IntegerAttr, 3> argAttrs; |
| for (auto operand : operands) { |
| auto argAttr = getConstantInt(operand); |
| if (!argAttr) { |
| return emitError(unknownLoc, |
| "expected 32-bit integer constant from <id> ") |
| << operand << " for OpControlBarrier"; |
| } |
| argAttrs.push_back(argAttr); |
| } |
| |
| opBuilder.create<spirv::ControlBarrierOp>(unknownLoc, argAttrs[0], |
| argAttrs[1], argAttrs[2]); |
| return success(); |
| } |
| |
| template <> |
| LogicalResult |
| Deserializer::processOp<spirv::FunctionCallOp>(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, |
| "OpFunctionCall must have at least 3 operands"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto resultID = operands[1]; |
| auto functionID = operands[2]; |
| |
| auto functionName = getFunctionSymbol(functionID); |
| |
| SmallVector<Value, 4> arguments; |
| for (auto operand : llvm::drop_begin(operands, 3)) { |
| auto value = getValue(operand); |
| if (!value) { |
| return emitError(unknownLoc, "unknown <id> ") |
| << operand << " used by OpFunctionCall"; |
| } |
| arguments.push_back(value); |
| } |
| |
| SmallVector<Type, 1> resultTypes; |
| if (!isVoidType(resultType)) { |
| resultTypes.push_back(resultType); |
| } |
| |
| auto opFunctionCall = opBuilder.create<spirv::FunctionCallOp>( |
| unknownLoc, resultTypes, opBuilder.getSymbolRefAttr(functionName), |
| arguments); |
| |
| if (!resultTypes.empty()) { |
| valueMap[resultID] = opFunctionCall.getResult(0); |
| } |
| return success(); |
| } |
| |
| template <> |
| LogicalResult |
| Deserializer::processOp<spirv::MemoryBarrierOp>(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "OpMemoryBarrier must have memory scope <id> " |
| "and memory semantics <id>"); |
| } |
| |
| SmallVector<IntegerAttr, 2> argAttrs; |
| for (auto operand : operands) { |
| auto argAttr = getConstantInt(operand); |
| if (!argAttr) { |
| return emitError(unknownLoc, |
| "expected 32-bit integer constant from <id> ") |
| << operand << " for OpMemoryBarrier"; |
| } |
| argAttrs.push_back(argAttr); |
| } |
| |
| opBuilder.create<spirv::MemoryBarrierOp>(unknownLoc, argAttrs[0], |
| argAttrs[1]); |
| return success(); |
| } |
| |
| // Pull in auto-generated Deserializer::dispatchToAutogenDeserialization() and |
| // various Deserializer::processOp<...>() specializations. |
| #define GET_DESERIALIZATION_FNS |
| #include "mlir/Dialect/SPIRV/SPIRVSerialization.inc" |
| } // namespace |
| |
| Optional<spirv::ModuleOp> spirv::deserialize(ArrayRef<uint32_t> binary, |
| MLIRContext *context) { |
| Deserializer deserializer(binary, context); |
| |
| if (failed(deserializer.deserialize())) |
| return llvm::None; |
| |
| return deserializer.collect(); |
| } |