| //===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// |
| // |
| // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a straightforward conversion of an loop nest into a GPU |
| // kernel. The caller is expected to guarantee that the conversion is correct |
| // or to further transform the kernel to ensure correctness. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h" |
| |
| #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" |
| #include "mlir/Dialect/AffineOps/AffineOps.h" |
| #include "mlir/Dialect/GPU/GPUDialect.h" |
| #include "mlir/Dialect/LoopOps/LoopOps.h" |
| #include "mlir/Dialect/StandardOps/Ops.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/Transforms/LoopUtils.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/Support/Debug.h" |
| |
| #define DEBUG_TYPE "loops-to-gpu" |
| |
| using namespace mlir; |
| using namespace mlir::loop; |
| |
| using llvm::seq; |
| |
| // Extract an indexed value from KernelDim3. |
| static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { |
| switch (pos) { |
| case 0: |
| return dim3.x; |
| case 1: |
| return dim3.y; |
| case 2: |
| return dim3.z; |
| default: |
| llvm_unreachable("dim3 position out of bounds"); |
| } |
| return nullptr; |
| } |
| |
| // Get the lower bound-related operands of a loop operation. |
| static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { |
| return forOp.getLowerBoundOperands(); |
| } |
| static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) { |
| SmallVector<Value, 1> bounds(1, forOp.lowerBound()); |
| return bounds; |
| } |
| |
| // Get the upper bound-related operands of a loop operation. |
| static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { |
| return forOp.getUpperBoundOperands(); |
| } |
| static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) { |
| SmallVector<Value, 1> bounds(1, forOp.upperBound()); |
| return bounds; |
| } |
| |
| // Get a Value that corresponds to the loop step. If the step is an attribute, |
| // materialize a corresponding constant using builder. |
| static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { |
| return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep()); |
| } |
| static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); } |
| |
| // Get a Value for the loop lower bound. If the value requires computation, |
| // materialize the instructions using builder. |
| static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { |
| return lowerAffineLowerBound(forOp, builder); |
| } |
| static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) { |
| return forOp.lowerBound(); |
| } |
| |
| // Get a Value for the loop upper bound. If the value requires computation, |
| // materialize the instructions using builder. |
| static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { |
| return lowerAffineUpperBound(forOp, builder); |
| } |
| static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) { |
| return forOp.upperBound(); |
| } |
| |
| // Check the structure of the loop nest: |
| // - there are enough loops to map to numDims; |
| // - the loops are perfectly nested; |
| // - the loop bounds can be computed above the outermost loop. |
| // This roughly corresponds to the "matcher" part of the pattern-based |
| // rewriting infrastructure. |
| template <typename OpTy> |
| static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) { |
| Region &limit = forOp.region(); |
| for (unsigned i = 0, e = numDims; i < e; ++i) { |
| Operation *nested = &forOp.getBody()->front(); |
| if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || |
| !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) |
| return forOp.emitError( |
| "loops with bounds depending on other mapped loops " |
| "are not supported"); |
| |
| // The innermost loop can have an arbitrary body, skip the perfect nesting |
| // check for it. |
| if (i == e - 1) |
| break; |
| |
| auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); |
| if (forOp.getBody()->empty() || std::next(begin, 2) != end) |
| return forOp.emitError("expected perfectly nested loops in the body"); |
| |
| if (!(forOp = dyn_cast<OpTy>(nested))) |
| return nested->emitError("expected a nested loop"); |
| } |
| return success(); |
| } |
| |
| template <typename OpTy> |
| static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims, |
| unsigned numThreadDims) { |
| if (numBlockDims < 1 || numThreadDims < 1) { |
| LLVM_DEBUG(llvm::dbgs() << "nothing to map"); |
| return success(); |
| } |
| |
| OpBuilder builder(forOp.getOperation()); |
| if (numBlockDims > 3) { |
| return forOp.emitError("cannot map to more than 3 block dimensions"); |
| } |
| if (numThreadDims > 3) { |
| return forOp.emitError("cannot map to more than 3 thread dimensions"); |
| } |
| return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); |
| } |
| |
| template <typename OpTy> |
| static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims, |
| unsigned numThreadDims) { |
| if (numBlockDims < 1 || numThreadDims < 1) { |
| LLVM_DEBUG(llvm::dbgs() << "nothing to map"); |
| return success(); |
| } |
| |
| if (numBlockDims > 3) { |
| return forOp.emitError("cannot map to more than 3 block dimensions"); |
| } |
| if (numThreadDims > 3) { |
| return forOp.emitError("cannot map to more than 3 thread dimensions"); |
| } |
| if (numBlockDims != numThreadDims) { |
| // TODO(ravishankarm) : This can probably be relaxed by having a one-trip |
| // loop for the missing dimension, but there is not reason to handle this |
| // case for now. |
| return forOp.emitError( |
| "mismatch in block dimensions and thread dimensions"); |
| } |
| |
| // Check that the forOp contains perfectly nested loops for numBlockDims |
| if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) { |
| return failure(); |
| } |
| |
| // Get to the innermost loop. |
| for (auto i : seq<unsigned>(0, numBlockDims - 1)) { |
| forOp = cast<OpTy>(&forOp.getBody()->front()); |
| (void)i; |
| } |
| |
| // The forOp now points to the body of the innermost loop mapped to blocks. |
| for (Operation &op : *forOp.getBody()) { |
| // If the operation is a loop, check that it is mappable to workItems. |
| if (auto innerLoop = dyn_cast<OpTy>(&op)) { |
| if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) { |
| return failure(); |
| } |
| continue; |
| } |
| // TODO(ravishankarm) : If it is not a loop op, it is assumed that the |
| // statement is executed by all threads. It might be a collective operation, |
| // or some non-side effect instruction. Have to decide on "allowable" |
| // statements and check for those here. |
| } |
| return success(); |
| } |
| |
| namespace { |
| // Helper structure that holds common state of the loop to GPU kernel |
| // conversion. |
| struct LoopToGpuConverter { |
| template <typename OpTy> |
| Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops); |
| |
| template <typename OpTy> |
| void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims, |
| unsigned numThreadDims); |
| |
| // Ranges of the loops mapped to blocks or threads. |
| SmallVector<Value, 6> dims; |
| // Lower bounds of the loops mapped to blocks or threads. |
| SmallVector<Value, 6> lbs; |
| // Induction variables of the loops mapped to blocks or threads. |
| SmallVector<Value, 6> ivs; |
| // Steps of the loops mapped to blocks or threads. |
| SmallVector<Value, 6> steps; |
| }; |
| } // namespace |
| |
| // Return true if the value is obviously a constant "one". |
| static bool isConstantOne(Value value) { |
| if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp())) |
| return def.getValue() == 1; |
| return false; |
| } |
| |
| // Collect ranges, bounds, steps and induction variables in preparation for |
| // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. |
| // This may fail if the IR for computing loop bounds cannot be constructed, for |
| // example if an affine loop uses semi-affine maps. Return the last loop to be |
| // mapped on success, llvm::None on failure. |
| template <typename OpTy> |
| Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp, |
| unsigned numLoops) { |
| OpBuilder builder(forOp.getOperation()); |
| dims.reserve(numLoops); |
| lbs.reserve(numLoops); |
| ivs.reserve(numLoops); |
| steps.reserve(numLoops); |
| OpTy currentLoop = forOp; |
| for (unsigned i = 0; i < numLoops; ++i) { |
| Value lowerBound = getOrEmitLowerBound(currentLoop, builder); |
| Value upperBound = getOrEmitUpperBound(currentLoop, builder); |
| if (!lowerBound || !upperBound) { |
| return llvm::None; |
| } |
| |
| Value range = |
| builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound); |
| Value step = getOrCreateStep(currentLoop, builder); |
| if (!isConstantOne(step)) |
| range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step); |
| dims.push_back(range); |
| |
| lbs.push_back(lowerBound); |
| ivs.push_back(currentLoop.getInductionVar()); |
| steps.push_back(step); |
| |
| if (i != numLoops - 1) |
| currentLoop = cast<OpTy>(¤tLoop.getBody()->front()); |
| } |
| return currentLoop; |
| } |
| |
| /// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o |
| /// be partitioned across workgroups or workitems. The values for the |
| /// workgroup/workitem id along each dimension is passed in with `ids`. The |
| /// number of workgroups/workitems along each dimension are passed in with |
| /// `nids`. The innermost loop is mapped to the x-dimension, followed by the |
| /// next innermost loop to y-dimension, followed by z-dimension. |
| template <typename OpTy> |
| static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids, |
| ArrayRef<Value> nids) { |
| auto nDims = ids.size(); |
| assert(nDims == nids.size()); |
| for (auto dim : llvm::seq<unsigned>(0, nDims)) { |
| // TODO(ravishankarm): Don't always need to generate a loop here. If nids >= |
| // number of iterations of the original loop, this becomes a if |
| // condition. Though that does rely on how the workgroup/workitem sizes are |
| // specified to begin with. |
| mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]); |
| if (dim != nDims - 1) { |
| rootForOp = cast<OpTy>(rootForOp.getBody()->front()); |
| } |
| } |
| return rootForOp; |
| } |
| |
| /// Utility method to convert the gpu::KernelDim3 object for representing id of |
| /// each workgroup/workitem and number of workgroup/workitems along a dimension |
| /// of the launch into a container. |
| static void packIdAndNumId(gpu::KernelDim3 kernelIds, |
| gpu::KernelDim3 kernelNids, unsigned nDims, |
| SmallVectorImpl<Value> &ids, |
| SmallVectorImpl<Value> &nids) { |
| assert(nDims <= 3 && "invalid number of launch dimensions"); |
| SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x}; |
| SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x}; |
| ids.clear(); |
| ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end()); |
| nids.clear(); |
| nids.append(std::next(allNids.begin(), allNids.size() - nDims), |
| allNids.end()); |
| } |
| |
| /// Generate the body of the launch operation. |
| template <typename OpTy> |
| static LogicalResult |
| createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp, |
| unsigned numBlockDims, unsigned numThreadDims) { |
| OpBuilder::InsertionGuard bodyInsertionGuard(builder); |
| builder.setInsertionPointToEnd(&launchOp.body().front()); |
| auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc()); |
| |
| rootForOp.getOperation()->moveBefore(returnOp); |
| SmallVector<Value, 3> workgroupID, numWorkGroups; |
| packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims, |
| workgroupID, numWorkGroups); |
| |
| // Partition the loop for mapping to workgroups. |
| auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups); |
| |
| // Iterate over the body of the loopOp and get the loops to partition for |
| // thread blocks. |
| SmallVector<OpTy, 1> threadRootForOps; |
| for (Operation &op : *loopOp.getBody()) { |
| if (auto threadRootForOp = dyn_cast<OpTy>(&op)) { |
| threadRootForOps.push_back(threadRootForOp); |
| } |
| } |
| |
| SmallVector<Value, 3> workItemID, workGroupSize; |
| packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(), |
| numThreadDims, workItemID, workGroupSize); |
| for (auto &loopOp : threadRootForOps) { |
| builder.setInsertionPoint(loopOp); |
| createGPULaunchLoops(loopOp, workItemID, workGroupSize); |
| } |
| return success(); |
| } |
| |
| // Convert the computation rooted at the `rootForOp`, into a GPU kernel with the |
| // given workgroup size and number of workgroups. |
| template <typename OpTy> |
| static LogicalResult createLaunchFromOp(OpTy rootForOp, |
| ArrayRef<Value> numWorkGroups, |
| ArrayRef<Value> workGroupSizes) { |
| OpBuilder builder(rootForOp.getOperation()); |
| if (numWorkGroups.size() > 3) { |
| return rootForOp.emitError("invalid ") |
| << numWorkGroups.size() << "-D workgroup specification"; |
| } |
| auto loc = rootForOp.getLoc(); |
| Value one = builder.create<ConstantOp>( |
| loc, builder.getIntegerAttr(builder.getIndexType(), 1)); |
| SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one); |
| for (auto numWorkGroup : enumerate(numWorkGroups)) { |
| numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value(); |
| } |
| for (auto workGroupSize : enumerate(workGroupSizes)) { |
| workGroupSize3D[workGroupSize.index()] = workGroupSize.value(); |
| } |
| |
| // Get the values used within the region of the rootForOp but defined above |
| // it. |
| llvm::SetVector<Value> valuesToForwardSet; |
| getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(), |
| valuesToForwardSet); |
| // Also add the values used for the lb, ub, and step of the rootForOp. |
| valuesToForwardSet.insert(rootForOp.getOperands().begin(), |
| rootForOp.getOperands().end()); |
| auto valuesToForward = valuesToForwardSet.takeVector(); |
| auto launchOp = builder.create<gpu::LaunchOp>( |
| rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1], |
| numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1], |
| workGroupSize3D[2], valuesToForward); |
| if (failed(createLaunchBody(builder, rootForOp, launchOp, |
| numWorkGroups.size(), workGroupSizes.size()))) { |
| return failure(); |
| } |
| |
| // Replace values that are used within the region of the launchOp but are |
| // defined outside. They all are replaced with kernel arguments. |
| for (auto pair : |
| llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { |
| Value from = std::get<0>(pair); |
| Value to = std::get<1>(pair); |
| replaceAllUsesInRegionWith(from, to, launchOp.body()); |
| } |
| return success(); |
| } |
| |
| // Replace the rooted at "rootForOp" with a GPU launch operation. This expects |
| // "innermostForOp" to point to the last loop to be transformed to the kernel, |
| // and to have (numBlockDims + numThreadDims) perfectly nested loops between |
| // "rootForOp" and "innermostForOp". |
| // TODO(ravishankarm) : This method can be modified to use the |
| // createLaunchFromOp method, since that is a strict generalization of this |
| // method. |
| template <typename OpTy> |
| void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp, |
| unsigned numBlockDims, |
| unsigned numThreadDims) { |
| OpBuilder builder(rootForOp.getOperation()); |
| // Prepare the grid and block sizes for the launch operation. If there is |
| // no loop mapped to a specific dimension, use constant "1" as its size. |
| Value constOne = (numBlockDims < 3 || numThreadDims < 3) |
| ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1) |
| : nullptr; |
| Value gridSizeX = dims[0]; |
| Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; |
| Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; |
| Value blockSizeX = dims[numBlockDims]; |
| Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; |
| Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; |
| |
| // Create a launch op and move the body region of the innermost loop to the |
| // launch op. Pass the values defined outside the outermost loop and used |
| // inside the innermost loop and loop lower bounds as kernel data arguments. |
| // Still assuming perfect nesting so there are no values other than induction |
| // variables that are defined in one loop and used in deeper loops. |
| llvm::SetVector<Value> valuesToForwardSet; |
| getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(), |
| valuesToForwardSet); |
| auto valuesToForward = valuesToForwardSet.takeVector(); |
| auto originallyForwardedValues = valuesToForward.size(); |
| valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end()); |
| valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end()); |
| auto launchOp = builder.create<gpu::LaunchOp>( |
| rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, |
| blockSizeY, blockSizeZ, valuesToForward); |
| valuesToForward.resize(originallyForwardedValues); |
| |
| // Replace the loop terminator (loops contain only a single block) with the |
| // gpu return and move the operations from the loop body block to the gpu |
| // launch body block. Do not move the entire block because of the difference |
| // in block arguments. |
| Operation &terminator = innermostForOp.getBody()->back(); |
| Location terminatorLoc = terminator.getLoc(); |
| terminator.erase(); |
| builder.setInsertionPointToEnd(innermostForOp.getBody()); |
| builder.create<gpu::ReturnOp>(terminatorLoc); |
| launchOp.body().front().getOperations().splice( |
| launchOp.body().front().begin(), |
| innermostForOp.getBody()->getOperations()); |
| |
| // Remap the loop iterators to use block/thread identifiers instead. Loops |
| // may iterate from LB with step S whereas GPU thread/block ids always iterate |
| // from 0 to N with step 1. Therefore, loop induction variables are replaced |
| // with (gpu-thread/block-id * S) + LB. |
| builder.setInsertionPointToStart(&launchOp.body().front()); |
| auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(), |
| originallyForwardedValues); |
| auto stepArgumentIt = std::next(lbArgumentIt, lbs.size()); |
| for (auto en : llvm::enumerate(ivs)) { |
| Value id = |
| en.index() < numBlockDims |
| ? getDim3Value(launchOp.getBlockIds(), en.index()) |
| : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); |
| Value step = steps[en.index()]; |
| if (!isConstantOne(step)) |
| id = builder.create<MulIOp>(rootForOp.getLoc(), step, id); |
| |
| Value ivReplacement = |
| builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id); |
| en.value().replaceAllUsesWith(ivReplacement); |
| replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt, |
| launchOp.body()); |
| std::advance(lbArgumentIt, 1); |
| std::advance(stepArgumentIt, 1); |
| } |
| |
| // Remap the values defined outside the body to use kernel arguments instead. |
| // The list of kernel arguments also contains the lower bounds for loops at |
| // trailing positions, make sure we don't touch those. |
| for (auto pair : |
| llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) { |
| Value from = std::get<0>(pair); |
| Value to = std::get<1>(pair); |
| replaceAllUsesInRegionWith(from, to, launchOp.body()); |
| } |
| |
| // We are done and can erase the original outermost loop. |
| rootForOp.erase(); |
| } |
| |
| // Generic loop to GPU kernel conversion function. |
| template <typename OpTy> |
| static LogicalResult convertLoopNestToGPULaunch(OpTy forOp, |
| unsigned numBlockDims, |
| unsigned numThreadDims) { |
| if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims))) |
| return failure(); |
| |
| LoopToGpuConverter converter; |
| auto maybeInnerLoop = |
| converter.collectBounds(forOp, numBlockDims + numThreadDims); |
| if (!maybeInnerLoop) |
| return failure(); |
| converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); |
| |
| return success(); |
| } |
| |
| // Generic loop to GPU kernel conversion function when loop is imperfectly |
| // nested. The workgroup size and num workgroups is provided as input |
| template <typename OpTy> |
| static LogicalResult convertLoopToGPULaunch(OpTy forOp, |
| ArrayRef<Value> numWorkGroups, |
| ArrayRef<Value> workGroupSize) { |
| if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(), |
| workGroupSize.size()))) { |
| return failure(); |
| } |
| return createLaunchFromOp(forOp, numWorkGroups, workGroupSize); |
| } |
| |
| LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, |
| unsigned numBlockDims, |
| unsigned numThreadDims) { |
| return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); |
| } |
| |
| LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp, |
| unsigned numBlockDims, |
| unsigned numThreadDims) { |
| return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); |
| } |
| |
| LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp, |
| ArrayRef<Value> numWorkGroups, |
| ArrayRef<Value> workGroupSizes) { |
| return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes); |
| } |