blob: 15633ac6d502740b416e4c76e7f28afd8c843034 [file] [log] [blame] [edit]
//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::loop;
using llvm::seq;
// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.lowerBound());
return bounds;
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
SmallVector<Value, 1> bounds(1, forOp.upperBound());
return bounds;
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
}
static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
return forOp.lowerBound();
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
return forOp.upperBound();
}
// Check the structure of the loop nest:
// - there are enough loops to map to numDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
template <typename OpTy>
static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
Region &limit = forOp.region();
for (unsigned i = 0, e = numDims; i < e; ++i) {
Operation *nested = &forOp.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
return forOp.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
if (forOp.getBody()->empty() || std::next(begin, 2) != end)
return forOp.emitError("expected perfectly nested loops in the body");
if (!(forOp = dyn_cast<OpTy>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
template <typename OpTy>
static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
OpBuilder builder(forOp.getOperation());
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}
template <typename OpTy>
static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
if (numBlockDims != numThreadDims) {
// TODO(ravishankarm) : This can probably be relaxed by having a one-trip
// loop for the missing dimension, but there is not reason to handle this
// case for now.
return forOp.emitError(
"mismatch in block dimensions and thread dimensions");
}
// Check that the forOp contains perfectly nested loops for numBlockDims
if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
return failure();
}
// Get to the innermost loop.
for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
forOp = cast<OpTy>(&forOp.getBody()->front());
(void)i;
}
// The forOp now points to the body of the innermost loop mapped to blocks.
for (Operation &op : *forOp.getBody()) {
// If the operation is a loop, check that it is mappable to workItems.
if (auto innerLoop = dyn_cast<OpTy>(&op)) {
if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
return failure();
}
continue;
}
// TODO(ravishankarm) : If it is not a loop op, it is assumed that the
// statement is executed by all threads. It might be a collective operation,
// or some non-side effect instruction. Have to decide on "allowable"
// statements and check for those here.
}
return success();
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct LoopToGpuConverter {
template <typename OpTy>
Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
template <typename OpTy>
void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
return def.getValue() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
template <typename OpTy>
Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
OpTy currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return llvm::None;
}
Value range =
builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
Value step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<OpTy>(&currentLoop.getBody()->front());
}
return currentLoop;
}
/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
/// be partitioned across workgroups or workitems. The values for the
/// workgroup/workitem id along each dimension is passed in with `ids`. The
/// number of workgroups/workitems along each dimension are passed in with
/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
/// next innermost loop to y-dimension, followed by z-dimension.
template <typename OpTy>
static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
ArrayRef<Value> nids) {
auto nDims = ids.size();
assert(nDims == nids.size());
for (auto dim : llvm::seq<unsigned>(0, nDims)) {
// TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
// number of iterations of the original loop, this becomes a if
// condition. Though that does rely on how the workgroup/workitem sizes are
// specified to begin with.
mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
if (dim != nDims - 1) {
rootForOp = cast<OpTy>(rootForOp.getBody()->front());
}
}
return rootForOp;
}
/// Utility method to convert the gpu::KernelDim3 object for representing id of
/// each workgroup/workitem and number of workgroup/workitems along a dimension
/// of the launch into a container.
static void packIdAndNumId(gpu::KernelDim3 kernelIds,
gpu::KernelDim3 kernelNids, unsigned nDims,
SmallVectorImpl<Value> &ids,
SmallVectorImpl<Value> &nids) {
assert(nDims <= 3 && "invalid number of launch dimensions");
SmallVector<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
SmallVector<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
ids.clear();
ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
nids.clear();
nids.append(std::next(allNids.begin(), allNids.size() - nDims),
allNids.end());
}
/// Generate the body of the launch operation.
template <typename OpTy>
static LogicalResult
createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp,
unsigned numBlockDims, unsigned numThreadDims) {
OpBuilder::InsertionGuard bodyInsertionGuard(builder);
builder.setInsertionPointToEnd(&launchOp.body().front());
auto returnOp = builder.create<gpu::ReturnOp>(launchOp.getLoc());
rootForOp.getOperation()->moveBefore(returnOp);
SmallVector<Value, 3> workgroupID, numWorkGroups;
packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
workgroupID, numWorkGroups);
// Partition the loop for mapping to workgroups.
auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);
// Iterate over the body of the loopOp and get the loops to partition for
// thread blocks.
SmallVector<OpTy, 1> threadRootForOps;
for (Operation &op : *loopOp.getBody()) {
if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
threadRootForOps.push_back(threadRootForOp);
}
}
SmallVector<Value, 3> workItemID, workGroupSize;
packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
numThreadDims, workItemID, workGroupSize);
for (auto &loopOp : threadRootForOps) {
builder.setInsertionPoint(loopOp);
createGPULaunchLoops(loopOp, workItemID, workGroupSize);
}
return success();
}
// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
// given workgroup size and number of workgroups.
template <typename OpTy>
static LogicalResult createLaunchFromOp(OpTy rootForOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
OpBuilder builder(rootForOp.getOperation());
if (numWorkGroups.size() > 3) {
return rootForOp.emitError("invalid ")
<< numWorkGroups.size() << "-D workgroup specification";
}
auto loc = rootForOp.getLoc();
Value one = builder.create<ConstantOp>(
loc, builder.getIntegerAttr(builder.getIndexType(), 1));
SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
for (auto numWorkGroup : enumerate(numWorkGroups)) {
numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
}
for (auto workGroupSize : enumerate(workGroupSizes)) {
workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
}
// Get the values used within the region of the rootForOp but defined above
// it.
llvm::SetVector<Value> valuesToForwardSet;
getUsedValuesDefinedAbove(rootForOp.region(), rootForOp.region(),
valuesToForwardSet);
// Also add the values used for the lb, ub, and step of the rootForOp.
valuesToForwardSet.insert(rootForOp.getOperands().begin(),
rootForOp.getOperands().end());
auto valuesToForward = valuesToForwardSet.takeVector();
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
workGroupSize3D[2], valuesToForward);
if (failed(createLaunchBody(builder, rootForOp, launchOp,
numWorkGroups.size(), workGroupSizes.size()))) {
return failure();
}
// Replace values that are used within the region of the launchOp but are
// defined outside. They all are replaced with kernel arguments.
for (auto pair :
llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
Value from = std::get<0>(pair);
Value to = std::get<1>(pair);
replaceAllUsesInRegionWith(from, to, launchOp.body());
}
return success();
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
// TODO(ravishankarm) : This method can be modified to use the
// createLaunchFromOp method, since that is a strict generalization of this
// method.
template <typename OpTy>
void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value constOne = (numBlockDims < 3 || numThreadDims < 3)
? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value gridSizeX = dims[0];
Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value blockSizeX = dims[numBlockDims];
Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op. Pass the values defined outside the outermost loop and used
// inside the innermost loop and loop lower bounds as kernel data arguments.
// Still assuming perfect nesting so there are no values other than induction
// variables that are defined in one loop and used in deeper loops.
llvm::SetVector<Value> valuesToForwardSet;
getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(),
valuesToForwardSet);
auto valuesToForward = valuesToForwardSet.takeVector();
auto originallyForwardedValues = valuesToForward.size();
valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end());
valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end());
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ, valuesToForward);
valuesToForward.resize(originallyForwardedValues);
// Replace the loop terminator (loops contain only a single block) with the
// gpu return and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::ReturnOp>(terminatorLoc);
launchOp.body().front().getOperations().splice(
launchOp.body().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.body().front());
auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(),
originallyForwardedValues);
auto stepArgumentIt = std::next(lbArgumentIt, lbs.size());
for (auto en : llvm::enumerate(ivs)) {
Value id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);
Value ivReplacement =
builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value().replaceAllUsesWith(ivReplacement);
replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt,
launchOp.body());
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// Remap the values defined outside the body to use kernel arguments instead.
// The list of kernel arguments also contains the lower bounds for loops at
// trailing positions, make sure we don't touch those.
for (auto pair :
llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
Value from = std::get<0>(pair);
Value to = std::get<1>(pair);
replaceAllUsesInRegionWith(from, to, launchOp.body());
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
template <typename OpTy>
static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
LoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
// Generic loop to GPU kernel conversion function when loop is imperfectly
// nested. The workgroup size and num workgroups is provided as input
template <typename OpTy>
static LogicalResult convertLoopToGPULaunch(OpTy forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSize) {
if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
workGroupSize.size()))) {
return failure();
}
return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp,
ArrayRef<Value> numWorkGroups,
ArrayRef<Value> workGroupSizes) {
return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
}