| //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "MCTargetDesc/SystemZInstPrinter.h" | 
 | #include "MCTargetDesc/SystemZMCAsmInfo.h" | 
 | #include "MCTargetDesc/SystemZMCTargetDesc.h" | 
 | #include "SystemZTargetStreamer.h" | 
 | #include "TargetInfo/SystemZTargetInfo.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/StringRef.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/MC/MCContext.h" | 
 | #include "llvm/MC/MCExpr.h" | 
 | #include "llvm/MC/MCInst.h" | 
 | #include "llvm/MC/MCInstBuilder.h" | 
 | #include "llvm/MC/MCInstrInfo.h" | 
 | #include "llvm/MC/MCParser/MCAsmLexer.h" | 
 | #include "llvm/MC/MCParser/MCAsmParser.h" | 
 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" | 
 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" | 
 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" | 
 | #include "llvm/MC/MCStreamer.h" | 
 | #include "llvm/MC/MCSubtargetInfo.h" | 
 | #include "llvm/MC/TargetRegistry.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/SMLoc.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstddef> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <memory> | 
 | #include <string> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol | 
 | // is true any MCExpr is accepted (address displacement). | 
 | static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, | 
 |                     bool AllowSymbol = false) { | 
 |   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { | 
 |     int64_t Value = CE->getValue(); | 
 |     return Value >= MinValue && Value <= MaxValue; | 
 |   } | 
 |   return AllowSymbol; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | enum RegisterKind { | 
 |   GR32Reg, | 
 |   GRH32Reg, | 
 |   GR64Reg, | 
 |   GR128Reg, | 
 |   FP32Reg, | 
 |   FP64Reg, | 
 |   FP128Reg, | 
 |   VR32Reg, | 
 |   VR64Reg, | 
 |   VR128Reg, | 
 |   AR32Reg, | 
 |   CR64Reg, | 
 | }; | 
 |  | 
 | enum MemoryKind { | 
 |   BDMem, | 
 |   BDXMem, | 
 |   BDLMem, | 
 |   BDRMem, | 
 |   BDVMem | 
 | }; | 
 |  | 
 | class SystemZOperand : public MCParsedAsmOperand { | 
 | private: | 
 |   enum OperandKind { | 
 |     KindInvalid, | 
 |     KindToken, | 
 |     KindReg, | 
 |     KindImm, | 
 |     KindImmTLS, | 
 |     KindMem | 
 |   }; | 
 |  | 
 |   OperandKind Kind; | 
 |   SMLoc StartLoc, EndLoc; | 
 |  | 
 |   // A string of length Length, starting at Data. | 
 |   struct TokenOp { | 
 |     const char *Data; | 
 |     unsigned Length; | 
 |   }; | 
 |  | 
 |   // LLVM register Num, which has kind Kind.  In some ways it might be | 
 |   // easier for this class to have a register bank (general, floating-point | 
 |   // or access) and a raw register number (0-15).  This would postpone the | 
 |   // interpretation of the operand to the add*() methods and avoid the need | 
 |   // for context-dependent parsing.  However, we do things the current way | 
 |   // because of the virtual getReg() method, which needs to distinguish | 
 |   // between (say) %r0 used as a single register and %r0 used as a pair. | 
 |   // Context-dependent parsing can also give us slightly better error | 
 |   // messages when invalid pairs like %r1 are used. | 
 |   struct RegOp { | 
 |     RegisterKind Kind; | 
 |     unsigned Num; | 
 |   }; | 
 |  | 
 |   // Base + Disp + Index, where Base and Index are LLVM registers or 0. | 
 |   // MemKind says what type of memory this is and RegKind says what type | 
 |   // the base register has (GR32Reg or GR64Reg).  Length is the operand | 
 |   // length for D(L,B)-style operands, otherwise it is null. | 
 |   struct MemOp { | 
 |     unsigned Base : 12; | 
 |     unsigned Index : 12; | 
 |     unsigned MemKind : 4; | 
 |     unsigned RegKind : 4; | 
 |     const MCExpr *Disp; | 
 |     union { | 
 |       const MCExpr *Imm; | 
 |       unsigned Reg; | 
 |     } Length; | 
 |   }; | 
 |  | 
 |   // Imm is an immediate operand, and Sym is an optional TLS symbol | 
 |   // for use with a __tls_get_offset marker relocation. | 
 |   struct ImmTLSOp { | 
 |     const MCExpr *Imm; | 
 |     const MCExpr *Sym; | 
 |   }; | 
 |  | 
 |   union { | 
 |     TokenOp Token; | 
 |     RegOp Reg; | 
 |     const MCExpr *Imm; | 
 |     ImmTLSOp ImmTLS; | 
 |     MemOp Mem; | 
 |   }; | 
 |  | 
 |   void addExpr(MCInst &Inst, const MCExpr *Expr) const { | 
 |     // Add as immediates when possible.  Null MCExpr = 0. | 
 |     if (!Expr) | 
 |       Inst.addOperand(MCOperand::createImm(0)); | 
 |     else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) | 
 |       Inst.addOperand(MCOperand::createImm(CE->getValue())); | 
 |     else | 
 |       Inst.addOperand(MCOperand::createExpr(Expr)); | 
 |   } | 
 |  | 
 | public: | 
 |   SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) | 
 |       : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} | 
 |  | 
 |   // Create particular kinds of operand. | 
 |   static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, | 
 |                                                        SMLoc EndLoc) { | 
 |     return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); | 
 |   } | 
 |  | 
 |   static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { | 
 |     auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); | 
 |     Op->Token.Data = Str.data(); | 
 |     Op->Token.Length = Str.size(); | 
 |     return Op; | 
 |   } | 
 |  | 
 |   static std::unique_ptr<SystemZOperand> | 
 |   createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { | 
 |     auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); | 
 |     Op->Reg.Kind = Kind; | 
 |     Op->Reg.Num = Num; | 
 |     return Op; | 
 |   } | 
 |  | 
 |   static std::unique_ptr<SystemZOperand> | 
 |   createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { | 
 |     auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); | 
 |     Op->Imm = Expr; | 
 |     return Op; | 
 |   } | 
 |  | 
 |   static std::unique_ptr<SystemZOperand> | 
 |   createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, | 
 |             const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, | 
 |             unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { | 
 |     auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); | 
 |     Op->Mem.MemKind = MemKind; | 
 |     Op->Mem.RegKind = RegKind; | 
 |     Op->Mem.Base = Base; | 
 |     Op->Mem.Index = Index; | 
 |     Op->Mem.Disp = Disp; | 
 |     if (MemKind == BDLMem) | 
 |       Op->Mem.Length.Imm = LengthImm; | 
 |     if (MemKind == BDRMem) | 
 |       Op->Mem.Length.Reg = LengthReg; | 
 |     return Op; | 
 |   } | 
 |  | 
 |   static std::unique_ptr<SystemZOperand> | 
 |   createImmTLS(const MCExpr *Imm, const MCExpr *Sym, | 
 |                SMLoc StartLoc, SMLoc EndLoc) { | 
 |     auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); | 
 |     Op->ImmTLS.Imm = Imm; | 
 |     Op->ImmTLS.Sym = Sym; | 
 |     return Op; | 
 |   } | 
 |  | 
 |   // Token operands | 
 |   bool isToken() const override { | 
 |     return Kind == KindToken; | 
 |   } | 
 |   StringRef getToken() const { | 
 |     assert(Kind == KindToken && "Not a token"); | 
 |     return StringRef(Token.Data, Token.Length); | 
 |   } | 
 |  | 
 |   // Register operands. | 
 |   bool isReg() const override { | 
 |     return Kind == KindReg; | 
 |   } | 
 |   bool isReg(RegisterKind RegKind) const { | 
 |     return Kind == KindReg && Reg.Kind == RegKind; | 
 |   } | 
 |   unsigned getReg() const override { | 
 |     assert(Kind == KindReg && "Not a register"); | 
 |     return Reg.Num; | 
 |   } | 
 |  | 
 |   // Immediate operands. | 
 |   bool isImm() const override { | 
 |     return Kind == KindImm; | 
 |   } | 
 |   bool isImm(int64_t MinValue, int64_t MaxValue) const { | 
 |     return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true); | 
 |   } | 
 |   const MCExpr *getImm() const { | 
 |     assert(Kind == KindImm && "Not an immediate"); | 
 |     return Imm; | 
 |   } | 
 |  | 
 |   // Immediate operands with optional TLS symbol. | 
 |   bool isImmTLS() const { | 
 |     return Kind == KindImmTLS; | 
 |   } | 
 |  | 
 |   const ImmTLSOp getImmTLS() const { | 
 |     assert(Kind == KindImmTLS && "Not a TLS immediate"); | 
 |     return ImmTLS; | 
 |   } | 
 |  | 
 |   // Memory operands. | 
 |   bool isMem() const override { | 
 |     return Kind == KindMem; | 
 |   } | 
 |   bool isMem(MemoryKind MemKind) const { | 
 |     return (Kind == KindMem && | 
 |             (Mem.MemKind == MemKind || | 
 |              // A BDMem can be treated as a BDXMem in which the index | 
 |              // register field is 0. | 
 |              (Mem.MemKind == BDMem && MemKind == BDXMem))); | 
 |   } | 
 |   bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { | 
 |     return isMem(MemKind) && Mem.RegKind == RegKind; | 
 |   } | 
 |   bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { | 
 |     return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); | 
 |   } | 
 |   bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { | 
 |     return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); | 
 |   } | 
 |   bool isMemDisp12Len4(RegisterKind RegKind) const { | 
 |     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); | 
 |   } | 
 |   bool isMemDisp12Len8(RegisterKind RegKind) const { | 
 |     return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); | 
 |   } | 
 |  | 
 |   const MemOp& getMem() const { | 
 |     assert(Kind == KindMem && "Not a Mem operand"); | 
 |     return Mem; | 
 |   } | 
 |  | 
 |   // Override MCParsedAsmOperand. | 
 |   SMLoc getStartLoc() const override { return StartLoc; } | 
 |   SMLoc getEndLoc() const override { return EndLoc; } | 
 |   void print(raw_ostream &OS) const override; | 
 |  | 
 |   /// getLocRange - Get the range between the first and last token of this | 
 |   /// operand. | 
 |   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } | 
 |  | 
 |   // Used by the TableGen code to add particular types of operand | 
 |   // to an instruction. | 
 |   void addRegOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 1 && "Invalid number of operands"); | 
 |     Inst.addOperand(MCOperand::createReg(getReg())); | 
 |   } | 
 |   void addImmOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 1 && "Invalid number of operands"); | 
 |     addExpr(Inst, getImm()); | 
 |   } | 
 |   void addBDAddrOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 2 && "Invalid number of operands"); | 
 |     assert(isMem(BDMem) && "Invalid operand type"); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
 |     addExpr(Inst, Mem.Disp); | 
 |   } | 
 |   void addBDXAddrOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 3 && "Invalid number of operands"); | 
 |     assert(isMem(BDXMem) && "Invalid operand type"); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
 |     addExpr(Inst, Mem.Disp); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Index)); | 
 |   } | 
 |   void addBDLAddrOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 3 && "Invalid number of operands"); | 
 |     assert(isMem(BDLMem) && "Invalid operand type"); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
 |     addExpr(Inst, Mem.Disp); | 
 |     addExpr(Inst, Mem.Length.Imm); | 
 |   } | 
 |   void addBDRAddrOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 3 && "Invalid number of operands"); | 
 |     assert(isMem(BDRMem) && "Invalid operand type"); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
 |     addExpr(Inst, Mem.Disp); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); | 
 |   } | 
 |   void addBDVAddrOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 3 && "Invalid number of operands"); | 
 |     assert(isMem(BDVMem) && "Invalid operand type"); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Base)); | 
 |     addExpr(Inst, Mem.Disp); | 
 |     Inst.addOperand(MCOperand::createReg(Mem.Index)); | 
 |   } | 
 |   void addImmTLSOperands(MCInst &Inst, unsigned N) const { | 
 |     assert(N == 2 && "Invalid number of operands"); | 
 |     assert(Kind == KindImmTLS && "Invalid operand type"); | 
 |     addExpr(Inst, ImmTLS.Imm); | 
 |     if (ImmTLS.Sym) | 
 |       addExpr(Inst, ImmTLS.Sym); | 
 |   } | 
 |  | 
 |   // Used by the TableGen code to check for particular operand types. | 
 |   bool isGR32() const { return isReg(GR32Reg); } | 
 |   bool isGRH32() const { return isReg(GRH32Reg); } | 
 |   bool isGRX32() const { return false; } | 
 |   bool isGR64() const { return isReg(GR64Reg); } | 
 |   bool isGR128() const { return isReg(GR128Reg); } | 
 |   bool isADDR32() const { return isReg(GR32Reg); } | 
 |   bool isADDR64() const { return isReg(GR64Reg); } | 
 |   bool isADDR128() const { return false; } | 
 |   bool isFP32() const { return isReg(FP32Reg); } | 
 |   bool isFP64() const { return isReg(FP64Reg); } | 
 |   bool isFP128() const { return isReg(FP128Reg); } | 
 |   bool isVR32() const { return isReg(VR32Reg); } | 
 |   bool isVR64() const { return isReg(VR64Reg); } | 
 |   bool isVF128() const { return false; } | 
 |   bool isVR128() const { return isReg(VR128Reg); } | 
 |   bool isAR32() const { return isReg(AR32Reg); } | 
 |   bool isCR64() const { return isReg(CR64Reg); } | 
 |   bool isAnyReg() const { return (isReg() || isImm(0, 15)); } | 
 |   bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } | 
 |   bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } | 
 |   bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } | 
 |   bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } | 
 |   bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } | 
 |   bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } | 
 |   bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } | 
 |   bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } | 
 |   bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } | 
 |   bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } | 
 |   bool isU1Imm() const { return isImm(0, 1); } | 
 |   bool isU2Imm() const { return isImm(0, 3); } | 
 |   bool isU3Imm() const { return isImm(0, 7); } | 
 |   bool isU4Imm() const { return isImm(0, 15); } | 
 |   bool isU8Imm() const { return isImm(0, 255); } | 
 |   bool isS8Imm() const { return isImm(-128, 127); } | 
 |   bool isU12Imm() const { return isImm(0, 4095); } | 
 |   bool isU16Imm() const { return isImm(0, 65535); } | 
 |   bool isS16Imm() const { return isImm(-32768, 32767); } | 
 |   bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } | 
 |   bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } | 
 |   bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } | 
 | }; | 
 |  | 
 | class SystemZAsmParser : public MCTargetAsmParser { | 
 | #define GET_ASSEMBLER_HEADER | 
 | #include "SystemZGenAsmMatcher.inc" | 
 |  | 
 | private: | 
 |   MCAsmParser &Parser; | 
 |   enum RegisterGroup { | 
 |     RegGR, | 
 |     RegFP, | 
 |     RegV, | 
 |     RegAR, | 
 |     RegCR | 
 |   }; | 
 |   struct Register { | 
 |     RegisterGroup Group; | 
 |     unsigned Num; | 
 |     SMLoc StartLoc, EndLoc; | 
 |   }; | 
 |  | 
 |   SystemZTargetStreamer &getTargetStreamer() { | 
 |     assert(getParser().getStreamer().getTargetStreamer() && | 
 |            "do not have a target streamer"); | 
 |     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); | 
 |     return static_cast<SystemZTargetStreamer &>(TS); | 
 |   } | 
 |  | 
 |   bool parseRegister(Register &Reg, bool RestoreOnFailure = false); | 
 |  | 
 |   bool parseIntegerRegister(Register &Reg, RegisterGroup Group); | 
 |  | 
 |   OperandMatchResultTy parseRegister(OperandVector &Operands, | 
 |                                      RegisterKind Kind); | 
 |  | 
 |   OperandMatchResultTy parseAnyRegister(OperandVector &Operands); | 
 |  | 
 |   bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, | 
 |                     Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, | 
 |                     bool HasLength = false, bool HasVectorIndex = false); | 
 |   bool parseAddressRegister(Register &Reg); | 
 |  | 
 |   bool ParseDirectiveInsn(SMLoc L); | 
 |   bool ParseDirectiveMachine(SMLoc L); | 
 |   bool ParseGNUAttribute(SMLoc L); | 
 |  | 
 |   OperandMatchResultTy parseAddress(OperandVector &Operands, | 
 |                                     MemoryKind MemKind, | 
 |                                     RegisterKind RegKind); | 
 |  | 
 |   OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, | 
 |                                   int64_t MaxVal, bool AllowTLS); | 
 |  | 
 |   bool parseOperand(OperandVector &Operands, StringRef Mnemonic); | 
 |  | 
 |   // Both the hlasm and att variants still rely on the basic gnu asm | 
 |   // format with respect to inputs, clobbers, outputs etc. | 
 |   // | 
 |   // However, calling the overriden getAssemblerDialect() method in | 
 |   // AsmParser is problematic. It either returns the AssemblerDialect field | 
 |   // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is | 
 |   // unset, otherwise it returns the private AssemblerDialect field in | 
 |   // AsmParser. | 
 |   // | 
 |   // The problematic part is because, we forcibly set the inline asm dialect | 
 |   // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query | 
 |   // to the overriden getAssemblerDialect function in AsmParser.cpp, will | 
 |   // not return the assembler dialect set in the respective MCAsmInfo instance. | 
 |   // | 
 |   // For this purpose, we explicitly query the SystemZMCAsmInfo instance | 
 |   // here, to get the "correct" assembler dialect, and use it in various | 
 |   // functions. | 
 |   unsigned getMAIAssemblerDialect() { | 
 |     return Parser.getContext().getAsmInfo()->getAssemblerDialect(); | 
 |   } | 
 |  | 
 |   // An alphabetic character in HLASM is a letter from 'A' through 'Z', | 
 |   // or from 'a' through 'z', or '$', '_','#', or '@'. | 
 |   inline bool isHLASMAlpha(char C) { | 
 |     return isAlpha(C) || llvm::is_contained("_@#$", C); | 
 |   } | 
 |  | 
 |   // A digit in HLASM is a number from 0 to 9. | 
 |   inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } | 
 |  | 
 |   // Are we parsing using the AD_HLASM dialect? | 
 |   inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } | 
 |  | 
 |   // Are we parsing using the AD_ATT dialect? | 
 |   inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } | 
 |  | 
 | public: | 
 |   SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, | 
 |                    const MCInstrInfo &MII, | 
 |                    const MCTargetOptions &Options) | 
 |     : MCTargetAsmParser(Options, sti, MII), Parser(parser) { | 
 |     MCAsmParserExtension::Initialize(Parser); | 
 |  | 
 |     // Alias the .word directive to .short. | 
 |     parser.addAliasForDirective(".word", ".short"); | 
 |  | 
 |     // Initialize the set of available features. | 
 |     setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); | 
 |   } | 
 |  | 
 |   // Override MCTargetAsmParser. | 
 |   ParseStatus parseDirective(AsmToken DirectiveID) override; | 
 |   bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc, | 
 |                      SMLoc &EndLoc) override; | 
 |   bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, | 
 |                      bool RestoreOnFailure); | 
 |   OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc, | 
 |                                         SMLoc &EndLoc) override; | 
 |   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, | 
 |                         SMLoc NameLoc, OperandVector &Operands) override; | 
 |   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
 |                                OperandVector &Operands, MCStreamer &Out, | 
 |                                uint64_t &ErrorInfo, | 
 |                                bool MatchingInlineAsm) override; | 
 |   bool isLabel(AsmToken &Token) override; | 
 |  | 
 |   // Used by the TableGen code to parse particular operand types. | 
 |   OperandMatchResultTy parseGR32(OperandVector &Operands) { | 
 |     return parseRegister(Operands, GR32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseGRH32(OperandVector &Operands) { | 
 |     return parseRegister(Operands, GRH32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseGRX32(OperandVector &Operands) { | 
 |     llvm_unreachable("GRX32 should only be used for pseudo instructions"); | 
 |   } | 
 |   OperandMatchResultTy parseGR64(OperandVector &Operands) { | 
 |     return parseRegister(Operands, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseGR128(OperandVector &Operands) { | 
 |     return parseRegister(Operands, GR128Reg); | 
 |   } | 
 |   OperandMatchResultTy parseADDR32(OperandVector &Operands) { | 
 |     // For the AsmParser, we will accept %r0 for ADDR32 as well. | 
 |     return parseRegister(Operands, GR32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseADDR64(OperandVector &Operands) { | 
 |     // For the AsmParser, we will accept %r0 for ADDR64 as well. | 
 |     return parseRegister(Operands, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseADDR128(OperandVector &Operands) { | 
 |     llvm_unreachable("Shouldn't be used as an operand"); | 
 |   } | 
 |   OperandMatchResultTy parseFP32(OperandVector &Operands) { | 
 |     return parseRegister(Operands, FP32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseFP64(OperandVector &Operands) { | 
 |     return parseRegister(Operands, FP64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseFP128(OperandVector &Operands) { | 
 |     return parseRegister(Operands, FP128Reg); | 
 |   } | 
 |   OperandMatchResultTy parseVR32(OperandVector &Operands) { | 
 |     return parseRegister(Operands, VR32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseVR64(OperandVector &Operands) { | 
 |     return parseRegister(Operands, VR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseVF128(OperandVector &Operands) { | 
 |     llvm_unreachable("Shouldn't be used as an operand"); | 
 |   } | 
 |   OperandMatchResultTy parseVR128(OperandVector &Operands) { | 
 |     return parseRegister(Operands, VR128Reg); | 
 |   } | 
 |   OperandMatchResultTy parseAR32(OperandVector &Operands) { | 
 |     return parseRegister(Operands, AR32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseCR64(OperandVector &Operands) { | 
 |     return parseRegister(Operands, CR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseAnyReg(OperandVector &Operands) { | 
 |     return parseAnyRegister(Operands); | 
 |   } | 
 |   OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDMem, GR32Reg); | 
 |   } | 
 |   OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDMem, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDXMem, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDLMem, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDRMem, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) { | 
 |     return parseAddress(Operands, BDVMem, GR64Reg); | 
 |   } | 
 |   OperandMatchResultTy parsePCRel12(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); | 
 |   } | 
 |   OperandMatchResultTy parsePCRel16(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); | 
 |   } | 
 |   OperandMatchResultTy parsePCRel24(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); | 
 |   } | 
 |   OperandMatchResultTy parsePCRel32(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); | 
 |   } | 
 |   OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); | 
 |   } | 
 |   OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) { | 
 |     return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); | 
 |   } | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | #define GET_REGISTER_MATCHER | 
 | #define GET_SUBTARGET_FEATURE_NAME | 
 | #define GET_MATCHER_IMPLEMENTATION | 
 | #define GET_MNEMONIC_SPELL_CHECKER | 
 | #include "SystemZGenAsmMatcher.inc" | 
 |  | 
 | // Used for the .insn directives; contains information needed to parse the | 
 | // operands in the directive. | 
 | struct InsnMatchEntry { | 
 |   StringRef Format; | 
 |   uint64_t Opcode; | 
 |   int32_t NumOperands; | 
 |   MatchClassKind OperandKinds[7]; | 
 | }; | 
 |  | 
 | // For equal_range comparison. | 
 | struct CompareInsn { | 
 |   bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { | 
 |     return LHS.Format < RHS; | 
 |   } | 
 |   bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { | 
 |     return LHS < RHS.Format; | 
 |   } | 
 |   bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { | 
 |     return LHS.Format < RHS.Format; | 
 |   } | 
 | }; | 
 |  | 
 | // Table initializing information for parsing the .insn directive. | 
 | static struct InsnMatchEntry InsnMatchTable[] = { | 
 |   /* Format, Opcode, NumOperands, OperandKinds */ | 
 |   { "e", SystemZ::InsnE, 1, | 
 |     { MCK_U16Imm } }, | 
 |   { "ri", SystemZ::InsnRI, 3, | 
 |     { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, | 
 |   { "rie", SystemZ::InsnRIE, 4, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, | 
 |   { "ril", SystemZ::InsnRIL, 3, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, | 
 |   { "rilu", SystemZ::InsnRILU, 3, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, | 
 |   { "ris", SystemZ::InsnRIS, 5, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, | 
 |   { "rr", SystemZ::InsnRR, 3, | 
 |     { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, | 
 |   { "rre", SystemZ::InsnRRE, 3, | 
 |     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, | 
 |   { "rrf", SystemZ::InsnRRF, 5, | 
 |     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, | 
 |   { "rrs", SystemZ::InsnRRS, 5, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, | 
 |   { "rs", SystemZ::InsnRS, 4, | 
 |     { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, | 
 |   { "rse", SystemZ::InsnRSE, 4, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, | 
 |   { "rsi", SystemZ::InsnRSI, 4, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, | 
 |   { "rsy", SystemZ::InsnRSY, 4, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, | 
 |   { "rx", SystemZ::InsnRX, 3, | 
 |     { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
 |   { "rxe", SystemZ::InsnRXE, 3, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
 |   { "rxf", SystemZ::InsnRXF, 4, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, | 
 |   { "rxy", SystemZ::InsnRXY, 3, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, | 
 |   { "s", SystemZ::InsnS, 2, | 
 |     { MCK_U32Imm, MCK_BDAddr64Disp12 } }, | 
 |   { "si", SystemZ::InsnSI, 3, | 
 |     { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, | 
 |   { "sil", SystemZ::InsnSIL, 3, | 
 |     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, | 
 |   { "siy", SystemZ::InsnSIY, 3, | 
 |     { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, | 
 |   { "ss", SystemZ::InsnSS, 4, | 
 |     { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, | 
 |   { "sse", SystemZ::InsnSSE, 3, | 
 |     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, | 
 |   { "ssf", SystemZ::InsnSSF, 4, | 
 |     { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, | 
 |   { "vri", SystemZ::InsnVRI, 6, | 
 |     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, | 
 |   { "vrr", SystemZ::InsnVRR, 7, | 
 |     { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, | 
 |       MCK_U4Imm } }, | 
 |   { "vrs", SystemZ::InsnVRS, 5, | 
 |     { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, | 
 |   { "vrv", SystemZ::InsnVRV, 4, | 
 |     { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, | 
 |   { "vrx", SystemZ::InsnVRX, 4, | 
 |     { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, | 
 |   { "vsi", SystemZ::InsnVSI, 4, | 
 |     { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } | 
 | }; | 
 |  | 
 | static void printMCExpr(const MCExpr *E, raw_ostream &OS) { | 
 |   if (!E) | 
 |     return; | 
 |   if (auto *CE = dyn_cast<MCConstantExpr>(E)) | 
 |     OS << *CE; | 
 |   else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) | 
 |     OS << *UE; | 
 |   else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) | 
 |     OS << *BE; | 
 |   else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) | 
 |     OS << *SRE; | 
 |   else | 
 |     OS << *E; | 
 | } | 
 |  | 
 | void SystemZOperand::print(raw_ostream &OS) const { | 
 |   switch (Kind) { | 
 |   case KindToken: | 
 |     OS << "Token:" << getToken(); | 
 |     break; | 
 |   case KindReg: | 
 |     OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg()); | 
 |     break; | 
 |   case KindImm: | 
 |     OS << "Imm:"; | 
 |     printMCExpr(getImm(), OS); | 
 |     break; | 
 |   case KindImmTLS: | 
 |     OS << "ImmTLS:"; | 
 |     printMCExpr(getImmTLS().Imm, OS); | 
 |     if (getImmTLS().Sym) { | 
 |       OS << ", "; | 
 |       printMCExpr(getImmTLS().Sym, OS); | 
 |     } | 
 |     break; | 
 |   case KindMem: { | 
 |     const MemOp &Op = getMem(); | 
 |     OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); | 
 |     if (Op.Base) { | 
 |       OS << "("; | 
 |       if (Op.MemKind == BDLMem) | 
 |         OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; | 
 |       else if (Op.MemKind == BDRMem) | 
 |         OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ","; | 
 |       if (Op.Index) | 
 |         OS << SystemZInstPrinter::getRegisterName(Op.Index) << ","; | 
 |       OS << SystemZInstPrinter::getRegisterName(Op.Base); | 
 |       OS << ")"; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case KindInvalid: | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | // Parse one register of the form %<prefix><number>. | 
 | bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { | 
 |   Reg.StartLoc = Parser.getTok().getLoc(); | 
 |  | 
 |   // Eat the % prefix. | 
 |   if (Parser.getTok().isNot(AsmToken::Percent)) | 
 |     return Error(Parser.getTok().getLoc(), "register expected"); | 
 |   const AsmToken &PercentTok = Parser.getTok(); | 
 |   Parser.Lex(); | 
 |  | 
 |   // Expect a register name. | 
 |   if (Parser.getTok().isNot(AsmToken::Identifier)) { | 
 |     if (RestoreOnFailure) | 
 |       getLexer().UnLex(PercentTok); | 
 |     return Error(Reg.StartLoc, "invalid register"); | 
 |   } | 
 |  | 
 |   // Check that there's a prefix. | 
 |   StringRef Name = Parser.getTok().getString(); | 
 |   if (Name.size() < 2) { | 
 |     if (RestoreOnFailure) | 
 |       getLexer().UnLex(PercentTok); | 
 |     return Error(Reg.StartLoc, "invalid register"); | 
 |   } | 
 |   char Prefix = Name[0]; | 
 |  | 
 |   // Treat the rest of the register name as a register number. | 
 |   if (Name.substr(1).getAsInteger(10, Reg.Num)) { | 
 |     if (RestoreOnFailure) | 
 |       getLexer().UnLex(PercentTok); | 
 |     return Error(Reg.StartLoc, "invalid register"); | 
 |   } | 
 |  | 
 |   // Look for valid combinations of prefix and number. | 
 |   if (Prefix == 'r' && Reg.Num < 16) | 
 |     Reg.Group = RegGR; | 
 |   else if (Prefix == 'f' && Reg.Num < 16) | 
 |     Reg.Group = RegFP; | 
 |   else if (Prefix == 'v' && Reg.Num < 32) | 
 |     Reg.Group = RegV; | 
 |   else if (Prefix == 'a' && Reg.Num < 16) | 
 |     Reg.Group = RegAR; | 
 |   else if (Prefix == 'c' && Reg.Num < 16) | 
 |     Reg.Group = RegCR; | 
 |   else { | 
 |     if (RestoreOnFailure) | 
 |       getLexer().UnLex(PercentTok); | 
 |     return Error(Reg.StartLoc, "invalid register"); | 
 |   } | 
 |  | 
 |   Reg.EndLoc = Parser.getTok().getLoc(); | 
 |   Parser.Lex(); | 
 |   return false; | 
 | } | 
 |  | 
 | // Parse a register of kind Kind and add it to Operands. | 
 | OperandMatchResultTy | 
 | SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) { | 
 |   Register Reg; | 
 |   RegisterGroup Group; | 
 |   switch (Kind) { | 
 |   case GR32Reg: | 
 |   case GRH32Reg: | 
 |   case GR64Reg: | 
 |   case GR128Reg: | 
 |     Group = RegGR; | 
 |     break; | 
 |   case FP32Reg: | 
 |   case FP64Reg: | 
 |   case FP128Reg: | 
 |     Group = RegFP; | 
 |     break; | 
 |   case VR32Reg: | 
 |   case VR64Reg: | 
 |   case VR128Reg: | 
 |     Group = RegV; | 
 |     break; | 
 |   case AR32Reg: | 
 |     Group = RegAR; | 
 |     break; | 
 |   case CR64Reg: | 
 |     Group = RegCR; | 
 |     break; | 
 |   } | 
 |  | 
 |   // Handle register names of the form %<prefix><number> | 
 |   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { | 
 |     if (parseRegister(Reg)) | 
 |       return MatchOperand_ParseFail; | 
 |  | 
 |     // Check the parsed register group "Reg.Group" with the expected "Group" | 
 |     // Have to error out if user specified wrong prefix. | 
 |     switch (Group) { | 
 |     case RegGR: | 
 |     case RegFP: | 
 |     case RegAR: | 
 |     case RegCR: | 
 |       if (Group != Reg.Group) { | 
 |         Error(Reg.StartLoc, "invalid operand for instruction"); | 
 |         return MatchOperand_ParseFail; | 
 |       } | 
 |       break; | 
 |     case RegV: | 
 |       if (Reg.Group != RegV && Reg.Group != RegFP) { | 
 |         Error(Reg.StartLoc, "invalid operand for instruction"); | 
 |         return MatchOperand_ParseFail; | 
 |       } | 
 |       break; | 
 |     } | 
 |   } else if (Parser.getTok().is(AsmToken::Integer)) { | 
 |     if (parseIntegerRegister(Reg, Group)) | 
 |       return MatchOperand_ParseFail; | 
 |   } | 
 |   // Otherwise we didn't match a register operand. | 
 |   else | 
 |     return MatchOperand_NoMatch; | 
 |  | 
 |   // Determine the LLVM register number according to Kind. | 
 |   const unsigned *Regs; | 
 |   switch (Kind) { | 
 |   case GR32Reg:  Regs = SystemZMC::GR32Regs;  break; | 
 |   case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; | 
 |   case GR64Reg:  Regs = SystemZMC::GR64Regs;  break; | 
 |   case GR128Reg: Regs = SystemZMC::GR128Regs; break; | 
 |   case FP32Reg:  Regs = SystemZMC::FP32Regs;  break; | 
 |   case FP64Reg:  Regs = SystemZMC::FP64Regs;  break; | 
 |   case FP128Reg: Regs = SystemZMC::FP128Regs; break; | 
 |   case VR32Reg:  Regs = SystemZMC::VR32Regs;  break; | 
 |   case VR64Reg:  Regs = SystemZMC::VR64Regs;  break; | 
 |   case VR128Reg: Regs = SystemZMC::VR128Regs; break; | 
 |   case AR32Reg:  Regs = SystemZMC::AR32Regs;  break; | 
 |   case CR64Reg:  Regs = SystemZMC::CR64Regs;  break; | 
 |   } | 
 |   if (Regs[Reg.Num] == 0) { | 
 |     Error(Reg.StartLoc, "invalid register pair"); | 
 |     return MatchOperand_ParseFail; | 
 |   } | 
 |  | 
 |   Operands.push_back( | 
 |       SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); | 
 |   return MatchOperand_Success; | 
 | } | 
 |  | 
 | // Parse any type of register (including integers) and add it to Operands. | 
 | OperandMatchResultTy | 
 | SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { | 
 |   SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |  | 
 |   // Handle integer values. | 
 |   if (Parser.getTok().is(AsmToken::Integer)) { | 
 |     const MCExpr *Register; | 
 |     if (Parser.parseExpression(Register)) | 
 |       return MatchOperand_ParseFail; | 
 |  | 
 |     if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { | 
 |       int64_t Value = CE->getValue(); | 
 |       if (Value < 0 || Value > 15) { | 
 |         Error(StartLoc, "invalid register"); | 
 |         return MatchOperand_ParseFail; | 
 |       } | 
 |     } | 
 |  | 
 |     SMLoc EndLoc = | 
 |       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |  | 
 |     Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); | 
 |   } | 
 |   else { | 
 |     if (isParsingHLASM()) | 
 |       return MatchOperand_NoMatch; | 
 |  | 
 |     Register Reg; | 
 |     if (parseRegister(Reg)) | 
 |       return MatchOperand_ParseFail; | 
 |  | 
 |     if (Reg.Num > 15) { | 
 |       Error(StartLoc, "invalid register"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |  | 
 |     // Map to the correct register kind. | 
 |     RegisterKind Kind; | 
 |     unsigned RegNo; | 
 |     if (Reg.Group == RegGR) { | 
 |       Kind = GR64Reg; | 
 |       RegNo = SystemZMC::GR64Regs[Reg.Num]; | 
 |     } | 
 |     else if (Reg.Group == RegFP) { | 
 |       Kind = FP64Reg; | 
 |       RegNo = SystemZMC::FP64Regs[Reg.Num]; | 
 |     } | 
 |     else if (Reg.Group == RegV) { | 
 |       Kind = VR128Reg; | 
 |       RegNo = SystemZMC::VR128Regs[Reg.Num]; | 
 |     } | 
 |     else if (Reg.Group == RegAR) { | 
 |       Kind = AR32Reg; | 
 |       RegNo = SystemZMC::AR32Regs[Reg.Num]; | 
 |     } | 
 |     else if (Reg.Group == RegCR) { | 
 |       Kind = CR64Reg; | 
 |       RegNo = SystemZMC::CR64Regs[Reg.Num]; | 
 |     } | 
 |     else { | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |  | 
 |     Operands.push_back(SystemZOperand::createReg(Kind, RegNo, | 
 |                                                  Reg.StartLoc, Reg.EndLoc)); | 
 |   } | 
 |   return MatchOperand_Success; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::parseIntegerRegister(Register &Reg, | 
 |                                             RegisterGroup Group) { | 
 |   Reg.StartLoc = Parser.getTok().getLoc(); | 
 |   // We have an integer token | 
 |   const MCExpr *Register; | 
 |   if (Parser.parseExpression(Register)) | 
 |     return true; | 
 |  | 
 |   const auto *CE = dyn_cast<MCConstantExpr>(Register); | 
 |   if (!CE) | 
 |     return true; | 
 |  | 
 |   int64_t MaxRegNum = (Group == RegV) ? 31 : 15; | 
 |   int64_t Value = CE->getValue(); | 
 |   if (Value < 0 || Value > MaxRegNum) { | 
 |     Error(Parser.getTok().getLoc(), "invalid register"); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Assign the Register Number | 
 |   Reg.Num = (unsigned)Value; | 
 |   Reg.Group = Group; | 
 |   Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |  | 
 |   // At this point, successfully parsed an integer register. | 
 |   return false; | 
 | } | 
 |  | 
 | // Parse a memory operand into Reg1, Reg2, Disp, and Length. | 
 | bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, | 
 |                                     bool &HaveReg2, Register &Reg2, | 
 |                                     const MCExpr *&Disp, const MCExpr *&Length, | 
 |                                     bool HasLength, bool HasVectorIndex) { | 
 |   // Parse the displacement, which must always be present. | 
 |   if (getParser().parseExpression(Disp)) | 
 |     return true; | 
 |  | 
 |   // Parse the optional base and index. | 
 |   HaveReg1 = false; | 
 |   HaveReg2 = false; | 
 |   Length = nullptr; | 
 |  | 
 |   // If we have a scenario as below: | 
 |   //   vgef %v0, 0(0), 0 | 
 |   // This is an example of a "BDVMem" instruction type. | 
 |   // | 
 |   // So when we parse this as an integer register, the register group | 
 |   // needs to be tied to "RegV". Usually when the prefix is passed in | 
 |   // as %<prefix><reg-number> its easy to check which group it should belong to | 
 |   // However, if we're passing in just the integer there's no real way to | 
 |   // "check" what register group it should belong to. | 
 |   // | 
 |   // When the user passes in the register as an integer, the user assumes that | 
 |   // the compiler is responsible for substituting it as the right kind of | 
 |   // register. Whereas, when the user specifies a "prefix", the onus is on | 
 |   // the user to make sure they pass in the right kind of register. | 
 |   // | 
 |   // The restriction only applies to the first Register (i.e. Reg1). Reg2 is | 
 |   // always a general register. Reg1 should be of group RegV if "HasVectorIndex" | 
 |   // (i.e. insn is of type BDVMem) is true. | 
 |   RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; | 
 |  | 
 |   if (getLexer().is(AsmToken::LParen)) { | 
 |     Parser.Lex(); | 
 |  | 
 |     if (isParsingATT() && getLexer().is(AsmToken::Percent)) { | 
 |       // Parse the first register. | 
 |       HaveReg1 = true; | 
 |       if (parseRegister(Reg1)) | 
 |         return true; | 
 |     } | 
 |     // So if we have an integer as the first token in ([tok1], ..), it could: | 
 |     // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of | 
 |     // instructions) | 
 |     // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) | 
 |     else if (getLexer().is(AsmToken::Integer)) { | 
 |       if (HasLength) { | 
 |         // Instruction has a "Length" field, safe to parse the first token as | 
 |         // the "Length" field | 
 |         if (getParser().parseExpression(Length)) | 
 |           return true; | 
 |       } else { | 
 |         // Otherwise, if the instruction has no "Length" field, parse the | 
 |         // token as a "Register". We don't have to worry about whether the | 
 |         // instruction is invalid here, because the caller will take care of | 
 |         // error reporting. | 
 |         HaveReg1 = true; | 
 |         if (parseIntegerRegister(Reg1, RegGroup)) | 
 |           return true; | 
 |       } | 
 |     } else { | 
 |       // If its not an integer or a percent token, then if the instruction | 
 |       // is reported to have a "Length" then, parse it as "Length". | 
 |       if (HasLength) { | 
 |         if (getParser().parseExpression(Length)) | 
 |           return true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Check whether there's a second register. | 
 |     if (getLexer().is(AsmToken::Comma)) { | 
 |       Parser.Lex(); | 
 |       HaveReg2 = true; | 
 |  | 
 |       if (getLexer().is(AsmToken::Integer)) { | 
 |         if (parseIntegerRegister(Reg2, RegGR)) | 
 |           return true; | 
 |       } else { | 
 |         if (isParsingATT() && parseRegister(Reg2)) | 
 |           return true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Consume the closing bracket. | 
 |     if (getLexer().isNot(AsmToken::RParen)) | 
 |       return Error(Parser.getTok().getLoc(), "unexpected token in address"); | 
 |     Parser.Lex(); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Verify that Reg is a valid address register (base or index). | 
 | bool | 
 | SystemZAsmParser::parseAddressRegister(Register &Reg) { | 
 |   if (Reg.Group == RegV) { | 
 |     Error(Reg.StartLoc, "invalid use of vector addressing"); | 
 |     return true; | 
 |   } else if (Reg.Group != RegGR) { | 
 |     Error(Reg.StartLoc, "invalid address register"); | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | // Parse a memory operand and add it to Operands.  The other arguments | 
 | // are as above. | 
 | OperandMatchResultTy | 
 | SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind, | 
 |                                RegisterKind RegKind) { | 
 |   SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |   unsigned Base = 0, Index = 0, LengthReg = 0; | 
 |   Register Reg1, Reg2; | 
 |   bool HaveReg1, HaveReg2; | 
 |   const MCExpr *Disp; | 
 |   const MCExpr *Length; | 
 |  | 
 |   bool HasLength = (MemKind == BDLMem) ? true : false; | 
 |   bool HasVectorIndex = (MemKind == BDVMem) ? true : false; | 
 |   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, | 
 |                    HasVectorIndex)) | 
 |     return MatchOperand_ParseFail; | 
 |  | 
 |   const unsigned *Regs; | 
 |   switch (RegKind) { | 
 |   case GR32Reg: Regs = SystemZMC::GR32Regs; break; | 
 |   case GR64Reg: Regs = SystemZMC::GR64Regs; break; | 
 |   default: llvm_unreachable("invalid RegKind"); | 
 |   } | 
 |  | 
 |   switch (MemKind) { | 
 |   case BDMem: | 
 |     // If we have Reg1, it must be an address register. | 
 |     if (HaveReg1) { | 
 |       if (parseAddressRegister(Reg1)) | 
 |         return MatchOperand_ParseFail; | 
 |       Base = Regs[Reg1.Num]; | 
 |     } | 
 |     // There must be no Reg2. | 
 |     if (HaveReg2) { | 
 |       Error(StartLoc, "invalid use of indexed addressing"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     break; | 
 |   case BDXMem: | 
 |     // If we have Reg1, it must be an address register. | 
 |     if (HaveReg1) { | 
 |       if (parseAddressRegister(Reg1)) | 
 |         return MatchOperand_ParseFail; | 
 |       // If the are two registers, the first one is the index and the | 
 |       // second is the base. | 
 |       if (HaveReg2) | 
 |         Index = Regs[Reg1.Num]; | 
 |       else | 
 |         Base = Regs[Reg1.Num]; | 
 |     } | 
 |     // If we have Reg2, it must be an address register. | 
 |     if (HaveReg2) { | 
 |       if (parseAddressRegister(Reg2)) | 
 |         return MatchOperand_ParseFail; | 
 |       Base = Regs[Reg2.Num]; | 
 |     } | 
 |     break; | 
 |   case BDLMem: | 
 |     // If we have Reg2, it must be an address register. | 
 |     if (HaveReg2) { | 
 |       if (parseAddressRegister(Reg2)) | 
 |         return MatchOperand_ParseFail; | 
 |       Base = Regs[Reg2.Num]; | 
 |     } | 
 |     // We cannot support base+index addressing. | 
 |     if (HaveReg1 && HaveReg2) { | 
 |       Error(StartLoc, "invalid use of indexed addressing"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     // We must have a length. | 
 |     if (!Length) { | 
 |       Error(StartLoc, "missing length in address"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     break; | 
 |   case BDRMem: | 
 |     // We must have Reg1, and it must be a GPR. | 
 |     if (!HaveReg1 || Reg1.Group != RegGR) { | 
 |       Error(StartLoc, "invalid operand for instruction"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     LengthReg = SystemZMC::GR64Regs[Reg1.Num]; | 
 |     // If we have Reg2, it must be an address register. | 
 |     if (HaveReg2) { | 
 |       if (parseAddressRegister(Reg2)) | 
 |         return MatchOperand_ParseFail; | 
 |       Base = Regs[Reg2.Num]; | 
 |     } | 
 |     break; | 
 |   case BDVMem: | 
 |     // We must have Reg1, and it must be a vector register. | 
 |     if (!HaveReg1 || Reg1.Group != RegV) { | 
 |       Error(StartLoc, "vector index required in address"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     Index = SystemZMC::VR128Regs[Reg1.Num]; | 
 |     // If we have Reg2, it must be an address register. | 
 |     if (HaveReg2) { | 
 |       if (parseAddressRegister(Reg2)) | 
 |         return MatchOperand_ParseFail; | 
 |       Base = Regs[Reg2.Num]; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   SMLoc EndLoc = | 
 |       SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |   Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, | 
 |                                                Index, Length, LengthReg, | 
 |                                                StartLoc, EndLoc)); | 
 |   return MatchOperand_Success; | 
 | } | 
 |  | 
 | ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { | 
 |   StringRef IDVal = DirectiveID.getIdentifier(); | 
 |  | 
 |   if (IDVal == ".insn") | 
 |     return ParseDirectiveInsn(DirectiveID.getLoc()); | 
 |   if (IDVal == ".machine") | 
 |     return ParseDirectiveMachine(DirectiveID.getLoc()); | 
 |   if (IDVal.startswith(".gnu_attribute")) | 
 |     return ParseGNUAttribute(DirectiveID.getLoc()); | 
 |  | 
 |   return ParseStatus::NoMatch; | 
 | } | 
 |  | 
 | /// ParseDirectiveInsn | 
 | /// ::= .insn [ format, encoding, (operands (, operands)*) ] | 
 | bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { | 
 |   MCAsmParser &Parser = getParser(); | 
 |  | 
 |   // Expect instruction format as identifier. | 
 |   StringRef Format; | 
 |   SMLoc ErrorLoc = Parser.getTok().getLoc(); | 
 |   if (Parser.parseIdentifier(Format)) | 
 |     return Error(ErrorLoc, "expected instruction format"); | 
 |  | 
 |   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; | 
 |  | 
 |   // Find entry for this format in InsnMatchTable. | 
 |   auto EntryRange = | 
 |     std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), | 
 |                      Format, CompareInsn()); | 
 |  | 
 |   // If first == second, couldn't find a match in the table. | 
 |   if (EntryRange.first == EntryRange.second) | 
 |     return Error(ErrorLoc, "unrecognized format"); | 
 |  | 
 |   struct InsnMatchEntry *Entry = EntryRange.first; | 
 |  | 
 |   // Format should match from equal_range. | 
 |   assert(Entry->Format == Format); | 
 |  | 
 |   // Parse the following operands using the table's information. | 
 |   for (int i = 0; i < Entry->NumOperands; i++) { | 
 |     MatchClassKind Kind = Entry->OperandKinds[i]; | 
 |  | 
 |     SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |  | 
 |     // Always expect commas as separators for operands. | 
 |     if (getLexer().isNot(AsmToken::Comma)) | 
 |       return Error(StartLoc, "unexpected token in directive"); | 
 |     Lex(); | 
 |  | 
 |     // Parse operands. | 
 |     OperandMatchResultTy ResTy; | 
 |     if (Kind == MCK_AnyReg) | 
 |       ResTy = parseAnyReg(Operands); | 
 |     else if (Kind == MCK_VR128) | 
 |       ResTy = parseVR128(Operands); | 
 |     else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) | 
 |       ResTy = parseBDXAddr64(Operands); | 
 |     else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) | 
 |       ResTy = parseBDAddr64(Operands); | 
 |     else if (Kind == MCK_BDVAddr64Disp12) | 
 |       ResTy = parseBDVAddr64(Operands); | 
 |     else if (Kind == MCK_PCRel32) | 
 |       ResTy = parsePCRel32(Operands); | 
 |     else if (Kind == MCK_PCRel16) | 
 |       ResTy = parsePCRel16(Operands); | 
 |     else { | 
 |       // Only remaining operand kind is an immediate. | 
 |       const MCExpr *Expr; | 
 |       SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |  | 
 |       // Expect immediate expression. | 
 |       if (Parser.parseExpression(Expr)) | 
 |         return Error(StartLoc, "unexpected token in directive"); | 
 |  | 
 |       SMLoc EndLoc = | 
 |         SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |  | 
 |       Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
 |       ResTy = MatchOperand_Success; | 
 |     } | 
 |  | 
 |     if (ResTy != MatchOperand_Success) | 
 |       return true; | 
 |   } | 
 |  | 
 |   // Build the instruction with the parsed operands. | 
 |   MCInst Inst = MCInstBuilder(Entry->Opcode); | 
 |  | 
 |   for (size_t i = 0; i < Operands.size(); i++) { | 
 |     MCParsedAsmOperand &Operand = *Operands[i]; | 
 |     MatchClassKind Kind = Entry->OperandKinds[i]; | 
 |  | 
 |     // Verify operand. | 
 |     unsigned Res = validateOperandClass(Operand, Kind); | 
 |     if (Res != Match_Success) | 
 |       return Error(Operand.getStartLoc(), "unexpected operand type"); | 
 |  | 
 |     // Add operands to instruction. | 
 |     SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); | 
 |     if (ZOperand.isReg()) | 
 |       ZOperand.addRegOperands(Inst, 1); | 
 |     else if (ZOperand.isMem(BDMem)) | 
 |       ZOperand.addBDAddrOperands(Inst, 2); | 
 |     else if (ZOperand.isMem(BDXMem)) | 
 |       ZOperand.addBDXAddrOperands(Inst, 3); | 
 |     else if (ZOperand.isMem(BDVMem)) | 
 |       ZOperand.addBDVAddrOperands(Inst, 3); | 
 |     else if (ZOperand.isImm()) | 
 |       ZOperand.addImmOperands(Inst, 1); | 
 |     else | 
 |       llvm_unreachable("unexpected operand type"); | 
 |   } | 
 |  | 
 |   // Emit as a regular instruction. | 
 |   Parser.getStreamer().emitInstruction(Inst, getSTI()); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// ParseDirectiveMachine | 
 | /// ::= .machine [ mcpu ] | 
 | bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { | 
 |   MCAsmParser &Parser = getParser(); | 
 |   if (Parser.getTok().isNot(AsmToken::Identifier) && | 
 |       Parser.getTok().isNot(AsmToken::String)) | 
 |     return TokError("unexpected token in '.machine' directive"); | 
 |  | 
 |   StringRef CPU = Parser.getTok().getIdentifier(); | 
 |   Parser.Lex(); | 
 |   if (parseEOL()) | 
 |     return true; | 
 |  | 
 |   MCSubtargetInfo &STI = copySTI(); | 
 |   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); | 
 |   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); | 
 |  | 
 |   getTargetStreamer().emitMachine(CPU); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { | 
 |   int64_t Tag; | 
 |   int64_t IntegerValue; | 
 |   if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) | 
 |     return Error(L, "malformed .gnu_attribute directive"); | 
 |  | 
 |   // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. | 
 |   if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) | 
 |     return Error(L, "unrecognized .gnu_attribute tag/value pair."); | 
 |  | 
 |   Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); | 
 |  | 
 |   return parseEOL(); | 
 | } | 
 |  | 
 | bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, | 
 |                                      SMLoc &EndLoc, bool RestoreOnFailure) { | 
 |   Register Reg; | 
 |   if (parseRegister(Reg, RestoreOnFailure)) | 
 |     return true; | 
 |   if (Reg.Group == RegGR) | 
 |     RegNo = SystemZMC::GR64Regs[Reg.Num]; | 
 |   else if (Reg.Group == RegFP) | 
 |     RegNo = SystemZMC::FP64Regs[Reg.Num]; | 
 |   else if (Reg.Group == RegV) | 
 |     RegNo = SystemZMC::VR128Regs[Reg.Num]; | 
 |   else if (Reg.Group == RegAR) | 
 |     RegNo = SystemZMC::AR32Regs[Reg.Num]; | 
 |   else if (Reg.Group == RegCR) | 
 |     RegNo = SystemZMC::CR64Regs[Reg.Num]; | 
 |   StartLoc = Reg.StartLoc; | 
 |   EndLoc = Reg.EndLoc; | 
 |   return false; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc, | 
 |                                      SMLoc &EndLoc) { | 
 |   return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false); | 
 | } | 
 |  | 
 | OperandMatchResultTy SystemZAsmParser::tryParseRegister(MCRegister &RegNo, | 
 |                                                         SMLoc &StartLoc, | 
 |                                                         SMLoc &EndLoc) { | 
 |   bool Result = | 
 |       ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true); | 
 |   bool PendingErrors = getParser().hasPendingError(); | 
 |   getParser().clearPendingErrors(); | 
 |   if (PendingErrors) | 
 |     return MatchOperand_ParseFail; | 
 |   if (Result) | 
 |     return MatchOperand_NoMatch; | 
 |   return MatchOperand_Success; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, | 
 |                                         StringRef Name, SMLoc NameLoc, | 
 |                                         OperandVector &Operands) { | 
 |  | 
 |   // Apply mnemonic aliases first, before doing anything else, in | 
 |   // case the target uses it. | 
 |   applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); | 
 |  | 
 |   Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); | 
 |  | 
 |   // Read the remaining operands. | 
 |   if (getLexer().isNot(AsmToken::EndOfStatement)) { | 
 |     // Read the first operand. | 
 |     if (parseOperand(Operands, Name)) { | 
 |       return true; | 
 |     } | 
 |  | 
 |     // Read any subsequent operands. | 
 |     while (getLexer().is(AsmToken::Comma)) { | 
 |       Parser.Lex(); | 
 |  | 
 |       if (isParsingHLASM() && getLexer().is(AsmToken::Space)) | 
 |         return Error( | 
 |             Parser.getTok().getLoc(), | 
 |             "No space allowed between comma that separates operand entries"); | 
 |  | 
 |       if (parseOperand(Operands, Name)) { | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |     // Under the HLASM variant, we could have the remark field | 
 |     // The remark field occurs after the operation entries | 
 |     // There is a space that separates the operation entries and the | 
 |     // remark field. | 
 |     if (isParsingHLASM() && getTok().is(AsmToken::Space)) { | 
 |       // We've confirmed that there is a Remark field. | 
 |       StringRef Remark(getLexer().LexUntilEndOfStatement()); | 
 |       Parser.Lex(); | 
 |  | 
 |       // If there is nothing after the space, then there is nothing to emit | 
 |       // We could have a situation as this: | 
 |       // "  \n" | 
 |       // After lexing above, we will have | 
 |       // "\n" | 
 |       // This isn't an explicit remark field, so we don't have to output | 
 |       // this as a comment. | 
 |       if (Remark.size()) | 
 |         // Output the entire Remarks Field as a comment | 
 |         getStreamer().AddComment(Remark); | 
 |     } | 
 |  | 
 |     if (getLexer().isNot(AsmToken::EndOfStatement)) { | 
 |       SMLoc Loc = getLexer().getLoc(); | 
 |       return Error(Loc, "unexpected token in argument list"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Consume the EndOfStatement. | 
 |   Parser.Lex(); | 
 |   return false; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::parseOperand(OperandVector &Operands, | 
 |                                     StringRef Mnemonic) { | 
 |   // Check if the current operand has a custom associated parser, if so, try to | 
 |   // custom parse the operand, or fallback to the general approach.  Force all | 
 |   // features to be available during the operand check, or else we will fail to | 
 |   // find the custom parser, and then we will later get an InvalidOperand error | 
 |   // instead of a MissingFeature errror. | 
 |   FeatureBitset AvailableFeatures = getAvailableFeatures(); | 
 |   FeatureBitset All; | 
 |   All.set(); | 
 |   setAvailableFeatures(All); | 
 |   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); | 
 |   setAvailableFeatures(AvailableFeatures); | 
 |   if (ResTy == MatchOperand_Success) | 
 |     return false; | 
 |  | 
 |   // If there wasn't a custom match, try the generic matcher below. Otherwise, | 
 |   // there was a match, but an error occurred, in which case, just return that | 
 |   // the operand parsing failed. | 
 |   if (ResTy == MatchOperand_ParseFail) | 
 |     return true; | 
 |  | 
 |   // Check for a register.  All real register operands should have used | 
 |   // a context-dependent parse routine, which gives the required register | 
 |   // class.  The code is here to mop up other cases, like those where | 
 |   // the instruction isn't recognized. | 
 |   if (isParsingATT() && Parser.getTok().is(AsmToken::Percent)) { | 
 |     Register Reg; | 
 |     if (parseRegister(Reg)) | 
 |       return true; | 
 |     Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // The only other type of operand is an immediate or address.  As above, | 
 |   // real address operands should have used a context-dependent parse routine, | 
 |   // so we treat any plain expression as an immediate. | 
 |   SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |   Register Reg1, Reg2; | 
 |   bool HaveReg1, HaveReg2; | 
 |   const MCExpr *Expr; | 
 |   const MCExpr *Length; | 
 |   if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, | 
 |                    /*HasLength*/ true, /*HasVectorIndex*/ true)) | 
 |     return true; | 
 |   // If the register combination is not valid for any instruction, reject it. | 
 |   // Otherwise, fall back to reporting an unrecognized instruction. | 
 |   if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV | 
 |       && parseAddressRegister(Reg1)) | 
 |     return true; | 
 |   if (HaveReg2 && parseAddressRegister(Reg2)) | 
 |     return true; | 
 |  | 
 |   SMLoc EndLoc = | 
 |     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |   if (HaveReg1 || HaveReg2 || Length) | 
 |     Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); | 
 |   else | 
 |     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
 |   return false; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, | 
 |                                                OperandVector &Operands, | 
 |                                                MCStreamer &Out, | 
 |                                                uint64_t &ErrorInfo, | 
 |                                                bool MatchingInlineAsm) { | 
 |   MCInst Inst; | 
 |   unsigned MatchResult; | 
 |  | 
 |   unsigned Dialect = getMAIAssemblerDialect(); | 
 |  | 
 |   FeatureBitset MissingFeatures; | 
 |   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, | 
 |                                      MatchingInlineAsm, Dialect); | 
 |   switch (MatchResult) { | 
 |   case Match_Success: | 
 |     Inst.setLoc(IDLoc); | 
 |     Out.emitInstruction(Inst, getSTI()); | 
 |     return false; | 
 |  | 
 |   case Match_MissingFeature: { | 
 |     assert(MissingFeatures.any() && "Unknown missing feature!"); | 
 |     // Special case the error message for the very common case where only | 
 |     // a single subtarget feature is missing | 
 |     std::string Msg = "instruction requires:"; | 
 |     for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { | 
 |       if (MissingFeatures[I]) { | 
 |         Msg += " "; | 
 |         Msg += getSubtargetFeatureName(I); | 
 |       } | 
 |     } | 
 |     return Error(IDLoc, Msg); | 
 |   } | 
 |  | 
 |   case Match_InvalidOperand: { | 
 |     SMLoc ErrorLoc = IDLoc; | 
 |     if (ErrorInfo != ~0ULL) { | 
 |       if (ErrorInfo >= Operands.size()) | 
 |         return Error(IDLoc, "too few operands for instruction"); | 
 |  | 
 |       ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); | 
 |       if (ErrorLoc == SMLoc()) | 
 |         ErrorLoc = IDLoc; | 
 |     } | 
 |     return Error(ErrorLoc, "invalid operand for instruction"); | 
 |   } | 
 |  | 
 |   case Match_MnemonicFail: { | 
 |     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); | 
 |     std::string Suggestion = SystemZMnemonicSpellCheck( | 
 |         ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); | 
 |     return Error(IDLoc, "invalid instruction" + Suggestion, | 
 |                  ((SystemZOperand &)*Operands[0]).getLocRange()); | 
 |   } | 
 |   } | 
 |  | 
 |   llvm_unreachable("Unexpected match type"); | 
 | } | 
 |  | 
 | OperandMatchResultTy | 
 | SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, | 
 |                              int64_t MaxVal, bool AllowTLS) { | 
 |   MCContext &Ctx = getContext(); | 
 |   MCStreamer &Out = getStreamer(); | 
 |   const MCExpr *Expr; | 
 |   SMLoc StartLoc = Parser.getTok().getLoc(); | 
 |   if (getParser().parseExpression(Expr)) | 
 |     return MatchOperand_NoMatch; | 
 |  | 
 |   auto isOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { | 
 |     if (auto *CE = dyn_cast<MCConstantExpr>(E)) { | 
 |       int64_t Value = CE->getValue(); | 
 |       if (Negate) | 
 |         Value = -Value; | 
 |       if ((Value & 1) || Value < MinVal || Value > MaxVal) | 
 |         return true; | 
 |     } | 
 |     return false; | 
 |   }; | 
 |  | 
 |   // For consistency with the GNU assembler, treat immediates as offsets | 
 |   // from ".". | 
 |   if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { | 
 |     if (isParsingHLASM()) { | 
 |       Error(StartLoc, "Expected PC-relative expression"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     if (isOutOfRangeConstant(CE, false)) { | 
 |       Error(StartLoc, "offset out of range"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     int64_t Value = CE->getValue(); | 
 |     MCSymbol *Sym = Ctx.createTempSymbol(); | 
 |     Out.emitLabel(Sym); | 
 |     const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, | 
 |                                                  Ctx); | 
 |     Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); | 
 |   } | 
 |  | 
 |   // For consistency with the GNU assembler, conservatively assume that a | 
 |   // constant offset must by itself be within the given size range. | 
 |   if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) | 
 |     if (isOutOfRangeConstant(BE->getLHS(), false) || | 
 |         isOutOfRangeConstant(BE->getRHS(), | 
 |                              BE->getOpcode() == MCBinaryExpr::Sub)) { | 
 |       Error(StartLoc, "offset out of range"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |  | 
 |   // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. | 
 |   const MCExpr *Sym = nullptr; | 
 |   if (AllowTLS && getLexer().is(AsmToken::Colon)) { | 
 |     Parser.Lex(); | 
 |  | 
 |     if (Parser.getTok().isNot(AsmToken::Identifier)) { | 
 |       Error(Parser.getTok().getLoc(), "unexpected token"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |  | 
 |     MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; | 
 |     StringRef Name = Parser.getTok().getString(); | 
 |     if (Name == "tls_gdcall") | 
 |       Kind = MCSymbolRefExpr::VK_TLSGD; | 
 |     else if (Name == "tls_ldcall") | 
 |       Kind = MCSymbolRefExpr::VK_TLSLDM; | 
 |     else { | 
 |       Error(Parser.getTok().getLoc(), "unknown TLS tag"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     Parser.Lex(); | 
 |  | 
 |     if (Parser.getTok().isNot(AsmToken::Colon)) { | 
 |       Error(Parser.getTok().getLoc(), "unexpected token"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |     Parser.Lex(); | 
 |  | 
 |     if (Parser.getTok().isNot(AsmToken::Identifier)) { | 
 |       Error(Parser.getTok().getLoc(), "unexpected token"); | 
 |       return MatchOperand_ParseFail; | 
 |     } | 
 |  | 
 |     StringRef Identifier = Parser.getTok().getString(); | 
 |     Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), | 
 |                                   Kind, Ctx); | 
 |     Parser.Lex(); | 
 |   } | 
 |  | 
 |   SMLoc EndLoc = | 
 |     SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); | 
 |  | 
 |   if (AllowTLS) | 
 |     Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, | 
 |                                                     StartLoc, EndLoc)); | 
 |   else | 
 |     Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); | 
 |  | 
 |   return MatchOperand_Success; | 
 | } | 
 |  | 
 | bool SystemZAsmParser::isLabel(AsmToken &Token) { | 
 |   if (isParsingATT()) | 
 |     return true; | 
 |  | 
 |   // HLASM labels are ordinary symbols. | 
 |   // An HLASM label always starts at column 1. | 
 |   // An ordinary symbol syntax is laid out as follows: | 
 |   // Rules: | 
 |   // 1. Has to start with an "alphabetic character". Can be followed by up to | 
 |   //    62 alphanumeric characters. An "alphabetic character", in this scenario, | 
 |   //    is a letter from 'A' through 'Z', or from 'a' through 'z', | 
 |   //    or '$', '_', '#', or '@' | 
 |   // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. | 
 |   //    are all treated as the same symbol. However, the processing for the case | 
 |   //    folding will not be done in this function. | 
 |   StringRef RawLabel = Token.getString(); | 
 |   SMLoc Loc = Token.getLoc(); | 
 |  | 
 |   // An HLASM label cannot be empty. | 
 |   if (!RawLabel.size()) | 
 |     return !Error(Loc, "HLASM Label cannot be empty"); | 
 |  | 
 |   // An HLASM label cannot exceed greater than 63 characters. | 
 |   if (RawLabel.size() > 63) | 
 |     return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); | 
 |  | 
 |   // A label must start with an "alphabetic character". | 
 |   if (!isHLASMAlpha(RawLabel[0])) | 
 |     return !Error(Loc, "HLASM Label has to start with an alphabetic " | 
 |                        "character or the underscore character"); | 
 |  | 
 |   // Now, we've established that the length is valid | 
 |   // and the first character is alphabetic. | 
 |   // Check whether remaining string is alphanumeric. | 
 |   for (unsigned I = 1; I < RawLabel.size(); ++I) | 
 |     if (!isHLASMAlnum(RawLabel[I])) | 
 |       return !Error(Loc, "HLASM Label has to be alphanumeric"); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Force static initialization. | 
 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { | 
 |   RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); | 
 | } |